
Journal of Machine Learning Research 17 (2016) 1-62 Submitted 9/14; Revised 7/15; Published 4/16

Variational Inference for Latent Variables and Uncertain

Inputs in Gaussian Processes

Andreas C. Damianou∗ andreas.damianou@sheffield.ac.uk

Dept. of Computer Science and Sheffield Institute for Translational Neuroscience
University of Sheffield
UK

Michalis K. Titsias∗ mtitsias@aueb.gr

Department of Informatics
Athens University of Economics and Business
Greece

Neil D. Lawrence N.Lawrence@dcs.sheffield.ac.uk

Dept. of Computer Science and Sheffield Institute for Translational Neuroscience

University of Sheffield

UK

Editor: Amos Storkey

Abstract

The Gaussian process latent variable model (GP-LVM) provides a flexible approach for
non-linear dimensionality reduction that has been widely applied. However, the current
approach for training GP-LVMs is based on maximum likelihood, where the latent projec-
tion variables are maximised over rather than integrated out. In this paper we present a
Bayesian method for training GP-LVMs by introducing a non-standard variational inference
framework that allows to approximately integrate out the latent variables and subsequently
train a GP-LVM by maximising an analytic lower bound on the exact marginal likelihood.
We apply this method for learning a GP-LVM from i.i.d. observations and for learning
non-linear dynamical systems where the observations are temporally correlated. We show
that a benefit of the variational Bayesian procedure is its robustness to overfitting and its
ability to automatically select the dimensionality of the non-linear latent space. The result-
ing framework is generic, flexible and easy to extend for other purposes, such as Gaussian
process regression with uncertain or partially missing inputs. We demonstrate our method
on synthetic data and standard machine learning benchmarks, as well as challenging real
world datasets, including high resolution video data.

Keywords: Gaussian processes, variational inference, latent variable models, dynamical
systems, uncertain inputs

1. Introduction

Consider a non linear function, f(x). A very general class of probability densities can be
recovered by mapping a simpler density through the non linear function. For example, we

∗. These authors contributed equally to this work.

c©2016 Andreas Damianou, Michalis Titsias and Neil Lawrence.

Damianou, Titsias and Lawrence

p(y)p(x)

y = f(x) + ǫ−→

Figure 1: A Gaussian distribution propagated through a non-linear mapping. yi = f(xi) +
ǫi. ǫ ∼ N

(
0, 0.22

)
and f(·) uses RBF basis, 100 centres between -4 and 4 and ℓ =

0.1. The new distribution over y (right) is multimodal and difficult to normalize.

might decide that x should be drawn from a Gaussian density

x ∼ N (0, 1)

and we observe y, which is given by passing samples from x through a non linear function,
perhaps with some corrupting noise

y = f(x) + ǫ, (1)

where ǫ could also be drawn from a Gaussian density

ǫ ∼ N
(
0, σ2

)
,

this time with variance σ2. Whilst the resulting density for y, denoted by p(y), can now
have a very general form, these models present particular problems in terms of tractability.

Models of this form appear in several domains. They can be used for nonlinear di-
mensionality reduction (MacKay, 1995; Bishop et al., 1998) where several latent variables,
x = {xj}qj=1 are used to represent a high dimensional vector y = {yj}pj=1 and we normally
have p > q,

y = f(x) + ǫ.

They can also be used for prediction of a regression model output when the input is uncertain
(see e.g. Oakley and O’Hagan, 2002) or for autoregressive prediction in time series (see
e.g. Girard et al., 2003). Further, by adding a dynamical autoregressive component to
the non-linear dimensionality reduction approaches leads to non-linear state space models
(Särkkä, 2013), where the states often have a physical interpretation and are propagated
through time in an autoregressive manner:

xt = g(xt−1),

where g(·) is a vector valued function. The observations are then observed through a
separate nonlinear vector valued function,

yt = f(xt) + ǫ.

2

Variational GP-LVM

x
2

x1

yj = fj(x)−→

Figure 2: A three dimensional manifold formed by mapping from a two dimensional space
to a three dimensional space.

The intractabilities of mapping a distribution through a non-linear function have re-
sulted in a range of different approaches. In density networks sampling was proposed; in
particular, in (MacKay, 1995) importance sampling was used. When extending importance
samplers dynamically, the degeneracy in the weights needs to be avoided, thus leading to
the resampling approach suggested for the bootstrap particle filter of Gordon et al. (1993).
Other approaches in non-linear state space models include the Laplace approximation as
used in extended Kalman filters and unscented and ensemble transforms (see Särkkä, 2013).
In dimensionality reduction the generative topographic mapping (GTM Bishop et al., 1998)
reinterpreted the importance sampling approach of MacKay (1995) as a mixture model,
using a discrete representation of the latent space.

In this paper we suggest a variational approach to dealing with latent variables and input
uncertainty that can be applied to Gaussian process models. Gaussian processes provide a
probabilistic framework for performing inference over functions. A Gaussian process prior
can be combined with a data set (through an appropriate likelihood) to obtain a posterior
process that represents all functions that are consistent with the data and our prior.

Our initial focus will be application of Gaussian process models in the context of di-
mensionality reduction. In dimensionality reduction we assume that our high dimensional
data set is really the result of some low dimensional control signals which are, perhaps,
non-linearly related to our observed functions. In other words we assume that our data,
Y ∈ ℜn×p, can be generated by a lower dimensional matrix, X ∈ ℜn×q through a vector
valued function where each row, yi,: of Y represents an observed data point and is generated
through

yi,: = f(xi,:) + ǫi,:,

so that the data is a lower dimensional subspace immersed in the original, high dimensional
space. If the mapping is linear, e.g. f(xi,:) = Wxi,: with W ∈ ℜq×p, methods like principal
component analysis, factor analysis and (for non-Gaussian p(xi,:)) independent component
analysis (Hyvärinen et al., 2001) follow. For Gaussian p(xi,:) the marginalisation of the
latent variable is tractable because placing a Gaussian density through an affine transfor-
mation retains the Gaussianity of the data density, p(yi,:). However, the linear assumption
is very restrictive so it is natural to aim to go beyond it through a non linear mapping.

3

Damianou, Titsias and Lawrence

In the context of dimensionality reduction a range of approaches have been suggested
that consider neighbourhood structures or the preservation of local distances to find a low
dimensional representation. In the machine learning community, spectral methods such
as isomap (Tenenbaum et al., 2000), locally linear embeddings (LLE, Roweis and Saul,
2000) and Laplacian eigenmaps (Belkin and Niyogi, 2003) have attracted a lot of attention.
These spectral approaches are all closely related to kernel PCA (Schölkopf et al., 1998) and
classical multi-dimensional scaling (MDS) (see e.g. Mardia et al., 1979). These methods
do have a probabilistic interpretation as described by Lawrence (2012) which, however,
does not explicitly include an assumption of underlying reduced data dimensionality. Other
iterative methods such as metric and non-metric approaches to MDS (Mardia et al., 1979),
Sammon mappings (Sammon, 1969) and t-SNE (van der Maaten and Hinton, 2008) also
lack an underlying generative model.

Probabilistic approaches, such as the generative topographic mapping (GTM, Bishop
et al., 1998) and density networks (MacKay, 1995), view the dimensionality reduction prob-
lem from a different perspective, since they seek a mapping from a low-dimensional latent
space to the observed data space (as illustrated in Figure 2), and come with certain advan-
tages. More precisely, their generative nature and the forward mapping that they define,
allows them to be extended more easily in various ways (e.g. with additional dynamics
modelling), to be incorporated into a Bayesian framework for parameter learning and to
handle missing data. This approach to dimensionality reduction provides a useful archetype
for the algorithmic solutions we are providing in this paper, as they require approximations
that allow latent variables to be propagated through a non-linear function.

Our framework takes the generative approach prescribed by density networks and the
non-linear variants of Kalman filters one step further. Because, rather than considering a
specific function, f(·), to map from the latent variables to the data space, we will consider
an entire family of functions. One that subsumes the more restricted class of either Gauss
Markov processes (such as the linear Kalman filter/smoother) and Bayesian basis function
models (such as the RBF network used in the GTM, with a Gaussian prior over the basis
function weightings). These models can all be cast within the framework of Gaussian
processes (Rasmussen and Williams, 2006). Gaussian processes are probabilistic kernel
methods, where the kernel has an interpretation of a covariance associated with a prior
density. This covariance specifies a distribution over functions that subsumes the special
cases mentioned above.

The Gaussian process latent variable model (GP-LVM, Lawrence, 2005) is a more recent
probabilistic dimensionality reduction method which has been proven to be very useful
for high dimensional problems (Lawrence, 2007; Damianou et al., 2011). GP-LVM can
be seen as a non-linear generalisation of probabilistic PCA (PPCA, Tipping and Bishop,
1999; Roweis, 1998), which also has a Bayesian interpretation (Bishop, 1999). In contrast
to PPCA, the non-linear mapping of GP-LVM makes a Bayesian treatment much more
challenging. Therefore, GP-LVM itself and all of its extensions, rely on a maximum a
posteriori (MAP) training procedure. However, a principled Bayesian formulation is highly
desirable, since it would allow for robust training of the model, automatic selection of the
latent space’s dimensionality as well as more intuitive exploration of the latent space’s
structure.

4

Variational GP-LVM

In this paper we formulate a variational inference framework which allows us to prop-
agate uncertainty through a Gaussian process and obtain a rigorous lower bound on the
marginal likelihood of the resulting model. The procedure followed here is non-standard,
as computation of a closed-form Jensen’s lower bound on the true log marginal likelihood
of the data is infeasible with classical approaches to variational inference. Instead, we build
on, and significantly extend, the variational GP method of Titsias (2009), where the GP
prior is augmented to include auxiliary inducing variables so that the approximation is ap-
plied on an expanded probability model. The resulting framework defines a bound on the
evidence of the GP-LVM which, when optimised, gives as a by-product an approximation
to the true posterior distribution of the latent variables given the data.

Considering a posterior distribution rather than point estimates for the latent points
means that our framework is generic and can be easily extended for multiple practical
scenarios. For example, if we treat the latent points as noisy measurements of given inputs
we obtain a method for Gaussian process regression with uncertain inputs (Girard et al.,
2003) or, in the limit, with partially observed inputs. On the other hand, considering a
latent space prior that depends on a time vector, allows us to obtain a Bayesian model
for dynamical systems (Damianou et al., 2011) that significantly extends classical Kalman
filter models with a non-linear relationship between the state space, X, and the observed
data Y, along with non-Markov assumptions in the latent space which can be based on
continuous time observations. This is achieved by placing a Gaussian process prior on the
latent space, X which is itself a function of time, t. This approach can itself be trivially
further extended by replacing the time dependency of the prior for the latent space with a
spatial dependency, or a dependency over an arbitrary number of high dimensional inputs.
As long as a valid covariance function1 can be derived (this is also possible for strings and
graphs). This leads to a Bayesian approach for warped Gaussian process regression (Snelson
et al., 2004; Lázaro-Gredilla, 2012).

In the next subsection we summarise the notation and conventions used in this paper.
In Section 2 we review the main prior work on dealing with latent variables in the context of
Gaussian processes and describe how the model was extended with a dynamical component.
We then introduce the variational framework and Bayesian training procedure in Section
3. In Section 4 we describe how the variational approach is applied to a range of predictive
tasks and this is demonstrated with experiments conducted on simulated and real world
datasets in Section 5. In Section 6 we discuss and experimentally demonstrate natural
but important extensions of our model, motivated by situations where the inputs to the
GP are not fully unobserved. These extensions give rise to an auto-regressive variant for
performing iterative future predictions, as well as a GP regression variant which can handle
missing inputs. Finally, based on the theoretical and experimental results of our work, we
present our final conclusions in Section 7. This article builds on and extends the previously
published conference papers in (Titsias and Lawrence, 2010; Damianou et al., 2011).

1. The constraints for a valid covariance function are the same as those for a Mercer kernel. It must be a
positive (semi) definite function over the space of all possible input pairs.

5

Damianou, Titsias and Lawrence

1.1 Notation

Throughout this paper we use capital boldface letters to denote matrices, lower-case boldface
letters to denote vectors and lower-case letters to denote scalar quantities. We denote the
ith row of the matrix Y as yi,: and its jth column as y:,j , whereas yi,j denotes the scalar
element found in the ith row and jth column ofY. We assume that data points are stored by
rows, so that the p−dimensional vector yi,: corresponds to the ith data point. The collection
of test variables (i.e. quantities given at test time for making predictions) is denoted using
an asterisk, e.g. Y∗ which has columns {y∗,j}pj=1.

Concerning variables of interest, Y is the collection of observed outputs, F is the collec-
tion of latent GP function instantiations and X is the collection of latent inputs. Further on
we will introduce auxiliary inputs denoted by Xu, auxiliary function instantiations denoted
by U, a time vector denoted by t, and arbitrary (potentially partially) observed inputs
denoted by Z.

If a function f follows a Gaussian process, we use kf to denote its covariance function
and Kff to denote the covariance matrix obtained by evaluating kf on all available training
inputs. The notation θf then refers to the hyperparameters of kf .

2. Gaussian Processes with Latent Variables as Inputs

This section provides background material on current approaches for learning using Gaus-
sian process latent variable models (GP-LVMs). Specifically, Section 2.1 specifies the general
structure of such models, Section 2.2 reviews the standard GP-LVM for i.i.d. data as well as
dynamic extensions suitable for sequence data. Finally, Section 2.3 discusses the drawbacks
of MAP estimation over the latent variables which is currently the standard way to train
GP-LVMs.

2.1 Gaussian Processes for Latent Mappings

The unified characteristic of all GP-LVM algorithms, as they were first introduced by
Lawrence (2005, 2004), is the consideration of a Gaussian Process as a prior distribution
for the mapping function f(x) = (f1(x), . . . , fp(x)) so that

fj(x) ∼ GP(0, kf (x,x
′)), j = 1, . . . , p. (2)

Here, the individual components of f(x) are taken to be independent draws from a Gaus-
sian process with kernel or covariance function kf (x,x

′), which determines the properties of
the latent mapping. As shown in (Lawrence, 2005) the use of a linear covariance function
makes GP-LVM equivalent to traditional PPCA. On the the other hand, when non-linear
covariance functions are considered the model is able to perfom non-linear dimensional-
ity reduction. The non-linear covariance function considered in (Lawrence, 2005) is the
exponentiated quadratic (RBF),

kf(rbf) (xi,:,xk,:) = σ2rbf exp

− 1

2ℓ2

q∑

j=1

(xi ,j − xk ,j)
2

 , (3)

which is infinitely many times differentiable and it uses a common lengthscale parameter
for all latent dimensions. The above covariance function results in a non-linear but smooth

6

Variational GP-LVM

mapping from the latent to the data space. Parameters that appear in a covariance function,
such as σ2rbf and ℓ

2, are often referred to as kernel hyperparameters and will be denoted by
θf .

Given the independence assumption across dimensions in equation (2), the latent vari-
ables F ∈ ℜn×p (with columns {f:,j}pj=1), which have one-to-one correspondence with
the data points Y, follow the prior distribution p(F|X,θf) =

∏p
j=1 p(f:,j |X,θf), where

p(f:,j |X,θf) is given by

p(f:,j |X,θf) = N (f:,j |0,Kff) = |2πKff |−
1
2 exp

(
−1

2
f⊤:,jK

−1
ff f:,j

)
, (4)

and where Kff = kf (X,X) is the covariance matrix defined by the kernel function kf . The
inputs X in this kernel matrix are latent random variables following a prior distribution
p(X|θx) with hyperparameters θx. The structure of this prior can depend on the application
at hand, such as on whether the observed data are i.i.d. or have a sequential dependence.
For the remaining of this section we shall leave p(X|θx) unspecified so that to keep our
discussion general while specific forms for it will be given in the next section.

Given the construction outlined above, the joint probability density over the observed
data and all latent variables is written as follows:

p(Y,F,X|θf ,θx, σ2) = p(Y|F, σ2)p(F|X,θf)p(X|θx)

=

p∏

j=1

p(y:,j |f:,j , σ2)p(f:,j |X,θf)p(X|θx),
(5)

where the term

p(Y|F, σ2) =
p∏

j=1

N
(
y:,j |f:,j , σ2In

)
(6)

comes directly from the assumed noise model of equation (1) while p(F|X,θf) and p(X|θx)
come from the GP and the latent space. As discussed in detail in Section 3.1, the interplay
of the latent variables (i.e. the latent matrix X that is passed as input in the latent matrix
F) makes inference very challenging. However, when fixing X we can treat F analytically
and marginalise it out as follows:

p(Y|X)p(X) =

(∫
p (Y|F) p(F|X)dF

)
p(X),

where

p(Y|X) =

p∏

j=1

N
(
y:,j |0,Kff + σ2In

)
.

Here (and for the remaining of the paper), we omit reference to the parameters θ =
{θf ,θx, σ2} in order to simplify our notation. The above partial tractability of the model
gives rise to a straightforward MAP training procedure where the latent inputs X are se-
lected according to

XMAP = argmax
X

p(Y|X)p(X).

7

Damianou, Titsias and Lawrence

This is the approach suggested by Lawrence (2005, 2006) and subsequently followed by
other authors (Urtasun and Darrell, 2007; Ek et al., 2008; Ferris et al., 2007; Wang et al.,
2008; Ko and Fox, 2009c; Fusi et al., 2013; Lu and Tang, 2014). Finally, notice that point
estimates over the hyperparameters θ can also be found by maximising the same objective
function.

2.2 Different Latent Space Priors and GP-LVM Variants

Different GP-LVM algorithms can result by varying the structure of the prior distribution
p(X) over the latent inputs. The simplest case, which is suitable for i.i.d. observations, is
obtained by selecting a fully factorised (across data points and dimensions) latent space
prior:

p(X) =

n∏

i=1

N (xi,:|0, Iq) =
n∏

i=1

q∏

j=1

N (xi,j |0, 1) . (7)

More structured latent space priors can also be used that could incorporate available in-
formation about the problem at hand. For example, Urtasun and Darrell (2007) add dis-
criminative properties to the GP-LVM by considering priors which encapsulate class-label
information. Other existing approaches in the literature seek to constrain the latent space
via a smooth dynamical prior p(X) so as to obtain a model for dynamical systems. For
example, Wang et al. (2006, 2008) extend GP-LVM with a temporal prior which encapsu-
lates the Markov property, resulting in an auto-regressive model. Ko and Fox (2009b, 2011)
further extend these models for Bayesian filtering in a robotics setting, whereas Urtasun
et al. (2006) consider this idea for tracking. In a similar direction, Lawrence and Moore
(2007) consider an additional temporal model which employs a GP prior that is able to
generate smooth paths in the latent space.

