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Summary

We develop fast mean field variational methodology for Bayesian heteroscedastic semi-
parametric regression, in which both the mean and variance are smooth, but otherwise
arbitrary, functions of the predictors. Our resulting algorithms are purely algebraic, devoid
of numerical integration and Monte Carlo sampling. The locality property of mean field
variational Bayes implies that the methodology also applies to larger models possessing
variance function components. Simulation studies indicate good to excellent accuracy, and
considerable time savings compared with Markov chain Monte Carlo. We also provide
some illustrations from applications.

Key words: Approximate Bayesian inference; mean field variational Bayes; non-conjugate vari-
ational message passing; variance function estimation.

1. Introduction

Data sets that are big in terms of volume and/or velocity are becoming widespread and
there is a strong imperative for the development of fast, flexible and extendable methodology
for processing such data. Semiparametric regression (e.g. Ruppert, Wand & Carroll 2003,
2009) is an important class of flexible statistical models and methods, but is mainly geared
towards moderate sample sizes and batch processing. Recently, Luts, Broderick & Wand
(2014) developed new nonparametric regression methodology specifically tailored to high
volume/velocity situations. The present article extends their general approach to accommo-
date possible heteroscedasticity. Whilst we focus on univariate and bivariate nonparametric
regression and additive models, the modularity of our approach allows easy extension to
more complex models. The accommodation of heteroscedasticity is aided by the variational
inference technique known as non-conjugate variational message passing (e.g. Knowles &
Minka 2011). The particular form of non-conjugate variational message passing that we use
involves approximating particular posterior density functions by Multivariate Normal density
functions, which is an established practice within the variational approximation literature
(e.g. Hinton & van Camp 1993; Barber & Bishop 1997; Raiko et al. 2007; Challis & Barber
2013).

In nonparametric regression it is common to ignore heteroscedasticity in the data and
invoke the constant variance assumption. Figure 1 contains nonparametric regression exam-
ples, based on the R function smooth.spline() (R Core Team 2015) with default settings.
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Figure 1. Two example nonparametric regression fits and corresponding standardized residual plots.
Horizontal dashed lines at ±2 and ±3 aid assessment of standard normality of the standardized
residuals.

Both data sets appear in Ruppert et al. (2003) and are first described in its Sections 5.3
and 2.7 respectively. The scatterplots and the standardized residual plots show that there is
significant heteroscedasticity, which if ignored will lead to erroneous inference, for example
incorrect prediction intervals.

Heteroscedastic nonparametric regression overcomes the problems apparent in Figure 1.
For a set of regression data, (xi, yi), 1 � i � n, it involves replacement of the homoscedastic
nonparametric model

E(yi)= f (xi), Var(yi)=�2

by

E(yi)= f (xi), Var(yi)=g(xi), (1)

with the variance function g to be estimated simultaneously with the mean function f . Several
approaches to fitting (1) now exist (e.g. Ruppert et al. 2003; Rigby & Stasinopoulos 2005;
Crainiceanu et al. 2007). A particularly attractive approach, from an extendability stand-
point, involves graphical model representations of mixed model-based penalized splines
(Wand, 2009). This allows one to take advantage of the growing body of methodology and
software for approximate inference in general graphical models. Graphical model-based
Bayesian inference engines such as BUGS (Spiegelhalter et al., 2003), Infer.NET (Minka
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et al. 2014) and Stan (Stan Development Team 2013) now accommodate a wide range of
nonparametric and semiparametric regression models (e.g. Marley & Wand 2010; Luts et al.
2015). However, the form of the approximate inference differs markedly among the various
inference engines. The engines BUGS and Stan each use relatively slow but highly accu-
rate Markov Chain Monte Carlo (MCMC) methodology whereas Infer.NET uses faster, but
less accurate, deterministic approximations such as mean field variational Bayes (MFVB).
The latter type of methodology is our focus here. A relatively new modification of MFVB,
non-conjugate variational message passing, is shown to be particularly useful for handling
heteroscedasticity since it results in algorithms that involve only closed form algebraic
expressions.

The modularity of the graphical model and MFVB approaches implies that methodol-
ogy for handling heteroscedasticity in semiparametric regression applies to arbitrarily large
models. We call this the locality property of MFVB and it is described in section 3 of Wand
et al. (2011). If a very large graphical model includes a component where one variable is
modelled as a heteroscedastic nonparametric regression function of another variable then
variational inference for the parameters in that part of the graph can be achieved using the
methodology developed here.

Variational methodology for heteroscedastic regression models has also been developed
by Lázaro-Gredilla & Titsias (2011) and Nott, Tran & Leng (2012), although the latter article
was confined to linear mean and log-variance functions. Lazaro-Gredilla & Titsias (2011)
achieved simultaneous nonparametric mean and variance function estimation via an elegant
Gaussian process approach. The ensuing nonparametric function estimators are full-rank
and their variance function estimation strategy relies on Gauss-Hermite quadrature. Our
approach differs by using low-rank penalized splines and a non-conjugate MFVB strat-
egy that provides closed form updates, making it more amenable to high volume/velocity
data.

