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Copyright © 2013 Tudor Barbu.
is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A novel PDE-based image denoising approach is proposed in this paper. One designs here a nonlinear �lter for image noise
reduction based on the di�usion ow generated by the porous media equation ��/�� = Δ�(�), where � is a nonlinear continuous
function of the form �(�) = ���, 0 < � < 1. With respect to standard 2D Gaussian smoothing and some nonlinear PDE-based
�lters, this one is more e�cient to remove noise from degraded images and also to reduce “staircasing” e�ects and preserve the
image edges.

1. Introduction

Image noise removal constitutes a very important process,
o�en representing the �rst step of image analysis [1, 2].
Image denoising with feature preservation represents still a
focus in the image processing domain, remaining a serious
challenge for researchers. A robust denoising technique has
to successfully reduce the amount of noise while preserving
the edges and has no blurring e�ect on the processed image.


e most common noise results from the image acqui-
sition system can be modeled as Gaussian random noise
in most cases. Gaussian noise represents statistical noise
having the probability density function equal to that of the
normal distribution.Numerous image denoisingmodels have
been introduced in the past few decades. 
e conventional
�lters such as averaging �lter, median �lter, and 2D Gaussian
�lter are e�cient in smoothing the noise, but also have
the disadvantage of blurring image edges [1, 2]. For this
reason, some nonlinear image �lters, which produce more
satisfactory noise reduction results and preserve better the
integrity of edges and detail information,were introduced [3].


e nonlinear noise removal techniques based on Partial
Di�erential Equations (PDEs) have been extensively studied
in the last two decades [4–6]. 
e PDE models are the best
candidates for a very e�cient image denoising. We proposed

several robust PDE-based models for noise removal and
image restoration in our previous works [7–9]. In this paper
we develop a novel PDE-based image denoising approach
based on nonlinear di�usion.


e idea of using the di�usion in image processing
arose from the use of the Gaussian �lter in multiscale
image analysis. Nonlinear di�usion methods reduce noise
and enhance contours in images [8–11]. Numerous nonlinear
PDE denoising approaches based on di�usion have been
introduced since the early work of Perona and Malik in 1987
[10].
e anisotropic di�usion developed by them, also called
Perona-Malik di�usion, was intended to smooth the image
while preserving its edges. Many denoising schemes based on
this inuential work have been proposed in the last 25 years
[10, 11]. More closely of our approach is perhaps Kacur and
Mikula scheme [12] which we will briey present later on.

In the next section of this paper we describe the porous
media di�usion �ltering model. 
en, the explicit version of
the fast di�usion �ltering scheme is presented in Section 3.
Our denoising technique is compared with Perona-Malik
scheme and Kacur-Mikula scheme in the fourth section.
Other method comparisons and the numerical experiments
performed using the proposed approach are discussed in
Section 5. 
e paper ends with a section of conclusions.
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2. The Porous Media Diffusion Filtering

Numerous PDE image denoising and segmentation ap-
proaches are based on the following nonlinear di�usion
equation [10, 11]:

��
�� − div (	 (∇�)) = 0, in (0,∞) × Ω,

� (0, ) = � () ,  ∈ Ω,
(1)

where � is the original noised image and � = �(�, ) is the
�ltered image. Here Ω ⊂ �2 is the image domain, �Ω is the

image boundary, and 	 : �2 → �2 is a given continuous and
monotone function. Very o�en, 	 is a gradient mapping of	 = ∇�, where � : �2 → R is a convex continuous function.

To (1) boundary conditions of Dirichlet type: � = 0 on(0,∞) × �Ω or Neumann: 	(∇�)� = 0 on (0,∞) × �Ω are
taken. 
e special case, with �(�) = |�|� = (�21 + �22)1/2, � ={�1, �2}, leads to the so-called total variation model. 
ere is a
large variety of nonlinear PDE models inspired by (1) which
attempt to eliminate the staircasing e�ect or to recover images
with edges and the total variation model is one of the most
e�cient. Here we propose a nonlinear �lter based on the ow
generated by the porous media equation:

��
�� − Δ� (�) = 0 in (0,∞) × Ω,

� (�) = 0 in (0,∞) × �Ω.
(2)


e function � can be multivalued but maximal mono-
tone, that is, (�(�1)−�(�2))(�1−�2) ≥ 0 for all �1, �2 ≥ 0 and the
range of � → � +�(�) is all of �. 
is equation is well known
as mathematical model for uid di�usion in porous media
and the typical example is �(�) = �|�|�−1� where � > 0 and0 < � < ∞. 
e case � > 1 models low di�usion processes
and 0 < � < 1 fast di�usion. We note that the model (1) was
already used in our previous works for restoring (inpainting)
the grayscale images [7, 8].

