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Abstract

Mean-field variational methods are widely used for approximate posterior inference in many prob-

abilistic models. In a typical application, mean-field methods approximately compute the posterior

with a coordinate-ascent optimization algorithm. When the model is conditionally conjugate, the

coordinate updates are easily derived and in closed form. However, many models of interest—like

the correlated topic model and Bayesian logistic regression—are nonconjugate. In these models,

mean-field methods cannot be directly applied and practitioners have had to develop variational

algorithms on a case-by-case basis. In this paper, we develop two generic methods for nonconju-

gate models, Laplace variational inference and delta method variational inference. Our methods

have several advantages: they allow for easily derived variational algorithms with a wide class of

nonconjugate models; they extend and unify some of the existing algorithms that have been derived

for specific models; and they work well on real-world data sets. We studied our methods on the

correlated topic model, Bayesian logistic regression, and hierarchical Bayesian logistic regression.

Keywords: variational inference, nonconjugate models, Laplace approximations, the multivariate

delta method

1 Introduction

Mean-field variational inference lets us efficiently approximate posterior distributions in complex

probabilistic models (Jordan et al., 1999; Wainwright and Jordan, 2008). Applications of variational

inference are widespread. As examples, it has been applied to Bayesian mixtures (Attias, 2000;

Corduneanu and Bishop, 2001), factorial models (Ghahramani and Jordan, 1997), and probabilistic

topic models (Blei et al., 2003).

The basic idea behind mean-field inference is the following. First define a family of distribu-

tions over the hidden variables where each variable is assumed independent and governed by its

own parameter. Then fit those parameters so that the resulting distribution is close to the condi-

tional distribution of the hidden variables given the observations. Closeness is measured with the

Kullback-Leibler divergence. Inference becomes optimization.

In many settings this approach can be used as a “black box” technique. In particular, this is

possible when we can easily compute the conditional distribution of each hidden variable given all
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of the other variables, both hidden and observed. (This class contains the models mentioned above.)

For such models, which are called conditionally conjugate models, it is easy to derive a coordinate

ascent algorithm that optimizes the parameters of the variational distribution (Beal, 2003; Bishop,

2006). This is the principle behind software tools like VIBES (Bishop et al., 2003) and Infer.NET

(Minka et al., 2010), which allow practitioners to define models of their data and immediately

approximate the corresponding posterior with variational inference.

Many models of interest, however, do not enjoy the properties required to take advantage of

this easily derived algorithm. Such nonconjugate models1 include Bayesian logistic regression

(Jaakkola and Jordan, 1997), Bayesian generalized linear models (Wells, 2001), discrete choice

models (Braun and McAuliffe, 2010), Bayesian item response models (Clinton et al., 2004; Fox,

2010), and nonconjugate topic models (Blei and Lafferty, 2006, 2007). Using variational inference

in these settings requires algorithms tailored to the specific model at hand. Researchers have devel-

oped a variety of strategies for a variety of models, including approximations (Braun and McAuliffe,

2010; Ahmed and Xing, 2007), alternative bounds (Jaakkola and Jordan, 1997; Blei and Lafferty,

2006, 2007; Khan et al., 2010), and numerical quadrature (Honkela and Valpola, 2004).

In this paper we develop two approaches to mean-field variational inference for a large class

of nonconjugate models. First we develop Laplace variational inference. This approach embeds

Laplace approximations—an approximation technique for continuous distributions (Tierney et al.,

1989; MacKay, 1992)—within a variational optimization algorithm. We then develop delta method

variational inference. This approach optimizes a Taylor approximation of the variational objective.

The details of the algorithm depend on how the approximation is formed. Formed one way, it gives

an alternative interpretation of Laplace variational inference. Formed another way, it is equivalent

to using a multivariate delta approximation (Bickel and Doksum, 2007) of the variational objective.

Our methods are generic. Given a model, they can be derived nearly as easily as traditional

coordinate-ascent inference. Unlike traditional inference, however, they place fewer conditions on

the model, conditions that are less restrictive than conditional conjugacy. Our methods significantly

expand the class of models for which mean-field variational inference can be easily applied.

We studied our algorithms with three nonconjugate models: Bayesian logistic regression

(Jaakkola and Jordan, 1997), hierarchical logistic regression (Gelman and Hill, 2007), and the cor-

related topic model (Blei and Lafferty, 2007). We found that our methods give better results than

those obtained through special-purpose techniques. Further, we found that Laplace variational in-

ference usually outperforms delta method variational inference, both in terms of computation time

and the fidelity of the approximate posterior.

Related work. We have described the various approaches that researchers have developed for

specific models. There have been other efforts to examine generic variational inference in noncon-

jugate models. Paisley et al. (2012a) proposed a variational inference approach using stochastic

search for nonconjugate models, approximating the intractable integrals with Monte Carlo meth-

ods. Gershman et al. (2012) proposed a nonparametric variational inference algorithm, which can

be applied to nonconjugate models. Knowles and Minka (2011) presented a message passing al-

gorithm for nonconjugate models, which has been implemented in Infer.NET (Minka et al., 2010);

their technique applies to a subset of models described in this paper.2

1. Carlin and Polson (1991) coined the term “nonconjugate model” to describe a model that does not enjoy full condi-

tional conjugacy.

2. It may be generalizable to the full set. However, one must determine how to compute the required expectations.
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Laplace approximations have been used in approximate inference in more complex models,

though not in the context of mean-field variational inference. Smola et al. (2003) used them to

approximate the difficult-to-compute moments in expectation propagation (Minka, 2001). Rue et al.

(2009) used them for inference in latent Gaussian models. Here we want to use them for variational

inference, in a method that can be applied to a wider range of nonconjugate models.

Finally, we note that the delta method was first used in variational inference by Braun and

McAuliffe (2010) in the context of the discrete choice model. Our method generalizes their ap-

proach.

Organization of this paper. In Section 2 we review mean-field variational inference and define

the class of nonconjugate models to which our algorithms apply. In Section 3, we derive Laplace

and delta-method variational inference and present our full algorithm for nonconjugate inference.

In Section 4, we show how to use our generic method on several example models and in Section 5

we study its performance on these models. In Section 6, we summarize and discuss this work.

2 Variational Inference and a Class of Nonconjugate Models

We consider a generic model with observations x and hidden variables θ and z,

p(θ,z,x) = p(x|z)p(z|θ)p(θ). (1)

The distinction between the two hidden variables will be made clear below.