Section 2 gives a description of the Bayesian penalized spline model for simultaneous
mean and variance function estimation based on univariate data. The variational inference
methodology is provided in Section 3 and our main algorithm is presented there. Section 4
provides numerical illustrations which give evidence of the speed achieved by non-conjugate
MFVB. In Sections 5–7 we describe extensions to bivariate nonparametric regression,
additive models and real-time semiparametric regression. Some concluding remarks are made
in Section 8. The appendix contains some algebraic details used in the derivation of
Algorithm 1.

2. Model description

The Gaussian heteroscedastic nonparametric regression model has generic form:

yi
ind.∼ N(f (xi), g(xi)), 1� i �n, (2)

where (xi, yi) is the ith predictor/response pair of a regression data-set and
ind.∼ means ‘dis-

tributed independently as’. The functions f and g are smooth, but otherwise arbitrary, func-
tions. We refer to f as the mean function and g as the variance function. We also use the
term standard deviation function for

√
g.

Mixed model-based penalized spline fitting of (2) (e.g. Ruppert et al. 2003) involves
modelling f and g according to:
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f (x)=�0+�1x+
Ku∑

k=1

ukzu
k (x), uk

ind.∼ N(0, �2
u)

and g(x)= exp

(
�0+ �1x+

Kv∑
k=1

vkzv
k (x)

)
, vk

ind.∼ N(0, �2
v ).

(3)

The {zu
k : 1 � k � Ku} and {zv

k : 1 � k � Kv} are spline bases of sizes Ku and Kv, respectively.
Our default for the zu

k and zv
k are suitably transformed cubic O’Sullivan splines, as described

in section 4 of Wand & Ormerod (2008). If Ku = Kv then the two bases are identical, but
we leave open the possibility for different basis sizes for the mean and variance functions.

In this article, we take a Bayesian approach to fitting (2) and (3), and impose the
following priors on the model parameters:

�0, �1
ind.∼ N(0, �2

�), �0, �1
ind.∼ N(0, �2

� ), �u∼Half-Cauchy (Au) and �v∼Half-Cauchy (Av)

with hyperparameters ��, ��, Au, Av > 0 to be specified by the user. The Half-Cauchy (A)
density function is given by p(x) = {2=(�A)}={1 + (x=A)2}, x > 0. Assuming that the data
have been pre-transformed to have zero mean and unit variance, our default setting of the
hyperparameters throughout this article are:

�� = �� = Au = Av = 105.

Result 5 of Wand et al. (2011) allows us to replace �u∼Half-Cauchy(Au) by

�2
u|au∼ Inverse-Gamma( 1

2 , 1=au), au∼ Inverse-Gamma( 1
2 , 1=A2

u), (4)

where x∼ Inverse-Gamma(A, B) means that x has an Inverse Gamma distribution with
shape parameter A > 0 and rate parameter B > 0. The corresponding density function is
p(x) = BA�(A)−1x−A−1exp(−B=x), x > 0. Representation (4) is more amenable to variational
approximate inference. A similar replacement is made for �v.

The full Bayesian hierarchical model corresponding to (2) is:

y|β,γ ,u, v∼N
(
Xβ+Zuu, diag{exp(Xγ +Zvv)}

)
,

u|�2
u∼N(0, �2

uI), v|�2
v ∼N(0, �2

vI), β∼N(0, �2
�I), γ ∼N(0, �2

�I),

�2
u|au∼ Inverse-Gamma

(
1

2
, 1=au

)
, au∼ Inverse-Gamma

(
1

2
, 1=A2

u

)
,

�2
v |av∼ Inverse-Gamma

(
1

2
, 1=av

)
, av∼ Inverse-Gamma

(
1

2
, 1=A2

v

)
.

(5)

Here β and γ are 2 × 1 vectors of fixed effects containing (�0, �1) and (�0, �1) respectively,
u is the Ku × 1 vector whose entries are u1,…, uKu , v is a Kv × 1 vector defined similarly,
and �2

u and �2
v are variance components corresponding to u and v respectively. The design

matrix X is the n × 2 matrix consisting of a column of ones and a column containing the
x′is, 1 � i � n. Also, Zu is the n × Ku matrix with (i, k) entry equal to zu

k (xi) for 1 � k � Ku

and Zv is the n × Kv matrix with (i, k) entry equal to zv
k (xi) for 1 � k � Kv.
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Figure 2. Directed acyclic graph for the model in (5). The shaded node corresponds to the observed
data vector. Random effects and auxiliary variables are referred to as hidden nodes. The grey dashed
boxes indicate that β and u are combined into a vector denoted by ν and ω is the concatenation of
γ and v.

It is also convenient to combine the mean function coefficients and variance function
coefficients into single vectors:

ν≡
[
β

u

]
and ω≡

[
γ

v

]
.

An analogous combining of the design matrices: C�≡ [X Zu], C�≡ [X Zv], then allows us
to write

Xβ+Zuu=C�ν and Xγ +Zvv=C�ω.

Figure 2 shows the directed acyclic graph corresponding to the model conveyed in (5).
MCMC schemes for fitting and inference in (5) are relatively straightforward to devise

and implement. The BUGS and Stan MCMC-based inference engines also support (5)
and illustration of this fact is given in Section 4. However, MCMC does not scale well to
high volume/velocity data and larger models with heteroscedastic nonparametric regression
components.