In this paper we shall focus on dynamical variants where the dynamics are regressive, as
in (Lawrence and Moore, 2007). In this setting, the data are assumed to be a multivariate
timeseries {yi,:, ti}ni=1 where ti ∈ ℜ+ is the time at which the datapoint yi,: is observed.
A GP-LVM dynamical model is obtained by defining a temporal latent function x(t) =
(x1(t), . . . , xq(t)) where the individual components are taken to be independent draws from
a Gaussian process,

xj(t) ∼ GP(0, kx(t, t
′)), j = 1, . . . , q,

where kx(t, t
′) is the covariance function. The datapoint yi,: is assumed to be produced via

the latent vector xi,: = x(ti), as shown in Figure 3(c). All these latent vectors can be stored
in the matrix X (exactly as in the i.i.d. data case) which now follows the correlated prior
distribution,

p(X|t) =
q∏

j=1

p(x:,j |t) =
q∏

j=1

N (x:,j |0,Kx) ,

where Kx = kx(t, t) is the covariance matrix obtained by evaluating the covariance function
kx on the observed times t. In contrast to the fully factorised prior in (7), the above prior
couples all elements in each column of X. The covariance function kx has parameters θx
and determines the properties of each temporal function xj(t). For instance, the use of

8

Variational GP-LVM

an Ornstein-Uhlenbeck covariance function (Uhlenbeck and Ornstein, 1930) yields a Gauss-
Markov process for xj(t), while the exponentiated quadratic covariance function gives rise to
very smooth and non-Markovian process. The specific choices and forms of the covariance
functions used in our experiments are discussed in Section 5.1.

2.3 Drawbacks of the MAP Training Procedure

Current GP-LVM based models found in the literature rely on MAP training procedures,
discussed in Section 2.1, for optimising the latent inputs and the hyperparameters. However,
this approach has several drawbacks. Firstly, the fact that it does not marginalise out the
latent inputs implies that it could be sensitive to overfitting. Further, the MAP objective
function cannot provide any insight for selecting the optimal number of latent dimensions,
since it typically increases when more dimensions are added. This is why most existing
GP-LVM algorithms require the latent dimensionality to be either set by hand or selected
with cross-validation. The latter case renders the whole training computationally slow and,
in practice, only a very limited subset of models can be explored in a reasonable time.

As another consequence of the above, the current GP-LVMs employ simple covariance
functions (typically having a common lengthscale over the latent input dimensions as the one
in equation (3)) while more complex covariance functions, that could help to automatically
select the latent dimensionality, are not popular. Such a latter covariance function can be
an exponentiated quadratic, as in (3), but with different lengthscale per input dimension,

kf(ard) (xi,:,xk,:) = σ2ard exp

−1

2

q∑

j=1

(xi,j − xk,j)
2

l2j

 , (8)

where the squared inverse lengthscale per dimension can be seen as a weight, i.e. 1
l2j

= wj .

This covariance function could thus allow an automatic relevance determination (ARD)
procedure to take place, during which unnecessary dimensions of the latent space X are
assigned a weight wj with value almost zero. However, with the standard MAP training
approach the benefits of Bayesian shrinkage using the ARD covariance function cannot be
realised, as typically overfitting will occur; this is later demonstrated in Figure 5. This is
the reason why standard GP-LVM approaches in the literature avoid the ARD covariance
function and are sensitive to the selection of q.

On the other hand, the fully Bayesian framework allows for a “soft” model selection
mechanism (Tipping, 2000; Bishop, 1999), stemming from the different role played by q.
Specifically, in such an approach q can be seen as an “initial conservative guess” for the
effective dimensionality of the latent space; subsequent optimisation renders unnecessary
dimensions almost irrelevant by driving the corresponding inverse lengthscales close to zero.
Notice, however, that no threshold needs to be employed. Indeed, in the predictive equations
all q latent dimensions are used, but the lengthscales automatically weight the contribution
of each. In fact, typically the selection for q is not crucial, as long as it is large enough
to capture the effective dimensionality of the data. That is, if r > q is used instead, then
the extra r − q dimensions will only slightly affect any predictions, given that they will be
assigned an almost zero weight. This was indeed observed in our initial experiments. An
alternative to the ARD shrinkage principle employed in this paper is the spike and slab

9

Damianou, Titsias and Lawrence

principle (Mitchell and Beauchamp, 1988), which provides “hard” shrinkage so that unnec-
essary dimensions are assigned a weight exactly equal to zero. This alternative constitutes
a promising direction for future research in the context of GP-LVMs.

Given the above, it is clear that the development of fully Bayesian approaches for training
GP-LVMs could make these models more reliable and provide rigorous solutions to the
limitations of MAP training. The variational method presented in the next section is such
an approach that, as demonstrated in the experiments, shows great ability in avoiding
overfitting and permits automatic soft selection of the latent dimensionality.

3. Variational Gaussian Process Latent Variable Models

In this section we describe in detail our proposed method which is based on a non-standard
variational approximation that uses auxiliary variables. The resulting class of algorithms
will be referred to as Variational Gaussian Process Latent Variable Models, or simply vari-
ational GP-LVMs.

We start with Section 3.1 where we explain the obstacles we need to overcome when
applying variational methods to the GP-LVM and specifically why the standard mean field
approach is not immediately tractable. In Section 3.2, we show how the use of auxiliary
variables together with a certain variational distribution results in a tractable approxima-
tion. In Section 3.3 we give specific details about how to apply our framework to the two
different GP-LVM variants that this paper is concerned with: the standard GP-LVM and
the dynamical/warped one. Finally, we outline two extensions of our variational method
that enable its application in more specific modelling scenarios. In the end of Section 3.3.2
we explain how multiple independent time-series can be accommodated within the same
dynamical model and in Section 3.4 we describe a simple trick that makes the model (and,
in fact, any GP-LVM model) applicable to vast dimensionalities.

3.1 Standard Mean Field is Challenging for GP-LVM

A Bayesian treatment of the GP-LVM requires the computation of the log marginal likeli-
hood associated with the joint distribution of equation (5). Both sets of unknown random
variables have to be marginalised out: the mapping values F (as in the standard model)
and the latent space X. Thus, the required integral is written as

log p(Y) = log

∫
p(Y,F,X)dXdF = log

∫
p(Y|F)p(F|X)p(X)dXdF (9)

= log

∫
p(Y|F)

(∫
p(F|X)p(X)dX

)
dF. (10)

The key difficulty with this Bayesian approach is propagating the prior density p(X) through
the non-linear mapping. Indeed, the nested integral in equation (10) can be written as

∫
p(X)

p∏

j=1

p(f:,j |X)dX

10

Variational GP-LVM

where each term p(f:,j |X), given by (4), is proportional to |Kff |−
1
2 exp

(
−1

2 f
⊤
:,jK

−1
ff f:,j

)
.

Clearly, this term contains X, which are the inputs of the kernel matrix Kff , in a complex,
non-linear manner and therefore analytical integration over X is infeasible.

To make progress we can invoke the standard variational Bayesian methodology (Bishop,
2006) to approximate the marginal likelihood of equation (9) with a variational lower bound.
We introduce a factorised variational distribution over the unknown random variables,

q(F,X) = q(F)q(X),

which aims at approximating the true posterior p(F|Y,X)p(X|Y). Based on Jensen’s in-
equality, we can obtain the standard variational lower bound on the log marginal likelihood

log p(Y) ≥
∫
q(F)q(X) log

p(Y|F)p(F|X)p(X)

q(F)q(X)
dFdX. (11)

Nevertheless, this standard mean field approach remains problematic because the lower
bound above is still intractable to compute. To isolate the intractable term, observe that
(11) can be written as

log p(Y) ≥
∫
q(F)q(X) log p(F|X)dFdX+

∫
q(F)q(X) log

p(Y|F)p(X)

q(F)q(X)
dFdX,

where the first term of the above equation contains the expectation of log p(F|X) under the
distribution q(X). This requires an integration over X which appears non-linearly in K−1

ff

and log |Kff | and cannot be done analytically. Therefore, standard mean field variational
methodologies do not lead to an analytically tractable variational lower bound.

3.2 Tractable Lower Bound by Introducing Auxiliary Variables

In contrast, our framework allows us to compute a closed-form lower bound on the marginal
likelihood by applying variational inference after expanding the GP prior so as to include
auxiliary inducing variables. Originally, inducing variables were introduced for computa-
tional speed ups in GP regression models (Csató and Opper, 2002; Seeger et al., 2003; Csató,
2002; Snelson and Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005; Titsias,
2009). In our approach, these extra variables will be used within the variational sparse GP
framework of Titsias (2009).

More specifically, we expand the joint probability model in (5) by including m extra
samples (inducing points) of the GP latent mapping f(x), so that ui,: ∈ R

p is such a
sample. The inducing points are collected in a matrix U ∈ R

m×p and constitute latent
function evaluations at a set of pseudo-inputs Xu ∈ R

m×q. The augmented joint probability
density takes the form

p(Y,F,U,X|Xu) =p(Y|F)p(F|U,X,Xu)p(U|Xu)p(X)

=

p∏

j=1

p(y:,j |f:,j)p(f:,j |u:,j ,X,Xu)p(u:,j |Xu)

 p(X), (12)

11

Damianou, Titsias and Lawrence

where

p(f:,j |u:,j ,X,Xu) = N (f:,j |aj ,Σf) (13)

is the conditional GP prior (see e.g. Rasmussen and Williams (2006)), with

aj = KfuK
−1
uuu:,j(with ai,j = kf (xi,:,Xu)K

−1
uuu:,j) and Σf = Kff −KfuK

−1
uuKuf . (14)

Further,
p(u:,j |Xu) = N (u:,j |0,Kuu) (15)

is the marginal GP prior over the inducing variables. In the above expressions, Kuu denotes
the covariance matrix constructed by evaluating the covariance function on the inducing
points, Kuf is the cross-covariance between the inducing and the latent points and Kfu =
K⊤

uf . Figure 3(b) graphically illustrates the augmented probability model.

Y

F

X

(a)

Y

F

X

U

(b)

Y

F

X

U

t

(c)

Figure 3: The graphical model for the GP-LVM (a) is augmented with auxiliary variables to obtain
the variational GP-LVM model (b) and its dynamical version (c). Shaded nodes represent
observed variables. In general, the top level input in (c) can be arbitrary, depending on
the application.

Notice that the likelihood p(Y|X) can be equivalently computed from the above aug-
mented model by marginalizing out (F,U) and crucially this is true for any value of the
inducing inputs Xu. This means that, unlike X, the inducing inputs Xu are not random
variables and neither are they model hyperparameters; they are variational parameters.
This interpretation of the inducing inputs is key in developing our approximation and it
arises from the variational approach of Titsias (2009). Taking advantage of this observation
we now simplify our notation by dropping Xu from our expressions.

We can now apply variational inference to approximate the true posterior, p(F,U,X|Y) =
p(F|U,Y,X) p(U|Y,X)p(X|Y) with a variational distribution of the form

q(F,U,X) = p(F|U,X)q(U)q(X) =

p∏

j=1

p(f:,j |u:,j ,X)q(u:,j)

 q(X), (16)

12

Variational GP-LVM

where a key ingredient of this distribution is that the conditional GP prior term p(F|U,X)
that appears in the joint density in (12) is also part of the variational distribution. As
shown below this crucially leads to cancellation of difficult terms (involving inverses and de-
terminants over kernel matrices on X) and allows us to compute a closed-form variational
lower bound. Furthermore, under this choice the conditional GP prior term p(F|U,X)
attempts to approximate the corresponding exact posterior term p(F|U,Y,X). This pro-
motes the inducing variables U to become sufficient statistics so that the optimisation of
the variational distribution over the inducing inputs Xu attempts to construct U so that
F approximately becomes conditionally independent from the data Y given U. To achieve
exact conditional independence we might need to use a large number of inducing variables
so that p(F|U,X) becomes very sharply picked (a delta function). In practice, however,
the number of inducing variables must be chosen so that to balance between computational
complexity, which is cubic over the number m of inducing variables (see Section 3.4), and
approximation accuracy where the latter deteriorates as m becomes smaller.

Moreover, the distribution q(X) in (16) is constrained to be Gaussian,

q(X) = N (X|M,S) , (17)

while q(U) is an arbitrary (i.e. unrestricted) variational distribution. We can choose the
Gaussian q(X) to factorise across latent dimensions or datapoints and, as will be discussed
in Section 3.3, this choice will depend on the form of the prior distribution p(X). For the
time being, however, we shall proceed assuming a general form for this Gaussian.

The particular choice for the variational distribution allows us to analytically compute a
lower bound. The key reason behind this is that the conditional GP prior term is part of the
variational distribution which promotes the cancellation of the intractable log p(f:,j |u:,j ,X)
term. Indeed, by making use of equations (12) and (16) the derivation of the lower bound
is as follows:

F (q(X), q(U)) =

∫
q(F,U,X) log

p(Y,F,U,X)

q(F,U,X)
dXdFdU

=

∫ p∏

j=1

p(f:,j |u:,j ,X)q(u:,j)q(X) log

∏p
j=1 p(y:,j |f:,j)✭✭✭✭✭✭✭

p(f:,j |u:,j ,X)p(u:,j)p(X)
∏p

j=1✭✭✭✭✭✭✭
p(f:,j |u:,j ,X)q(u:,j)q(X)

dXdFdU

=

∫ p∏

j=1

p(f:,j |u:,j ,X)q(u:,j)q(X) log

∏p
j=1 p(y:,j |f:,j)p(u:,j)∏p

j=1 q(u:,j)
dXdFdU

−
∫
q(X) log

q(X)

p(X)
dX

= F̂ (q(X), q(U))−KL (q(X) ‖ p(X)) , (18)

with

F̂ (q(X), q(U)) =

p∑

j=1

∫
q(u:,j)

(
〈log p(y:,j |f:,j)〉p(f:,j |u:,j ,X)q(X) + log

p(u:,j)

q(u:,j)

)
du:,j

=

p∑

j=1

F̂j (q(X), q(u:,j)) , (19)

13

Damianou, Titsias and Lawrence

where 〈·〉 is a shorthand for expectation. Clearly, the second KL term can be easily calcu-
lated since both p(X) and q(X) are Gaussians; explicit expressions are given in Section 3.3.
To compute F̂j (q(X), q(u:,j)), first note that (see Appendix A for details)

〈log p(y:,j |f:,j)〉p(f:,j |u:,j ,X) = logN
(
y:,j |aj , σ2In

)
− 1

2σ2
tr (Kff) +

1

2σ2
tr
(
K−1

uuKufKfu

)
,

(20)
where aj is given by equation (14), based on which we can write

F̂j (q(X), q(u:,j)) =

∫
q(u:,j) log

e
〈logN(y:,j |aj ,σ

2In)〉
q(X)p(u:,j)

q(u:,j)
du:,j −A, (21)

where A = 1
2σ2 tr

(
〈Kff 〉q(X)

)
− 1

2σ2 tr
(
K−1

uu 〈KufKfu〉q(X)

)
. The expression in (21) is a

KL-like quantity and, therefore, q(u:,j) is optimally set to be proportional to the numerator
inside the logarithm of the above equation, i.e.

q(u:,j) =
e
〈logN(y:,j |aj ,σ

2In)〉
q(X)p(u:,j)∫

e
〈logN (y:,j |aj ,σ2In)〉q(X)p(u:,j)du:,j

, (22)

which is just a Gaussian distribution (see Appendix A for an explicit form). We can now
re-insert the optimal value for q(u:,j) back into F̂j (q(X), q(u:,j)) in (21) to obtain:

F̂j (q(X)) = log

∫
e
〈logN(y:,j |aj ,σ

2In)〉
q(X)p(u:,j)du:,j −A, (23)

= log

∫ n∏

i=1

e

〈

logN (yi,j |ai,j ,σ2)− 1
2σ2 (kf (xi,:,xi,:)−kf (xi,:,Xu)K

−1
uukf (Xu,xi,:))

〉

q(xi,:)p(u:,j)du:,j , (24)

where the second expression uses the factorisation of the Gaussian likelihood across data
points and it implies that independently of how complex the overall variational distribution
q(X) could be, F̂j will depend only on the marginals q(xi,:) over the latent variables asso-
ciated with different observations. Notice that the above trick of finding the optimal factor
q(u:,j) and placing it back into the bound (firstly proposed in (King and Lawrence, 2006))
can be informally explained as reversing Jensen’s inequality (i.e. moving the log outside of
the integral) in the initial bound from (21) as pointed out by Titsias (2009).

Furthermore, by optimally eliminating q(u:,j) we obtain a tighter bound which no longer
depends on this distribution, i.e. F̂j (q(X)) ≥ F̂j (q(X), q(u:,j)). Also notice that the expec-
tation appearing in equation (23) is a standard Gaussian integral and (23) can be calculated
in closed form, which turns out to be (see Appendix A.3 for details)

F̂j (q(X)) = log

[
σ−n|Kuu |

1
2

(2π)
n
2 |σ−2Ψ2 +Kuu|

1
2

e−
1
2
y⊤

:,jWy:,j

]
− ψ0

2σ2
+

1

2σ2
tr
(
K−1

uuΨ2

)
(25)

where the quantities

ψ0 = tr
(
〈Kff 〉q(X)

)
, Ψ1 = 〈Kfu〉q(X) , Ψ2 = 〈KufKfu〉q(X) (26)

14

Variational GP-LVM

are referred to as Ψ statistics and W = σ−2In − σ−4Ψ1(σ
−2Ψ2 +Kuu)

−1Ψ⊤
1 .