The inference problem is to compute the posterior,

p(θ,z|x) =
p(θ,z,x)

∫
p(θ,z,x)dzdθ

.

This is intractable for many models because the denominator is difficult to compute; we must ap-

proximate the distribution. In variational inference, we approximate the posterior by positing a

simple family of distributions over the latent variables q(θ,z) and then finding the member of that

family which minimizes the Kullback-Leibler (KL) divergence to the true posterior (Jordan et al.,

1999; Wainwright and Jordan, 2008).3

In this section we review variational inference and discuss mean-field variational inference for

the class of conditionally conjugate models. We then define a wider class of nonconjugate models

for which mean-field variational inference is not as easily applied. In the next section, we derive

algorithms for performing mean-field variational inference in this larger class of models.

2.1 Mean-field Variational Inference

Mean-field variational inference is simplest and most widely used variational inference method. In

mean-field variational inference we posit a fully factorized variational family,

q(θ,z) = q(θ)q(z). (2)

3. In this paper, we focus on mean-field variational inference where we minimize the KL divergence to the posterior.

We note that there are other kinds of variational inference, with more structured variational distributions or with

alternative objective functions (Wainwright and Jordan, 2008; Barber, 2012). In this paper, we use “variational

inference” to indicate mean-field variational inference that minimizes the KL divergence.
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In this family of distributions the variables are independent and each is governed by its own distri-

bution. This family usually does not contain the posterior, where θ and z are dependent. However,

it is very flexible—it can capture any set of marginals of the hidden variables.

Under the standard variational theory, minimizing the KL divergence between q(θ,z) and the

posterior p(θ,z|x) is equivalent to maximizing a lower bound of the log marginal likelihood of the

observed data x. We obtain this bound with Jensen’s inequality,

log p(x) = log
∫

p(θ,z,x)dzdθ

≥ Eq [log p(θ,z,x)]−Eq [logq(θ,z)]

, L(q), (3)

where Eq [·] is the expectation taken with respect to q and note the second term is the entropy of q.

We call L(q) the variational objective.

Setting ∂L(q)/∂q = 0 shows that the optimal solution satisfies the following,

q∗(θ) ∝ exp
{

Eq(z) [log p(z|θ)p(θ)]
}

, (4)

q∗(z) ∝ exp
{

Eq(θ) [log p(x|z)p(z|θ)]
}

. (5)

Here we have combined the optimal conditions from Bishop (2006) with the particular factorization

of Equation 1. Note that the variational objective usually contains many local optima.

These conditions lead to the traditional coordinate ascent algorithm for variational inference. It

iterates between holding q(z) fixed to update q(θ) from Equation 4 and holding q(θ) fixed to update

q(z) from Equation 5. This converges to a local optimum of the variational objective (Bishop, 2006).

When all the nodes in a model are conditionally conjugate, the coordinate updates of Equation 4

and Equation 5 are available in closed form. A node is conditionally conjugate when its conditional

distribution given its Markov blanket (i.e., the set of random variables that it is dependent on in

the posterior) is in the same family as its conditional distribution given its parents (i.e., its factor

in the joint distribution). For example, in Equation 1 suppose the factor p(θ) is a Dirichlet and

both factors p(z |θ) and p(x |z) are multinomials. This means that the conditional p(θ|z) is also a

Dirichlet and the conditional p(z |x,θ) is also a multinomial. This model, which is latent Dirichlet

allocation (Blei et al., 2003), is conditionally conjugate. Many applications of variational inference

have been developed for this type of model (Bishop, 1999; Attias, 2000; Beal, 2003).

However, if there exists any node in the model that is not conditionally conjugate then this

coordinate ascent algorithm is not available. That setting arises in many practical models and does

not permit closed-form updates or easy calculation of the variational objective. We will develop

generic variational inference algorithms for a wide class of nonconjugate models. First, we define

that class.

2.2 A Class of Nonconjugate Models

We present a wide class of nonconjugate models, still assuming the factorization of Equation 1.

1. We assume that θ is real-valued and the distribution p(θ) is twice differentiable with respect

to θ. If we require θ > θ0 (θ0 is a constant), we may define a distribution over log(θ− θ0).
These assumptions cover exponential families, such as the Gaussian, Poisson and gamma, as

well as more complex distributions, such as a student-t.
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2. We assume the distribution p(z |θ) is in the exponential family (Brown, 1986),

p(z |θ) = h(z)exp
{

η(θ)⊤t(z)−a(η(θ))
}

, (6)

where h(z) is a function of z; t(z) is the sufficient statistic; η(θ) is the natural parameter,

which is a function of the conditioning variables; and a(η(θ)) is the log partition function.

We also assume that η(θ) is twice differentiable; since θ is real-valued, this is satisfied in

most statistical models. Unlike in conjugate models, these assumptions do not restrict p(θ)
and p(z |θ) to be a conjugate pair; the conditional distribution p(θ |z) is not necessarily in the

same family as the prior p(θ).

3. The distribution p(x |z) is in the exponential family,

p(x |z) = h(x)exp
{

t(z)⊤〈t(x),1〉
}

. (7)

We set up this exponential family so that the natural parameter for x is all but the last compo-

nent of t(z) and the last component is the negative log normalizer −a(·). Thus, the distribution

of z is conjugate to the conditional distribution of x; the conditional p(z |θ,x) is in the same

family as p(z |θ) (Bernardo and Smith, 1994).

Our terminology follows these assumptions: θ is the nonconjugate variable, z is the conjugate

variable, and x is the observation.

This class of models is larger than the class of conditionally conjugate models. Our expanded

class also includes nonconjugate models like the correlated topic model (Blei and Lafferty, 2007),

dynamic topic model (Blei and Lafferty, 2006), Bayesian logistic regression (Jaakkola and Jordan,

1997; Gelman and Hill, 2007), discrete choice models (Braun and McAuliffe, 2010), Bayesian ideal

point models (Clinton et al., 2004), and many others. Further, the methods we develop below are

easily adapted more complicated graphical models, those that contain conjugate and nonconjugate

variables whose dependencies are encoded in a directed acyclic graph. Appendix A outlines how to

adapt our algorithms to this more general case.

Example: Hierarchical language modeling. We introduce the hierarchical language model, a

simple example of a nonconjugate model to help ground our derivation of the general algorithms.