Given the domainΩ ⊂ �2, we denote by �2(Ω),��,�(Ω),� = 1, 2, 1 ≤ � ≤ ∞, the standard spaces of Lebesgue
integrable functions and the Sobolev spaces on Ω. We set

��(Ω) = ��,2(Ω), �10 (Ω) = {� ∈ �1(Ω); � = 0 on �Ω},
and�−1(Ω) the dual space of�10 (Ω)with the norm denoting|| ⋅ ||�−1(Ω). Consider here (2) with Dirichlet homogeneous
boundary conditions, that is,

��
�� (�, ) − Δ� (� (�, )) = 0 in (0,∞) × Ω, (3)

with �(0, ) = �(),  ∈ Ω, and �(�(�, )) = 0 on(0,∞) × �Ω, under the following assumption: � : � → � is
monotonically increasing �(0) = 0 and lim�→±∞�(�) = ±∞.

Here Ω represents a bounded domain of �2 with a
su�ciently smooth boundary, �Ω. By strong solution � =�(�, ) to (3) on [0, �], we mean an absolutely continuous

function � : [0, �] → �−1(Ω) such that the strong derivative(��/��)(�) = lim�→0(�(� +  ) − �(�))/ in �−1(Ω) exists a.e.
on (0, �), �(�(�, ⋅)) ∈ �10 (Ω) a.e. � ∈ (0, �) and

�� (�)
�� − Δ� (� (�, ⋅)) = 0, a.e. � ∈ (0, �) , (4)

where �(0) = �, and the Laplace operator Δ is considered in
the sense of distributions on domainΩ. It should be said that
a strong solution to (4) is also a weak solution in the classical
sense. Let us consider the nonlinear operator ! : "(!) ⊂�−1(Ω) → �−1(Ω) de�ned by

!� = −Δ� (�) , ∀� ∈ " (!) (5)

with "(!) = {� ∈ �1(Ω); �(�) ∈ �10 (Ω)} and rewrite (4) as
the in�nite dimensional Cauchy problem:

��
�� (�) + !� (�) = 0, a.e. � ∈ (0, �) . (6)

We note [13, 14] that the nonlinear operator is maximal
monotone (equivalently, m-accretive) in �−1(Ω) and that it
is just the subdi�erential �$ of the function

$ (�) =
{{{
∫
Ω
- (� ()) �, if �∈�1 (Ω)∩�−1 (Ω) , ℎ (�)∈�1 (Ω)

+∞, otherwise

(7)

in the sense of convex analysis. Here, -(�) = ∫�0 �(6)�6. As
a matter of fact, the distribution space �−1(Ω) is the basic
functional space to study problem (4). 
en, we have the
following.

�eorem 1. Let � ∈ �−1(Ω). �en, (4) (equivalently, (6)) has
a unique strong solution � : [0,∞) → �−1(Ω) satisfying
����� ∈ �∞ (0, �;�−1 (Ω)) , �� (�) ∈ �∞ (0, �;�10 (Ω)) .

(8)

Moreover, � is given by the exponential formula

� (�) = lim�→∞(? + �
@!)−�� uniformly on [0, �] . (9)

It should be recalled (see [13]) that this existence result
extends to nonhomogeneous Cauchy problem ��/�� +!�(�) = B(�), � ∈ (0, �), �(0) = �.


eorem 1 is a consequence of the standard existence the-
ory for the in�nite dimensional Cauchy problem associated
with maximal monotone (m-accretive) operators in Hilbert
spaces [13, 14]. It should be emphasized that
eorem 1 applies
to (1) as well as to other nonlinear di�usion equations of
monotone type arising in the �ltering theory. In particular,
(9) amounts to saying that the �nite di�erence scheme,