The computation of F̂j (q(X)) only requires us to compute matrix inverses and deter-
minants which involve Kuu instead of Kff , something which is tractable since Kuu does
not depend on X. Therefore, this expression is straightforward to compute, as long as the
covariance function kf is selected so that the Ψ quantities of equation (26) can be computed
analytically.

It is worth noticing that the Ψ statistics are computed in a decomposable way across
the latent variables of different observations which is due to the factorisation in (24). In
particular, the statistics ψ0 and Ψ2 are written as sums of independent terms where each
term is associated with a data point and similarly each column of the matrixΨ1 is associated
with only one data point. This decomposition is useful when a new data vector is inserted
into the model and can also help to speed up computations during test time as discussed in
Section 4. It can also allow for parallelisation in the computations as suggested firstly by
Gal et al. (2014) and then by Dai et al. (2014). Therefore, the averages of the covariance
matrices over q(X) in equation (26) of the Ψ statistics can be computed separately for each
marginal q(xi,:) = N (xi,:|µi,:,Si) taken from the full q(X) of equation (17). We can, thus,
write that ψ0 =

∑n
i=1 ψ

i
0 where

ψi
0 =

∫
kf (xi,:,xi,:)N (xi,:|µi,:,Si) dxi,:. (27)

Further, Ψ1 is an n×m matrix such that

(Ψ1)i,k =

∫
kf (xi,:, (xu)k,:)N (xi,:|µi,:,Si) dxi,:, (28)

where (xu)k,: denotes the kth row of Xu. Finally, Ψ2 is an m×m matrix which is written
as Ψ2 =

∑n
i=1Ψ

i
2 where Ψi

2 is such that

(Ψi
2)k,k′ =

∫
kf (xi,:, (xu)k,:)kf ((xu)k′,:,xi,:)N (xi,:|µi,:,Si) dxi,:. (29)

Notice that these statistics constitute convolutions of the covariance function kf with
Gaussian densities and are tractable for many standard covariance functions, such as the
ARD exponentiated quadratic or the linear one. The analytic forms of the Ψ statistics for
the aforementioned covariance functions are given in Appendix B.

To summarize, the final form of the variational lower bound on the marginal likelihood
p(Y) is written as

F (q(X)) = F̂ (q(X))−KL (q(X) ‖ p(X)) , (30)

where F̂ (q(X)) can be obtained by summing both sides of (25) over the p outputs,

F̂ (q(X)) =

p∑

j=1

F̂j (q(X)) .

We note that the above framework is, in essence, computing the following approximation
analytically,

F̂ (q(X)) ≤
∫
q(X) log p(Y|X)dX. (31)

15

Damianou, Titsias and Lawrence

The lower bound (18) can be jointly maximised over the model parameters θ and vari-
ational parameters {M,S,Xu} by applying a gradient-based optimisation algorithm. This
approach is similar to the optimisation of the MAP objective function employed in the stan-
dard GP-LVM (Lawrence, 2005) with the main difference being that instead of optimising
the random variables X, we now optimise a set of variational parameters which govern the
approximate posterior mean and variance for X. Furthermore, the inducing inputs Xu are
variational parameters and the optimisation over them simply improves the approximation
similarly to variational sparse GP regression (Titsias, 2009).

By investigating more carefully the resulting expression of the bound allows us to observe
that each term F̂j (q(X)) from (25), that depends on the single column of data y:,j , closely
resembles the corresponding variational lower bound obtained by applying the method of
Titsias (2009) in standard sparse GP regression. The difference in variational GP-LVM is
that now X is marginalized out so that the terms containing X, i.e. the kernel quantities
tr (Kff), Kfu and KfuKuf , are transformed into averages (i.e. the Ψ quantities in (26))
with respect to the variational distribution q(X).

Similarly to the standard GP-LVM, the non-convexity of the optimisation surface means
that local optima can pose a problem and, therefore, sensible initialisations have to be made.
In contrast to the standard GP-LVM, in the variational GP-LVM the choice of a covariance
function is limited to the class of kernels that render the Ψ statistics tractable. Throughout
this paper we employ the ARD exponentiated quadratic covariance function. Improving
on these areas (non-convex optimisation and choice of covariance function) is, thus, an
interesting direction for future research.

Finally, notice that the application of the variational method developed in this paper
is not restricted to the set of latent points. As in (Titsias and Lázaro-Gredilla, 2013),
a fully Bayesian approach can be obtained by additionally placing priors on the kernel
parameters and, subsequently, integrating them out variationally with the methodology
that we described in this section.

3.3 Applying the Variational Framework to Different GP-LVM Variants

Different variational GP-LVM algorithms can be obtained by varying the form of the latent
space prior p(X) which so far has been left unspecified. One useful property of the varia-
tional lower bound is that p(X) appears only in the separate KL divergence term, as can
be seen by equation (18), which can be computed analytically when p(X) is Gaussian. This
allows our framework to easily accommodate different Gaussian forms for the latent space
prior which give rise to different GP-LVM variants. In particular, incorporating a specific
prior mainly requires us to specify a suitable factorisation for q(X) and compute the cor-
responding KL term. In contrast, the general structure of the more complicated F̂ (q(X))
term remains unaffected. Next we demonstrate these ideas by giving further details about
how to apply the variational method to the two GP-LVM variants discussed in Section 2.2.
For both cases we follow the recipe that the factorisation of the variational distribution
q(X) resembles the factorisation of the prior p(X).

16

Variational GP-LVM

3.3.1 The Standard Variational GP-LVM for I.i.d. Data

In the simplest case, the latent space prior is just a standard normal density, fully factorised
across datapoints and latent dimensions, as shown in (7). This is the typical assumption in
latent variable models, such as factor analysis and PPCA (Bartholomew, 1987; Basilevsky,
1994; Tipping and Bishop, 1999). We choose a variational distribution q(X) that follows
the factorisation of the prior,

q(X) =
n∏

i=1

N (xi,:|µi,:,Si) , (32)

where each covariance matrix Si is diagonal. Notice that this variational distribution de-
pends on 2nq free parameters. The corresponding KL quantity appearing in (30) takes the
explicit form

KL (q(X) ‖ p(X)) =
1

2

n∑

i=1

tr
(
µi,:µ

⊤
i,: + Si − logSi

)
− nq

2
,

where logSi denotes the diagonal matrix resulting from Si by taking the logarithm of its
diagonal elements. To train the model we simply need to substitute the above term in the
final form of the variational lower bound in equation (30) and follow the gradient-based
optimisation procedure.

The resulting variational GP-LVM can be seen as a non-linear version of Bayesian prob-
abilistic PCA (Bishop, 1999; Minka, 2001). In the experiments, we consider this model for
non-linear dimensionality reduction and demonstrate its ability to automatically estimate
the effective latent dimensionality.

3.3.2 The Dynamical Variational GP-LVM for Sequence Data

We now turn into the second model discussed in Section 2.2, which is suitable for sequence
data. Again we define a variational distribution q(X) so that it resembles fully the factori-
sation of the prior, i.e.

q(X) =

q∏

j=1

N (x:,j |µ:,j ,Sj) ,

where Sj is a n× n full covariance matrix. The corresponding KL term takes the form

KL (q(X) ‖ p(X|t)) = 1

2

q∑

j=1

[
tr
(
K−1

x Sj +K−1
x µ:,jµ

⊤
:,j

)
+ log |Kx| − log |Sj |

]
− nq

2
.

This term can be substituted into the final form of the variational lower bound in (30)
and allow training using a gradient-based optimisation procedure. If implemented naively,
such a procedure, will require too many parameters to tune since the variational distribution
depends on nq+ n(n+1)

2 q free parameters. However, by applying the reparametrisation trick
suggested by Opper and Archambeau (2009) we can reduce the number of parameters in
the variational distribution to just 2nq. Specifically, the stationary conditions obtained by
setting to zero the first derivatives of the variational bound w.r.t. Sj and µ:,j take the form

Sj =
(
K−1

x +Λj

)−1
and µ:,j = Kxµ̄:,j , (33)

17

Damianou, Titsias and Lawrence

where

Λj = −2
∂F̂ (q(X))

∂Sj

and µ̄:,j =
∂F̂ (q(X))

∂µ:,j
. (34)

Here, Λj is a n × n diagonal positive definite matrix and µ̄:,j is a n−dimensional vector.
Notice that the fact that the gradients of F̂ (q(X)) with respect to a full (coupled across
data points) matrix Sj reduce to a diagonal matrix is because only the diagonal elements
of Sj appear in F̂ (q(X)). This fact is a consequence of the factorisation of the likelihood
across data points, which makes the term F̂ (q(X)) to depend only on marginals of the full
variational distribution, as it was pointed by the general expression in equation (24).

The above stationary conditions tell us that, since Sj depends on a diagonal matrix
Λj , we can re-parametrise it using only the diagonal elements of that matrix, denoted by
the n−dimensional vector λj where all elements of λj are restricted to be non-negative.
Notice that with this re-parameterisation, and if we consider the pair (λj , µ̄:,j) as the set
of free parameters, the bound property is retained because any such pair defines a valid
Gaussian distribution q(X) based on which the corresponding (always valid) lower bound
is computed. Therefore, if we optimise the 2qn parameters (λj , µ̄:,j) and find some final
values for those parameters, then we can obtain the mean and covariance of q(X) using the
transformation in equation (33).

There are two optimisation strategies, depending on the way we choose to treat the
newly introduced parameters λj and µ̄:,j . Firstly, inspired by Opper and Archambeau
(2009) we can construct an iterative optimisation scheme. More precisely, the variational
bound F in equation (30) depends on the actual variational parameters µ:,j and Sj of q(X),
which through equation (33) depend on the newly introduced quantities µ̄:,j and λj which,
in turn, are associated with F through equation (34). These observations can lead to an
EM-style algorithm which alternates between estimating one of the parameter sets {θ,Xu}
and {M,S} by keeping the other set fixed. An alternative approach, which is the one we use
in our implementation, is to treat the new parameters λj and µ̄:,j as completely free ones
so that equation (34) is never used. In this case, the variational parameters are optimised
directly with a gradient based optimiser, jointly with the model hyperparameters and the
inducing inputs.

Overall, the above reparameterisation is appealing not only because of improved com-
plexity, but also because of optimisation robustness. Indeed, equation (33) confirms that the
original variational parameters are coupled via Kx, which is a full-rank covariance matrix.
By reparametrising according to equation (33) and treating the new parameters as free ones,
we manage to approximately break this coupling and apply our optimisation algorithm on
a set of less correlated parameters.

Furthermore, the methodology described above can be readily applied to model de-
pendencies of a different nature (e.g. spatial rather than temporal), as any kind of high
dimensional input variable can replace the temporal inputs of the graphical model in figure
3(c). Therefore, by simply replacing the input t with any other kind of observed input Z

we trivially obtain a Bayesian framework for warped GP regression (Snelson et al., 2004;
Lázaro-Gredilla, 2012) for which we can predict the latent function values in new inputs Z∗

through a non-linear, latent warping layer, using exactly the same architecture and equa-
tions described in this section and in Section 4.2. Similarly, if the observed inputs of the top

18

Variational GP-LVM

layer are taken to be the outputs themselves, then we obtain a probabilistic auto-encoder
(e.g. Kingma and Welling (2013)) which is non-parametric and based on Gaussian processes.

Finally, the above dynamical variational GP-LVM algorithm can be easily extended
to deal with datasets consisting of multiple independent sequences (probably of different
length) such as those arising in human motion capture applications. Let, for example,
the dataset be a group of s independent sequences

(
Y(1), ...,Y(s)

)
. We would like the

dynamical version of our model to capture the underlying commonality of these data. We
handle this by allowing a different temporal latent function for each of the independent
sequences, so that X(i) is the set of latent variables corresponding to the sequence i. These
sets are a priori assumed to be independent since they correspond to separate sequences, i.e.
p
(
X(1),X(2), ...,X(s)

)
=
∏s

i=1 p(X
(i)). This factorisation leads to a block-diagonal structure

for the time covariance matrix Kx, where each block corresponds to one sequence. In this
setting, each block of observations Y(i) is generated from its corresponding X(i) according
to Y(i) = F(i) + ǫ, where the latent function which governs this mapping is shared across
all sequences and ǫ is Gaussian noise.

3.4 Time Complexity and Handling Very High Dimensional Datasets

Our variational framework makes use of inducing point representations which provide low-
rank approximations to the covariance Kff . For the standard variational GP-LVM, this
allows us to avoid the typical cubic complexity of Gaussian processes. Specifically, the
computational cost is O(m3 + nm2) which reduces to O(nm2), since we typically select
a small set of inducing points m ≪ n, which allows the variational GP-LVM to handle
relatively large training sets (thousands of points, n). The dynamical variational GP-LVM,
however, still requires the inversion of the covariance matrix Kx of size n × n, as can
be seen in equation (33), thereby inducing a computational cost of O(n3). Further, the
models scale only linearly with the number of dimensions p, since the variational lower
bound is a sum of p terms (see equation (19)). Specifically, the number of dimensions only
matters when performing calculations involving the data matrix Y. In the final form of
the lower bound (and consequently in all of the derived quantities, such as gradients) this
matrix only appears in the form YY⊤ which can be precomputed. This means that, when
n≪ p, we can calculate YY⊤ only once and then substitute Y with the SVD (or Cholesky
decomposition) of YY⊤. In this way, we can work with an n×n instead of an n×p matrix.
Practically speaking, this allows us to work with data sets involving millions of features. In
our experiments we model directly the pixels of HD quality video, exploiting this trick.

4. Predictions with the Variational GP-LVM

In this section, we explain how the proposed Bayesian models can accomplish various kinds
of prediction tasks. We will use a star (∗) to denote test quantities, e.g. a test data matrix
will be denoted by Y∗ ∈ ℜn∗×p while test row and column vectors of such a matrix will be
denoted by yi,∗ and y∗,j respectively.

The first type of inference we are interested in is the calculation of the probability
density p(Y∗|Y). The computation of this quantity can allow us to use the model as a
density estimator which, for instance, can represent the class conditional distribution in a
generative based classification system. We will exploit such a use in Section 5.5. Secondly,

19

Damianou, Titsias and Lawrence

we discuss how from a test data matrix Y∗ = (Yu
∗ ,Y

o
∗), we can probabilistically reconstruct

the unobserved part Yu
∗ based on the observed part Yo

∗ and where u and o denote non-
overlapping sets of indices such that their union is {1, . . . , p}. For this second problem the
missing dimensions are reconstructed by approximating the mean and the covariance of the
Bayesian predictive density p(Yu

∗ |Yo
∗,Y).

Section 4.1 discusses how to solve the above tasks in the standard variational GP-LVM
case while Section 4.2 discusses the dynamical case. Furthermore, for the dynamical case
the test points Y∗ are accompanied by their corresponding timestamps t∗ based on which
we can perform an additional forecasting prediction task, where we are given only a test
time vector t∗ and we wish to predict the corresponding outputs.

4.1 Predictions with the Standard Variational GP-LVM

We first discuss how to approximate the density p(Y∗|Y). By introducing the latent
variables X (corresponding to the training outputs Y) and the new test latent variables
X∗ ∈ ℜn∗×q, we can write the density of interest as the ratio of two marginal likelihoods,

p(Y∗|Y) =
p(Y∗,Y)

p(Y)
=

∫
p(Y∗,Y|X,X∗)p(X,X∗)dXdX∗∫

p(Y|X)p(X)dX
. (35)

In the denominator we have the marginal likelihood of the GP-LVM for which we have
already computed a variational lower bound. The numerator is another marginal likelihood
that is obtained by augmenting the training data Y with the test points Y∗ and integrating
out both X and the newly inserted latent variable X∗. In the following, we explain in more
detail how to approximate the density p(Y∗|Y) of equation (35) through constructing a
ratio of lower bounds.

The quantity
∫
p(Y|X)p(X)dX appearing in the denominator of equation (35) is ap-

proximated by the lower bound eF(q(X)) where F(q(X)) is the variational lower bound
as computed in Section 3.2 and is given in equation (30). The maximisation of this
lower bound specifies the variational distribution q(X) over the latent variables in the
training data. Then, this distribution remains fixed during test time. The quantity∫
p(Y∗,Y|X,X∗)p(X,X∗)dXdX∗ appearing in the numerator of equation (35) is approx-

imated by the lower bound eF(q(X,X∗)) which has exactly analogous form to (30). This
optimisation is fast, because the factorisation imposed for the variational distribution in
equation (32) means that q(X,X∗) is also a fully factorised distribution so that we can
write q(X,X∗) = q(X)q(X∗). Then, if q(X) is held fixed2 during test time, we only need
to optimise with respect to the 2n∗q parameters of the variational Gaussian distribution
q(X∗) =

∏n∗

i=1 q(xi,∗) =
∏n∗

i=1N (µi,∗,Si,∗) (where Si,∗ is a diagonal matrix). Further, since
the Ψ statistics decompose across data, during test time we can re-use the already estimated
Ψ statistics corresponding to the averages over q(X) and only need to compute the extra av-
erage terms associated with q(X∗). Note that optimisation of the parameters (µi,∗,Si,∗) of
q(xi,∗) are subject to local minima. However, sensible initialisations of µ∗ can be employed
based on the mean of the variational distributions associated with the nearest neighbours of
each test point yi,∗ in the training data Y. Given the above, the approximation of p(Y∗|Y)

2. Ideally q(X) would be optimised during test time as well.

20

Variational GP-LVM

is given by rewriting equation (35) as

p(Y∗|Y) ≈ eF(q(X,X∗))−F(q(X)). (36)

Notice that the above quantity does not constitute a bound, but only an approximation to
the predictive density.

We now discuss the second prediction problem where a set of partially observed test
points Y∗ = (Yu

∗ ,Y
o
∗) are given and we wish to reconstruct the missing part Yu

∗ . The pre-
dictive density is, thus, p(Yu

∗ |Yo
∗,Y). Notice that Yu

∗ is totally unobserved and, therefore,
we cannot apply the methodology described previously. Instead, our objective now is to
just approximate the moments of the predictive density. To achieve this, we will first need
to introduce the underlying latent function values Fu

∗ (the noise-free version of Yu
∗) and the

latent variables X∗ so that we can decompose the exact predictive density as follows:

p(Yu
∗ |Yo

∗,Y) =

∫
p(Yu

∗ |Fu
∗)p(F

u
∗ |X∗,Y

o
∗,Y)p(X∗|Yo

∗,Y)dFu
∗dX∗.