Consider the problem of unigram language modeling. We are given a collection of documents D =
x1:D where each document xd is a vector of word counts, observations from a discrete vocabulary

of length V . We model each document with its own distribution over words and place a Dirichlet

prior on that distribution. This model is used, for example, in the language modeling approach to

information retrieval (Croft and Lafferty, 2003).

We want to place a prior on the Dirichlet parameters, a positive V -vector, that govern each

document’s distribution over terms. In theory, every exponential family distribution has a conjugate

prior (Bernardo and Smith, 1994) and the prior to the Dirichlet is the multi-gamma distribution (Kotz

et al., 2000). However, the multi-gamma is difficult to work with because its log normalizer is not

easy to compute. As an alternative, we place a log normal distribution on the Dirichlet parameters.

This is not the conjugate prior.

The full generative process is as follows:

1. Draw log Dirichlet parameters θ ∼ N (0, I).
2. For each document d, 1 ≤ d ≤ D:
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(a) Draw multinomial parameter zd |θ ∼ Dirichlet(exp{θ}).
(b) Draw word counts xd ∼ Multinomial(N,zd).

Given a collection of documents, our goal is to compute the posterior distribution p(θ,z1:D |x1:D).
Traditional variational or Gibbs sampling methods cannot be easily used because the normal prior

on the parameters θ is not conjugate to the Dirichlet(exp{θ}) likelihood.

This language model fits into our model class. In the notation of the joint distribution of Equa-

tion 1, θ = θ, z = z1:D, and x = x1:D. The per-document multinomial parameters z and word counts

x are conditionally independent given the Dirichlet parameters θ,

p(z |θ) = ∏d p(zd |θ),

p(x |z) = ∏d ∏n p(xdn |zd).

In this case, the natural parameter η(θ) = exp{θ}. This model satisfies the assumptions: the log

normal p(exp{θ}) is not conjugate to the Dirichlet p(zd | exp{θ}) but is twice differentiable; the

Dirichlet is conjugate to the multinomial p(xd |zd) and the multinomial is in the exponential family.

Below we will use various components of the exponential family form of the Dirichlet:

h(zd) = ∏i z−1
di ; t(zd) = logzd ; ad(η(θ)) = ∑i logΓ(exp{θi}− logΓ(∑i exp{θi}) . (8)

We will return to this model as a simple running example.

3 Laplace and Delta Method Variational Inference

We have defined a class of nonconjugate models. Variational inference is difficult to derive for

these models because p(θ) is not conjugate to p(z |θ). Specifically, the update in Equation 4 does

not necessarily have the form of an exponential family we can work with and it is difficult to use

Eq(θ) [log p(z |θ)] in the update of Equation 5.

We will develop two variational inference algorithms for this class: Laplace variational infer-

ence and delta method variational inference. Both use coordinate ascent to optimize the variational

parameters, iterating between updating q(θ) and q(z). They differ in how they update the vari-

ational distribution of the nonconjugate variable q(θ). In Laplace variational inference, we use

Laplace approximations (MacKay, 1992; Tierney et al., 1989) within the coordinate ascent updates

of Equation 4 and Equation 5. In delta method variational inference, we apply Taylor approxi-

mations to approximate the variational objective in Equation 3 and then derive the corresponding

updates. Different ways of taking the Taylor approximation lead to different algorithms. Formed

one way, this recovers the Laplace approximation. Formed another way, it is equivalent to using a

multivariate delta approximation (Bickel and Doksum, 2007) of the variational objective function.

In both variants, the variational distribution is the mean-field family in Equation 2. The vari-

ational distribution of the nonconjugate variable q(θ) is a Gaussian; the variational distribution of

the conjugate variable q(z) is in the same family as p(z |η(θ)). In Laplace inference, these forms

emerge from the derivation. In delta method inference, they are assumed. The complete variational

family is,

q(θ,z) = q(θ |µ,Σ)q(z |φ).
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where (µ,Σ) are the parameters for a Gaussian distribution and φ is a natural parameter for z. For ex-

ample, in the hierarchical language model of Section 2.2, φ is a collection of D Dirichlet parameters.

We will sometimes suppress the parameters, writing q(θ) for q(θ |µ,Σ).
Our algorithms are coordinate ascent algorithms, where we iterate between updating the non-

conjugate variational distribution q(θ) and updating the conjugate variational distribution q(z). In

the subsections below, we derive the update for q(θ) in each algorithm. Then, for both algorithms,

we derive the update for q(z). The full procedure is described in Section 3.4 and Figure 1.

3.1 Laplace Variational Inference

We first review the Laplace approximation. Then we show how to use it in variational inference.

3.1.1 The Laplace Approximation

Laplace approximations use a Gaussian to approximate an intractable density. Consider approxi-

mating an intractable posterior p(θ |x). (There is no hidden variable z in this set up.) Assume the

joint distribution p(x,θ) = p(x |θ)p(θ) is easy to compute. Laplace approximations use a Taylor

approximation around the maximum a posterior (MAP) point to construct a Gaussian proxy for the

posterior. They are used for continuous distributions.

First, notice the posterior is proportional to the exponentiated log joint

p(θ |x) = exp{log p(θ |x)} ∝ exp{log p(θ,x)}.

Let θ̂ be the MAP of p(θ |x), found by maximizing log p(θ,x). A Taylor expansion around θ̂ gives

log p(θ |x)≈ log p(θ̂ |x)+ 1
2
(θ− θ̂)⊤H(θ̂)(θ− θ̂). (9)

The term H(θ̂) is the Hessian of log p(θ |x) evaluated at θ̂, H(θ̂),▽2 log p(θ |x)|θ=θ̂.

In the Taylor expansion of Equation 9, the first-order term (θ − θ̂)⊤▽ log p(θ |x)|θ=θ̂ equals

zero. The reason is that θ̂ is the maximum of log p(θ |x) and so its gradient ▽ log p(θ |x)|θ=θ̂ is zero.

Exponentiating Equation 9 gives the approximate Gaussian posterior

p(θ |x)≈ 1
C

exp
{

− 1
2
(θ− θ̂)⊤

(

−H(θ̂)
)

(θ− θ̂)
}

,

where C is a normalizing constant. In other words, p(θ |x) can be approximated by

p(θ |x)≈ N (θ̂,−H(θ̂)−1).

This is the Laplace approximation. While powerful, it is difficult to use in multivariate settings,

for example, when there are discrete hidden variables. Now we describe how we use Laplace

approximations as part of a variational inference algorithm for more complex models.