��+1 + ℎ!��+1 = ��, �0 = �, � = 0, 1, . . . , (10)

where � = [�/ℎ], is convergent to �(�). In the linear case, that
is, �(�) = �, this scheme is at origin of high-order Sobolev
gradient method developed in [15, 16]. Formula (9) is known
in the literature as the Crandall-Liggett exponential formula.
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e ow �(�) = C(�)� is a continuous semigroup

of contractions in �−1(Ω) in this case or in �1(Ω), in
other situation, and the denoising e�ect of (6) is due to
smoothing e�ect of C(�) on initial data, a property which
is a characteristic to semigroups generated by the nonlinear
operators ! of the gradient type �$, where $ is a convex and
lower semicontinuous function. Since 
eorem 1 applies to
any initial data � ∈ �−1(Ω), which is a quite general space
of distributions on Ω, the �lter � → C(�)� can be used for
smoothing very noised images �.

It should be emphasized that, for �ltering purpose, it
su�ces to compute �(�) at any time � > 0 since the smoothing
e�ect does not increase with �. On the contrary, since for� → 0 we have [13]

lim
→∞

� (�) = �∞ in �−1 (Ω) , (11)

where �∞ is a steady-state solution to A, that is, !�∞ = 0,
one might expect that, for a large t, the �ltered image could
be far away from the original image �. 
is means that in
the algorithm (10), the best �ltered image can be obtained
for � → ∞, �ℎ ≈  , and  arbitrarily small. If one wants
to restore the image � via step descent algorithm, then (6)
should be replaced by

��
�� (�) + !� (�) + � (� (�) − �) = 0, � ≥ 0, � > 0 (12)

or, in its discrete version,

��+1 + ℎ!��+1 + �ℎ (��+1 − �) = ��, � = 0, 1, . . . , (13)

because, by (11), lim→∞�(�) = �∞, where !�∞ + �(�∞ −�) = 0, that is,
�∞ = arg min{∫

Ω
- (� ()) � + �

2 HHHH� − �HHHH2�−1(Ω)} . (14)


is procedure was used in [7] for restoring and inpaint-
ing signi�cantly degraded images �. We also have the gen-

eration formula lim→0(� − C(�)�)/� = !� in �−1(Ω). 
is
means that the operator-! is the in�nitesimal generator of the
semigroup C(�) [12]. 
e smoothing performance of the �lterC(�) and its standard deviation is made precisely below.

�eorem 2. Let � ∈ �1(Ω) be such that �(�) ∈ �10 (Ω). �en

� − C (�) � = −�Δ� (�) + J (�) in �−1 (Ω) . (15)

If �(�) ∈ �1(Ω), then
HHHH� − C (�) �HHHH2�−1 (Ω) ≤ �HHHH� (�)HHHH�1 (Ω), ∀� ≥ 0. (16)

Proof. Formula (15) is immediate by the continuity of

the function � → −Δ�(C(�)�) from [0, �] to �−1(Ω).
As regards formula (16), we have � − C(�)� =
−∫0 Δ�(C(K)�)�K, for all � ≥ 0, and this yields

‖� − C(�)�‖2�−1(Ω) ≤ � ∫0 ‖�(C(K)�)‖2�−1(Ω)�K, for all � ≥ 0,
while by equation (�/�K)C(K) − Δ�(C(K)�) = 0, for all K > 0,
we have, by multiplying with �(C(K)�) in �−1(Ω),
∫0 ||�(C(K)�)||2�10 (Ω)�K + ∫Ω �(C(�)�)� = ∫Ω �(�)�, for
all � ≥ 0.

We also note that for (4) the maximum principle is also
valid. More precisely, we have the following.

�eorem 3. Assume that � ≥ 0, a.e. in Ω. �en, �(�, ) ≥0 	.M. (�, ) ∈ (0,∞) × Ω.

Proof. Wemultiply (4) by (�(�))− and integrate on (0, �) × Ω
to get �− ≡ 0, as claimed.

For denoising procedure, the �lter�(�) = C(�)�, generated
by (2) in the fast di�usion case, that is, for �(�) = ���, 0 <� < 1 (like the classical Gaussian �lter), has the disadvantage
that it is not localized as in this case the solution � = �(�, )
to (2) propagates with in�nite speed. Moreover, �(�) has
extinction in a �nite time which depends on the norm of�. 
e situation is di�erent in the low di�usion case �(�) =���, � > 1, where the propagation is with �nite speed, and
so the denoising ow is localized.