Then, we can introduce the approximation coming from the variational distribution so that

p(Yu
∗ |Yo

∗,Y) ≈ q(Yu
∗ |Yo

∗,Y) =

∫
p(Yu

∗ |Fu
∗)q(F

u
∗ |X∗)q(X∗)dF

u
∗dX∗, (37)

based on which we wish to predict Yu
∗ by estimating its mean E(Yu

∗) and covariance
Cov(Yu

∗). This problem takes the form of GP prediction with uncertain inputs similar
to (Oakley and O’Hagan, 2002; Quiñonero-Candela et al., 2003; Girard et al., 2003), where
the distribution q(X∗) expresses the uncertainty over these inputs. The first term of the
above integral comes from the Gaussian likelihood so Yu

∗ is just a noisy version of Fu
∗ , as

shown in equation (6). The remaining two terms together q(Fu
∗ |X∗)q(X∗) are obtained by

applying the variational methodology in order to optimise a variational lower bound on the
following log marginal likelihood

log p(Yo
∗,Y) = log

∫
p(Yo

∗,Y|X∗,X)p(X∗,X)dX∗dX (38)

which is associated with the total set of observations (Yo
∗,Y). By following exactly Section

3, we can construct and optimise a lower bound F(q(X,X∗)) on the above quantity, which
along the way it allows us to compute a Gaussian variational distribution q(F,Fu

∗ ,X,X∗)
from which q(Fu

∗ |X∗)q(X∗) is just a marginal. Further details about the form of the vari-
ational lower bound and how q(Fu

∗ |X∗) is computed are given in the Appendix D. In fact,
the explicit form of q(Fu

∗ |X∗) takes the form of the projected process predictive distribution
from sparse GPs (Csató and Opper, 2002; Smola and Bartlett, 2001; Seeger et al., 2003;
Rasmussen and Williams, 2006):

q(Fu
∗ |X∗) = N

(
Fu
∗ |K∗uB,K∗∗ −K∗u

[
K−1

uu − (Kuu + σ−2Ψ2)
−1
]
K⊤

∗u

)
, (39)

where B = σ−2
(
Kuu + σ−2Ψ2

)−1
Ψ⊤

1 Y, K∗∗ = kf (X∗,X∗) and K∗u = kf (X∗,Xu). By
substituting now the above Gaussian q(Fu

∗ |X∗) in equation (37) and using the fact that

21

Damianou, Titsias and Lawrence

q(X∗) is also a Gaussian, we can analytically compute the mean and covariance of the
predictive density which, based on the results of Girard et al. (2003), take the form

E(Fu
∗) = B⊤Ψ∗

1 (40)

Cov(Fu
∗) = B⊤

(
Ψ∗

2 −Ψ∗
1(Ψ

∗
1)

⊤
)
B+ ψ∗

0I− tr
((

K−1
uu −

(
Kuu + σ−2Ψ2

)−1
)
Ψ∗

2

)
I,(41)

where ψ∗
0 = tr (〈K∗∗〉), Ψ∗

1 = 〈Ku∗〉 and Ψ∗
2 =

〈
Ku∗K

⊤
u∗

〉
. All expectations are taken

w.r.t. q(X∗) and can be calculated analytically for several kernel functions as explained in
Section 3.2 and Appendix B. Using the above expressions and the Gaussian noise model of
equation (6), the predicted mean of Yu

∗ is equal to E [Fu
∗] and the predicted covariance (for

each column of Yu
∗) is equal to Cov(Fu

∗) + σ2In∗
.

4.2 Predictions in the Dynamical Model

The two prediction tasks described in the previous section for the standard variational GP-
LVM can also be solved for the dynamical variant in a very similar fashion. Specifically, the
two predictive approximate densities take exactly the same form as those in equations (36)
and (37) while again the whole approximation relies on the maximisation of a variational
lower bound F(q(X,X∗)). However, in the dynamical case where the inputs (X,X∗) are
a priori correlated, the variational distribution q(X,X∗) does not factorise across X and
X∗. This makes the optimisation of this distribution computationally more challenging, as
it has to be optimised with respect to its all 2(n + n∗)q parameters. This issue is further
explained in Appendix D.1.

Finally, we shall discuss how to solve the forecasting problem with our dynamical model.
This problem is similar to the second predictive task described in Section 4.1, but now the
observed set is empty. We can therefore write the predictive density similarly to equation
(37) as follows:

p(Y∗|Y) ≈
∫
p(Y∗|F∗)q(F∗|X∗)q(X∗)dX∗dF∗.

The inference procedure then follows exactly as before, using equations (37), (40) and (41).
The only difference is that the computation of q(X∗) (associated with a fully unobserved
Y∗) is obtained from standard GP prediction and does not require optimisation, i.e.

q(X∗) =

∫
p(X∗|X)q(X)dX =

q∏

j=1

∫
p(x∗,j |x:,j)q(x:,j)dx:,j ,

where p(x∗,j |x:,j) is a Gaussian found from the conditional GP prior (see Rasmussen and
Williams (2006)). Since q(X) is Gaussian, the above is also a Gaussian with mean and
variance given by

µx∗,j
= K∗nµ̄:,j

var(x∗,j) = K∗∗ −K∗n(Kx +Λ−1
j)−1Kn∗,

where K∗n = kx(t∗, t), K∗n = K⊤
∗n and K∗∗ = kx(t∗, t∗). Notice that these equations have

exactly the same form as found in standard GP regression problems.

22

Variational GP-LVM

5. Demonstration of the Variational Framework

In this section we investigate the performance of the variational GP-LVM and its dynamical
extension. The variational GP-LVM allows us to handle very high dimensional data and,
using ARD, to automatically infer the importance of each latent dimension. The gener-
ative construction allows us to impute missing values when presented with only a partial
observation.

In the experiments, a latent space variational distribution is required as initialisation.
We use PCA to initialise the q−dimensional means. The variances are initialised to values
around 0.5, which are considered neutral given that the prior is a standard normal. The
selection of q can be almost arbitrary and does not affect critically the end result, since the
inverse lengthscales then switch off unnecessary dimensions. The only requirement is for q
to be reasonably large in the first place, but an upper bound is q = n. In practice, in ad-hoc
experiments we never observed any advantage in using q > 40, considering the dataset sizes
employed. Inducing points are initialised as a random subset of the initial latent space.
ARD inverse lengthscales are initialised based on a heuristic that takes into account the
scale of each dimension. Specifically, the inverse squared lengthscale wj is set as the inverse
of the squared difference between the maximum and the minimum value of the initial latent
mean in direction j. Following initialisation, the model is trained by optimising jointly
all (hyper)parameters using the scaled conjugate gradients method. The optimisation is
stopped until the change in the objective (variational lower bound) is very small.

We evaluate the models’ performance in a variety of tasks, namely visualisation, predic-
tion, reconstruction, generation of data or timeseries and class-conditional density estima-
tion. Matlab source code for repeating the following experiments is available on-line from:
http://git.io/A3TN and supplementary videos from: http://git.io/A3t5.

The experiments section is structured as follows; in Section 5.1 we outline the covariance
functions used for the experiments. In Section 5.2 we demonstrate our method in a standard
visualisation benchmark. In Section 5.3 we test both, the standard and dynamical variant
of our method in a real-world motion capture dataset. In Section 5.4 we illustrate how our
proposed model is able to handle a very large number of dimensions by working directly with
the raw pixel values of high resolution videos. Additionally, we show how the dynamical
model can interpolate but also extrapolate in certain scenarios. In Section 5.5 we consider
a classification task on a standard benchmark, exploiting the fact that our framework gives
access to the model evidence, thus enabling Bayesian classification.

5.1 Covariance Functions

Before proceeding to the actual evaluation of our method, we first review and give the forms
of the covariance functions that will be used for our experiments. The mapping between
the input and output spaces X and Y is nonlinear and, thus, we use the covariance function
of equation (8) which also allows simultaneous model selection within our framework. In
experiments where we use our method to also model dynamics, apart from the infinitely
differentiable exponentiated quadratic covariance function defined in equation (3), we will
also consider for the dynamical component the Matérn 3/2 covariance function which is
only once differentiable, and a periodic one (Rasmussen and Williams, 2006; MacKay, 1998)
which can be used when data exhibit strong periodicity. These covariance functions take

23

Damianou, Titsias and Lawrence

the form

kx(mat) (ti, tj) = σ2mat

(
1 +

√
3|ti − tj |
ℓ

)
exp

(
−
√
3|ti − tj |
ℓ

)
,

kx(per) (ti , tj) = σ2per exp

(
−1

2

sin2
(
2π
T (ti − tj)

)

ℓ

)
,

where ℓ denotes the characteristic lengthscale and T denotes the period of the periodic
covariance function.

Introducing a separate GP model for the dynamics is a very convenient way of incorpo-
rating any prior information we may have about the nature of the data in a nonparametric
and flexible manner. In particular, more sophisticated covariance functions can be con-
structed by combining or modifying existing ones. For example, in our experiments we
consider a compound covariance function, kx(per) + kx(rbf) which is suitable for dynamical
systems that are known to be only approximately periodic. The first term captures the
periodicity of the dynamics whereas the second one corrects for the divergence from the
periodic pattern by enforcing the datapoints to form smooth trajectories in time. By fixing
the two variances, σ2per and σ

2
rbf to particular ratios, we are able to control the relative effect

of each kernel. Example sample paths drawn from this compound covariance function are
shown in Figure 4.

(a) (b) (c)

Figure 4: Typical sample paths drawn from the kx(per) + kx(rbf) covariance function. The
variances are fixed for the two terms, controlling their relative effect. In Figures
(a), (b) and (c), the ratio σ2rbf/σ

2
per of the two variances was large, intermediate

and small respectively, causing the periodic pattern to be shifted accordingly each
period.

For our experiments we additionally include a noise covariance function

kwhite(xi,:,xk,:) = θwhiteδi,k,

where δi,k is the Kronecker delta. We can then define a compound kernel k+kwhite, so that
the noise level θwhite is jointly optimised along with the rest of the kernel hyperparameters.
Similarly, we also include a bias term θbias1, where 1 denotes a vector of 1s.

24

Variational GP-LVM

(a) Variational GP-LVM

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) GP-LVM

Figure 5: Left: The squared inverse lengthscales found by applying the variational GP-
LVM with ARD EQ kernel on the oil flow data. Right: Results obtained for the
standard GP-LVM with q = 10. These results demonstrate the ability of the
variational GP-LVM to perform a “soft” automatic dimensionality selection. The
inverse lengthscale for each dimension is associated with the expected number of
the function’s upcrossings in that particular direction; small values denote a more
linear behaviour, whereas values close to zero denote an irrelevant dimension.
For the variational GP-LVM, plot (a) suggests that the non-linearity is captured
by dimension 2, as also confirmed by plot 6(a). On the other hand, plot (b)
demonstrates the overfitting problem of the GP-LVM which is trained with MAP.

5.2 Visualisation Tasks

Given a dataset with known structure, we can apply our algorithm and evaluate its per-
formance in a simple and intuitive way, by checking if the form of the discovered low
dimensional manifold agrees with our prior knowledge.

We illustrate the method in the multi-phase oil flow data (Bishop and James, 1993) that
consists of 1000, 12 dimensional observations belonging to three known classes correspond-
ing to different phases of oil flow. This dataset is generated through simulation, and we
know that the intrinsic dimensionality is 2 and the number of classes is 3. Figure 6 shows
the results for these data obtained by applying the variational GP-LVM with 10 latent
dimensions using the exponentiated quadratic ARD kernel. As shown in Figure 5(a), the
algorithm switches off 8 out of 10 latent dimensions by making their inverse lengthscales al-
most zero. Therefore, the two-dimensional nature of this dataset is automatically revealed.
Figure 6(a) shows the visualisation obtained by keeping only the dominant latent directions
which are the dimensions 2 and 3. This is a remarkably high quality two dimensional visual-
isation of this data; to the best of our knowledge, our method is the only one that correctly
picks up the true dimensionality and class separation at the same time, in a completely
unsupervised manner. For comparison, Figure 6(b) shows the visualisation provided by the
standard sparse GP-LVM that runs by a priori assuming only 2 latent dimensions. Both
models use 50 inducing variables, while the latent variables X optimised in the standard

25

Damianou, Titsias and Lawrence

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) Variational GP-LVM, q = 10 (2D projection) (b) GP-LVM, q = 2

Figure 6: Panel 6(a) shows the means of the variational posterior q(X) for the variational
GP-LVM, projected on the two dominant latent dimensions: dimension 2, plotted
on the y-axis, and dimension 3 plotted on the x-axis. The plotted projection of a
latent point xi,: is assigned a colour according to the label of the corresponding
output vector xi,:. The greyscale background intensities are proportional to the
predicted variance of the GP mapping, if the corresponding locations were given
as inputs. Plot 6(b) shows the visualisation found by standard sparse GP-LVM
initialised with a two dimensional latent space.

GP-LVM are initialised based on PCA. Note that if we were to run the standard GP-LVM
with 10 latent dimensions, the model would overfit the data and it would not reduce the
dimensionality in the manner achieved by the variational GP-LVM, as illustrated in Figure
5(b). The quality of the class separation in the two-dimensional space can also be quantified
in terms of the nearest neighbour error; the total error equals the number of training points
whose closest neighbour in the latent space corresponds to a data point of a different class
(phase of oil flow). The number of nearest neighbour errors made when finding the latent
embedding for the variational GP-LVM is one. For the standard sparse GP-LVM it is 26,
for the full GP-LVM with ARD kernel it is 8 and for the full GP-LVM with EQ kernel it is
2. Notice that all standard GP-LVMs were given the true dimensionality (q = 2) a priori.

5.3 Human Motion Capture Data

In this section we consider a data set associated with temporal information, as the primary
focus of this experiment is on evaluating the dynamical version of the variational GP-LVM.
We followed Taylor et al. (2007); Lawrence (2007) in considering motion capture data of
walks and runs taken from subject 35 in the CMU motion capture database. We used the
dynamical version of our model and treated each motion as an independent sequence. The
data set was constructed and preprocessed as described in (Lawrence, 2007). This results in
2613 separate 59-dimensional frames split into 31 training sequences with an average length

26

Variational GP-LVM

of 84 frames each. Our model does not require explicit timestamp information, since we
know a priori that there is a constant time delay between poses and the model can construct
equivalent covariance matrices given any vector of equidistant time points.

The model is jointly trained, as explained in the last paragraph of Section 3.3.2, on
both walks and runs, i.e. the algorithm learns a common latent space for these motions.
As in (Lawrence, 2007), we used 100 inducing points. At test time we investigate the
ability of the model to reconstruct test data from a previously unseen sequence given partial
information for the test targets. This is tested once by providing only the dimensions which
correspond to the body of the subject and once by providing those that correspond to the
legs. We compare with results in (Lawrence, 2007), which used MAP approximations for
the dynamical models, and against nearest neighbour. We can also indirectly compare with
the binary latent variable model (BLV) of Taylor et al. (2007) which used a slightly different
data preprocessing. Furthermore, we additionally tested the non-dynamical version of our
model, in order to explore the structure of the distribution found for the latent space. In
this case, the notion of sequences or sub-motions is not modelled explicitly, as the non-
dynamical approach does not model correlations between datapoints. However, as will be
shown below, the model manages to discover the dynamical nature of the data and this is
reflected in both, the structure of the latent space and the results obtained on test data.

The performance of each method is assessed by using the cumulative error per joint in
the scaled space defined in (Taylor et al., 2007) and by the root mean square error in the
angle space suggested by Lawrence (2007). Our models were initialised with nine latent
dimensions. For the dynamical version, we performed two runs, once using the Matérn
covariance function for the dynamical prior and once using the exponentiated quadratic.

The appropriate latent space dimensionality for the data was automatically inferred by
our models. The non-dynamical model selected a 5-dimensional latent space. The model
which employed the Matérn covariance to govern the dynamics retained four dimensions,
whereas the model that used the exponentiated quadratic kept only three. The other latent
dimensions were completely switched off by the ARD parameters.

From Table 1 we see that the dynamical variational GP-LVM considerably outperforms
the other approaches. The best performance for the legs and the body reconstruction was
achieved by our dynamical model that used the Matérn and the exponentiated quadratic
covariance function respectively. This is an intuitive result, since the smoother body move-
ments are expected to be better modelled using the infinitely differentiable exponentiated
quadratic covariance function, whereas the Matérn one can easier fit the rougher leg motion.
Although it is not always obvious how to choose the best covariance function (without expen-
sive cross-validation), the fact that both models outperform significantly other approaches
shows that the Bayesian training manages successfully to fit the covariance function pa-
rameters to the data in any case. Furthermore, the non-dynamical variational GP-LVM,
not only manages to discover a latent space with a dynamical structure, as can be seen in
Figure 7(a), but is also proven to be quite robust when making predictions. Indeed, Ta-
ble 1 shows that the non-dynamical variational GP-LVM performs comparably to nearest
neighbor. However, the standard GP-LVM which explicitly models dynamics using MAP
approximations performs slightly better than the non-dynamical variational GP-LVM; this
suggests that temporal information is crucial in this dataset. Finally, it is worth highlight-
ing the intuition gained by investigating Figure 7. As can be seen, all models split the

27

Damianou, Titsias and Lawrence

Data CL CB L L B B

Error Type SC SC SC RA SC RA

BLV 11.7 8.8 - - - -

NN sc. 22.2 20.5 - - - -

GP-LVM (q= 3) - - 11.4 3.40 16.9 2.49

GP-LVM (q= 4) - - 9.7 3.38 20.7 2.72

GP-LVM (q= 5) - - 13.4 4.25 23.4 2.78

NN sc. - - 13.5 4.44 20.8 2.62

NN - - 14.0 4.11 30.9 3.20

VGP-LVM - - 14.22 5.09 18.79 2.79

Dyn. VGP-LVM (Exp. Quadr.) - - 7.76 3.28 11.95 1.90

Dyn. VGP-LVM (Matérn 3/2) - - 6.84 2.94 13.93 2.24

Table 1: Errors obtained for the motion capture dataset. The format of this table follows
Lawrence (2007), where differently processed datasets were used for the first two
columns, as opposed to the last four columns. Specifically, CL / CB are the leg and
body data sets as preprocessed in (Taylor et al., 2007), L and B the corresponding
datasets from Lawrence. Taylor et al. also used a different scaling for the data,
which can be applied to the predictions of the models trained in the L/B datasets
to obtain indirect comparisons with the models which were trained in the CL/CB
datasets. Specifically, SC corresponds to the error in the scaled space, as in Taylor
et al. while RA is the error in the angle space. The methods shown in the table are:
nearest neighbour in the angle space (NN) and in the scaled space (NN sc.), GP-
LVM (with different pre-selected latent dimensionality q), binary latent variable
model (BLV), variational GP-LVM (VGP-LVM) and Dynamical variational GP-
LVM (Dyn. VGP-LVM). Notice that NN was run once in the CL/CB dataset and
once in the L/B dataset, so as to provide a “link” between the two first and the
four last columns. The best error per column is in bold.