3.1.2 Laplace Updates in Variational Inference

We adapt the idea behind Laplace approximations to update the variational distribution q(θ). First,

we combine the coordinate update in Equation 4 with the exponential family assumption in Equa-

tion 6,

q(θ) ∝ exp
{

η(θ)⊤Eq(z) [t(z)]−a(η(θ))+ log p(θ)
}

. (10)
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Define the function f (θ) to contain the terms inside the exponent of the update,

f (θ), η(θ)⊤Eq(z) [t(z)]−a(η(θ))+ log p(θ). (11)

The terms of f (θ) come from the model and involve q(z) or θ. Recall that q(z) is in the same

exponential family as p(z |θ), t(z) are its sufficient statistics, and φ is the variational parameter. We

can compute Eq(z) [t(z)] from a basic property of the exponential family (Brown, 1986),

Eq(z) [t(z)] = ∇a(φ).

Seen another way, f (θ) = Eq(z) [log p(θ,z)]. This function will be important in both Laplace and

delta method inference.

The problem with nonconjugate models is that we cannot update q(θ) exactly using Equation 10

because q(θ) ∝ exp{ f (θ)} cannot be normalized in closed form. We approximate the update by

taking a second-order Taylor approximation of f (θ) around its maximum, following the same logic

as from the original Laplace approximation in Equation 9. The Taylor approximation for f (θ)
around θ̂ is

f (θ)≈ f (θ̂)+▽ f (θ̂)(θ− θ̂)+ 1
2
(θ− θ̂)⊤▽2 f (θ̂)(θ− θ̂), (12)

where ▽2 f (θ̂) is the Hessian matrix evaluated at θ̂. Now let θ̂ be the value that maximizes f (θ).
This implies that ▽ f (θ̂) = 0 and Equation 12 simplifies to

q(θ) ∝ exp{ f (θ)} ≈ exp
{

f (θ̂)+ 1
2
(θ− θ̂)⊤▽2 f (θ̂)(θ− θ̂)

}

.

Thus the approximate update for q(θ) is to set it to

q(θ)≈ N
(

θ̂,−▽2 f (θ̂)−1
)

. (13)

Note we did not assume q(θ) is Gaussian. Its Gaussian form stems from the Taylor approximation.

The update in Equation 13 can be used in a coordinate ascent algorithm for a nonconjugate

model. We iterate between holding q(z) fixed while updating q(θ) from Equation 13, and holding

q(θ) fixed while updating q(z). (We derive the second update in Section 3.3.) Each time we update

q(θ) we must use numerical optimization to obtain θ̂, the optimal value of f (θ).
We return to the hierarchical language model of Section 2.2, where θ are the log of the parame-

ters to the Dirichlet distribution. Implementing the algorithm to update q(θ) involves forming f (θ)
for the model at hand and deriving an algorithm to optimize it.

With the model equations in Equation 8, we have

f (θ) = exp(θ)⊤Eq(z) [t(z)]−D(∑i logΓ(exp(θi)− logΓ(∑i exp(θi)))− (1/2)θ⊤θ. (14)

The expected sufficient statistics of the conjugate variable are

Eq(z) [t(z)] = ∑d Eq(zd) [t(zd)] = ∑d Ψ(φd)−Ψ(∑i φdi) ,

where Ψ(·) is the digamma function, the first derivative of logΓ(·). (This function will also arise in

the gradient.) It is straightforward to use numerical methods, such as conjugate gradient (Bertsekas,

1999), to optimize Equation 14. We can then use Equation 13 to update the nonconjugate variable.
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3.2 Delta Method Variational Inference

In Laplace variational inference, the variational distribution q(θ) Equation 13 is solely a function of

θ̂, the maximum of f (θ) in Equation 11. A natural question is, would other values of θ be suitable

as well? To consider such alternatives, we describe a different technique for variational inference.

We approximate the variational objective L in Equation 3 and then optimize that approximation.

Again we focus on updating q(θ) in a coordinate ascent algorithm and postpone the discussion

of updating q(z). We set the variational distribution q(θ) to be a Gaussian N (µ,Σ), where the

parameters are free variational parameters fit to optimize the variational objective. (Note that in

Laplace inference, this Gaussian family came out of the derivation.) We isolate the terms of the

objective in Equation 3 related to q(θ), and we substitute the exponential family form of p(z |θ) in

Equation 6,

L(q(θ)) = Eq(θ)

[

η(θ)⊤Eq(z) [t(z)]−a(η(θ))+ log p(θ)
]

+ 1
2

log |Σ|.

The second term comes from the entropy of the Gaussian,

−Eq(θ) [logq(θ)] =
1

2
log |Σ|+C,

where C is a constant and is excluded from the objective. The first term is Eq(θ) [ f (θ)], where f (·)
is the same as defined for Laplace inference in Equation 11. Thus,

L(q(θ)) = Eq(θ) [ f (θ)]+
1
2

log |Σ|.

We cannot easily compute the expectation in the first term. So we use a Taylor approximation of

f (θ) around a chosen value θ̂ (Equation 12) and then take the expectation,

L(q(θ))≈ f (θ̂)+▽ f (θ̂)⊤(µ− θ̂)+1
2
(µ− θ̂)⊤▽2 f (θ̂)(µ− θ̂)]]+ 1

2

(

Tr
{

▽2 f (θ̂)Σ
}

+ log |Σ|
)

, (15)

where Tr(·) is the Trace operator. In the coordinate update of q(θ), this is the function we optimize

with respect to its variational parameters {µ,Σ}.

To fully specify the algorithm we must choose θ̂, the point around which to approximate f (θ).
We will discuss three choices. The first is to set θ̂ to be the maximum of f (θ). With this choice,

maximizing the approximation in Equation 15 gives µ = θ̂ and Σ = −▽2 f (θ̂)−1. Notice this is the

update derived in Section 3.1. We have given a different derivation of Laplace variational inference.

The second choice is to set θ̂ as the mean of the variational distribution from the previous

iteration of coordinate ascent. If the prior p(θ) is Gaussian, this recovers the updates derived in

Ahmed and Xing (2007) for the correlated topic model.4 In our study, we found this algorithm did

not work well. It did not always converge, possibly due to the difficulty of choosing an appropriate

initial θ̂.

