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1. Introduction.

We shall consider variational inequalities for multivalued mappings to
unify mathematical programming problems and extended fixed point problems.
Let $X$ and $Y$ be two real separated topological vector spaces with a given
bilinear form $\langle\cdot, \cdot\rangle$ of $Y\times X$ into the reals $R$ . Let $T$ be a multivalued mapping
from its domain $D(T)\subset X$ to subsets of $Y,$ $f$ a function from $X$ to $R$ . Under
these conditions a solution of a variational inequality is the following; $ x_{0}\in$

$D(T)$ and $w_{0}\in T(x_{0})$ such that $\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ for all $x\in D(T)$ . When
$D(T)$ is a cone, variational inequalities are related to complementarity problems.
Variational inequalities in infinite dimensional spaces were studied by Browder
[1], Karamardian [5] and others. Karamardian [5] also considered com-
plementarity problems, for which we also refer to Mor\’e [6]. In this paper
we shall give two existence theorems. Using them, we shall solve variational
inequalities for multivalued mappings on closed convex subsets in topological
vector spaces. Then the results are applied to complementarity problems.

The authors of this paper wish to express their thanks to Professor H.
Umegaki and the referee for their suggestions regarding the improvement of
the paper.

2. Basic existence theorems.

Let $X$ and $Y$ be two topological spaces. Denote by $2^{Y}$ the family of all
subsets of $Y$ . A mapping $T:X\rightarrow 2^{Y}$ is said to be upper semicontinuous if
$T^{-1}(F)=\{x\in X;T(x)\cap F\neq\emptyset\}$ is closed in $X$ for any closed subset $F$ of $Y$.
The following result was given by Fan [3]. We shall present an elementary
proof using Brouwer’s fixed point theorem. In the rest of this paper let $X$

and $Y$ be topological vector spaces.
THEOREM 2.1. Let $K$ be a nonempty compact convex subset of X. Let $A$

be a subset of $K\times K$ for which the following conditions hold:
(i) For each $y\in K$, the set $\{x\in K:(x, y)\in A\}$ is closed.
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(ii) $(x, x)\in A$ for every $x\in K$.
(iii) For each $x\in K$, the set $\{y\in K:(x, y)\not\in A\}$ is convex or empty.
Then, there exists $x_{0}\in K$ such that $\{x_{0}\}\times K\subset A$ .
PROOF. Suppose that for any $x\in K$, there exists $y\in K$ such that $(x, y)\not\in A$ .

For each $y\in K$, let $A(y)=\{x\in K:(x, y)\not\in A\}$ , then we have $K=\bigcup_{y\in K}A(y)$ . By
(i), $A(y)$ is open in $K$ for all $y\in K$. Since $K$ is compact, there exists a finite

number of points $\{y_{1}, \cdots, y_{n}\}$ of $K$ such that $K=\bigcup_{i\Rightarrow 1}^{n}A(y_{i})$ . Let $\{\beta_{1}, \cdots, \beta_{n}\}$ be a
partition of unity corresponding to this covering, i.e., each $\beta_{i}$ is a continuous
mapping of $K$ into $[0,1]$ which vanishes outside of $A(y_{i})$ , while $\sum_{i=1}^{n}\beta_{i}(x)=1$

for all $x\in K$. We define a mapping $p;K\rightarrow K$ by $p(x)=\sum_{i=1}^{n}\beta_{t}(x)y_{i}$ . Then $P$ maps
the simplex $S$ spanned by the finite set $\{y_{1}, y_{n}\}$ into itself. Since $S$ is
homeomorphic to an Euclidean sphere, $p$ has a fixed point $z\in S$ by Brouwer’s
fixed point theorem. If $\beta_{i}(z)>0$, then we have $(z, y_{i})\not\in A$ . Thus, by (iii) we
obtain $(z, p(z))=(z,\sum_{i=1}^{n}\beta_{i}(z)y_{i})\not\in A$ . On the other hand, $(z, P(z))=(z, z)\in A$ by (ii).