28

Variational GP-LVM

(a)

−4

−2

0

2

4

−6

−4

−2

0

2

4
−5

0

5

10

15

(b)

−10

−5

0

5

−6−4−202468

−10

−5

0

5

10

15

(c)

Figure 7: The latent space discovered by our models for the human motion capture data,
projected into its three principal dimensions. The latent space found by the non-
dynamical variational GP-LVM is shown in (a), by the dynamical model which
uses the Matérn in (b) and by the dynamical model which uses the exponentiated
quadratic in (c). The red, dotted circles highlight three “outliers”.

encoding for the “walk” and “run” regimes into two subspaces. Further, we notice that the
smoother the latent space is constrained to be, the less “circular” is the shape of the “run”
regime latent space encoding. This can be explained by noticing the “outliers” in the top
left and bottom positions of plot (a), highlighted with a red, dotted circle. These latent
points correspond to training positions that are very dissimilar to the rest of the training
set but, nevertheless, a temporally constrained model is forced to accommodate them in a
smooth path. The above intuitions can be confirmed by interacting with the model in real
time graphically, as is presented in the supplementary video.

5.4 Modeling Raw High Dimensional Video Sequences

For this set of experiments we considered video sequences (which are included in the supple-
mentary videos available on-line). Such sequences are typically preprocessed before mod-
elling to extract informative features and reduce the dimensionality of the problem. Here
we work directly with the raw pixel values to demonstrate the ability of the dynamical
variational GP-LVM to model data with a vast number of features. This also allows us to
directly sample video from the learned model.

Firstly, we used the model to reconstruct partially observed frames from test video se-
quences.3 For the first video discussed here we gave as partial information approximately
50% of the pixels while for the other two we gave approximately 40% of the pixels on each
frame. The mean squared error per pixel was measured to compare with the k−nearest
neighbour (NN) method, for k ∈ (1, .., 5) (we only present the error achieved for the best
choice of k in each case). The datasets considered are the following: firstly, the ‘Missa’
dataset, a standard benchmark used in image processing. This is a 103680-dimensional

3. ‘Missa’ dataset: cipr.rpi.edu. ‘Ocean’: cogfilms.com. ‘Dog’: fitfurlife.com. See details in supplementary
on-line videos. The logo appearing in the ‘dog’ images in the experiments that follow, has been added
with post-processing.

29

Damianou, Titsias and Lawrence

video, showing a woman talking for 150 frames. The data is challenging as there are trans-
lations in the pixel space. We also considered an HD video of dimensionality 9 × 105 that
shows an artificially created scene of ocean waves as well as a 230400−dimensional video
showing a dog running for 60 frames. The latter is approximately periodic in nature, con-
taining several paces from the dog. For all video datasets, the GPs were trained withm = n.
For the first two videos we used the Matérn and exponentiated quadratic covariance func-
tions respectively to model the dynamics and interpolated to reconstruct blocks of frames
chosen from the whole sequence. For the ‘dog’ dataset we constructed a compound kernel
kx = kx(rbf) + kx(per) presented in Section 5.1, where the exponentiated quadratic (RBF)
term is employed to capture any divergence from the approximately periodic pattern. The
variance of the periodic component was fixed to 1 and the variance of the RBF component
to 1/150. This is to make sure that the RBF does not dominate before learning some pe-
riodicity (in this case periodicity is more difficult to discover as a pattern). The selection
of the variances’ ratio does not need to be exact and here was made in an ad-hoc manner,
aiming at getting samples like the one shown in Figure 4(b). We then used our model to
reconstruct the last 7 frames extrapolating beyond the original video. As can be seen in Ta-
ble 2, our method outperformed NN in all cases. The results are also demonstrated visually
in Figures 8, 9, 10 and 11 and the reconstructed videos are available in the supplementary
on-line videos.

Missa Ocean Dog

Dyn. VGP-LVM 2.52 9.36 4.01

NN 2.63 9.53 4.15

Table 2: The mean squared error per pixel for Dyn. VGP-LVM and NN for the three
datasets (measured only in the missing inputs).

As can be seen in Figures 8, 9 and 10, the dynamical variational GP-LVM predicts pixels
which are smoothly connected with the observed part of the image, whereas the NN method
cannot fit the predicted pixels in the overall context. Figure 8(c) focuses on this specific
problem with NN, but it can be seen more evidently in the corresponding video files.

As a second task, we used our generative model to create new samples and generate
a new video sequence. This is most effective for the ‘dog’ video as the training examples
were approximately periodic in nature. The model was trained on 60 frames (time-stamps
[t1, t60]) and we generated new frames which correspond to the next 40 time points in
the future. The only input given for this generation of future frames was the time-stamp
vector, [t61, t100]. The results show a smooth transition from training to test and amongst
the test video frames. The resulting video of the dog continuing to run is sharp and high
quality. This experiment demonstrates the ability of the model to reconstruct massively
high dimensional images without blurring. Frames from the result are shown in Figure 13.
The full sequence is available in the supplementary on-line videos.

30

Variational GP-LVM

(a) (b)

(c)

Figure 8: (a) and (c) demonstrate the reconstruction achieved by dynamical variational
GP-LVM and NN respectively for one of the most challenging frames (b) of the
‘missa’ video, i.e. when translation occurs. In contrast to the NN method, which
works in the whole high dimensional pixel space, our method reconstructed the
images using a “compressed” latent space. The ARD scales for this example
revealed an effectively 12−dimensional latent space.

31

Damianou, Titsias and Lawrence

50 100 150 200 250 300 350

50

100

150

200

250

(a)

50 100 150 200 250 300 350

50

100

150

200

250

(b)

Figure 9: Another example of the reconstruction achieved by the dynamical variational
GP-LVM given the partially observed image.

(a) (b) (c)

Figure 10: (a) (Dynamical variational GP-LVM) and (b) (NN) depict the reconstruction
achieved for a frame of the ‘ocean’ dataset. Notice that in both of the afore-
mentioned datasets, our method recovers a smooth image, in contrast to the
simple NN (a close up of this problem with NN for the ‘ocean’ video is shown
in Figure (c)). The dynamical var. GP-LVM reconstructed the ocean images
using a latent space compression of the video defined by 9 effective dimensions
(the rest of the inverse lengthscales approached zero).

5.5 Class Conditional Density Estimation

In this experiment we use the variational GP-LVM to build a generative classifier for hand-
written digit recognition. We consider the well known USPS digits dataset. This dataset
consists of 16 × 16 images for all 10 digits and it is divided into 7291 training examples
and 2007 test examples. We ran 10 variational GP-LVMs, one for each digit, on the USPS
data base. We used 10 latent dimensions and 50 inducing variables for each model. This
allowed us to build a probabilistic generative model for each digit so that we can compute

32

Variational GP-LVM

(a)

(b)

Figure 11: An example for the reconstruction achieved for the ‘dog’ dataset. 40% of the
test image’s pixels (Figure (a)) were presented to the model, which was able to
successfully reconstruct them, as can be seen in (b).

33

Damianou, Titsias and Lawrence

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Initialised squared inverse lengthscales

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Optimised squared inverse lengthscales

Figure 12: The figure demonstrates the ability of the model to automatically estimate an
effective latent dimensionality by showing the initial squared inverse lengthscales
(fig: (a)) of the ARD covariance function and the values obtained after training
(fig: (b)) on the ‘dog’ data set.

Bayesian class conditional densities in the test data having the form p(Y∗|Y, digit). These
class conditional densities are approximated through the ratio of lower bounds in equation
(36) as described in Section 4. The whole approach allows us to classify new digits by de-
termining the class labels for test data based on the highest class conditional density value
and using a uniform prior over class labels. We used the following comparisons: firstly,
a logistic classification approach. Secondly, a vanilla SVM from scikit-learn (Pedregosa
et al., 2011), for which the error parameter C was selected with 5−fold cross validation.
Thirdly, a GP classification approach with EP approximation from GPy (authors, 2014).
Lastly, the recent variational inference based GP classification approach of Hensman et al.
(2014), referred to as “GP classification with VI” and taken from the GPy (authors, 2014)
implementation. All of these methods operated in a 1-vs-all setting. The results of our
experiments are shown in Table 3. In addition to the standard baselines reported here,
more sophisticated schemes (many of which result in better performance) have been tried
in this dataset by other researchers; a summary of previously published results can be found
in (Keysers et al., 2002).

6. Extensions for Different Kinds of Inputs

So far we considered the typical dimensionality reduction scenario where, given high-
dimensional output data we seek to find a low-dimensional latent representation in a com-
pletely unsupervised manner. For the dynamical variational GP-LVM we have additional
temporal information, but the input space X from where we wish to propagate the uncer-
tainty is still treated as fully unobserved. However, our framework for propagating the input
uncertainty through the GP mapping is applicable to the full spectrum of cases, ranging
from fully unobserved to fully observed inputs with known or unknown amount of uncer-
tainty per input. In this section we discuss these cases and, further, show how they give

34

Variational GP-LVM

(a)

(b)

(c)

Figure 13: The last frame of the training video (a) is smoothly followed by the first frame
(b) of the generated video. A subsequent generated frame can be seen in (c).

35

Damianou, Titsias and Lawrence

misclassified error (%)

variational GP-LVM (m = 50) 95 4.73 %

1-vs-all Logistic Regression 283 14.10 %

1-vs-all GP classification with VI (m = 50) 100 4.98 %

1-vs-all GP classification with VI (m = 150) 100 4.98 %

1-vs-all GP classification with VI (m = 250) 99 4.93 %

1-vs-all GP classification with EP (m = 50) 139 6.93 %

1-vs-all GP classification with EP (m = 150) 128 6.38 %

1-vs-all GP classification with EP (m = 250) 126 6.28 %

1-vs-all SVM 119 5.92 %

Table 3: The test error made for classifying the whole set of 2007 test points (USPS digits)
by the variational GP-LVM, 1-vs-all Logistic Regression, SVM classification and
two types of GP classification.

rise to an auto-regressive model (Section 6.1) and a GP regression variant which can handle
missing inputs (Section 6.2).

6.1 Gaussian Process Inference with Uncertain Inputs

Gaussian processes have been used extensively and with great success in a variety of regres-
sion tasks. In the most common setting, we are given a dataset of observed input-output
pairs, denoted as Z ∈ ℜn×q and Y ∈ ℜn×p respectively, and we wish to infer the unknown
outputs Y∗ ∈ ℜn∗×p corresponding to some novel given inputs Z∗ ∈ ℜn∗×q. However, in
many real-world applications the inputs are uncertain, for example when measurements
come from noisy sensors. In this case, the GP methodology cannot be trivially extended to
account for the variance associated with the input space (Girard et al., 2003; McHutchon
and Rasmussen, 2011). The aforementioned problem is also closely related to the field of
heteroscedastic Gaussian process regression, where the uncertainty in the noise levels is
modelled in the output space as a function of the inputs (Kersting et al., 2007; Goldberg
et al., 1998; Lázaro-Gredilla and Titsias, 2011).

In this section we show that our variational framework can be used to explicitly model
the input uncertainty in the GP regression setting. The assumption made is that the
inputs X are not observed directly but, rather, we only have access to their noisy versions
{zi,:}ni=1 = Z ∈ ℜn×q. The relationship between the noisy and true inputs is given by
assuming the noise to be Gaussian,

xi,: = zi,: + (ǫx)i,:,

where ǫx ∼ N (0,Σx) , as in (McHutchon and Rasmussen, 2011). Since Z is observed and
X unobserved the above equation essentially induces a Gaussian prior distribution over X
that has the form

p(X|Z) =
n∏

i=1

N (xi,:|zi,:,Σx) ,

36

Variational GP-LVM

where Σx is typically an unknown parameter. Given that X are really the inputs that
eventually are passed through the GP latent function (to subsequently generate the outputs)
the whole probabilistic model becomes a GP-LVM with the above special form for the prior
distribution over the latent inputs, making thus our variational framework easily applicable.
More precisely, using the above prior, we can define a variational bound on p(Y) as well
as an associated approximation q(X) to the true posterior p(X|Y,Z). This variational
distribution q(X) can be used as a probability estimate of the noisy input locations X.
During optimisation of the lower bound we can also learn the parameterΣx. Furthermore, if
we wish to reduce the number of parameters in the variational distribution q(X) = N (M,S)
a sensible choice would be to set M = Z, although such a choice may not be optimal.
However, this choice also allows us to incorporate Z directly in the approximate posterior
and, hence, we may also remove the coupling in the prior (coming from Σx) by instead
considering a standard normal for p(X). This is the approach taken in this paper.

Having a method which implicitly models the uncertainty in the inputs also allows for
doing predictions in an autoregressive manner while propagating the uncertainty through
the predictive sequence (Girard et al., 2003). To demonstrate this in the context of our
framework, we will take the simple case where the process of interest is a multivariate
time-series given as pairs of time points t = {t}ni=1 and corresponding output locations
Y = {yi,:}ni=1, yi,: ∈ ℜp. Here, we take the time locations to be deterministic and equally
spaced, so that they can be simply denoted by the subscript of the output points yi,:; we
thus simply denote with yk the output point yk,: which corresponds to tk.

We can now reformat the given data Y into input-output pairs Ẑ and Ŷ, where

[ẑ1, ẑ2, ..., ẑn−τ] = [[y1,y2, ...,yτ] , [y2,y3, ...,yτ+1] , ..., [yn−τ ,yn−τ+1, ...,yn−1]] ,

[ŷ1, ŷ2, ..., ŷn−τ] = [yτ+1,yτ+2, ...,yn]

and τ is the size of the dynamics’ “memory”. In other words, we define a window of size τ
which shifts in time so that the output in time t becomes an input in time t+1. Therefore,
the uncertain inputs method described earlier in this section can be applied to the new
dataset [Ẑ, Ŷ]. In particular, although the training inputs Ẑ are not necessarily uncertain
in this case, the aforementioned way of performing inference is particularly advantageous
when the task is extrapolation.

In more detail, consider the simplest case described in this section where the posterior
q(X) is centered in the given noisy inputs and we allow for variable noise around the
centers. To perform extrapolation one firstly needs to train the model on the dataset
[Ẑ, Ŷ]. Then, we can perform iterative k−step ahead prediction in order to find a future
sequence [yn+1,yn+2, ...] where, similarly to the approach taken by Girard et al. (2003),
the predictive variance in each step is accounted for and propagated in the subsequent
predictions. For example, if k = 1 the algorithm will make iterative 1-step predictions in
the future; in the beginning, the output yn+1 will be predicted given the training set. In
the next step, the training set will be augmented to include the previously predicted yn+1

as part of the input set, where the predictive variance is now encoded as the uncertainty of
this point.

The advantage of the above method, which resembles a state-space model, is that the
future predictions do not almost immediately revert to the mean, as in standard station-

37

Damianou, Titsias and Lawrence

ary GP regression, neither do they underestimate the uncertainty, as would happen if the
predictive variance was not propagated through the inputs in a principled way.

6.1.1 Demonstration: iterative k−step ahead forecasting

Here we demonstrate our framework in the simulation of a state space model, as was de-
scribed previously. More specifically, we consider the Mackey-Glass chaotic time series, a
standard benchmark which was also considered in (Girard et al., 2003). The data is one-
dimensional so that the timeseries can be represented as pairs of values {y, t}, t = 1, 2, · · · , n
and simulates:

dζ(t)

dt
= −bζ(t) + α

ζ(t− T)

1 + ζ(t− T)10
, with α = 0.2, b = 0.1, T = 17.

As can be seen, the generating process is very non-linear, something which makes this
dataset particularly challenging. The created dataset is in uniform time-steps.

The model trained on this dataset was the one described previously, where the modified
dataset {ŷ, ẑ} was created with τ = 18 and we used the first 4τ = 72 points for training and
predicted the subsequent 1110 points in the future. 30 inducing points were used. We firstly
compared to a standard GP model where the input - output pairs were given by the modified
dataset {ẑ, ŷ} that was mentioned previously; this model is here referred to as the “naive
autoregressive GP” model GP ẑ,ŷ. For this model, the predictions are made in the k−step
ahead manner, according to which the predicted values for iteration k are added to the
training set. However, this standard GP model has no straight forward way of propagating
the uncertainty, and therefore the input uncertainty is zero for every step of the iterative
predictions. We also compared against a special case of the variational GP-LVM which
implements the functionality developed by Girard et al. (2003). In this version, predictions
at every step are performed on a noisy location, i.e. by incorporating the predictive variance
of the previous step. In contrast to our algorithm, however, the predictive point is not
incorporated as noisy input after the prediction but, rather, discarded. This method is here
referred to as GPuncert. Although we use GPuncert as an informative baseline, we note that
in the original paper of Girard et al. (2003), additional approximations were implemented,
by performing Taylor expansion around the predictive mean and variance in each step. The
predictions obtained for all competing methods can be seen in Figure 14.