3. Variational inference methodology

We now consider the problem of mean field-type variational inference for (5) (e.g.
Wainwright & Jordan 2008; Ormerod & Wand 2010). This involves an approximation to
the joint posterior density function of the form

p(ν,ω,σ 2, a|y)≈q(ν) q(ω) q(σ 2) q(a) (6)

where σ 2 = (�2
u, �2

v ) and a = (au, av). The q-densities are chosen to minimize the Kullback–
Leibler divergence between the left-hand-side and right-hand-side of (6). This is equivalent
to maximizing the variational lower bound on the marginal log-likelihood log p(y):

log p(y; q)≡Eq
[
log
{

p(ν,ω,σ 2, a, y)}− log{q(ν) q(ω) q(σ 2) q(a)
}]

.
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The optimal q densities, denoted by qÅ, can be shown to satisfy (e.g. Ormerod & Wand
2010):

qÅ(ν)∝ exp
{

Eq(−ν) log p(ν|rest)
}
, qÅ(ω)∝ exp

{
Eq(−ω) log p(ω|rest)

}
,

qÅ(σ 2)∝ exp
{

Eq(−σ 2) log p(σ 2|rest)
}

and qÅ(a)∝ exp
{

Eq(−a) log p(a|rest)
}
,

(7)

where, for example Eq(−ν) denotes expectation with respect to the q-densities of all parameters
except ν. Also ‘rest’ denotes all of the random variables in the model other than those in ν,
including y.

The full conditionals p(ν|rest), p(σ 2|rest) and p(a|rest) each have standard forms which
result in closed form q-density expressions. However, p(ω|rest) is a non-standard form and
challenging integrals arise in the determination of qÅ(ω). We achieve a tractable solution
by imposing the additional restriction that

q(ω)=q(ω;μq(ω), �q(ω)) is a N
(
μq(ω), �q(ω)

)
density function (8)

for some mean vector μq(ω) and covariance matrix �q(ω). The corresponding marginal log-
likelihood is

log p(y; q,μq(ω), �q(ω))≡Eq

[
log p(ν,ω,σ 2,a, y)

− log
{

q(ν)q(ω;μq(ω), �q(ω))q(σ 2)q(a)
}] (9)

and minimization of the Kullback–Leibler divergence corresponds to μq(ω) and �q(ω) being
chosen to maximise (9). This approach, due to Knowles & Minka (2011), has been labelled
non-conjugate variational message passing since it provides a way of circumventing non-
conjugacies in MFVB. (Note that variational message passing is an alternative formulation
of MFVB, see e.g. Minka & Winn 2008.) Knowles & Minka (2011) propose a fixed point
iteration scheme as a means of maximizing (9). Wand (2014) provides the algebraic details
and simplification of fixed point updates for the Multivariate Normal q-density parameters,
such as (8).

For fixed (μq(ω), �q(ω)), application of (7), with qÅ(ω) omitted, leads to:

qÅ(ν) is the N
(
μq(ν), �q(ν)

)
density function, qÅ(σ 2)=qÅ(�2

u, �2
v ) is a product

of Inverse-Gamma

(
1

2
(Ku+1), Bq(�2

u)

)
and Inverse-Gamma

(
1

2
(Kv+1), Bq(�2

v )

)
density functions, and qÅ(a)=qÅ(au, av) is a product of

Inverse-Gamma(1, Bq(au)) and Inverse-Gamma(1, Bq(av)) density functions

(10)

for parameters μq(ν) and �q(ν), the mean and covariance matrix of qÅ(ν), Bq(�2
u), the rate

parameter of qÅ(�2
u), Bq(�2

v ), the rate parameter of qÅ(�2
v ), Bq(au), the rate parameter of qÅ(au)

and Bq(av), the rate parameter of qÅ(av). These optimal parameters are all inter-related and
obtained through an iterative algorithm, listed below as Algorithm 1. The algorithm also
includes fixed point iterative updates for μq(ω) and �q(ω). Details on the derivation of (10),
as well as the fixed point updates, are given in an Appendix.

Before presenting Algorithm 1 some additional notation is required. We use ← to
denote assignment, as used in the R programming environment. For two matrices A and B
of equal size, A	B denotes their element-wise product. If a is a d × 1 vector then diag(a)
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is the d × d diagonal matrix with the entries of a along the diagonal. For a d × d matrix A,
diagonal(A) is the d × 1 vector comprising the diagonal entries of A. Also, μq(u) is defined to
be the sub-vector of μq(ν) corresponding to u, �q(u) is the sub-matrix of �q(ν) corresponding
to u. The symbols μq(v) and �q(v) are defined similarly.

Algorithm 1. MFVB algorithm for the determination of the optimal parameters in qÅ(ω),
qÅ(ν), qÅ(�2

u), qÅ(�2
v ), qÅ(au) and qÅ(av).