This is a contradiction. Therefore, there exists $x_{0}\in K$ such that $\{x_{0}\}\times K\subset A$ .
For a distinct pair of topological vector spaces, we have the following

analogous result.
THEOREM 2.2. Let $K_{1}$ be a nonempty compact convex subset of a locally

convex space $X$ and $K_{2}$ a nonemPty closed convex subset of Y. Let $A$ be a
subset of $K_{1}\times K_{2}$ having the following Properties:

(i) $A$ is closed.
(ii) For any $y\in K_{2}$, the set $\{x\in K_{1} : (x, y)\in A\}$ is nonempty and convex.
(iii) For any $x\in K_{1}$ , the set $\{y\in K_{2} : (x, y)\not\in A\}$ is convex or empty.
Then there exists $x_{0}\in K_{1}$ such that $\{x_{0}\}\times K_{2}\subset A$ .
PROOF. Suppose that the assertion of Theorem 2.2 is false. Then for

each $x\in K_{1}$ , there is $y\in K_{2}$ such that $(x, y)\not\in A$ . Denote $A(y)=\{x\in K_{1} : (x, y)\not\in A\}$

for any $y\in K_{2}$, then there exist a finite covering $\{A(y_{1}), A(y_{n})\}$ of $K_{1}$ and
a partition of unity $\{\beta_{1}, \beta_{n}\}$ corresponding to this finite covering. Set
$p(x)=\sum_{i=1}^{n}\beta_{i}(x)y_{i}$ for any $x\in K_{1}$ . Then $p$ is a continuous mapping of $K_{1}$ into
$K_{2}$ . DePne a mapping $T:K_{1}\rightarrow 2^{K_{1}}$ by $T(x)=\{u\in K_{1} : (u, P(x))\in A\}$ , then by (i)

and (ii) $T(x)$ is nonempty and compact for every $x\in K_{1}$ . Since $p$ is continuous
and $A$ is closed, $T$ is upper semicontinuous. Hence, $T$ has a fixed point
$z\in K_{1}$ by Glicksberg and Fan’s fixed point theorem $[2, 4]$ . Thus, $(z, p(z))\in A$ .
On the other hand, by (iii) $(z, p(z))\not\in A$ as in the proof of Theorem 2.1. This
contradiction proves the theorem.

3. Variational inequalities.

In this section, we shall solve nonlinear variational inequalities. Let $H$
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and $K$ be nonempty subsets of a topological space, then we shall denote
$B_{H}K=\overline{K}\cap\overline{H-K}$ and $I_{H}K=K\cap(B_{H}K)^{c}$, where $\overline{A}$ is the closure of $A$ and $A^{c}$ is
the complement of $A$ . The set $B_{H}K$ is called the boundary of $K$ relative to
$H$ and $I_{H}K$ is called the interior of $K$ relative to $H$. When $Y$ is a topological
vector space, let $CK(Y)$ be the family of all nonempty compact convex subsets
of $Y$. For any pair of topological vector spaces $X$ and $Y$, we denote by
$\langle\cdot, \cdot\rangle$ a bilinear form of $Y\times X$ into the reals $R$ .

THEOREM 3.1. Let $H$ be a nonempty closed convex subset of $X$ and $Y$

locally convex. Let $T:H\rightarrow CK(Y)$ be an upper semicontinuous mapping and
$f:H\rightarrow R$ a lower semicontinuous convex function. SuPpose that there exists
a nonempty compaci convex subset $K$ of $H$ with $ I_{H}K\neq\emptyset$ such that $\langle\cdot, \rangle$ is
jointly continuous on $Y\times K$ and for each $z\in B_{H}K$, there is $u\in I_{H}K$ for which

$\inf_{w\in T(z)}\langle w, z-u\rangle\geqq f(u)-f(z)$ .

Then there exist $x_{0}\in K$ and $w_{0}\in T(x_{0})$ such that $\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ for all
$x\in H$.

PROOF. Define $A=$ { $(x,$ $y)\in K\times K$ : $sup\langle w,$ $y-x\rangle\geqq f(x)-f(y)$}, then the set
$u\in 7(x)$

$A$ satisfies conditions (i), (ii) and (iii) of Theorem 2.1. Thus, there exists $x_{0}\in K$

such that $\{x_{0}\}\times K\subset A$ , i.e.,

$\sup_{w\in T(xo)}\langle w, y-x_{0}\rangle\geqq f(x_{0})-f(y)$

for all $y\in K$. Now, define

$B=\{(w, x)\in T(x_{0})\times K:\langle w, x-x_{0}\rangle\geqq f(x_{0})-f(x)\}$ .
Then the set $B$ has three properties (i), (ii) and (iii) of Theorem 2.2. Hence,
there exists $w_{0}\in T(x_{0})$ such that $\{w_{0}\}\times K\subset B$ , i.e., $\langle w_{0}, y-x_{0}\rangle\geqq f(x_{0})-f(y)$ for
any $y\in K$. We first assume that $x_{0}\in I_{H}K$. For each $x\in H$, we can choose
$\lambda(0<\lambda<1)$ small enough so that $y=\lambda x+(1-\lambda)x_{0}$ lies in $K$. Hence