The third choice is to set θ̂ = µ, that is, the mean of the variational distribution q(θ). With

this choice, the variable around which we center the Taylor approximation becomes part of the

optimization problem. The objective is

L(q(θ))≈ f (µ)+ 1
2
Tr
{

▽2 f (µ)Σ
}

+ 1
2

log |Σ|. (16)

4. This is an alternative derivation of their algorithm. They derived these updates from the perspective of generalized

mean-field theory (Xing et al., 2003).
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This is the multivariate delta method for evaluating Eq(θ) [ f (θ)] (Bickel and Doksum, 2007). Delta

method variational inference optimizes this objective in the coordinate update of q(θ) .

In more detail, we first optimize µ with gradient methods and then optimize Σ in closed form

Σ =−▽2 f (µ)−1. Note this is more expensive than Laplace variational inference because optimizing

Equation 16 requires the third derivative ▽3 f (θ). Braun and McAuliffe (2010) were the first to use

the delta method in a variational inference algorithm, developing this technique for the discrete

choice model. If we assume the prior p(θ) is Gaussian then we recover their algorithm. With the

ideas presented here, we can now use this strategy in many models.

We return briefly to the unigram language model. The delta method update for q(θ) optimizes

Equation 16, using the specific f (·) found in Equation 14. While Laplace inference required the

digamma function and logΓ function, delta method inference will further require the trigamma

function.

3.3 Updating the Conjugate Variable

We derived variational updates for q(θ) using two methods. We now turn to the update for the varia-

tional distribution of the conjugate variable q(z). We show that both Laplace inference (Section 3.1)

and delta method inference (Section 3.2) lead to the same update. Further, we have implicitly as-

sumed that Eq(z) [t(z)] in Equation 11 is easy to compute. We will confirm this as well.

We first derive the update for q(z) when using Laplace inference. We apply the exponential

family form in Equation 6 to the exact update of Equation 5,

logq(z) = log p(x |z)+ logh(z)+Eq(θ) [η(θ)]
⊤

t(z)+C,

where C is a constant not depending on z. Now we use p(x |z) from Equation 7 to obtain

q(z) ∝ h(z)exp
{

(

Eq(θ) [η(θ)]+ t(x)
)⊤

t(z)
}

, (17)

which is in the same family as p(z |θ) in Equation 6. This is the update for q(z).
Recall that η(θ) maps the nonconjugate variable θ to the natural parameter of the conjugate

variable z. The update for q(z) requires computing Eq(θ) [η(θ)]. For some models, this expectation

is computable. If not, we can take a Taylor approximation of η(θ) around the variational parameter

µ,

ηi(θ)≈ ηi(µ)+▽η(µ)⊤i (θ−µ)+ 1
2
(θ−µ)⊤▽2ηi(µ)(θ−µ),

where η(θ) is a vector and i indexes the ith component. This requires η(θ) is twice differentiable,

which is satisfied in most models. Since q(θ) = N (µ,Σ), this means that

Eq(θ) [ηi(θ)]≈ ηi(µ)+
1
2
Tr
{

▽2ηi(µ)Σ
}

. (18)

(Note that the linear term Eq(θ)

[

▽ηi(µ)
T (θ−µ)

]

= 0.)

Using delta method variational inference to update q(θ), the update for q(z) is identical to that

in Laplace variational inference. We isolate the relevant terms in Equation 3,

L(q(z)) =Eq(z)

[

log p(x |z)+ logh(z)+Eq(θ) [η(θ)]
⊤

t(z)
]

−Eq(z) [logq(z)] .
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1: Initialize variational distributions q(θ |µ,Σ) and q(z |φ).
2: repeat

3: Compute the statistics Eq(z) [t(z)].
4: Update q(θ) using one of the methods:

a) For Laplace inference, compute Equation 13.

b) For delta method inference, optimize Equation 16.

5: Compute Eq(θ) [η(θ)] or approximate it as in Equation 18.

6: Update q(z) from Equation 17.

7: until convergence. (See Section 3.4 for the criterion.)

8: return q(θ) and q(z).

Figure 1: Nonconjugate variational inference

Setting the partial gradient ∂L(q(z))/∂q(z) = 0 gives the same optimal q(z) of Equation 5. Com-

puting this update reduces to the approach for Laplace variational inference in Equation 17.

We return again to the unigram language model with log normal priors on the Dirichlet param-

eters. In this model, we can compute Eq(θ) [η(θ)] exactly by using properties of the log normal,

Eq(θ) [η(θ)] = Eq(θ) [exp{θ}] = exp{µ+diag(Σ)/2}.

Recall that xd are the word counts for document d and note that it is its own sufficient statistic in a

multinomial count model. Given the calculation of Eq(θ) [η(θ)] and the model-specific calculations

in Equation 8, the update for q(zd) is

q(zd) = Dirichlet(exp(µ+diag(Σ)/2)+ xd) .

This completes our derivation in the example model. To implement nonconjugate inference we need

this update for q(z) and the definition of f (·) in Equation 14.

3.4 Nonconjugate Variational Inference

We now present the full algorithm for nonconjugate variational inference. In this section, we

will be explicit about the variational parameters. Recall that the variational distribution of the non-

conjugate variable is a Gaussian q(θ |µ,Σ); the variational distribution of the conjugate variable is

q(z |φ), where φ is a natural parameter in the same family as p(z |η(θ)).
The algorithm is as follows. Begin by initializing the variational parameters. Iterate between

updating q(θ) and updating q(z) until convergence. Update q(θ) by either Equation 13 (Laplace

inference) or optimizing Equation 16 (Delta method inference). Update q(z) from Equation 17.

Assess convergence by measuring the L2 norm of the mean of the nonconjugate variable, Eq [θ].
This algorithm is summarized in Figure 1. In either Laplace or delta method inference, we have

reduced deriving variational updates for complicated nonconjugate models to mechanical work—

calculating derivatives and calling a numerical optimization library. We note that Laplace inference

is simpler to derive because it only requires second derivatives of the function in Equation 11;
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Figure 2: The approximate variational objective from Equation 19 goes up as a function of the

iteration. This is for document-level inference in the correlated topic model. The left plot

is for a collection from the Associated Press; the right plot is for a collection from the

New York Times. (See Section 4.1 and Section 5.1 for details about the model and data.)

delta method inference requires third derivatives. We study the empirical difference between these

methods in Section 5.