In (2) onemight consider the Neumann boundary condi-
tion �(∇�)� = 0 on (0,∞) × �Ω. In this case the operator !
is given by (5) where"(!) = {� ∈ �1(Ω), �(�) ∈ �1(Ω)} and

eorem 1 remains valid in the present situation; the basic
space is� = (�1(Ω))� instead of�−1(Ω).
3. The Explicit Scheme of the PDE Algorithm

Now, let us consider the explicit version of the scheme

(10), obtained by the fast di�usion model. Namely, ��+1 =
ℎΔ(��−1)1/� + ��, � = 0, 1, . . . , � = �0. We take � = ��,� ≈�(Oℎ, �ℎ), where O ∈ [1,P] and � ∈ [1,Q], and� = 1/R.
us,
the �nite di�erence scheme leads to the following iterative
process:

��+1�,� = ���,� + � ⋅ ((��−1�+1,�)1/� + (��−1�−1,�)1/� + (��−1�,�−1)1/�

+ (��−1�,�+1)1/� − 4(��−1�,� )1/�) ,
� (O, 1) = � (1, �) = 0, ∀O, �,

(17)

where � = ℎ/4T2, �0�,� = ��,�, and � = 1, . . . , U.

Using the iterative scheme (17) with some properly
selected parameters R, �, and U, respectively, the initial
noised image is successfully �ltered in U steps. 
erefore,

the obtained �� represents the �nal image enhancement
result. 
e choice of U in our simulation was dictated by the
numerous tests we have performed in speci�c examples.

A proper selection of the parameter values is very impor-
tant and cannot be a priori de�ned. It turns out that the
selection of a very large number of iterations, for example,
using a K > 40 value, could produce a blurring e�ect on the
processed image, while considering a very smallU value, such
as K < 5, could result in an unsatisfactory image denoising
result. A great U value increases also the computational
complexity of this �ltering process, producing a much higher
computation time.

Also, using a large enough � value, such as � > 5, could
increase the degradation of the noised image. A very small� parameter, such as � < 0.1, produces no visible smoothing
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results. Obviously, the parameter Rmust satisfy the condition1/R ∈ (0, 1), for a successfully noise removal.

4. Comparison with Other Noise
Removal Techniques


e denoising model discussed above is generated by the

minimization problem given by (14), where � ∈ �1(Ω) ∩�−1(Ω) and - is the potential function corresponding to
nonlinear di�usivity function � : � → �. 
e function� → ||� − �||2�−1(Ω) is a penalty term which forces the

restored image � = �() to stay close to the initial image� = �().
We compared our nonlinear di�usion-based noise

removal technique with Perona-Malik denoising scheme
[5, 10, 17] and other more general techniques (see [12]).

ese approaches based on (1) reduces to the minimization
problem:

min{∫
Ω
� (∇�) � + �

2 ∫
Ω

HHHH� − �HHHH2�; � ∈ �10 (Ω)} . (18)


e fact that the distance from � to � is taken in the norm|| ⋅ ||�−1(Ω) which is considerably weaker than the �2(Ω)-norm
considered in the Perona-Malik model as well as in most of
the denoising models [9–11] has the advantage that it allows
to work with very degraded initial images which practically
are not represented by Lebesgue integrable functions but by
distributions. However, it should be said that our model has
a considerable better smoothing e�ect than that proposed
by Perona and Malik. Indeed, as seen above, the solution� to minimization problem satis�es the nonlinear elliptic
equation:

−Δ� (�) + � (� − �) = 0 in Ω (19)

with boundary conditions �(�) ∈ �10 (Ω) (or Neumann

ux boundary conditions as the basic space is (�1(Ω))�,
the dual of �1(Ω), instead of �10 (Ω)). As seen earlier, the
minimization problem can be replaced by the evolution
equations (4) or (13)).


is means that ∇�(�) = ��(�)∇� ∈ �2(Ω) which
indicates a smoothing e�ect comparable with the standard
one, but for a suitable choice of � one can avoid the
“staircasing” e�ect which is common in denoising procedure
with high smoothing e�ect.