As shown in the last plot, both the variational GP-LVM and GPuncert are robust in
handling the uncertainty throughout the predictions; GP ẑ,ŷ underestimates the uncertainty.
Consequently, as can be seen from the top three plots, in the first few predictions all methods
give the same answer. However, once the predictions of GP ẑ,ŷ diverge a little by the true
values, the error is carried on and amplified due to underestimating the uncertainty. On
the other hand, GPuncert perhaps overestimates the uncertainty and, therefore, is more
conservative in its predictions, resulting in higher errors. Quantification of the error is
shown in Table 4 and further validates the above discussion. The negative log. probability
density for the predicted sequence was also computed for each method. The obtained values
were then divided by the length of the predicted sequence to obtain an average per point.
The result is 22447 for our method, 30013 for that of Girard et al. (2003) and 36583 for the
“naive” GP method.

38

Variational GP-LVM

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

true var. GP-LVM

Figure 14: Iterative 1−step ahead prediction for a chaotic timeseries. From top to bottom, the
following methods are compared: the variational GP-LVM, a “naive” autoregressive GP
approach which does not propagate uncertainties (GP ẑ,ŷ) and the approach of Girard
et al. (2003) (GPuncert) implemented as a specific case of the variational GP-LVM. The
plot at the bottom shows the predictive variances. The x−axis is common for all plots,
representing the extrapolation step.

6.2 GP Regression with Missing Inputs and Data Imputation

In standard GP regression we assume that the inputs and the outputs are fully observed.
However, in many realistic scenarios missing values can occur. The case where the missing
values occur in the outputs (known as semi-supervised learning) has been addressed in the
past in the context of GPs, e.g. by Lawrence and Jordan (2005); Sindhwani et al. (2007).
However, handling partially observed input data in a fully probabilistic way is challenging,
since propagating the uncertainty from the input to the output space is intractable. Girard
et al. (2003); Quiñonero-Candela et al. (2003) provide an approximation, but their solution
does not support uncertain training inputs.

39

Damianou, Titsias and Lawrence

Method MAE MSE

var. GP-LVM 0.529 0.550

GPuncert 0.700 0.914

GP ẑ,ŷ 0.799 1.157

Table 4: Mean squared and mean absolute error obtained when extrapolating in the chaotic
time-series data. GPuncert refers to the method of Girard et al. (2003) implemented
as a specific case of our framework and GP ẑ,ŷ refers to the “naive” autoregressive
GP approach which does not propagate uncertainties. The lowest errors (achieved
by our method) are in bold.

In this section, we describe how our proposed model can be used in a data imputation
problem where part of the training inputs are missing. This scenario is here treated as a
special case of the uncertain input modelling discussed above. Although a more general
setting can be defined, here we consider the case where we have a fully and a partially
observed set of inputs, i.e. Z = (Zo,Zu), where o and u denote set of rows of (Z,Y) that
contain fully and partially observed inputs respectively4. This is a realistic scenario; it is
often the case that certain input features are more difficult to obtain (e.g. human specified
tags) than others, but we would nevertheless wish to model all available information within
the same model. The features missing in Zu can be different in number / location for each
individual point zui,:.

A standard GP regression model cannot straightforwardly model jointly Zo and Zu. In
contrast, in our framework the inputs are replaced by distributions q(Xo) and q(Xu), so that
Zu can be taken into account naturally by simply initialising the uncertainty of q(Xu) in the
missing locations to 1 (assuming normalized inputs) and the mean to the empirical mean and
then, optionally, optimising q(Xu). In our experiments we use a slightly more sophisticated
approach which resulted in better results. Specifically, we can use the fully observed data
subset (Zo,Yo) to train an initial model for which we fix q(Xo) = N (Xo|Zo, ε → 0). Given
this model, we can then use Yu to estimate the predictive posterior q(Xu) in the missing
locations of Zu (for the observed locations we match the mean with the observations, as for
Zo). After initialising q(X) = q(Xo,Xu) in this way, we can proceed by training our model
on the full (extended) training set ((Zo,Zu) , (Yo,Yu)), which contains fully and partially
observed inputs. During this training phase, the variational distribution q(X) is held fixed
in the locations corresponding to observed values and is optimised in the locations of missing
inputs. Considering a distribution q(X) factorised w.r.t data points and constrained with
Z as explained above might not be an optimal choice with respect to the true posterior.
However, this approach allows us to incorporate knowledge of the observed locations without
adding extra computational cost to the framework.

Given the above formulation, we define a new type of GP model referred to as “missing
inputs GP”. This model naturally incorporates fully and partially observed examples by

4. In section 4, the superscript u denoted the set of missing columns from test outputs. Here it refers to
rows of training inputs that are partially observed, i.e. the union of o and u is now {1, · · · , n}.

40

Variational GP-LVM

communicating the uncertainty throughout the relevant parts of the model in a principled
way. Specifically, the predictive uncertainty obtained by the initial model trained on the
fully observed data is incorporated as input uncertainty via q(Xu) in the model trained on
the extended dataset, similarly to how extrapolation was achieved for our auto-regressive
approach in Section 6.1. In extreme cases resulting in very non-confident predictions, for ex-
ample presence of outliers, the corresponding locations will simply be ignored automatically
due to the large uncertainty. This mechanism, together with the subsequent optimisation
of q(Xu), guards against reinforcing bad predictions when imputing missing values after
learning from small training sets. Details of the algorithm for this approach are given in
Appendix E.

Although the focus of this section was on handling missing inputs, the algorithm de-
veloped above has conceptual similarities with procedures followed to solve the missing
outputs (semi-supervised learning) problem. Specifically, our generative method treats the
missing values task as a data imputation problem, similarly to (Kingma et al., 2014). Fur-
thermore, to perform data imputation our algorithm trains an initial model on the fully
observed portion of the data, used to predict the missing values. This draws inspiration
from self-training methods used for incorporating unlabelled examples in classification tasks
(Rosenberg et al., 2005). In a bootstrap-based self-training approach this incorporation is
achieved by predicting the missing labels using the initial model and, subsequently, aug-
menting the training set using only the confident predictions subset. However, our approach
differs from bootstrap-based self-training methods in two key points: firstly, the partially
unobserved set is in the input rather than the output space; secondly, the predictions ob-
tained from the “self-training” step of our method only constitute initialisations which are
later optimised along with model parameters. Therefore, we refer to this step of our al-
gorithm as partial self-training. Further, in our framework the predictive uncertainty is
not used as a hard measure of discarding unconfident predictions but, instead, we allow all
values to contribute according to an optimised uncertainty measure. Therefore, the way
in which uncertainty is handled makes the “self-training” part of our algorithm principled
compared to many bootstrap-based approaches.

6.2.1 Demonstration

In this section we consider simulated and real-world data to demonstrate our missing inputs
GP algorithm, which was discussed in Section 6.2. The simulated data were created by
sampling inputs Z from an unknown to the competing models GP and gave this as input to
another (again, unknown) GP to obtain the corresponding outputs Y. For the real-world
data demonstration we considered a subset of the same motion capture dataset discussed in
Section 5.3, which corresponds to a walking motion of a human body represented as a set of
59 joint locations. We formulated a regression problem where the first 20 dimensions of the
original data are used as targets and the rest 39 as inputs. In other words, given a partial
joint representation of the human body, the task is to infer the rest of the representation;
that is, given fully observed test inputs Z∗ we wish to reconstruct test outputs Y∗. For both
datasets, simulated and motion capture, we selected a portion of the training inputs, denoted
as Zu, to have randomly missing features. The extended dataset ((Zo,Zu) , (Yo,Yu)) was
used to train our method as well as a nearest neighbour (NN) method. The NN method

41

Damianou, Titsias and Lawrence

compares a test instance z∗ to each training instance by only taking into account the
dimensions that are observed in the training point. This gives a noisy similarity measure in
the input space. The predicted output y∗ is then taken to be the training output for which
the corresponding input has the largest similarity (according to the above noisy measure).
We further compared to a standard GP, which was trained using only the observed data
(Zo,Yo), since it cannot handle missing inputs straightforwardly.

For the simulated data we used the following sizes: |Zo| = 40, |Zu| = 60, |Z∗| = 100
and m = 30. The dimensionality of the inputs is 15 and of the outputs is 5. For the motion
capture data we used |Zo| = 50, |Zu| = 80, |Z∗| = 200 and m = 35. In Figure 15 we plot
the MSE obtained by the competing methods for a varying percentage of missing features
in Zu. For the simulated data experiment, each of the points in the plot is an average of
4 runs which considered different random seeds. As can be seen, the missing inputs GP is
able to handle the extra data and make better predictions, even if a very large portion is
missing. Indeed, its performance starts to converge to that of a standard GP when there
are 90% missing values in Zu and performs identically to the standard GP when 100% of
the values are missing. In Appendix F.2 we also provide a comparison to multiple linear
regression (MLR) (Chatterjee and Hadi, 1986) and to the mean predictor. These methods
gave very bad results, and for clarity they were not included in the main Figure 15.

0 20 40 60 80

0.05

0.1

0.15

0.2

0.25

0.3

M
S

E

% missing features

Toy data

GP

var−GPLVM

NN

0 20 40 60 80

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
S

E

% missing features

Motion capture data

Figure 15: Mean squared error for predictions obtained by different methods in simulated (left)
and motion capture data (right). The results for simulated data are obtained from 4
trials and, hence, errorbars are also plotted. For the GP, errorbars do not change with
x-axis and, for clarity, they are plotted separately on the right of the dashed vertical
line (for nonsensical x values). For clarity, the error for NN is not plotted when it grows
too large; the full figure and comparison with other methods can be seen in Figure 20
of the Appendix.

7. Conclusion

We have introduced an approximation to the marginal likelihood of the Gaussian process
latent variable model in the form of a variational lower bound. This provides a Bayesian

42

Variational GP-LVM

training procedure which is robust to overfitting and allows for the appropriate dimension-
ality of the latent space to be automatically determined. Our framework is extended for the
case where the observed data constitute multivariate timeseries and, therefore, we obtain a
very generic method for dynamical systems modelling able to capture complex, non-linear
correlations. We demonstrated the advantages of the rigorous lower bound defined in our
framework on a range of disparate real world data sets. This also emphasised the ability of
the model to handle vast dimensionalities.

Our approach was easily extended to be applied to training Gaussian processes with
uncertain inputs where these inputs have Gaussian prior densities. This further gave rise
to two variants of our model: an auto-regressive GP as well as a GP regression model
which can handle partially missing inputs. For future research, we envisage several other
extensions that become computationally feasible using the same set of methodologies we
espouse. In particular, propagation of uncertain inputs through the Gaussian process allows
Bayes filtering (Ko and Fox, 2009a; Deisenroth et al., 2012; Frigola et al., 2014) applications
to be carried out through variational bounds. Bayes filters are non-linear dynamical systems
where time is discrete and the observed data yt at time point t is non-linearly related to
some unobserved latent state xt via

yt = f(xt),

which itself has a non-linear autoregressive relationship with past latent states,

xt = g(xt−1),

where both g(·) and f(·) are assumed to be Gaussian processes. Propagation of the uncer-
tainty through both processes can be achieved through our variational lower bound allowing
fast efficient approximations to Gaussian process dynamical models.

The bound also allows for a promising new direction of research, that of deep Gaussian
processes. In a deep Gaussian process (Lawrence and Moore, 2007; Damianou and Lawrence,
2013) the idea of placing a temporal prior over the inputs to a GP is further extended by
hierarchical application. This formalism leads to a powerful class of models where Gaussian
process priors are placed over function compositions (Damianou, 2015). For example, in a
five layer model we have

f(X) = g5(g4(g3(g2(g1(X))))),

where each gi(·) is a draw from a Gaussian process. By combining such models with struc-
ture learning (Damianou et al., 2012) we can develop the potential to learn very complex
non linear interactions between data. In contrast to other deep models all the uncertainty
in parameters and latent variables is marginalised out.

Acknowledgments

This research was partially funded by the European research project EU FP7-ICT (Project
Ref 612139 “WYSIWYD”), the Greek State Scholarships Foundation (IKY) and the Uni-
versity of Sheffield Moody endowment fund. We also thank Colin Litster and “Fit Fur Life”
for allowing us to use their video files as datasets.

43

Damianou, Titsias and Lawrence

Appendix A. Further Details About the Variational Bound

This appendix contains supplementary details for deriving some mathematical formulae
related to the calculation of the final expression of the variational lower bound for the
training phase.

Since many derivations require completing the square to recognize a Gaussian, we will
use the following notation throughout the Appendix:

Z = the collection of all constants for the specific line in equation,

where the definition of a constant depends on the derivation at hand.

A.1 Calculation of: 〈log p(y:,j |f:,j)〉p(f:,j |u:,j ,X)

First, we show in detail how to obtain the r.h.s of equation (20) for the following quantity:
〈log p(y:,j |f:,j)〉p(f:,j |u:,j ,X) which appears in the variational bound of equation (19). We

now compute the above quantity analytically while temporarily using the notation 〈·〉 =
〈·〉p(f:,j |u:,j ,X) :

〈log p(y:,j |f:,j)〉
eq. (6)
=

〈
logN

(
y:,j |f:,j , σ2In

)〉

= − n

2
log(2π)− 1

2
log |σ2In|

−1

2
tr
(
σ−2In

(
y:,jy

⊤
:,j − 2y:,j

〈
f⊤:,j

〉
+
〈
f:,jf

⊤
:,j

〉))

eq. (13)
= Z − 1

2
tr
(
σ−2In

(
y:,jy

⊤
:,j − 2y:,ja

⊤
j + aja

⊤
j +Σf

))
.

By completing the square we find:

〈log p(y:,j |f:,j)〉p(f:,j |u:,j ,X) = logN
(
y:,j |aj , σ2In

)
− 1

2
tr
(
σ−2Σf

)

eq. (14)
= logN

(
y:,j |aj , σ2In

)
− 1

2σ2
tr
(
Kff −KfuK

−1
uuKuf

)
.

A.2 Calculating the Explicit Form of q(u:,j)

From equation (22), we have:

log q(u:,j) ∝
〈
logN

(
y:,j |aj , σ2In

)〉
q(X)

+ log p(u:,j). (42)

All the involved distributions are Gaussian and, hence, we only need to compute the r.h.s
of the above equation and complete the square in order to get the posterior Gaussian
distribution for q(u:,j). The expectation appearing in the above equation is easily computed

44

Variational GP-LVM

as:

〈
logN

(
y:,j |aj , σ2In

)〉
q(X)

=Z − 1

2σ2
tr

(
y:,jy

⊤
:,j − 2y:,j

〈
a⊤j

〉

q(X)
+
〈
aja

⊤
j

〉

q(X)

)

eq. (14)
= Z − 1

2σ2
tr
(
y:,jy

⊤
:,j − 2y:,ju

⊤
:,jK

−1
uu

〈
K⊤

fu

〉

q(X)

+ u⊤
:,jK

−1
uu

〈
K⊤

fuKfu

〉

q(X)
K−1

uuu:,j

)

eq. (26)
= Z − 1

2σ2
tr
(
y:,jy

⊤
:,j − 2y:,ju

⊤
:,jK

−1
uuΨ

⊤
1

+ u⊤
:,jK

−1
uuΨ2K

−1
uuu:,j

)
. (43)

We can now easily find equation (42) by combining equations (43) and (15):

log q(u:,j) ∝
〈
logN

(
y:,j |aj , σ2In

)〉
q(X)

+ log p(u:,j)

= Z − 1

2σ2
tr
(
y:,jy

⊤
:,j − 2y:,ju

⊤
:,jK

−1
uuΨ

⊤
1 + u⊤

:,jK
−1
uuΨ2K

−1
uuu:,j

)

− 1

2
tr
(
K−1

uuu:,ju
⊤
:,j

)

= Z − 1

2
tr
(
u⊤
:,j

(
σ−2K−1

uuΨ2K
−1
uu +K−1

uu

)
u:,j + σ−2y:,jy

⊤
:,j − 2σ−2K−1

uuΨ
⊤
1 y:,ju

⊤
:,j

)
.

(44)

We can now complete the square again and recognize that q(u:,j) = N (u:,j |µu,Σu), where:

Σu =
(
σ−2K−1

uuΨ2K
−1
uu +K−1

uu

)−1
and

µu = σ−2ΣuK
−1
uuΨ

⊤
1 y:,j .

By “pulling” the Kuu matrices out of the inverse and after simple manipulations we get the
final form of q(u:,j):

q(u:,j) = N (u:,j |µu,Σu) where

µu = Kuu

(
σ2Kuu +Ψ2

)−1
Ψ⊤

1 y:,j

Σu = σ2Kuu

(
σ2Kuu +Ψ2

)−1
Kuu.

(45)

A.3 Detailed Derivation of F̂j(q(X))

The quantity F̂j(q(X)) appears in equation (23). Based on the derivations of the previous
section, we can rewrite equation (44) as a function of the optimal q(u:,j) found in equation
(45) by completing the constant terms:

〈
logN

(
y:,j |aj , σ2In

)〉
q(X)

+ log p(u:,j) = B + logN (u:,j |µu,Σu) (46)

where we have defined:

B = −n
2
log(2π)− 1

2
log |σ2In| −

1

2
log |Kuu| −

1

2σ2
y⊤
:,jy:,j +

1

2
µ⊤
uΣ

−1
u µu +

1

2
log |Σu|. (47)

45

Damianou, Titsias and Lawrence

We can now obtain the final expression for (23) by simply putting the quantity of (46)
on the exponent and integrating. By doing so, we get:

∫
e
〈logN(y:,j |ad,σ

2Id)〉q(X)p(u:,j)du:,j =

∫
eBelogN (u:,j |µu,Σu)du:,j = eB

eq. (47)
= (2π)−

N
2 σ−n|Kuu|−

1
2 e−

1
2σ2 y

⊤

:,jy:,j |Σu|
1
2 e

1
2
µ⊤

u Σ−1
u µu . (48)

By using equation (45) and some straightforward algebraic manipulations, we can replace
in the above µ⊤

uΣ
−1
u µu with:

µ⊤
uΣ

−1
u µu = y⊤

:,j σ
−4Ψ1(σ

−2Ψ2 +Kuu)
−1Ψ⊤

1︸ ︷︷ ︸
W′

y:,j . (49)

Finally, using equation (45) to replace Σu with its equal, as well as equation (49), we
can write the integral of equation (48) as:

∫
e
〈logN(y:,j |ad,σ

2Id)〉q(X)p(u:,j)du:,j =
σ−n|Kuu|−

1
2 |Kuu|e−

1
2σ2 y

⊤

:,jy:,j

(2π)N/2|σ−2Ψ2 +Kuu|
1
2

e
1
2
y⊤

:,jW
′y:,j . (50)

We can now obtain the final form for the variational bound by replacing equation (50) in
equation (23), as well as replacing the term A with its equal and defining W = σ−2In−W′.
By doing the above, we get exactly the final form of the bound of equation (25).