Initialize: μq(ω) a (Kv + 2) × 1 vector, �q(ω) a (Kv + 2) × (Kv + 2) positive definite
matrix, μq(1=�2

u),μq(1=�2
v ) > 0, and μq(r2

ν ) an n × 1 vector.
Cycle:

ψq(ω)← exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}

�q(ν)←
(
C
� diag(ψq(ω))C�+

[
�−2

� I 0
0 μq(1=�2

u)I

])−1

μq(ν)←�q(ν)C
� diag(ψq(ω))y

�q(ω)←
{
C
�diag

(
μq(r2

ν )	ψq(ω)

)
C�+

[
�−2

� I 0
0 μq(1=�2

v )I

]}−1

μq(ω)←μq(ω)+�q(ω)

{
C
�
(
μq(r2

ν )	ψq(ω)−1
)−[�2

� I 0
0 μq(1=�2v)I

]
μq(ω)

}
�q(1=au)←1=(�q(1=�2u)+A2

u) ; �q(1=av)←1=(�q(1=�2v)+A2
v)

�q(1=�2u)←
Ku+1

2�q(1=au)+‖μq(u)‖2+ tr
(
�q(u)

)
�q(1=�2v)←

Kv+1

2�q(1=av)+‖μq(v)‖2+ tr
(
�q(v)

)
μq(r2

ν )← diagonal
{(
y−C�μq(ν)

) (
y−C�μq(ν)

)
+C��q(ν)C
�
}

until the absolute relative change in log p(y; q,μq(ω), �q(ω)) is negligible.
The symbol ← indicates ‘is assigned the value’ or ‘is replaced by’.

Convergence of Algorithm 1 can be monitored using the following explicit expression
for the marginal log-likelihood lower bound:

log p(y; q,μq(ω), �q(ω))=1

2

(
Ku+Kv+4

)− n

2
log(2�)+ log�

(
1

2
(Ku+1)

)

+ log�

(
1

2
(Kv+1)

)
−2 log(�)− log(Au)− log(Av)

− n

2
1
(C�μq(ω))−

1

2
(y−C�μq(ν))


diag(ψq(ω))(y−C�μq(ν))

− 1

2
tr
(
C
� C��q(ν)

)− log(�2
�)− log(�2

� )+ 1

2
log |�q(ν)|

+ 1

2
log |�q(ω)|− 1

2�2
�

(‖μq(β)‖2+ tr(�q(β))
)

© 2015 Australian Statistical Publishing Association Inc.



126 VARIATIONAL HETEROSCEDASTIC REGRESSION

− 1

2�2
�

{‖μq(γ )‖2+ tr(�q(γ ))
}− 1

2
(Ku+1) log(Bq(�2

u))

− 1

2
(Kv+1) log(Bq(�2

v ))− log
(
�q(1=�2

u)+A−2
u

)
− log

(
�q(1=�2

v )+A−2
v

)+�q(1=�2
u)�q(1=au)+�q(1=�2

v ) �q(1=av).

Unlike ordinary MFVB, there is no guarantee that each iteration will lead to an increase in
p(y; q,μq(ω), �q(ω)). Thus the iterations should be stopped when the absolute relative change
in its logarithm falls below a negligible amount.

In Figure 3 we return to the example of Figure 1, armed with our new MFVB method-
ology. The top panels show the fitted mean functions, according to (5), with pointwise 95%
credible sets. The model was fitted using MFVB corresponding to Algorithm 1 and MCMC
based on BUGS (Spiegelhalter et al. 2003) with a burn-in of 5000, kept sample of 5000
and thinning factor of 5. The much faster MFVB fit is seen to be in excellent agreement
with its more computationally costly benchmark. The middle panels show the fitted standard
deviation functions, corresponding to

√
g in the notation of (2), and corresponding 95%

credible sets. The agreement between MFVB and MCMC is good, rather than excellent, for√
g. The

√
g-standardized residual plots at the bottom of Figure 3 indicate proper accounting

for the heteroscedasticity and agreement with the normality.
We also conducted a comprehensive check in order to confirm that the relative change

in the approximate marginal log-likelihood does not lead to early stopping. Over several
hundred runs, with data generated from different scenarios, we recorded Bayes estimates of
f and g at the stopping point and again with iterations continuing 25% beyond the stopping
point. The differences in the estimates were negligible.

4. Performance assessment

We conducted a comprehensive simulation study to assess the performance of Algorithm
1 in terms of inferential accuracy and computing time. Data were simulated according to
model (2) with n = 500 and the xi’s uniform on (0, 1). The four mean and variance function
pairs are listed in Table 1, where 	(·;�, �) and �(·;�, �) respectively denote the density and
distribution functions of the Normal distribution with mean � and standard deviation �. We
generated 100 data-sets for each of the functions shown in Table 1.

For each model corresponding to a new replication, inference was achieved using MFVB
via Algorithm 1 and MCMC for comparison. The R programming environment was used
for implementation of Algorithm 1. The MFVB iterations were terminated when the relative
change in log p(y; q) fell below 10−7. The MCMC procedure was performed using BUGS
with sample sizes the same as for the example in Section 3. The following sections provide
details on the accuracy of MFVB against the MCMC benchmark.