Our algorithm (in either setting) is based on approximately optimal coordinate updates for the

variational objective, but we cannot compute that objective. However, we can compute an approx-

imate objective at each iteration with the same Taylor approximation used in the coordinate steps,

and this can be monitored as a proxy. The approximate objective is

L ≈ f (θ̂)+▽ f (θ̂)⊤(µ− θ̂)+1
2
(µ− θ̂)⊤▽2 f (θ̂)(µ− θ̂)

+ 1
2

(

Tr
{

▽2 f (θ̂)Σ
}

+ log |Σ|
)

−Eq(z) [logq(z)] (19)

where f (θ) is defined in Equation 11 and θ̂ is defined as for Laplace or delta method inference.5

Figure 2 shows this score at each iteration for two runs of inference in the correlated topic

model. (See Section 4.1 for details about the model.) The approximate objective increases as the

algorithm proceeds, and these plots were typical. In practice, as did Braun and McAuliffe (2010) in

their setting, we found that this is a good score to monitor.

4 Example Models

We have described a generic algorithm for approximate posterior inference in nonconjugate models.

In this section we derive this algorithm for several nonconjugate models from the research litera-

ture: the correlated topic model (Blei and Lafferty, 2007), Bayesian logistic regression (Jaakkola

and Jordan, 1997), and hierarchical Bayesian logistic regression (Gelman and Hill, 2007). For each

5. We note again that Equation 19 is not the function we are optimizing. Even the simpler Laplace approximation

is not clearly minimizing a well-defined distance function between the approximate Gaussian and true posterior

(MacKay, 1992). Thus, while this approach is an approximate coordinate ascent algorithm, clearly characterizing the

corresponding objective function is an open problem.
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Figure 3: The graphical representation of the correlated topic model (CTM). The nonconjugate

variable is θ; the conjugate variable is the collection z = z1:N ; the observation is the

collection of words x = x1:N .

model, we identify the variables—the nonconjugate variable θ, conjugate variable z, and observa-

tions x—and we calculate f (θ) from Equation 11. (The calculations of f (θ) are in the appendices.)

In the next section, we study how our algorithms perform when analyzing data under these models.6

4.1 The Correlated Topic Model

Probabilistic topic models are models of document collections. Each document is treated as a group

of observed words that are drawn from a mixture model. The mixture components, called “topics,”

are distributions over terms that are shared for the whole collection; each document exhibits them

with individualized proportions.

Conditioned on a corpus of documents, the posterior topics place high probabilities on words

that are associated under a single theme; for example, one topic may contain words like “bat,” “ball,”

and “pitcher.” The posterior topic proportions reflect how each document exhibits those themes; for

example, a document may combine the topics of sports and health. This posterior decomposition of

a collection can be used for summarization, visualization, or forming predictions about a document.

See Blei (2012) for a review of topic modeling.

The per-document topic proportions are a latent variable. In latent Dirichlet allocation (LDA)

(Blei et al., 2003)—which is the simplest topic model—these are given a Dirichlet prior, which

makes the model conditionally conjugate. Here we will study the correlated topic model (CTM)

(Blei and Lafferty, 2007). The CTM extends LDA by replacing the Dirichlet prior on the topic

proportions with a logistic normal prior (Aitchison, 1982). This is a richer prior that can capture

correlations between occurrences of the components. For example, a document about sports is more

likely to also be about health. The CTM is not conditionally conjugate. But it is a more expressive

model: it gives a better fit to texts and provides new kinds of exploratory structure.

Suppose there are K topic parameters β1:K , each of which is a distribution over V terms. Let π(θ)
denote the multinomial logistic function, which maps a real-valued vector to a point on the simplex

with the same dimension, π(θ) ∝ exp{θ}. The CTM assumes a document is drawn as follows:

1. Draw log topic proportions θ ∼ N (µ0,Σ0).
2. For each word n:

(a) Draw topic assignment zn |θ ∼ Mult(π(θ)).

6. Python implementations of our algorithms are available at http://www.cs.cmu.edu/˜chongw/software/

nonconjugate_inference.tar.gz.
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Figure 4: The graphical representation of hierarchical logistic regression. (When M = 1, this is

standard Bayesian logistic regression.)The nonconjugate variable is the vector of coeffi-

cients θm, the conjugate variable is the collection of observed classes for each data point,

zm = zm,1:N . (In this case there is no additional observation x downstream.)

(b) Draw word xn |zn,β ∼ Mult(βzn
).

Figure 3 shows the graphical model. The topic proportions π(θ) are drawn from a logistic normal

distribution; their correlation structure is captured in its covariance matrix Σ0. The topic assignment

variable zn indicates from which topic the nth word is drawn.

Holding the topics β1:K fixed, the main inference problem in the CTM is to infer the condi-

tional distribution of the document-level hidden variables p(θ,z1:N |x1:N ,β1:K). This calculation is

important in two contexts: it is used when forming predictions about new data; and it is used as a

subroutine in the variational expectation maximization algorithm for fitting the topics and logistic

normal parameters (mean µ0 and covariance Σ0) with maximum likelihood. The corresponding per-

document inference problem is straightforward to solve in LDA, thanks to conditional conjugacy.

In the CTM, however, it is difficult because the logistic normal on θ is not conjugate to the multi-

nomial on z. Blei and Lafferty (2007) used a Taylor approximation designed specifically for this

model. Here we apply the generic algorithm from Section 3.

In terms of the earlier notation, the nonconjugate variable is the topic proportions θ, the conju-

gate variable is the collection of topic assignments z = z1:N , and the observation is the collection of

words x = x1:N . The variational distribution for the topic proportions θ is Gaussian, q(θ) = N (µ,Σ);
the variational distribution for the topic assignments is discrete, q(z) = ∏n q(zn |φn) where each φn

is a distribution over K elements. In delta method inference, as in Braun and McAuliffe (2010), we

restrict the variational covariance Σ to be diagonal to simplify the derivative of Equation 16. Laplace

variational inference does not require this simplification. Appendix B gives the detailed derivations

of the algorithm.

Besides the CTM, this approach can be adapted to a variety of nonconjugate topic models,

including the topic evolution model (Xing, 2005), Dirichlet-multinomial regression (Mimno and

McCallum, 2008), dynamic topic models (Blei and Lafferty, 2006; Wang et al., 2008), and the

discrete infinite logistic normal distribution (Paisley et al., 2012b).