Appendix B. Calculating the Ψ Quantities

Here we explain how one can compute the Ψ quantities (introduced in Section 3.2) for two
standard choices for the GP prior covariance. For completeness, we start by rewriting the
equations (27), (28) and (29):

ψ0 =

n∑

i=1

ψi
0, with ψi

0 =

∫
k(xi,:,xi,:)N (xi,:|µi,:,Si)dxi,:.

(Ψ1)i,k =

∫
k (xi,:, (xu)k,:)N (xi,:|µi,:,Si)dxi,:.

Ψ2 =
n∑

i=1

Ψi
2 where (Ψi

2)k,k′ =

∫
k(xi,:, (xu)k,:)k((xu)k′,:,xi,:)N (xi,:|µi,:,Si)dxi,:.

The above computations involve convolutions of the covariance function with a Gaussian
density. For some standard kernels such the ARD exponentiated quadratic (RBF) co-
variance and the linear covariance function these statistics are obtained analytically. In
particular for the ARD exponentiated quadratic kernel of equation (8) we have:

ψ0 = nσ2f

(Ψ1)i,k = σ2f

q∏

j=1

exp
(
−1

2
wj(µi,j−(xu)k,j)

2

wjSi,j+1

)

(wjSi,j + 1)
1
2

(Ψi
2)k,k′ = σ4f

q∏

j=1

exp
(
−wj((xu)k,j−(xu)k′,j)

2

4 − wj(µi,j−x̄:,j)
2

2wjSi,j+1

)

(2wjSi,j + 1)
1
2

,

46

Variational GP-LVM

where x̄:,j =
((xu)k,j+(xu)k′,j)

2 . This gives us all the components we need to compute the
variational lower bound for the ARD exponentiated quadratic kernel.

The linear ARD covariance function kf(lin)(xi,:,xk,:) = σ2linx
⊤
i,:Cxk,: depends on a di-

agonal matrix C containing the ARD weights. For this covariance function, the integrals
required for the Ψ statistics are also tractable, such that

ψi
0 = tr

(
C(µi,:µ

⊤
i,: + Si)

)

(Ψ1)i,k = µ⊤
i,:C(xu)k,:

(Ψi
2)k,k′ = (xu)

⊤
k,:C

(
µi,:µ

⊤
i,: + Si

)
C(xu)k′,:.

Appendix C. Derivatives of the Variational Bound for the Dynamical

Version

Before giving the expressions for the derivatives of the variational bound (11), it should be
recalled that the variational parameters µj and Sj (for all qs) have been reparametrised as

Sj =
(
K−1

x + diag(λj)
)−1

and µ:,j = Kxµ̄:,j ,

where the function diag(·) transforms a vector into a square diagonal matrix and vice versa.
Given the above, the set of the parameters to be optimised is (θf ,θx, {µ̄:,j ,λj}qj=1, X̃). The

gradient w.r.t the inducing points X̃, however, has exactly the same form as for θf and,
therefore, is not presented here.

Some more notation:

1. λj is a scalar, an element of the vector λj which, in turn, is the main diagonal of the
diagonal matrix Λj .

2. (Sj)k,l , Sj;kl the element of Sj found in the k-th row and l-th column.

3. sj , {(Sj)i,i}ni=1, i.e. it is a vector with the diagonal of Sj .

C.1 Derivatives w.r.t the Variational Parameters

∂F
∂µ̄j

= Kx

(
∂F̂
∂µ:,j

− µ̄:,j

)
and

∂F
∂λj

= −(Sj ◦ Sj)

(
∂F̂
∂sj

+
1

2
λj

)
.

where for each single dimensional element we have:

F̂
∂µj

= − p

2σ2
∂ψ0

∂µj
+ σ−2tr

(
∂Ψ⊤

1

∂µj
YY⊤Ψ1A

−1

)

+
1

2σ2
tr

(
∂Ψ2

∂µj

(
pK−1

uu − σ2pA−1 −A−1Ψ⊤
1 YY⊤Ψ1A

−1
))

∂F̂
∂(Sj)k,l

= − p

2σ2
∂Ψ0

∂(Sj)k,l
+ σ−2tr

(
∂Ψ⊤

1

∂(Sj)k,l
YY⊤Ψ1A

−1

)

+
1

2σ2
tr

(
∂Ψ2

∂(Sj)k,l

(
pK−1

uu − σ2pA−1 −A−1Ψ⊤
1 YY⊤Ψ1A

−1
))

with A = σ2Kuu +Ψ2.

47

Damianou, Titsias and Lawrence

C.2 Derivatives w.r.t θ = (θf ,θx) and β = σ−2

In our implementation, we prefer to parametrise the software with the data precision β,
rather than the data variance, σ2. Therefore, here we will give directly the derivatives for
the precision. Obviously, through the use of the chain rule and the relationship σ2 = β−1

one can obtain the derivatives for the variance. Further, when it comes to model parameters,
we will write the gradients with respect to each single element θf or θx.

Given that the KL term involves only the temporal prior, its gradient w.r.t the param-
eters θf is zero. Therefore:

∂F
∂θf

=
∂F̂
∂θf

with:

∂F̂
∂θf

= const− βp

2

∂ψ0

∂θf
+ βtr

(
∂Ψ⊤

1

∂θf
YY⊤Ψ1A

−1

)

+
1

2
tr

(
∂Kuu

∂θf

(
pK−1

uu − β−1pA−1 −A−1Ψ⊤
1 YY⊤Ψ1A

−1 − βpK−1
uuΨ2K

−1
uu

))

+
β

2
tr

(
∂Ψ2

∂θf

(
pK−1

uu − β−1pA−1 −A−1Ψ⊤
1 YY⊤Ψ1A

−1
))

The expression above is identical for the derivatives w.r.t the inducing points. For the
gradients w.r.t the β term, we have a similar expression:

∂F̂
∂β

=
1

2

[
p
(
tr
(
K−1

uuΨ2

)
+ (n−m)β−1 − ψ0

)
− tr

(
YY⊤

)
+ tr

(
A−1Ψ⊤

1 YY⊤Ψ1

)

+β−2p tr
(
KuuA

−1
)
+ β−1tr

(
KuuA

−1Ψ⊤
1 YY⊤Ψ1A

−1
)]
.

In contrast to the above, the term F̂ does involve parameters θx, because it involves
the variational parameters that are now reparametrised with Kx, which in turn depends on
θx. To demonstrate that, we will forget for a moment the reparametrisation of Sj and we
will express the bound as F(θx, µj(θx)) (where µj(θx) = Ktµ̄:,j) so as to show explicitly
the dependency on the variational mean which is now a function of θx. Our calculations

must now take into account the term
(
∂F̂(µ:,j)
∂µ:,j

)⊤
∂µj(θx)
∂θx

that is what we “miss” when we

consider µj(θx) = µ:,j :

∂F(θx, µj(θx))

∂θx
=
∂F(θx,µ:,j)

∂θx
+

(
∂F̂(µ:,j)

∂µ:,j

)⊤
∂µj(θx)

∂θx

=
✚
✚
✚
✚✚∂F̂(µ:,j)

∂θx
+
∂(−KL)(θx, µj(θx))

∂θx
+

(
∂F̂(µ:,j)

∂µ:,j

)⊤
∂µj(θx)

∂θx
.

We do the same for Sj and then we can take the resulting equations and replace µj and
Sj with their equals so as to take the final expression which only contains µ̄:,j and λj :

48

Variational GP-LVM

∂F(θx, µj(θx),Sj(θx))

∂θx
= tr

[[
− 1

2

(
B̂jKxB̂j + µ̄:,jµ̄

⊤
:,j

)

+
(
I− B̂jKx

)
diag

(
∂F̂
∂sj

)(
I− B̂jKx

)⊤]∂Kx

∂θx

]

+

(
∂F̂(µ:,j)

∂µ:,j

)⊤
∂Kx

∂θx
µ̄:,j

where B̂j = Λ
1
2
j B̃

−1
j Λ

1
2
j . and B̃j = I+Λ

1
2
j KxΛ

1
2
j . Note that by using this B̃j matrix (which

has eigenvalues bounded below by one) we have an expression which, when implemented,
leads to more numerically stable computations, as explained in Rasmussen and Williams
(2006) page 45-46.

Appendix D. Variational Lower Bound for Partially Observed Test Data

This section provides some more details related to the task of doing predictions based on
partially observed test data Yu

∗ . Specifically, section D.1 explains in more detail the form
of the variational lower bound for the aforementioned prediction scenario and illustrates
how this gives rise to certain computational differences for the standard and the dynamical
GP-LVM. Section D.2 gives some more details for the mathematical formulae associated
with the above prediction task.

D.1 The Variational Bound in the Test Phase and Computational Issues

As discussed in Section 4.1, when doing predictions based on partially observed outputs
with the variational GP-LVM, one needs to construct a variational lower bound as for the
training phase. However, this now needs to be associated with the full set of observations
(Y,Yo

∗). Specifically, we need to lower bound the marginal likelihood given in equation
(38). To achieve this, we start from equation (38) and then separate Y into (Yo,Yu) while
factorising the terms according to the conditional independencies, i.e. :

log p(Yo
∗,Y) = log

∫
p(Yo

∗,Y|X∗,X)p(X∗,X)dX∗dX

= log

∫
p(Yu|X)p(Yo

∗,Y
o|X∗,X)p(X∗,X)dX∗dX.

Exactly analogously to the training phase, the variational bound to the above quantity
takes the form:

log p(Yo
∗,Y) ≥

∫
q(X∗,X) log

p(Yu|X)p(Yo
∗,Y

o|X∗,X)p(X∗,X)

q(X∗,X)
dX∗dX. (51)

For the standard variational GP-LVM, we can further expand the above equation by
noticing that the distributions q(X,X∗) and p(X,X∗) are fully factorised as q(X,X∗) =∏n

i=1 q(xi,:)
∏n∗

i=1 q(xi,∗). Therefore, equation (51) can be written as:

log p(Yo
∗,Y) ≥

∫
q(X) log p(Yu|X)dX+

∫
q(X∗,X) log p(Yo

∗,Y
o|X∗,X)dX∗dX

−KL (q(X) ‖ p(X))−KL (q(X∗) ‖ p(X∗)) . (52)

49

Damianou, Titsias and Lawrence

Recalling equation (31), we see the first term above can be obtained as the sum
∑

j∈u F̂j (q(X))
where each of the involved terms is given by equation (25) and is already computed during
the training phase and, therefore, can be held fixed during test time. Similarly, the third
term of equation (52) is also held fixed during test time. As for the second and fourth
term, they can be optimised exactly as the bound computed for the training phase with the
difference that now the data are augmented with test observations and only the observed
dimensions are accounted for.

In contrast, the dynamical version of our model requires the full set of latent variables
(X,X∗) to be fully coupled in the variational distribution q(X,X∗), as they together form a
timeseries. Consequently, the expansion of equation (52) cannot be applied here, meaning
that in this case no precomputations can be used from the training phase. However, one
could apply the approximation q(X,X∗) = q(X)q(X∗) to speed up the test phase. In this
case, each set of latent variables is still correlated, but the two sets are not. However, this
approximation was not used in our implementation as it is only expected to speed up the
predictions phase if the training set is very big, which is not the case for our experiments.

D.2 Calculation of the Posterior q(Fu
∗ |X)

Optimisation based on the variational bound constructed for the test phase with partially
observed outputs, as explained in Section 4.1, gives rise to the posterior q(Fu

∗ ,U,X∗), as
exactly happens in the training phase. Therefore, according to equation (16) we can write:

q(Fu
∗ ,U,X∗) =

p∏

j=1

p(fu∗,j |u:,j ,X∗)q(u:,j)

 q(X∗).

The marginal q(Fu
∗ |X∗) (of equation (39)) is then simply found as:

∏

j∈u

∫
p(fu∗,j |u:,j ,X∗)q(u:,j)du:,j .

The integrals inside the product are easy to compute since both types of densities appearing
there are Gaussian, according to equations (13) and (45). In fact, each factor takes the form
of a projected process predictive distribution from sparse GPs (Csató and Opper, 2002;
Seeger et al., 2003; Rasmussen and Williams, 2006).

We will show the analytic derivation for the general case where we do not distinguish
between training or test variables and all dimensions are observed. In specific, we want to
compute:

p(f:,j |X) =

∫
p(f:,j |u:,j ,X)q(u:,j)du:,j .

For this calculation we simply use the following identity for Gaussians:
∫

N (f:,j |Mu:,j +m,Σf)N (u:,j |µu,Σu) du:,j = N
(
f:,j |Mµu +m,Σf +MΣuM

⊤
)
.

From equations (14) and (45) we recognise:

50

Variational GP-LVM

M = KfuK
−1
uu , m = 0 µu = Kuu(σ

2Kuu +Ψ2)
−1Ψ⊤

1 y:,j

Σf = Kfu −KfuK
−1
uuKuf Σu = σ2Kuu(σ

2Kuu +Ψ2)
−1Kuu

from where we easily find:

p(f:,j |X) = N
(
f:,j |KfuB,Kff −Kfu

(
K−1

uu +
(
Kuu + σ−2Ψ2

)−1
Kuf

))

with B = σ−2(Kuu + σ−2Ψ2)
−1Ψ⊤

1 y:,j .

Appendix E. Algorithm for GP Regression with Missing Inputs

Consider a fully and a partially observed set of inputs, i.e. Z = (Zo,Zu), where o and u
denote set of rows of (Z,Y) that contain fully and partially observed inputs respectively.
The features missing in Zu can be different in number / location for each individual point
zui,:. We can train the model in all of these observations jointly, by replacing the inputs
Zo and Zu with distributions q(Xo) and q(Xu) respectively, and using Algorithm 1. Since
the posterior distribution is factorised, the algorithm constrains it to be close to a delta
function in regions where we have observations, i.e. in areas corresponding to Zo and in areas
corresponding to non-missing locations of Zu. The rest of the posterior area’s parameters
(means and variances of Gaussian marginals) are initialised according to a prediction model
Mo and are subsequently optimised (along with model parameters) in an augmented model
Mo,u. Notice that the initial model Mo is obtained by training a variational GP-LVM
model with a posterior q(Xo) whose mean is fully constrained to match the observations
Zo with very small uncertainty and, thus, the model Mo behaves almost as a standard GP
regression model.

Appendix F. Additional Results from the Experiments

In this section we present additional figures obtained from the experiments.

F.1 Motion Capture Data

We start by presenting additional results for the experiment described in Section 5.3 (motion
capture data). Figure 16 depicts the optimised ARD weights (squared inverse lengthscales)
for each of the dynamical models employed in the experiment. Figure 17 illustrates examples
of the predictive performance of the models by plotting the true and predicted curves in
the angle space.

As was explained in Section 5.3, all employed models encode the “walk” and “run”
regime as two separate subspaces in the latent space. To illustrate this more clearly we
sampled points from the learned latent space X of a trained dynamical variational GP-
LVM model and generated the corresponding outputs, so as to investigate the kind of
information that is encoded in each subspace of X. Specifically, we considered the model
that employed a Matérn 3

2 covariance function to constrain the latent space and, based on
the ARD weights of Figure 16(b), we projected the latent space on dimensions (2, 3) and
(2, 4). Interacting with the model revealed that dimension 4 separates the “walk” from the
“run” regime. This is an intuitive result, since the two kinds of motions are represented as
separate clusters in the latent space. In other words, moving between two well separated

51

Damianou, Titsias and Lawrence

Algorithm 1 GP Regression with Missing Inputs Model: Training and predictions

1: Given: fully observed data (Zo,Yo) and partially observed data (Zu,Yu)
2: Define a small value, e.g. ε = 10−9

3: Initialize q(Xo) =
∏n

i=1N
(
xo
i,:|zoi,:, εI

)

4: Fix q(Xo) in the optimiser # (i.e. will not be optimised)
5: Train a variational GP-LVM model Mo given the above q(Xo) and Yo

6: for i = 1, · · · , |Yu| do
7: Predict p(x̂u

i,:|yu
i ,Mo) ≈ q(x̂u

i,:) = N
(
x̂u
i,:|µ̂u

i,:, Ŝ
u
i

)

8: Initialize q(xu
i,:) = N

(
xu
i,:|µu

i,:,S
u
i

)
as follows:

9: for j = 1, · · · , q do

10: if zui,j is observed then

11: µui,j = zui,j and (Su
i)j,j = ε # (Su

i)j,j denotes the j-th diagonal element of Su
i

12: Fix µui,j , (S
u
i)j,j in the optimiser #

(i.e. will not be optimised)
13: else

14: µui,j = µ̂ui,j and (Su
i)j,j = (Ŝu

i)j,j
15: Train a variational GP-LVM model Mo,u using the initial q(Xo) and q(Xu) defined

above and data Yo,Yu (the locations that were fixed for the variational distributions
will not be optimised).

16: All subsequent predictions can be made using model Mo,u.

(a) Model with exponentiated quadratic (b) Model with Matérn

Figure 16: The values of the weights (squared inverse lengthscales) of the ARD kernel after training
on the motion capture dataset using the exponentiated quadratic (fig: (a)) and the
Matérn (fig: (b)) kernel to model the dynamics for the dynamical variational GP-LVM.
The weights that have zero value “switch off” the corresponding dimension of the latent
space. The latent space is, therefore, 3-D for (a) and 4-D for (b). Note that the weights
were initialised with very similar values.

