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ABSTRACT
In this paper, we introduce a new Gaussian Process (GP) clas-
sification method for multisensory data. The proposed ap-
proach can deal with noisy and missing data. It is also capa-
ble of estimating the contribution of each sensor towards the
classification task. We use Bayesian modeling to build a GP-
based classifier which combines the information provided by
all sensors and approximates the posterior distribution of the
GP using variational Bayesian inference. During its training
phase, the algorithm estimates each sensor’s weight and then
uses this information to assign a label to each new sample. In
the experimental section, we evaluate the classification per-
formance of the proposed method on both synthetic and real
data and show its applicability to different scenarios.

Index Terms— Gaussian process, fusion, Bayesian mod-
eling, variational inference, classification.

1. INTRODUCTION

Fusing information from several sensors to perform a clas-
sification task is a widely applicable research topic within
the Machine Learning community. It has two main bene-
fits. Firstly, it can boost the classification performance of a
single sensor by providing extra information on the classifi-
cation task, and secondly, and even more importantly here, it
compensates for noisy sensors or sensors with missing data.
In other words, fusion brings robustness to noisy channels or
partial loss of data.

It could be claimed that GPs [1] are one of the most pre-
ferred fusion tools. Cohn and Specia [2] utilize GPs for Nat-
ural Language Processing. They use multi-task learning to
classify the quality of a sentence while determining the labels
with crowdsourcing. They also model correlation between
different annotators. Fox and Dunson [3] apply GPs to time
series problems. They introduce multi-resolution GPs and ob-
tain long-range dependencies, see also [4]. Duvenaud et al.
[5] use an additive GP that generalizes Generalized Additive
Models (GAM) and Squared-Exponential Gaussian Processes
(SE-GP), two of the most commonly used regression models
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in statistics. Gerardo-Castro et al. [6] use GPs for robot sens-
ing and vision. Girolami [7] proposes a GP model and applies
it to biological data that overcomes the classification obsta-
cles with SVM when dealing with a heterogeneous dataset.
Kapoor et al. [8] use a GP fusion method to deal with missing
channels or labeling noise in the data. Rather than omitting
the noisy channel all together, the developed algorithm com-
pensates for it via fusion. Rodriguez et al. [9] apply GPs
to crowdsourcing problems aiming at making labeling from
multiple annotators closer to the golden standard.

In this work, we propose a new modeling of the fusion
classification problem using GPs (two class problem). This
approach is capable of also working with missing samples and
estimates the reliability of sensors. This idea was suggested
in [10]. During the training phase, based on the each sensor
reliability, the corresponding weights are estimated. These
weights are used in order to classify a new point in the testing
phase. We present the classification accuracy of the algorithm
applied to both synthetic and real data sets. The rest of paper
is organized as follows. In sections 2, our modeling of the
problem is described. Variational Inference and the proposed
algorithm to estimate the posterior distribution are presented
in section 3. The classification rule is provided in section 4
where we also explain how to deal with missing data. Exper-
imental results are presented in section 5 and finally section 6
concludes the paper.

2. BAYESIAN MODELING

Let us assume that we have a training set of N samples ac-
quired using P different sensors. xij ∈ RDi×1 represents the
j-th training sample, acquired by the i-th sensor, and the re-
spective labels are given by the vector y = [y1, . . . , yN ]

T ∈
{0, 1}N×1 (binary classification). We write

X =


x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xP1 xP2 . . . xPN

 ∈ R(D1+D2+...+DP )×N .

In this notation, a single sample of sensor i has dimension
Di. For the time being, we assume that all xij are available,
that is, all samples are provided by all sensors. We will later
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examine how to adapt the model to the case where some sen-
sors do not provide information for some samples.