$\lambda\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(\lambda x+(1-\lambda)x_{0})$ .
Since $f$ is convex,

$\lambda\langle w_{0}, x-x_{0}\rangle\geqq\lambda(f(x_{0})-f(x))$ .
Cancelling $\lambda>0$, we have $\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ . $Nowweassumethatx_{0}\in B_{H}K$.
Then, by the hypothesis there exists $y_{0}\in I_{H}K$ such that $\langle w_{0}, x_{0}-y_{0}\rangle\geqq f(y_{0})-$

$f(x_{0})$ . Since $\langle w_{0}, y-x_{0}\rangle\geqq f(x_{0})-f(y)$ for all $y\in K$, it follows that $\langle w_{0}, y_{0}-x_{0}\rangle=$

$f(x_{0})-f(y_{0})$ , and $\langle w_{0}, y-y_{0}\rangle\geqq f(y_{0})-f(y)$ for all $y\in K$. Since $y_{0}\in I_{H}K$, by the
same way as above we have

$\langle w_{0}, x-y_{0}\rangle\geqq f(y_{0})-f(x)$

for all $x\in H$. The above equality and this inequality together implies that
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$\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ for all $x\in H$.
As a direct consequence of Theorem 3.1, we have the following corollary.

In the sequel, we suppose that the topology of $x*$ (the dual of $X$ ) is the
strong topology and $\langle w, x\rangle$ is the value of $w\in X^{*}$ at $x\in X$.

COROLLARY 3.2. Let $H$ be a nonempty closed convex subset of a locally
convex space $X,$ $T:H\rightarrow CK(X^{*})$ an upper semicontinuous mapping and $f:H\rightarrow R$

a lower semicontinuous convex function. SuppOse that there exists a nonempty
compact convex subset $K$ of $H$ for which $ I_{H}K\neq\emptyset$ and for each $z\in B_{H}K$, there is
$u\in I_{H}K$ such that

$\inf_{w\in T(z)}\langle w, z-u\rangle\geqq f(u)-f(z)$ .

Then there exist $x_{0}\in H$ and $w_{0}\in T(x_{0})$ such that $\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ for all
$x\in H$.

Let $H$ be a cone in a topological vector space $X$, i.e., $H$ is a nonempty
closed convex subset of $X$ such that $\alpha x+\beta y$ belongs to $H$ for all $\alpha,$ $\beta\geqq 0$ and
$x,$ $y\in H$. The polar $H^{*}$ of $H$ is the cone defined by $H^{*}=\{y\in X^{*}:$ $\langle y, x\rangle\geqq 0$

for all $x\in H$}.
Now we can solve the following multivalued nonlinear complementarity

problems. $R^{-}$ is the set of non positive real numbers.
THEOREM 3.3. Let $H$ be a cone of a locally convex space $X,$ $T:H\rightarrow CK(X^{*})$

an upper semicontinuous mapping and $f:H\rightarrow R^{-}$ a lower semicontinuous convex
function such that $f(O)=0$ and $f(\lambda x)=\lambda f(x)$ for $\lambda\geqq 1,$ $x\in H$. If there exists a non-
empty compact convex subset $K$ of $H$ such that $ I_{H}K\neq\emptyset$ and for each $z\in B_{H}K$,

there is $u\in I_{H}K$ for which
$\inf_{w\in T(z)}\langle w, z-u\rangle\geqq f(u)-f(z)$ ,

then there exist $x_{0}\in K$ and $w_{0}\in T(x_{0})$ such that $w_{0}\in H^{*}$ and $\langle w_{0}, x_{0}\rangle=-f(x_{0})$ .
PROOF. By Corollary 3.2, there exist $x_{0}\in K$ and $w_{0}\in T(x_{0})$ for which

$\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ for all $x\in H$. Taking $x=0$ , we have $\langle w_{0}, x_{0}\rangle\leqq-f(x_{0})$ .
Also, by taking $x=\alpha x$ with $\alpha>1$ , we see that (a–1) $\langle w_{0}, x_{0}\rangle\geqq(1-\alpha)f(x_{0})$ .
Cancelling $a-l$ , we have $\langle w_{0}, x_{0}\rangle\geqq-f(x_{0})$ . Therefore, $\langle w_{0}, x_{0}\rangle=-f(x_{0})$ . It
remains to show that $w_{0}\in H^{*}$ . For any $x\in H$, we obtain that