4.1. Assessment of accuracy

Algorithm 1 yields fast approximate inference for the model parameters, however it
does not guarantee that an adequate level of accuracy will be achieved. Figure 4 provides
an accuracy assessment of Algorithm 1 using side-by-side boxplots of the accuracy scores
for the parameters of interest.
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Figure 3. Top panels: fitted mean functions for two example data sets from Wand & Jones (1995) and
Ruppert et al. (2003). The solid curves are approximate pointwise posterior means whilst the dashed
curves are corresponding pointwise 95% credible sets. The approximate fits are based on MFVB
via Algorithm 1 and MCMC via BUGS. Middle panels: similar to top panels but for the standard
deviation function. Bottom panels: standardized residual plots based on {y − f̂ (xi)}=

√{ĝ(xi)} where
f̂ and ĝ are the MFVB-approximate Bayes estimates of f and g.

For a generic parameter 
, the accuracy of qÅ(
) is defined to be

accuracy(qÅ)=100

(
1− 1

2

∫ ∞
−∞

∣∣qÅ(
)−p(
|y)∣∣d


)
%.
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Table 1
Details of simulation study settings.

Setting f (x) log g(x)

A sin(3�x2) 0.1 + cos(4�x)

B −1.02x + 0.018x2 + 0.4	(x; 0.38, 0.08) −0.5 − �(x; 0.2, 0.1)+0.3x2

+0.08	(x; 0.75, 0.03)
C 0.35	(x; 0.01, 0.08) + 1.9	(x; 0.45, 0.23) 0.3	(x; 0, 0.2) + 0.4	(x; 1, 0.1)

+1.8{1 − 	(x; 0.7, 0.14)}
D sin(3�x2) − 1.02x + 0.018x2 cos(4�x) − 0.4 + 0.3x2

+0.4	(x; 0.38, 0.08) −�(x; 0.2, 0.1)
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Figure 4. Summary of simulation study where the accuracy values are summarized as a boxplot.

Note that p(
|y) can be approximated by using kernel density estimation applied to the
MCMC sample. This accuracy score is justified in Faes et al. (2011). Accuracy is monitored
for parameters f (Hk ) and g(Hk ), 1 � k � 5, where the Hk are the sample hexiles of the
xi’s. The boxplots illustrate that most of the accuracies for the f (Hk ) lie around 90%, while
accuracies for the g(Hk ) lie around 80%. These very good accuracy results are in keeping
with the heuristics given in section 3.1 of Menictas & Wand (2013).

Figure 5 shows a comparison of MCMC and the MFVB fitted mean and standard
deviation functions for the first replication in each of the four simulation settings. The
MCMC and MFVB fits show excellent agreement for the mean functions and relatively
good agreement for the standard deviation functions.

4.2. Assessment of coverage

We are also interested in the comparison between the coverage gained by the MFVB
approximate credible intervals and the true coverage. Table 2 gives the percentages of the
true parameter coverage based on the approximate 95% credible intervals attained from the
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Figure 5. Comparison of MCMC and MFVB fitted functions for the first data-set in each of the four
simulation settings.

MFVB posterior densities. The coverage overall is good and does not fall below 86%. As
we have already seen in the previous section the performance of MFVB is excellent for the
mean function and very good for the variance function.

4.3. Assessment of speed

During the running of the simulation we monitored the time taken per model to be fitted
via MCMC and MFVB. The results are summarized in Table 3. The simulation was run on
the first author’s desktop computer (Intel Core i5-2400 3.10 GHz processor, 8 GBytes of
random access memory).
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Table 2
Percentage coverage of the true parameter values by approximate 95% credible intervals

based on variational Bayes approximate posterior density functions. The percentages
are based on 100 replications.

f (H1) f (H2) f (H3) f (H4) f (H5) g(H1) g(H2) g(H3) g(H4) g(H5)

sett. A 98 98 94 98 97 89 87 83 87 82
sett. B 98 98 95 96 95 83 83 90 89 83
sett. C 99 98 96 99 99 90 91 92 90 76
sett. D 98 98 95 98 98 89 89 83 86 82

Table 3
99% Wilcoxon confidence intervals based on run
times in seconds for MCMC and MFVB fitting.

MCMC MFVB

setting A (1225.49, 1228.45) (1.69, 1.87)
setting B (1232.96, 1238.53) (4.95, 5.89)
setting C (1185.45, 1188.01) (3.29, 4.67)
setting D (1217.77, 1364.56) (1.26, 1.38)

As mentioned previously, convergence was assessed differently for the two approaches.
Also, the speed gains of MFVB are traded off against accuracy losses which are invoked
by the product restriction given in (6). However, despite this concern, the results show that
MFVB is approximately 200 times faster than MCMC when comparing all models. Thus
we can assert that a model that takes minutes to run using MCMC, will take only seconds
to run using our MFVB algorithm.

5. Extension to bivariate predictors

Algorithm 1 is relatively easy to extend to bivariate predictor nonparametric regression,
which is closely related to geostatistics (e.g. Cressie 1993), which we briefly describe here.
In this case, the data are of the form

(xi, yi), xi ∈R
2, yi ∈R. (11)

In the classical geostatistics scenario, the xi’s specify geographical locations. However, in
(11) the xi’s could also represent pairs of non-geographical measurements.