We assume that fi,· = (fi1, . . . , fiN ), which is associated
to the i−th sensor, follows a N (0, αiKi), where Ki(p, q) =
ki(xip,xiq), ki is a kernel function, and αi is a variance pa-
rameter. Assuming that the sensors are independent, we then
assign the following prior model to f = (fT1,·, . . . , f

T
P,·)

T ∈
RPN×1

f ∼ N (0,K), (1)

where K is a PN × PN matrix defined by blocks (Ki) as
K = diag(α1K1, . . . , αPKP ). (2)

Then, the realizations of the Gaussian process and the ob-
served labels are linked by the observation model

p(y|f) =

N∏
j=1

(
σ

(
P∑
i=1

fij

))yj (
σ

(
−

P∑
i=1

fij

))1−yj

=

N∏
j=1

(
σ
(
1T f·,j

))yj (
σ
(
−1T f·,j

))1−yj
, (3)

where σ is the sigmoid function, σ(a) = 1/(1 + exp(−a)),
and 1 is a column vector of size P with all its components
equal to one.

The joint distribution can be calculated as

p(y, f ,α) = p(y|f)p(f |X,α)p(α), (4)

where α = (α1, . . . , αP ) and we use an improper flat prior
for α. The rationale behind the proposed model is the follow-
ing: each sensor is capable of independently providing a clas-
sifier from all the information it gathers. For a given sample
j, adding the GP values associated with sensors i and i′, fij
and fi′j , respectively, will increase (decrease) the likelihood
of the observed label if they are in agreement (disagreement)
in their signs.

3. VARIATIONAL INFERENCE

In a Bayesian framework, the inference on the unknowns is
performed on the posterior distribution. In our case, the cal-
culation of p(f ,α|y) is intractable, and therefore we approx-
imate the posterior distribution by minimizing the Kulback-
Leibler (KL) divergence

KL(q(f ,α)||p(f ,α|y)) = (5)∫
f ,α

q(f ,α) log

(
q(f ,α)

p(f ,α|y)

)
d(f ,α) =∫

f ,α

q(f ,α) log

(
q(f ,α)

p(y, f ,α)

)
d(f ,α) + const

and utilize the mean field approximation [11] q(f ,α) =
q(f)q(α) where q(α) is assumed to be degenerate. The KL
divergence is always non-negative and is equal to zero if and
only if q(f ,α) and p(f ,α|y) coincide. Unfortunately, the

functional form of p(y|f) does not allow for the direct evalu-
ation of the KL divergence. To alleviate this problem, we use
the variational bound [11] to obtain a quadratic function on f

log p(y, f ,α) ≥
N∑
j=1

{(
yj −

1

2

)
1T f·,j − λ(ξj)f

T
·,j11T f·,j

+λ(ξj)ξ
2
j +

ξj
2
− log(σ(−ξj))

}
− 1

2
fTK−1f − 1

2
log |K|

= log(M(y, f ,α, ξ)) (6)

where λ(ξ) = 1
2ξ

(
1

1+e−ξ
− 1

2

)
and ξ = (ξ1, . . . , ξN ) is

a vector of additional positive parameters to be estimated.
Then, we have

KL(q(f)q(α)‖p(f ,α|y)) ≤KL(q(f)q(α)‖M(y, f ,α, ξ)),

and now we minimize KL(q(f)q(α)‖M(y, f ,α, ξ)) on q(f),
α, and ξ.

It can be shown in [11] that the optimal posterior distribu-
tion approximation is

q(f) = N (<f>,Σ) (7)

where Σ = (K−1 + W)−1 and <f> = Σv with v = 1 ⊗
(y − 1

21), W = 2(11T ⊗ Λ), Λ = diag[λ(ξ1), . . . λ(ξN )],
and ⊗ denotes the Kronecker product.

To calculate q(f), K−1 is required; however this matrix
may be singular. This may happen when some sensors give
correlated measurements. To tackle this problem, following
[1], we use the Woodbury identity and calculate Σ by

Σ = K−KW1/2(I + W1/2KW1/2)−1W1/2K. (8)

To estimate ξ, we maximize <M(y, f , ξ)>q(f). Taking
derivatives with respect to ξj and equating them to zero, we
obtain

ξj =
√

1T (<f·,j><f·,j>T + Σj) 1 (9)

where Σj is obtained from Σ by removing the rows and
columns which do not correspond to the components of f·,j .

The parameters in α are estimated from a lower bound of
the marginal distribution of y.