4.2 Bayesian Logistic Regression

Bayesian logistic regression is a well-studied model for binary classification (Jaakkola and Jordan,

1997). It places a Gaussian prior on a set of coefficients and draws class labels, conditioned on co-

variates, from the corresponding logistic. Let tn is be a p-dimensional observed covariate vector for

the nth sample and zn be its class label (an indicator vector of length two). Let θ be the real-valued
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coefficients in R
p; there is a coefficient for each feature. Bayesian logistic regression assumes the

following conditional process:

1. Draw coefficients θ ∼ N (µ0,Σ0).
2. For each data point n and its covariates tn, draw its class label from

zn |θ, tn ∼ Bernoulli
(

σ(θ⊤tn)
zn,1σ(−θ⊤tn)

zn,2

)

,

where σ(y), 1/(1+ exp(−y)) is the logistic function.

Figure 4 shows the graphical model. Given a data set of labeled feature vectors, the posterior

inference problem is to compute the conditional distribution of the coefficients p(θ |z1:N , t1:N). The

issue is that the Gaussian prior on the coefficients is not conjugate to the conditional likelihood of

the label.

This is a subset of the model class in Section 2.2. The nonconjugate variable θ is identical and

the variable z is the collection of observed classes of each data point, z1:N . Note there is no additional

observed variable x downstream. The variational distribution need only be defined for the coeffi-

cients, q(θ) = N (µ,Σ). Using Laplace variational inference, our approach recovers the standard

Laplace approximation for Bayesian logistic regression (Bishop, 2006). This gives a connection

between standard Laplace approximation and variational inference. Delta method variational infer-

ence provides an alternative. Appendix C gives the detailed derivations.

An important extension of Bayesian logistic regression is hierarchical Bayesian logistic regres-

sion (Gelman and Hill, 2007). It simultaneously models related logistic regression problems, and

estimates the hyperparameters of the shared prior on the coefficients. With M related problems, we

construct the following hierarchical model:

1. Draw the global hyperparameters,

Σ−1
0 ∼ Wishart(ν,Φ0), (20)

µ0 ∼ N (0,Φ1). (21)

2. For each problem m:

(a) Draw coefficients θm ∼ N (µ0,Σ0).
(b) For each data point n and its covariates tmn, draw its class label,

zmn |θm, tmn ∼ Bernoulli(σ(θ⊤
mtmn)

zmn,1σ(−θ⊤
mtmn)

zmn,2).

As for the CTM, we use nonconjugate inference as a subroutine in a variational EM algorithm

(where the M step is regularized). We construct f (θm) in Equation 11 separately for each problem m,

and fit the hyperparameters µ0 and Σ0 from their approximate expected sufficient statistics (Bishop,

2006). This amounts to MAP estimation with priors as specified above. See Appendix C for the

complete derivation.

Finally, we note that logistic regression is a generalized linear model with a binary response and

canonical link function (McCullagh and Nelder, 1989). It is straightforward to use our algorithms

with other Bayesian generalized linear models (and their hierarchical forms).
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5 Empirical Study

We studied nonconjugate variational inference with correlated topic models and Bayesian logis-

tic regression. We found that nonconjugate inference is more accurate than the existing methods

tailored to specific models. Between the two nonconjugate inference algorithms, we found that

Laplace inference is faster and more accurate than delta method inference.

5.1 The Correlated Topic Model

We studied Laplace inference and delta method inference in the CTM. We compared it to the original

inference algorithm of Blei and Lafferty (2007).

We analyzed two collections of documents. The Associated Press (AP) collection contains

2,246 documents from the Associated Press. We used a vocabulary of 10,473 terms, which gave

a total of 436K observed words. The New York Times (NYT) collection contains 9,238 documents

from the New York Times. We used a vocabulary of 10,760 terms, which gave a total of 2.3 million

observed words. For each corpus we used 80% of the documents to fit models and reserved 20% to

test them.

We fitted the models with variational EM. At each iteration, the algorithm has a set of topics

β1:K and parameters to the logistic normal {µ0,Σ0}. In the E-step we perform approximate posterior

inference with each document, estimating its topic proportions and topic assignments. In the M-step,

we re-estimate the topics and logistic normal parameters. We fit models with different kinds of E-

steps, using both of the nonconjugate inference methods from Section 3 and the original approach of

Blei and Lafferty (2007). To initialize nonconjugate inference we set the variational mean parameter

µ = 0 for log topic proportions θ and computed the corresponding updates for the topic assignments

z. We initialize the topics in variational EM to random draws from a uniform Dirichlet.

With nonconjugate inference in the E-step, variational EM approximately optimizes a bound on

the marginal probability of the observed data. We can calculate an approximation of this bound with

Equation 19 summed over all documents. We monitor this quantity as we run variational EM.

To test our fitted models, we measured predictive performance on held-out data with predictive

distributions derived from the posterior approximations. We follow the testing framework of Asun-

cion et al. (2009) and Blei and Lafferty (2007). We fix fitted topics and logistic normal parameters

M = {β1:K ,µ0,Σ0}. We split each held-out document in to two halves (w1,w2) and form the ap-

proximate posterior log topic proportions qw1
(θ) using one of the approximate inference algorithms

and the first half of the document w1. We use this to form an approximate predictive distribution,

p(w |w1,M)≈
∫

θ ∑z p(w |z,β1:K)qw1
(θ)dθ ≈ ∑K

k=1 βkwπk,

where πk ∝ exp{Eq [θk]}. Finally, we evaluate the log probability of the second half of the document

using that predictive distribution; this is the held out log likelihood. A better model and inference

method will give higher predictive probabilities of the unseen words. Note that this testing frame-

work puts the approximate posterior distributions on the same playing field. The quantities are

comparable regardless of how the approximate posterior is formed.

Figure 5 shows the per-word approximate bound and the per-word held out likelihood as func-

tions of the number of topics. Figure 5 (a) indicates that the approximate bounds from nonconjugate

inference generally go up as the number of topics increases. This is a property of a good approxi-

mation because the marginal certainly goes up as the number of parameters increases. In contrast,
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Blei and Lafferty’s (2007) objective (which is a true bound on the marginal of the data) behaves

erratically. This is illustrated for the New York Times corpus; on the Associated Press corpus, it does

not come close to the approximate bound and is not plotted.

Figure 5 (b) shows that on held out data, Blei and Lafferty’s approach, tailored for this model,

performed worse than both of our algorithms. Our conjecture is that while this method gives a strict

lower bound on the marginal, it might be a loose bound and give poor predictive distributions. Our

methods use an approximation which, while not a bound, might be closer to the objective and give

better predictive distributions. The held out likelihood plots also show that when the number of

topics increases the algorithms eventually overfit the data. Finally, note that Laplace variational

inference was always better than both other algorithms.