A reformulation of problem (14) and, implicitly, of the
dynamic model (3) allows a closer comparison of this model
with that inspired by the Perona-Malik classical denoising

technique [10]. If we denote by !0 : "(!0) ⊂ �2(Ω) →�2(Ω) the operator !0� = −Δ�, "(!0) = �10 (Ω) ∩ �2(Ω)
and recall that !0 is an isometry from �10 (Ω) to �−10 (Ω) for
� = !1/20 W, we can rewrite the minimization problem as

Min{∫
Ω
ℎ (!1/20 W) �

+�
2
HHHHHW − !−1/20 �HHHHH2�2(Ω); W ∈ " (!1/20 )} ,

(20)

where !1/20 is the square root of !0. 
e Euler-Lagrange
optimality condition for variational problem (20) can be
expressed as

!1/20 � (!1/20 W) + � (W − !−1/20 �) = 0. (21)

Keeping in mind that !1/20 is de�ned by

∫
Ω
!1/20 �!1/20 X�

= −∫
Ω
Δ� () X () �, � ∈ " (!0) , X ∈ " (!1/20 ) ,

(22)

we may interpret (21) (resp., (20)) in an appropriate sense (1).
From this perspective, the denoisingmodel (19) is close to the
“total variation model” (1) if � is taken as

� (�) = sgn � = {{{{{
1 if � > 0,
−1 if � < 0, � ∈ �,
[−1, 1] if � = 0.

(23)

Indeed, in this case, (21) reduces to

!1/2 ( !1/2\\\\!1/2W\\\\) + � (W − !1/2�) = 0
on { ∈ Ω;!1/2W () ̸= 0} .

(24)

However, the present model is more convenient that the
“total variation model,” which is constructed in a nonener-
getic space (the space of function with bounded variation)
and so hard to treat from the computational point of view. As
a matter of fact, by the regularization necessary to construct
a viable numerical scheme, the “total variation model” loses
most of the theoretical advantages regarding the sharp edge
detection and elimination of the staircasing e�ect.


e simulation developed in the next section con�rms
this important advantage (see the results depicted in Figures
1 and 2). We must emphasize also that there are numerous
empirical denoising schemes obtained by modifying the
original Perona-Malik model [5, 10, 11, 17–19], most of them
not well posed from the mathematical point of view. 
e
Kačur and Mikula denoising model [12] is based on the
boundary value problem:

�
��b (, �) − div (� (\\\\∇c� ∗ � (, �)\\\\) ∇� (, �))

= B (�0 − �) in (0, �) × Ω
(25)

with Neumann boundary condition ∇�(, �) ⋅ � = 0 on(0, �) × Ω.
Here b(, ⋅) and �(, ⋅) are continuous andmonotonically

increasing, � and B are Lipschitzian, and c� is a smoothing
kernel. In the special case B = 0, �(�) = �, and b, �
independent of  problem (25) reduces to (2) with Neumann
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(a) Original Lena image (b) Image a�ected by Gaussian noise

(c) Classic Gaussian �ltering result (d) Average �ltering result

(e) Perona-Malik denoising scheme (f) Denoising result of the proposed model

Figure 1: Gaussian noise removal results produced by our technique and other approaches.

Table 1: Values of norm of the error image parameter for various noise reduction approaches.

Denoising technique Gaussian �lter Average �lter Perona-Malik �lter Proposed AD �lter

Norm of the error 6.40 × 103 6.05 × 103 6.84 × 103 5.15 × 103

Table 2: Values of norm of the error image parameter for various noise reduction approaches.

Denoising technique Gaussian �lter Average �lter Perona-Malik �lter Proposed AD �lter

Norm of the error 7.20 × 103 6.14 × 103 6.55 × 103 5.36 × 103
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boundary conditions and � replaced by � ⋅ b−1. In general,
(25) can be rewritten as

�W
�� − � (\\\\∇c� ∗ � (, �)\\\\) Δ� (, �)

− ∇� (\\\\∇c� ∗ � (, �)\\\\) ∇� (, �)
= B (�0 − b−1 (�)) in (0, �) × Ω

(26)

with appropriate Neumann boundary conditions. It should
be said that in this general form the Cauchy problem for
(25) or (26) is not well posed and so the �nite di�erence
scheme (10) is not convergent. 
e model considered here is
mathematically well posed. It should be mentioned however
that in [12] a semi-implicit scheme is designed which is
convergent to a weak solution to (25).