The right hand side of Eq. (6) can be written as:

log(M(y, f ,α, ξ)) = const− 1

2
fTK−1f − 1

2
log |K|

−
N∑
j=1

1

λ(ξj)

{
1

2

(
yj −

1

2

)
− λ(ξj)1

T f·,j

}2

(10)

which corresponds to the log of a Gaussian distribution. We
have:

z =

P∑
i=1

fi,· + ε, (11)

where ε ∼ N (0, 1/2Λ−1) and z = Λ−1

2 (y − 1
2 ).
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Integrating the above equation on f and ε, the marginal
distribution of z, p(z|α) is

p(z|α) = N

(
z|0,

P∑
i=1

αiKi +
Λ−1

2

)
(12)

To estimate αi, we differentiate −2 log(p(z|α)) with re-
spect to αi and utilize gradient descent to estimate this vari-
ance parameter. Alternatively, we can use the fixed point iter-
ative procedure:

αi = αi,old
zTRKiRz

Tr [RKi]
. (13)

where R =
(∑P

i=1 αi,oldKi + Λ−1

2

)−1
which has worked

well in all the experiments.
The proposed algorithm is summarized in Algorithm 1.

Algorithm 1
Require: X, y, α0 = (1, 1, . . . , 1)T , and ξ0j = 1,∀j =

1, . . . , N .
1: Calculate K.
2: repeat
3: Calculate q(n+1)(f) using Eq. (7).
4: Calculate ξ(n+1) using Eq. (9).
5: repeat
6: Calculate αi, i = 1, . . . , P using Eq. (13).
7: until convergence (αn+1 is obtained).
8: until convergence

Notice that in order to deal with missing data in the train-
ing phase the j−th row and column of Ki are set equal to
zero if xij is not available.

4. CLASSIFICATION RULE

Given a new sample x∗ = [x∗T1 , . . .x∗TP ]T and the corre-
sponding latent variable f∗ = (f∗1 , . . . , f

∗
P )T the classifica-

tion rule is based on the distribution

p(f∗|y) =

∫
f

p(f∗|f)p(f |y)df ≈
∫

f

p(f∗|f)q(f)df (14)

The joint distribution p(f , f∗) is Gaussian with zero mean and
covariance matrix [

K H
HT C

]
(15)

where

H =


h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hP

 , C = diag[c1, c2, . . . , cP ]

with

hi = (αiki(xi1,x
∗
i ), . . . , αiki(xiN ,x

∗
i ))

T (16)
ci = αiki(x

∗
i ,x
∗
i ). (17)

Then, we have

p(f∗|f) = N (f∗|HTK−1f ,C−HTK−1H) (18)

which finally produces in Eq. (14)

p(f∗|y) ≈ N (f∗|HTK−1<f>, (19)

C−HTW1/2(W1/2KW1/2 + I)−1W1/2H)

Since the decision boundary corresponding to 1T<f∗|y> =
0 is of interest, it is only needed to consider the mean and the
effect of the variance can be ignored. Therefore, the classifi-
cation can be written as

y∗ =

{
1 if 1THTK−1<f> ≥ 0
0 if 1THTK−1<f> < 0

(20)

Notice that observing the value of <f> and calculating Σ
using Eq. (8), 1THTK−1<f> can be found easily.

Notice that if at testing phase, x∗i is not observed, we set
hi to a zero column vector and ci to zero in Eqs. (16) and
(17), respectively.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm using synthetic and real datasets in different sce-
narios.

Fig. 1 displays the synthetic dataset used in the first ex-
periment. This dataset is called Two-Moon and was intro-
duced by Zhou et al. [12]. The top and bottom half moons
correspond to two different classes, and they cannot be lin-
early separated. This is a typical example where kernel based
classifiers achieve good performance. In our experiments, we
use a Gaussian kernel with σ2 = 0.1. Since Two-Moon is a
2-dimensional example, we assume that we have 2 sensors:
sensor 1 measures the horizontal component of each sample
while sensor 2 measures the vertical one. We start by studying
the noise-free and no-missing data case. 30 samples (15 from
each class) are randomly selected for training and 200 sam-
ples (100 for each class) are used for testing. To obtain unbi-
ased results, the experiment is repeated 10 times. Data pro-
vided by each sensor are also classified independently using
a GP classifier. The Overall Accuracy (OA) obtained in each
realization is shown in the second and third columns of Table
1. The mean OAs for sensors 1 and 2 are 77.2% and 87.3%,
respectively. Therefore, we can conclude that the information
provided by sensor 2 is more discriminative for classifying
the samples. The fourth column of Table 1 shows the OA ob-
tained using the proposed method. Notice that the proposed
method combines information coming from both sensors and
obtains a better OA in all cases. The fifth and sixth columns
show the α estimated by the proposed method in 10 realiza-
tions. We observe that the α2 values are higher than the α1