The bivariate analogue of (2) is

yi
ind.∼ N(f (xi), g(xi)), 1� i �n, (12)

where f and g are real-valued functions on R2. The extension of (3) is

f (x)=�0+β
1 x+
Ku∑

k=1

uk zu
k (x), uk

ind.∼ N(0, �2
u)

and g(x)= exp

(
�0+γ
1 x+

Kv∑
k=1

vk zv
k (x)

)
, vk

ind.∼ N(0, �2
v ),

(13)
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where each of β1 and γ 1 are 2 × 1 vectors. The functions {zu
k : 1 � k � Ku} and {zv

k : 1 �
k � Kv} are now bivariate spline basis functions. A reasonable default for the zu

k (Ruppert
et al. 2003) is the low-rank thin plate spline basis with kth element:

zu
k (x)= r(‖x−κu

k‖)[r(‖κu
k −κu

k ′ ‖)
1�k,k ′�Ku

]−1=2, (14)

where κu
1,…, κu

Ku
is a set of bivariate knot locations that efficiently cover the space of the

xi’s and r(x)≡ x2 log(x). The default zv
ks have an analogous definition.

According to this set-up, the only difference between the univariate nonparametric
heteroscedastic regression model, treated in Section 3, and its bivariate counterpart is the
basis functions and their coefficients. Hence, Algorithm 1 can be used to fit the bivariate
nonparametric heteroscedastic regression model by replacing ν, ω, C� and C� from Section
3 with

ν≡
⎡
⎣ �0

β1

u

⎤
⎦, ω≡

⎡
⎣ �0

γ 1

v

⎤
⎦, C�≡

[
1 x
i zu

k (xi)
1�k�Ku

]
1�i�n

and C�≡
[
1 x
i zv

k (xi)
1�k�Kv

]
1�i�n

.

We fitted (13) to geo-referenced data on sea-floor sediment pollution in the North Sea
(source: Pebesma & Duin 2005). The data are stored in the pcb data-frame within the R
package gstat (Pebesma 2004). The response variable is a measurement of polychlorinated
biphenyl with Ballschmiter-Zell congener number 138 (PCB-138). The motivating study is
concerned with spatial and temporal variability of PCB-138. For the purposes of illustra-
tion, we ignore the temporal aspect and focus on geographical variability in the mean and
variance of the response. In the notation of model (12)–(13), the variables are x = (x1, x2)
where

x1 = x-coordinate in the Universal Mobile Telecommunications System for Zone 31,
x2 = y-coordinate in the Universal Mobile Telecommunications System for Zone 31,
and
y = PCB-138 measured on the sediment fraction smaller than 63 parts per million,
in �g/kg dry matter.

The sample size is n = 216 and Ku = Kv = 50 thin plate basis splines were used for
each functional fit. The estimated mean and standard deviation functions are shown in Figure
6. Both functions are seen to exhibit pronounced spatial effects. Simple bivariate predictor
models that ignore the heteroscedasticity described by the right panel of Figure 6 would
lead to erroneous prediction intervals.

Higher dimensional heteroscedastic nonparametric regression can be achieved via
Algorithm 1 with little notational change from the bivariate case treated here. The only
required modification involves higher-dimensional thin plate spline basis functions instead
of those given by (14).

6. Extension to additive models

The final semiparametric regression extension, that we discuss briefly in this section,
is additive models with multiplicative variance functions. Models of this type have a small
literature with Rigby & Stasinopoulos (2005) being a key reference. Their generic form is
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Figure 6. Left panel: Fitted mean function for the polychlorinated biphenyl data described in the
text, based on MFVB via Algorithm 1. Right panel: similar to top panel but for the standard deviation
function.

yi∼N

(
�0+

d∑
j=1

fj(xji), exp

(
�0+

d∑
j=1

hj(xji)

))
, 1� i �n. (15)

Here fj and hj, 1 � j � d , are smooth but otherwise arbitrary functions. We use penalized
spline models of the form

fj(x)=�jx+
Ku

j∑
k=1

ujkzu
jk (x), ujk

ind.∼ N(0, �2
uj)

and hj(x)= �jx+
Kv

j∑
k=1

vjkzv
jk (x), vjk

ind.∼ N(0, �2
vj).

(16)

The {zu
jk : 1 � k � Ku

j }, 1 � j � d , are spline bases of sizes Ku
j , analogous to those presented

in Section 2. The {zv
jk : 1 � k � Kv

j }, 1 � j � d , are similarly defined. The priors on the
regression coefficients and standard deviation parameters are

�j
ind.∼ N(0, �2

β), �j
ind.∼ N(0, �2

γ ),

�uj
ind.∼ Half-Cauchy(Au), �vj

ind.∼ Half-Cauchy(Av).
(17)

The Bayesian model given by (15)–(17) admits a closed form non-conjugate MFVB
algorithm, with the regression coefficients for the full mean and variance functions each
being Multivariate Normal. Details and illustration are given in Menictas (2015). Section 5.2
of Wand (2014) also contains an illustration for data from a Californian air pollution study.

The extension to additive models with parametric components is trivial. For example,
if binary predictor data bi, 1 � i � n, are also available then the following extension of (15):
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yi∼N

(
�0+�bbi+

d∑
j=1

fj(xji), exp

(
�0+ �bbi+

d∑
j=1

hj(xji)

))
, 1� i �n

can be handled via simple additions to the design matrices and coefficient vectors. Similar
comments apply to the addition of continous predictors that have purely linear impact on
either the mean function or log-variance function.