5. Numerical Experiments and
Method Comparisons


e PDE-based image denoising technique proposed here
has been tested on various image datasets, satisfactory �l-
tering results being obtained. We have �ltered hundreds of
grayscale images a�ected by various levels of Gaussian noise
using the described approach. An important advantage of our
�ltering technique is that it performs a robust noise reduction
while preserving the image edges [20, 21].

We have obtained the best denoising results for the
following set of parameters of the di�usion model provided
by formula (18): R = 2, which corresponds to the physical
model of di�usion in plasma, � = 1.5 and Q = 20.
Some grayscale image reduction examples based on these
parameter values are provided in Figures 1 and 2, respectively.

Numerous method comparisons have also been per-
formed. 
e denoising performance of our method has
been compared with performances of other noise removal
techniques, such as the 2D Gaussian �lter, the averaging
�lter, and Perona-Malik anisotropic di�usion scheme. From
the performed numerical experiments it is obvious that the
approach introduced here works better than these well-
known �ltering algorithms, as one can observe in the �gures.

In order to assess the performance levels of each image
denoising technique, one computes the norm of the error
image. 
us, for any initial image � and its restored
version u, having the [P × Q] size, the error value

√∑��=1∑��=1(�(, W) − �(, W))2 is calculated. One can see the
values of this norm of the image error parameter in the next
tables.

In Figure 1(a), the standard [512 × 512] image of Lena
is displayed in the grayscale form. 
en, it is corrupted by
an amount of Gaussian noise characterized by parameters 0.2
(mean) and 0.02 (variance), the noising result being displayed
in Figure 1(b).

In Figure 1(c) the image denoising result produced by
the classic [3 × 3] Gaussian 2D �lter kernel is displayed,
while the noise reduction obtained with an [3 × 3] averaging
�lter kernel is represented in Figure 1(d). 
e noise removal

produced by the Perona-Malik approach is displayed in Fig-
ure 1(e), while the denoising result provided by the nonlinear

PDE model proposed here is represented in Figure 1(f).


e values of the norm of the error image corresponding

to all these image �ltering methods are displayed in Table 1.

One can see that our anisotropic di�usion-based noise
reduction approach performs better than the other �lters,

minimizing the respective error.

Another image denoisingmethod comparison example is

displayed in Figure 2. 
e same noise removal approaches

(standard Gaussian, average �ltering, Perona-Malik, and

our technique) are applied on the standard Baboon image

corrupted by the same amount of Gaussian noise, their results

being represented in Figures 2(c)–2(f). 
e corresponding

values of the norm of the error image parameter are dis-

played in Table 2. One can observe the minimum error

value obtained by our proposed AD-based noise removal
algorithm.

Our �ltering algorithm increases the image quality not
only by performing a robust Gaussian noise reduction, but
also by enhancing the grayscale image contrast. Also, the

proposed denoising technique runs quite fast, a [512 ×512] digital image being processed in less than 1 s. 
e

time complexity decreases proportionally with the size of U
parameter.

6. Conclusions

A novel PDE-based image noise reduction technique has
been proposed in this paper. We have designed a robust
nonlinear image �lter based on the ow generated by the
porous media equation.


e provided nonlinear di�usion-based denoising tech-
nique performs successfully for grayscale images corrupted
by 2D Gaussian noise, producing also an improved image
contrast. Our method is also an edge preserving noise
removal technique, which represents an important advan-
tage.

It has been compared with some inuential anisotropic
di�usion approaches, like that proposed by Perona andMalik
[5, 10], the obtained comparison results being very encour-
aging for us. Also, it provides better smoothing results than
many other denoising techniques, while executing almost as
fast as them, given its quite low-time complexity.

We have also tested this PDE-based model on other types
of image noise and obtained mixed �ltering results. While
our technique performs somewhat well for images a�ected
by some types of noise such as speckle [9], it does not succeed
in removing properly some other types of noise, like salt
and pepper. 
erefore, designing some robust �lters for other
types of image noise will represent the focus of our future
work in the image processing domain.

Because of its edge-preserving and contrast-enhancing
character, the technique described in this paper can be
successfully applied in image analysis domains requiring
image object emphasizing and detection.
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(a) Original Baboon image (b) Gaussian noise

(c) 2D Gaussian �ltering (d) Average �ltering

(e) Perona-Malik scheme (f) Our PDE based Model

Figure 2: Noise removal results provided by our model and other denoising techniques.
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