52

Variational GP-LVM

(a) (b)

Figure 17: The prediction for two of the test angles for the body (fig: 17(a)) and for the legs part
(fig: 17(b)). Continuous line is the original test data, dotted line is nearest neighbour
in scaled space, dashed line is dynamical variational GP-LVM (using the exponentiated
quadratic kernel for the body reconstruction and the Matérn for the legs).

clusters needs to be encoded with a close to linear signal, which is in accordance with the
small inverse lengthscale for dimension 4 (see also discussion in the caption of Figure 5).
More specifically, to interact with the model we first fixed dimension 4 on a value belonging
to the region encoding the walk, as can be seen in Figure 18(a), and then sampled multiple
latent points by varying the other two dominant dimensions, namely 2 and 3, as can be
seen in the top row of Figure 19. The corresponding outputs are shown in the second row of
Figure 19. When dimension 4 was fixed on a value belonging to the region encoding the run
(Figure 18(b)) the outputs obtained by varying dimensions 2 and 3 as before produced a
smooth running motion, as can be seen in the third row of Figure 19. Finally, Figure 18(d)
illustrates a motion which clearly is very different from the training set and was obtained
by sampling a latent position far from the training data, as can be seen in Figure 18(c).
This is indicative of a generative model’s ability of producing novel data.

F.2 Gaussian Process Learning With Missing Inputs

In this section we present some more plots for the experiment presented in Section 6.2.1,
where a set of fully observed outputs, Y, corresponded to a set of fully observed inputs, Zo,
and a set of inputs with randomly missing components, Zu. Even if Y is fully observed,
it can be split according to the inputs, so that Y = (Yo,Yu). The variational GP-LVM,
a nearest neighbour (NN) approach and multiple linear regression (MLR) (Chatterjee and
Hadi, 1986) were trained on the full dataset ((Zo,Zu) , (Yo,Yu)). The standard GP model
could only take into account the fully observed data, (Zo,Yo). We also compared against
predicting with the mean of Y. The results are shown in Figure 20, which is an extension
of the Figure 15 presented in the main paper.

53

Damianou, Titsias and Lawrence

(a) (b) (c)

−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z

(d)

Figure 18: Plots (a) and (b) depict the projection of the latent space on dimensions 2 (x−axis) and
4 (y−axis), with the blue dot corresponding to the value on which these dimensions were
fixed for the sampled latent points and red crosses represent latent points corresponding
to training outputs. The intensity of the grayscale background represents the posterior
uncertainty at each region (white corresponds to low predictive variance). Plot (c)
depicts a latent space projection on dimensions 2 (x−axis) and 3 (y−axis), with the
fixed latent positions corresponding to the generated output depicted in plot (d).

−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z
−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z
−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z
−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z

−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z
−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z
−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z
−4 −2 0 2 4

−4
−2

0
2

4
6

8

5

10

15

20

25

y

z

Figure 19: The first row depicts a projection of the latent space on dimensions 2 and 3 with the
blue dot showing the value at which these dimensions were fixed for the sampled latent
points. The corresponding outputs are depicted in the second row (for the walk regime)
and third row (for the run regime).

54

Variational GP-LVM

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

M
S

E

% missing features

Toy data

GP
var−GPLVM
MLR
NN
Mean

0 20 40 60 80
0.2

0.4

0.6

0.8

1

1.2

M
S

E

% missing features

Motion capture data

Figure 20: An augmented version of Figure 15. The above figure includes more results for the task
of performing regression by learning from incomplete inputs. The results refer to the
mean squared error for predictions obtained by different methods in simulated (left) and
motion capture data (right). The results for simulated data are obtained from 4 trials
and, hence, errorbars are also plotted. Lines without errorbars correspond to methods
that cannot take into account partially observed inputs. For the GP, errorbars do not
change with x-axis and, for clarity, they are plotted separately on the right of the dashed
vertical line (for nonsensical x values).

55

Damianou, Titsias and Lawrence

References

The GPy authors. GPy: A Gaussian process framework in Python. 2014. URL https:

//github.com/SheffieldML/GPy.

David J. Bartholomew. Latent Variable Models and Factor Analysis. Charles Griffin & Co.
Ltd, London, 1987.

Alexander Basilevsky. Statistical Factor Analysis and Related Methods. Wiley, New York,
1994.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15(6):1373–1396, 2003. doi:
10.1162/089976603321780317.

Christopher M. Bishop. Bayesian PCA. In Michael J. Kearns, Sara A. Solla, and David A.
Cohn, editors, Advances in Neural Information Processing Systems, volume 11, pages
482–388, Cambridge, MA, 1999. MIT Press.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
ISBN 0387310738.

Christopher M. Bishop and Gwilym D. James. Analysis of multiphase flows using dual-
energy gamma densitometry and neural networks. Nuclear Instruments and Methods in
Physics Research, A327:580–593, 1993. doi: 10.1016/0168-9002(93)90728-Z.

Christopher M. Bishop, Marcus Svensén, and Christopher K. I. Williams. GTM: the
Generative Topographic Mapping. Neural Computation, 10(1):215–234, 1998. doi:
10.1162/089976698300017953.

Samprit Chatterjee and Ali S Hadi. Influential observations, high leverage points, and
outliers in linear regression. Statistical Science, pages 379–393, 1986.

Lehel Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis, Aston
University, 2002.

Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Computation,
14(3):641–668, 2002.

Zhenwen Dai, Andreas Damianou, James Hensman, and Neil Lawrence. Gaussian process
models with parallelization and GPU acceleration. arXiv preprint arXiv:1410.4984, 2014.

Andreas Damianou. Deep Gaussian processes and variational propagation of uncertainty.
PhD Thesis, University of Sheffield, 2015.

Andreas Damianou and Neil D. Lawrence. Deep Gaussian processes. In Carlos Carvalho
and Pradeep Ravikumar, editors, Proceedings of the Sixteenth International Workshop on
Artificial Intelligence and Statistics, volume 31, AZ, USA, 2013. JMLR W&CP 31.

56

Variational GP-LVM

Andreas Damianou, Michalis K. Titsias, and Neil D. Lawrence. Variational Gaussian pro-
cess dynamical systems. In Peter Bartlett, Fernando Peirrera, Chris Williams, and John
Lafferty, editors, Advances in Neural Information Processing Systems, volume 24, Cam-
bridge, MA, 2011. MIT Press.

Andreas Damianou, Carl Henrik Ek, Michalis K. Titsias, and Neil D. Lawrence. Manifold
relevance determination. In John Langford and Joelle Pineau, editors, Proceedings of
the International Conference in Machine Learning, volume 29, San Francisco, CA, 2012.
Morgan Kauffman.

Marc Peter Deisenroth, Ryan Darby Turner, Marco F Huber, Uwe D Hanebeck, and
Carl Edward Rasmussen. Robust filtering and smoothing with Gaussian processes. Au-
tomatic Control, IEEE Transactions on, 57(7):1865–1871, 2012.

Carl Henrik Ek, Philip H.S. Torr, and Neil D. Lawrence. Gaussian process latent vari-
able models for human pose estimation. In Andrei Popescu-Belis, Steve Renals, and
Hervé Bourlard, editors, Machine Learning for Multimodal Interaction (MLMI 2007),
volume 4892 of LNCS, pages 132–143, Brno, Czech Republic, 2008. Springer-Verlag. doi:
10.1007/978-3-540-78155-4 12.

Brian D. Ferris, Dieter Fox, and Neil D. Lawrence. WiFi-SLAM using Gaussian process
latent variable models. In Manuela M. Veloso, editor, Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2480–2485, 2007.

Roger Frigola, Fredrik Lindsten, Thomas B Schön, and Carl E Rasmussen. Identification
of Gaussian process state-space models with particle stochastic approximation em. In
19th World Congress of the International Federation of Automatic Control (IFAC), Cape
Town, South Africa, 2014.

Nicoló Fusi, Christoph Lippert, Karsten Borgwardt, Neil D. Lawrence, and Oliver Ste-
gle. Detecting regulatory gene-environment interactions with unmeasured environmental
factors. Bioinformatics, 2013. doi: 10.1093/bioinformatics/btt148.

Yarin Gal, Mark van der Wilk, and Carl E. Rasmussen. Distributed variational inference
in sparse Gaussian process regression and latent variable models. arXiv:1402.1389, 2014.

Zoubin Ghahramani, editor. Proceedings of the International Conference in Machine Learn-
ing, volume 24, 2007. Omnipress. ISBN 1-59593-793-3.

Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero Candela, and Roderick
Murray-Smith. Gaussian process priors with uncertain inputs—application to multiple-
step ahead time series forecasting. In Sue Becker, Sebastian Thrun, and Klaus Obermayer,
editors, Advances in Neural Information Processing Systems, volume 15, pages 529–536,
Cambridge, MA, 2003. MIT Press.

Paul W. Goldberg, Christopher K. I. Williams, and Christopher M. Bishop. Regression
with input-dependent noise: A Gaussian process treatment. In Jordan et al. (1998),
pages 493–499.

57

Damianou, Titsias and Lawrence

Neil J. Gordon, David J. Salmond, and Adrian F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal
Processing, 140(2), 1993.

James Hensman, Alex Matthews, and Zoubin Ghahramani. Scalable variational Gaussian
process classification. arXiv preprint arXiv:1411.2005, 2014.

Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis. John
Wiley and Sons, 2001. ISBN 978-0-471-40540-5.

Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors. Advances in Neural
Information Processing Systems, volume 10, Cambridge, MA, 1998. MIT Press.

Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard. Most likely
heteroscedastic Gaussian process regression. In Proceedings of the 24th international
conference on Machine learning, ICML ’07, pages 393–400, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.1273546.

Daniel Keysers, Roberto Paredes, Hermann Ney, and Enrique Vidal. Combination of tan-
gent vectors and local representations for handwritten digit recognition. In Structural,
Syntactic, and Statistical Pattern Recognition, pages 538–547. Springer, 2002.

Nathaniel J. King and Neil D. Lawrence. Fast variational inference for Gaussian Process
models through KL-correction. In ECML, Berlin, 2006, Lecture Notes in Computer
Science, pages 270–281, Berlin, 2006. Springer-Verlag.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. Technical report,
2013.

Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models. CoRR, abs/1406.5298, 2014.

Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian filtering using Gaussian process
prediction and observation models. Auton. Robots, 27:75–90, July 2009a. ISSN 0929-
5593. doi: 10.1007/s10514-009-9119-x. URL http://portal.acm.org/citation.cfm?id=
1569248.1569255.

Jonathan Ko and Dieter Fox. Learning GP-BayesFilters via Gaussian process latent variable
models. In Robotics: Science and Systems, 2009b.

Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian filtering using Gaussian process
prediction and observation models. Autonomous Robots, 27:75–90, July 2009c. ISSN
0929-5593. doi: 10.1007/s10514-009-9119-x.

Jonathan Ko and Dieter Fox. Learning GP-Bayesfilters via Gaussian process latent variable
models. Autonomous Robots, 30:3–23, 2011. ISSN 0929-5593. URL http://dx.doi.org
/10.1007/s10514-010-9213-0. 10.1007/s10514-010-9213-0.

58

Variational GP-LVM

Neil D. Lawrence. Gaussian process models for visualisation of high dimensional data. In
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems, volume 16, pages 329–336, Cambridge, MA, 2004. MIT
Press.

Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of Machine Learning Research, 6:1783–1816, 11
2005.

Neil D. Lawrence. The Gaussian process latent variable model. Technical Report CS-06-03,
The University of Sheffield, Department of Computer Science, 2006.

Neil D. Lawrence. Learning for larger datasets with the Gaussian process latent variable
model. In Marina Meila and Xiaotong Shen, editors, Proceedings of the Eleventh In-
ternational Workshop on Artificial Intelligence and Statistics, pages 243–250, San Juan,
Puerto Rico, 21-24 March 2007. Omnipress.

Neil D. Lawrence. A unifying probabilistic perspective for spectral dimensionality reduction:
Insights and new models. Journal of Machine Learning Research, 13, 2012. URL http:

//jmlr.csail.mit.edu/papers/v13/lawrence12a.html.

Neil D. Lawrence and Michael I. Jordan. Semi-supervised learning via Gaussian processes.
In Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Advances in Neural Information
Processing Systems, volume 17, pages 753–760, Cambridge, MA, 2005. MIT Press.

Neil D. Lawrence and Andrew J. Moore. Hierarchical Gaussian process latent variable
models. In Ghahramani (2007), pages 481–488. ISBN 1-59593-793-3.

Miguel Lázaro-Gredilla. Bayesian warped Gaussian processes. In Peter L. Bartlett, Fer-
nando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25, Cambridge, MA,
2012.

Miguel Lázaro-Gredilla and Michalis K. Titsias. Variational heteroscedastic Gaussian pro-
cess regression. In In 28th International Conference on Machine Learning, pages 841–848.
ACM, 2011.

Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors. Advances in Neural Infor-
mation Processing Systems, volume 13, Cambridge, MA, 2001. MIT Press.

Chaochao Lu and Xiaoou Tang. Surpassing human-level face verification performance on
LFW with GaussianFace. CoRR, abs/1404.3840, 2014.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor, Neural
Networks and Machine Learning, NATO ASI Series, pages 133–166. Kluwer Academic
Press, 1998.

David J. C. MacKay. Bayesian neural networks and density networks. Nuclear Instru-
ments and Methods in Physics Research, A, 354(1):73–80, 1995. doi: 10.1016/0168-
9002(94)00931-7.

59

Damianou, Titsias and Lawrence

Kantilal V. Mardia, John T. Kent, and John M. Bibby. Multivariate analysis. Academic
Press, London, 1979. ISBN 0-12-471252-5.

Andrew McHutchon and Carl Edward Rasmussen. Gaussian process training with input
noise. In Advances in Neural Information Processing Systems, pages 1341–1349, 2011.

Thomas P. Minka. Automatic choice of dimensionality for PCA. In Leen et al. (2001),
pages 598–604.

Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 83(404):1023–1032, 1988.

Jeremey Oakley and Anthony O’Hagan. Bayesian inference for the uncertainty distribution
of computer model outputs. Biometrika, 89(4):769–784, 2002.

Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited.
Neural Computation, 21(3):786–792, 2009.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

Joaquin Quiñonero Candela and Carl Edward Rasmussen. A unifying view of sparse approx-
imate Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959,
2005.

Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl Edward Rasmussen.
Propagation of uncertainty in bayesian kernel models-application to multiple-step ahead
forecasting. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).
2003 IEEE International Conference on, volume 2, pages II–701. IEEE, 2003.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006. ISBN 0-262-18253-X.

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object
detection models. In Application of Computer Vision, 2005. WACV/MOTIONS ’05
Volume 1. Seventh IEEE Workshops on, volume 1, pages 29–36, Jan 2005. doi: 10.1109/A
CVMOT.2005.107.

Sam T. Roweis. EM algorithms for PCA and SPCA. In Jordan et al. (1998), pages 626–632.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.2323.

John W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions
on Computers, C-18(5):401–409, 1969. doi: 10.1109/T-C.1969.222678.

Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013. ISBN
9781107619289.

60

Variational GP-LVM

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998. doi:
10.1162/089976698300017467.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection
to speed up sparse Gaussian process regression. In Christopher M. Bishop and Brendan J.
Frey, editors, Proceedings of the Ninth International Workshop on Artificial Intelligence
and Statistics, Key West, FL, 3–6 Jan 2003.

Vikas Sindhwani, Wei Chu, and S Sathiya Keerthi. Semi-supervised Gaussian process clas-
sifiers. In IJCAI, pages 1059–1064, 2007.

Alexander J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regression. In
Leen et al. (2001), pages 619–625.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs.
In Weiss et al. (2006).

Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. Warped Gaussian
processes. Advances in Neural Information Processing Systems, 16:337–344, 2004.

Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Modeling human motion using
binary latent variables. In Bernhard Schölkopf, John C. Platt, and Thomas Hofmann,
editors, Advances in Neural Information Processing Systems, volume 19, Cambridge, MA,
2007. MIT Press.

Joshua B. Tenenbaum, Virginia de Silva, and John C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. doi:
10.1126/science.290.5500.2319.

Michael E. Tipping. The relevance vector machine. In Sara A. Solla, Todd K. Leen,
and Klaus-Robert Müller, editors, Advances in Neural Information Processing Systems,
volume 12, pages 652–658, Cambridge, MA, 2000. MIT Press.

Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society, B, 6(3):611–622, 1999. doi: doi:10.1111/1467-
9868.00196.

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In David van Dyk and Max Welling, editors, Proceedings of the Twelfth International
Workshop on Artificial Intelligence and Statistics, volume 5, pages 567–574, Clearwater
Beach, FL, 16-18 April 2009. JMLR W&CP 5.

Michalis K. Titsias and Neil D. Lawrence. Bayesian Gaussian process latent variable model.
Journal of Machine Learning Research - Proceedings Track, 9:844–851, 2010.

Michalis K. Titsias and Miguel Lázaro-Gredilla. Variational inference for mahalanobis dis-
tance metrics in Gaussian process regression. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 26, pages 279–287. Curran Associates, Inc., 2013.

61

Damianou, Titsias and Lawrence

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the Brownian motion. Phys. Rev.,
36(5):823–841, Sep 1930. doi: 10.1103/PhysRev.36.823.

Raquel Urtasun and Trevor Darrell. Discriminative Gaussian process latent variable model
for classification. In Ghahramani (2007). ISBN 1-59593-793-3.

Raquel Urtasun, David J. Fleet, and Pascal Fua. 3D people tracking with Gaussian process
dynamical models. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 238–245, New York, U.S.A., 17–22 Jun. 2006. IEEE
Computer Society Press. doi: 10.1109/CVPR.2006.15.

Larens J. P. van der Maaten and Geoffrey E. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynamical models.
In Weiss et al. (2006).

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynamical models
for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30
(2):283–298, 2008. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1167.

Yair Weiss, Bernhard Schölkopf, and John C. Platt, editors. Advances in Neural Information
Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.

62