7. Real-time heteroscedastic nonparametric regression

Almost all nonparametric regression methodology presented to date make the assumption
that the data are processed in batch, that is, at the same time. However, some disadvantages
of batch processing include the requirement that analysis must wait until the entire data
set has been collected, and often the need to store the entire data set in memory. In the
real-time case, the analysis is updated as each new data point is collected. This is beneficial,
and sometimes essential, for both high volume and/or velocity data. In this section we
present a variation of Algorithm 1 that allows for real-time heteroscedastic nonparametric
regression.

Algorithm 2. MFVB algorithm for real-time determination of the optimal parameters in
qÅ(ω), qÅ(ν), qÅ(�2

u), qÅ(�2
v ), qÅ(au) and qÅ(av).

(i) Use Algorithm 1 to perform batch-based tuning runs, analogous to those described in
Algorithm 2’ of Luts et al. (2014), and determine a warm-up sample size nwarm for
which convergence is validated.

(ii) Set μq(ν), �q(ν), μq(ω), �q(ω), μq(1=�2
u), and μq(1=�2

v ) to their values obtained in the warm
up batch-based tuning run with sample size nwarm. Next set ywarm to be the response
vector on the first nwarm observations. Also set C�,warm and C�,warm to be the design
matrices based on the first nwarm observations. Lastly assign n←nwarm.

(iii) Cycle:

Read in ynew(1×1), c�,new {(2 + Ku)×1} and c�,new {(2 + Kv)×1}; n←n + 1

C�←
[
C
� c�,new

]

;C�←

[
C
�c�,new

]

; y← [y
ynew

]

μq(r2

ν )←diagonal
{(
y−C�μq(ν)

) (
y−C�μq(ν)

)
+C��q(ν)C
�
}

ψq(ω)← exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}

�q(ν)←
(
C
� diag

(
ψq(ω)

)
C�+

[
�−2

� I2 0
0 μq(1=�2

u)IKu

])−1

μq(ν)←�q(ν)C
� diag
(
ψq(ω)

)
y

�q(ω)←
(
C
�diag

(
μq(r2ν )	ψq(ω)

)
C�+

[
�−2

� I2 0
0 μq(1=�2

v )IKv

])−1

μq(ω)←μq(ω)+�q(ω)

{
C
�
(
μq(r2ν )	ψq(ω)−1

)−[�−2
� I2 0

0 μq(1=�2
v )IKv

]
μq(ω)

}

© 2015 Australian Statistical Publishing Association Inc.



134 VARIATIONAL HETEROSCEDASTIC REGRESSION

�q(1=au)←1=
(
�q(1=�2u)+A−2

u
)
;�q(1=av)←1=

(
�q(1=�2v)+A−2

v
)

�q(1=�2u)← (Ku+1)={2�q(1=au)+‖μq(u)‖2+ tr
(
�q(u)

)}
�q(1=�2v)← (Kv+1)={2�q(1=av)+‖μq(v)‖2+ tr

(
�q(v)

)}
until the analysis is complete or data no longer available.

The symbol ← indicates ‘is assigned the value’ or ‘is replaced by’.

Algorithm 2 processes each new entry of y, denoted by ynew, and its corresponding row
of C� and C�, denoted by c�,new and c�,new, successively in real time. The starting values
for the real-time procedure are determined by performing a sufficiently large batch fit. This
is explained in more detail in section 2.1.1 of Luts et al. (2014).

The web-site realtime-semiparametric-regression.net features a movie that
illustrates Algorithm 2 for data simulated according to setting D. The warm-up sample size
is nwarm = 500. The link for the movie is titled Heteroscedastic nonparametric

regression and portrays the effectiveness of real time processing for mean and standard
deviation function fitting.

8. Concluding remarks

We have developed closed form algorithms for fast batch and real-time fitting and
inference for a variety of heteroscedastic semiparametric regression models.

The methodology also applies to larger models courtesy of the locality property of
mean field variational inference methods. The new methodology has been shown to perform
very well on simulated and actual data.

Appendix A: Derivation of optimal q-density functions

A.1. Derivation of qÅ(ν)

First note that

log qÅ(ν)=Eq {log p(ν|rest)}+ const

=−1

2

[
ν

(
C
� diag

{
Eq(e−C�ω)

}
C�+

[
�−2
β I2 0

0 �q(1=�2
u)IKu

])
ν

−2ν
C
� diag
{

Eq(e−C�ω)
}
y
]
+ const,

where ‘const’ denotes terms not depending on the argument of qÅ. The form of qÅ(ν) follows
from this and the fact that

Eq(e−C�ω)= exp{−C�μq(ω)+
1

2
C��q(ω)C
�}.

Therefore

μq(ν)=�q(ν)C
� diag(ψq(ω))y

and

�q(ν)=
(
C
� diag

{
ψq(ω)

}
C�+

[
�−2
β I2 0

0 �q
(

1=�2
u/ IKu

])−1

.
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A.2. Derivation of qÅ(�2
u) and qÅ(�2

v )

log qÅ(�2
u)=Eq

{
log p(�2

u|rest)
}+ const

=
{
−1

2
(Ku+1)−1

}
log(�2

u)−
(

1

2
Eq‖u‖2+�q(1=au)

)
=�2

u+ const.