values. It means that the proposed method detects that sensor
2 has more discriminative information than sensor 1 and is
more accurate, as should be clear from Fig. 1.
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Table 1. Classification accuracies for the Two-Moon Dataset
in the noise-free, no-missing data case, and the estimated val-
ues of α parameters.

Real. Sensor 1 Sensor 2 Prop. Method α1 α2

1 76.50 85.50 97.50 0.712 5.011
2 73.50 91.00 99.50 2.393 4.422
3 85.50 88.50 96.00 1.362 5.040
4 77.00 88.50 88.50 0.000 5.213
5 79.50 83.50 83.50 0.000 5.864
6 77.50 88.00 98.00 1.183 5.210
7 77.00 84.50 91.00 0.815 5.385
8 76.00 87.50 87.50 0.290 5.253
9 73.50 86.50 99.50 2.006 4.568

10 76.00 89.50 89.50 0.129 5.291
Mean 77.20 87.30 93.05 - -

−2 −1 0 1 2
−1

0

1

Two−Moon Dataset

Fig. 1. Two-Moon dataset.

We now study the case in which noise is added to the sam-
ples. In this experiment, we use the same data of the ninth re-
alization of the previous experiment (Table 1). Gaussian noise
of respective variances σ2

1 , σ
2
2 ∈ {0.01, 0.04, 0.09} is added

to the first and second sensors independently. The experiment
is repeated 10 times with each combination of noise realiza-
tions and the mean OAs are reported in Table 2. The first
and second columns show the variances of the noise added
in each case. The third and fourth columns show the mean
OAs obtained by a GP classifier trained using the information
provided by sensors 1 and 2, respectively. The fifth column
shows the mean OAs obtained by the proposed method, in
which the information provided by each sensor is fused to
achieve a better performance. The last two columns show the
values of estimated α in one of the experiment realizations.
Notice that for each sensor the higher the noise variance the
lower the OA in the corresponding sensor.

To analyze the missing data case, 10%, 30% and 50% of
samples from each sensor are randomly selected as missing
samples. In this experiment, we use the same data of the
ninth realization of Table 1. To obtain unbiased results, we

Table 2. Mean OAs of the Two-Moon Dataset with noisy
data, and estimated α parameters.

σ2
1 σ2

2 Sensor 1 Sensor 2 Prop. Method α1 α2

0.01 0.01 71.75 86.35 96.80 2.299 4.006
0.01 0.04 71.75 84.80 94.80 2.555 3.411
0.01 0.09 71.75 83.70 93.25 2.732 2.955
0.04 0.01 70.15 86.35 93.90 1.731 4.067
0.04 0.04 70.15 84.80 93.05 2.050 3.439
0.04 0.09 70.15 83.70 89.15 2.281 3.012
0.09 0.01 67.30 86.35 90.20 0.767 3.901
0.09 0.04 67.30 84.80 89.00 1.134 3.310
0.09 0.09 67.30 83.70 87.85 1.380 2.935

repeated this experiment with each combination of missing
realizations 10 times with different missing samples. The re-
sults are reported in Table 3. The first and second columns
show the percentage of missing samples in each sensor. The
third and fourth columns show the mean OA obtained training
a GP classifier with the information provided for each sensor.
The fifth column shows the mean OAs achieved by the pro-
posed method. The last two columns show the values of es-
timated α in an experiment realization. Again, the proposed
method fuses the information provided by the two sensors to
obtain a better classification performance. We can see that for
a fixed percentage of missing samples of the first sensor, the
difference between α1 and α2 decreases when the percentage
of missing samples of the second sensor increases. It means
that the system detects that the information provided by the
second sensor is less discriminative when more samples are
missing.