$\langle w_{0}, x\rangle+f(x)\geqq\langle w_{0}, x_{0}\rangle+f(x_{0})=0$ ,

and $\langle w_{0}, x\rangle\geqq-f(x)\geqq 0$ . Hence, $w_{0}\in H^{*}$ .
THEOREM 3.4. Let $H$ be a cone of a locally convex space $X,$ $T:H\rightarrow CK(X^{*})$

an $uPPer$ semicontinuous mapping and $f:H\rightarrow R^{-}$ a lower semicontinuous convex
function such that $f(O)=0$ and for any $x,$ $y\in H,$ $f(x+y)\leqq f(x)$ . SuPpose that
there exists a nonempty compact convex subset $K$ of $H$ for which $ I_{H}K\neq\emptyset$ and

for each $z\in B_{H}K$, there is $u\in I_{H}K$ such that

$\inf_{w\in T(z)}\langle w, z-u\rangle\geqq f(u)-f(z)$ .
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Then there exist $x_{0}\in K$ and $w_{0}\in T(x_{0})$ for which $w_{0}\in H^{*}and$ $0\leqq\langle w_{0}, x_{0}\rangle\leqq-f(x_{0})$ .
PROOF. By Corollary 3.2, there exist $x_{0}\in K$ and $w_{0}\in T(x_{0})$ such that

$\langle w_{0}, x-x_{0}\rangle\geqq f(x_{0})-f(x)$ for all $x\in H$. Letting $x=0$, we obtain that $\langle w_{0}, x_{0}\rangle\leqq$

$-f(x_{0})$ . By taking $x=2x_{0}$ , it follows that $\langle w_{0}, x_{0}\rangle\geqq f(x_{0})-f(2x_{0})\geqq 0$ . Thus,
$0\leqq\langle w_{0}, x_{0}\rangle\leqq-f(x_{0})$ . For each $y\in H$, let $x=y+x_{0}$ , then $\langle w_{0}, y\rangle\geqq f(x_{0})-f(y+x_{0})$

$\geqq 0$ . Hence $w_{0}\in H^{*}$ .

If $f$ equals to $0$ everywhere, then we have the following corollary.
COROLLARY 3.5. Let $H$ be a cone of a locally convex space $X$ and

$T:H\rightarrow CK(X^{*})$ an $uPPer$ semicontinuous mapping. SuppOse that there exists a
nonempty compact convex subset $K$ of $H$ such that $ I_{H}K\neq\emptyset$ and for each $z\in B_{H}K$,
there is $u\in I_{H}K$ for which

$\inf_{w\in T(z)}\langle w, z-u\rangle\geqq 0$ .
Then there exist $x_{0}\in H$ and $w_{0}\in T(x_{0})$ such that $w_{0}\in H^{*}$ and $\langle w_{0}, x_{0}\rangle=0$ .

In the real n-dimensional space $R^{n}$ , the following holds. This extends
Karamardian’s result [5] to multivalued mappings.

THEOREM 3.6. Let $H$ be a cone in the real n-dimensional space $R^{n}$ and
$T:H\rightarrow CK(R^{n})$ be an upper semicontinuous maPping for which there is a con-
stant $c>0$ such that $\langle w-v, x\rangle\geqq c\Vert x\Vert^{2}$ for all $x\in H,$ $w\in T(x)$ and $v\in T(O)$ . Then
there exist $x_{0}\in H$ and $w_{0}\in T(x_{0})$ such that $w_{0}\in H^{*}$ and $\langle w_{0}, x_{0}\rangle=0$ .

PROOF. If $O\in T(O)$ , the conclusion is obvious. Hence, we may assume
that $O\not\in T(O)$ . Take $v_{0}\in T(0)$ and let $K=\{x\in H: \Vert x\Vert\leqq\Vert v_{0}\Vert/c\}$ , then $K$ is a
nonempty compact convex subset of $H$. For any $z\in B_{H}K$, it follows that cllzll2
$=\Vert v_{0}\Vert\Vert z\Vert$ . From the hypothesis, we have

$\inf_{w\in T(z)}\langle w, z\rangle\geqq\langle v_{0}, z\rangle+c\Vert z\Vert^{2}$

$=\langle v_{0}, z\rangle+\Vert v_{0}\Vert\Vert z\Vert$

$\geqq 0$ .
This is the case that $u=0$ in Corollary 3.5. Thus, there exist $x_{0}\in H$ and
$w_{0}\in T(x_{0})$ for which $w_{0}\in H^{*}$ and $\langle w_{0}, x_{0}\rangle=0$ .
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