The form of qÅ(�2
u) follows from the fact that

Eq‖u‖2=‖Eq(u)‖2+ tr
{

Covq(u)
}
.

The expression for �q(1=�2
u) follows from a suitable result for the Inverse-Gamma distribution.

For example, if random variable v has an Inverse-Gamma distribution with density function
p(v) = BA�(A)−1v−A−1exp(− v=B), then E(1=v) = A=B. Therefore

Bq(�2
u)= 1

2

{‖μq(u)‖2+ tr
(
�q(u)

)}+�q(1=au)

and

�q(1=�2
u)= 1

2
(Ku+1)=Bq(�2

u).

The derivation of Bq(�2
v ) and �q(1=�2

v ) is similar.

A.3. Derivation of qÅ(au) and qÅ(av)

log qÅ(au)=Eq {log p(au|rest)}+ const

= (−1−1) log(au)− (�q(1=�2
u)+A−2

u

)
=au+ const.

The expressions for Bq(au) and �q(1=au) follow immediately. The derivation of Bq(av), and
�q(1=av) is similar to that just shown above.

A.4. Derivation of the μq(ω) and �q(ω) updates

The updates for μq(ω) and �q(ω) are based on maximisation of the current value of
the marginal log-likelihood lower bound log p(y; q,μq(ω), �q(ω)) over these parameters using
fixed point iteration. Wand (2014) shows that the updates reduce to

�q(ω)←
{
−2vec−1

((
Dvec(�q(ω))S

)
)}−1

μq(ω)←μq(ω)+�q(ω)
(
Dμq(ω)

S
)


,

where

S≡Eq
{

log p(y|ν,ω)+ log p(ω|�2
v )
}
,

D denotes derivative vector, as defined in Magnus & Neudecker (1999), and vec and vec−1

are as defined in Wand (2014). However, a result in the appendix of Opper & Archambeau
(2009) shows that an equivalent expression for the first of these updates is

�q(ω) ← (−Hμq(ω)
S
)−1

© 2015 Australian Statistical Publishing Association Inc.



136 VARIATIONAL HETEROSCEDASTIC REGRESSION

where H denotes the Hessian matrix as defined in Magnus & Neudecker (1999). We work
with this alternative form here. An explicit expression for S is

S≡−1
C�μq(ω)−μ
q(r2
ν )exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}

− 1

2
tr

([
�−2

� I2 0
0 μq(1=�2

v )I

](
μq(ω)μ



q(ω)+�q(ω)

))

−
(

n+ K

2
+1

)
log (2�)− K

2
log(�2

v )− log(�2
� ).

This leads to

dμq(ω)
S=−1
C�dμq(ω)

+μ
q(r2
ν )diag

(
exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)})
C�dμq(ω)

−μ
q(ω)

[
�−2

� I2 0
0 μq(1=�2

v )I

]
dμq(ω)

=
([
μq(r2

ν )	 exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}−1
]

C�

−μ
q(ω)

[
�−2

� I2 0
0 μq(1=�2

v )I

])
dμq(ω).

Then, by Theorem 6, Chapter 5 of Magnus & Neudecker (1999),

(
Dμq(ω)

S
)
=C
�

[
μq(r2

ν )	 exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}−1
]

−
[

�−2
� I2 0

0 μq(1=�2
v )I

]
μq(ω).

Next,

d2μq(ω)S=
(
μq(r2

ν )	 exp

[(
dμq(ω)

)
{−C�μq(ω)+
1

2
diagonal

(
C��q(ω)C
�

)}]

C�

− (dμq(ω)

)
 [�−2
� I2 0

0 μq(1=�2
v )I

])
dμq(ω)

=
[{
μq(r2

ν )	
(

diag

[
exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}]

× (C�dμq(ω)

))}
C�−
(
dμq(ω)

)
 [�−2
� I2 0

0 μq(1=�2
v )I

]]
dμq(ω).

Then, using diag(a)b = a	b,
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d 2μq(ω)S=
{(

diag
(
μq(r2

ν )

)
diag

[
exp

{
−C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}]

× (−C�dμq(ω)

))
C�−
(
dμq(ω)

)
 [�−2
� I2 0

0 μq(1=�2
v )I

]}
dμq(ω)

= (dμq(ω)

)
 (−C
�diag
[
μq(r2

ν )	 exp
{−C�μq(ω)

+ 1

2
diagonal

(
C��q(ω)C
�

)}])
C�dμq(ω)

− (dμq(ω)

)
 [�−2
� I2 0

0 μq(1=�2
v )I

]
dμq(ω).

Therefore, by Theorem 6, Chapter 6 of Magnus & Neudecker (1999),

−Hμq(ω)
S=C
�diag

[
μq(r2

ν )	 exp

{
C�μq(ω)+

1

2
diagonal

(
C��q(ω)C
�

)}]
C�

+
[

�−2
� I2 0

0 μq(1=�2
v )I

]
.

Combining these expressions leads to the updates in Algorithm 1.
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