Table 3. Mean accuracies of classification for Two-Moon
Dataset for missing data case, and estimated α parameters.

% MS % MS Sensor 1 Sensor 2 Prop. Method α1 α2

10 10 71.15 86.25 97.35 1.936 4.147
10 30 71.15 85.70 94.95 2.089 4.100
10 50 71.15 85.20 88.90 2.602 3.242
30 10 72.35 86.25 92.80 1.090 4.072
30 30 72.35 85.70 92.85 1.378 4.112
30 50 72.35 85.20 88.85 1.708 3.189
50 10 71.85 86.25 89.10 0.543 3.910
50 30 71.85 85.70 91.20 0.782 3.952
50 50 71.85 85.20 86.95 1.188 3.141

In the final experiment, the proposed method is used to
solve a real multispectral image classification problem, where
the goal is to classify pixels as belonging to Urban vs. Non-
Urban classes. In this experiment we use a satellite image of
Rome (Italy) captured in 1995. The image is composed of 7
bands obtained by Landsat TM sensor, 2 SAR backscattering
intensities, the SAR interferometric coherence and a spatially
filtered version of the coherence which is specially designed
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to increase the urban areas discrimination [13].
In this experiment, we assume that we have 11 sensors

(one for each band). The training set has 100 samples (50
from each class), and the test set 1000 samples (500 from each
class). To obtain unbiased results, the experiment is repeated
10 times with different training sets. The proposed method
achieved 96.25% mean OA.

Table 4. Mean classification accuracy of each 11 sensors and
estimated α parameters by the proposed method.

Sensor 1 2 3 4 5 6 7 8 9 10 11
OA % 65.92 66.24 81.58 85.89 79.7 82.25 83.05 59.05 77.66 79.23 91.09
α 0 0 30.99 34.31 0 0 0 0 0 0 133.94

The second row in table 4 shows each individual sensor
mean OA using a GP classifier. The third row reports the esti-
mated α obtained by the proposed method. These parameters
can be interpreted as a confidence measure on the information
each sensor uses in the classification task. Notice that sensors
with individual low OA obtained very small values αi ≈ 0
in our fusion procedure, while the non-zeros α values corre-
spond to the more accurate sensors (higher individual OAs).

A simple fusion procedure is to stack all the measures pro-
vided by all the sensors of each sample and use the stacked
information matrix to build a GP based classifier. We re-
fer to this method as STACK+GP. Notice that this method
is not designed to work for sensors with missing samples. In
these cases, the incomplete sample (with a missing compo-
nent) must be discarded, and a large amount of information
is not used in the classification task. In Table 5, we com-
pare the proposed method with STACK+GP in the cases of
0%, 40% and 80% of missing samples. Notice that the pro-
posed method is more robust than STACK+GP. The proposed
method loses less than 0.5% of OA between the extreme cases
while STACK+GP loses more than 3%.
Table 5. Mean OA of STACK+GP and proposed method with
different percentages of missing samples.

Missing Samples 0% 40% 80%
STACK+GP 96.71 95.94 93.57

Proposed Method 96.31 95.77 95.88

6. CONCLUSION
In this paper, a new approach was presented using Gaussian
processes in order to fuse the information of different sensors
and then classify them into two groups. We showed that this
method can be used in situations in which there are noisy data
or even some samples have missing components. In this al-
gorithm, based on the reliability of each sensor its weight is
estimated. Therefore, under different settings, sensors may
have different weights reliability. As it was confirmed by our
experimental results, the more accurate sensor has a larger
estimated weight. In order to evaluate the classification ac-
curacy of the algorithm, we applied it to the Two-Moon syn-
thetic data and showed that by using our fusion algorithm, the
classification accuracy increases. Also, the algorithm was ap-
plied to a multispectral image and the weights of the sensors

were reported. In this experiment, the classification accuracy
increases when the fusion algorithm is applied to this binary
classification problem.
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