Finally, Figure 6 shows the approximate bound and the held out log likelihood as functions of

running time.7 From Figure 6 (a), we see that even though variational EM is not formally optimizing

this approximate objective (see Equation 19), the increase at each iteration suggests that the marginal

probability is also increasing. The plot also shows that Laplace inference converges faster than

delta method inference. Figure 6 (b) confirms that Laplace inference is both faster and gives better

predictive performance.

5.2 Bayesian Logistic Regression

We studied our algorithms on Bayesian logistic regression in both standard and hierarchical settings.

In the standard setting, we analyzed two data sets. With the Yeast data (Elisseeff and Weston, 2001),

we form a predictor of gene functional classes from features composed of micro-array expression

data and phylogenetic profiles. The data set has 1,500 genes in the training set and 917 genes in

the test set. For each gene there are 103 covariates and up to 14 different gene functional classes

(14 labels). This corresponds to 14 independent binary classification problems. With the Scene data

(Boutell et al., 2004), we form a predictor of scene labels from image features. It contains 1,211

images in the training set and 1,196 images in the test set. There are 294 images features and up to

6 scene labels per image. This corresponds to 6 independent binary classification problems.8

We used two performance measures. First we measured accuracy, which is the proportion of

test-case examples correctly labeled. Second, we measured average log predictive likelihood. Given

a test-case input t with label z, we compute the log predictive likelihood,

log p(z |µ, t) = z1 logσ(µ⊤t)+ z2 logσ(−µ⊤t),

where µ is the mean of variational distribution q(θ) = N (µ,Σ). Higher likelihoods indicate a better

fit. For both accuracy and predictive likelihood, we used cross validation to estimate the generaliza-

tion performance of each inference algorithm. We set the priors µ0 = 0 and Σ0 = I.

We compared Laplace inference (Section 3.1), delta method inference (Section 3.2), and the

method of Jaakkola and Jordan (1997). Jaakkola and Jordan’s (1996) method preserves a lower

bound on the marginal likelihood with a first-order Taylor approximation and was developed specif-

ically for Bayesian logistic regression. (We note that Blei and Lafferty’s bound-preserving method

for the CTM was built on this technique.)

7. We did not formally compare the running time of Blei and Lafferty’s (2007) method because we used the authors’ C

implementation, while ours is in Python. We observed that their method took more than five times longer than ours.

8. The Yeast and Scene data are at http://mulan.sourceforge.net/datasets.html.
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Figure 5: Laplace variational inference is “Lap-Var”; delta method variational inference is “Delta-

Var”; Blei and Lafferty’s method is “BL.” (a) Approximate per-word lower bound against

the number of topics. A good approximation will go up as the number of topics increases,

but not necessarily indicate a better predictive performance on the held out data. (b) Per-

word held-out log likelihood against the number of topics. Higher numbers are better.

Both nonconjugate methods perform better than Blei and Lafferty’s method. Laplace

inference performs best. Blei and Lafferty’s method was erratic in both collections. (It is

not plotted for the AP collection.)

Table 1 gives the results. To compare methods we compute the difference in score (accuracy

or log likelihood) on the independent binary classification problems, and then perform a standard

t-test (at level 0.05) to test if the mean of the differences is larger than 0. Laplace inference and

delta method inference gave slightly better accuracy than Jaakkola and Jordan’s method, and much
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Figure 6: In this figure, we set the number of topics as K = 60. (Others are similar.) (a) The

per-word approximate bound during model fitting with variational EM. Though it is an

approximation of the variational EM objective, it converges in practice. (b) The per-

word held out likelihood during the model fitting with variational EM. Laplace inference

performs best in terms of speed and predictive performance.

better log predictive likelihood.9 The t-test showed that both Laplace and delta method inference

are better than Jaakkola and Jordan’s method.

We next examined a data set of student performance in a collection of schools. With the School

data, our goal is to use various features of a student to predict whether he or she will perform

above or below the median on a standardized exam.10 The data came from the Inner London Edu-

cation Authority. It contains examination records from 139 secondary schools for the years 1985,

1986 and 1987. It is a random 50% sample with 15,362 students. The students’ features contain

four student-dependent features and school-dependent features. The student dependent features are

9. Previous literature, for example, Xue et al. (2007) and Archambeau et al. (2011) treat Yeast and Scene as multi-task

problems. In our study, we found that our standard Bayesian logistic regression algorithms performed the same as

the algorithms developed in these papers.

10. The data is available at http://multilevel.ioe.ac.uk/intro/datasets.html.
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Yeast Scene

Accuracy Log Likelihood Accuracy Log Likelihood

Jaakkola and Jordan (1996) 79.7% -0.678 87.4% -0.670

Laplace inference 80.1% -0.449 89.4% -0.259

Delta method inference 80.2% -0.450 89.5% -0.265

Table 1: Comparison of the different methods for Bayesian logistic regression using accuracy and

averaged log predictive likelihood. Higher numbers are better. These results are averaged

from five random starts. (The variance is too small to report.) Bold results indicate sig-

nificantly better performance using a standard t-test. Laplace and delta method inference

perform best.

the year of the exam, gender, VR band (individual prior attainment data), and ethnic group; the

school-dependent features are the percentage of students eligible for free school meals, percentage

of students in VR band 1, school gender, and school denomination. We coded the binary indicator

of whether each was below the median (“bad”) or above (“good”). We use the same 10 random

splits of the data as Argyriou et al. (2008).

In this data, we can either treat each school as a separate classification problem, pool all the

schools together as a single classification problem, or analyze them with hierarchical logistic re-

gression (Section 4.2). The hierarchical model allows the predictors for each school to deviate from

each other, but shares statistical strength across them. Let p be the number of covariates. We set

the prior on the hyperparameters to the coefficients to ν = p+ 100, Φ0 = 0.01I, and Φ1 = 0.01I (

see Equation 20 and Equation 21) to favor sparsity. We initialized the variational distributions to

q(θ) = N (0, I).
Table 2 gives the results. A standard t-test (at level 0.05) showed that the hierarchical models are

better than the non-hierarchical models both in terms of accuracy and predictive likelihood. With

predictive likelihood, Laplace variational inference in the hierarchical model is significantly better

than all other approaches.

6 Discussion

We developed Laplace and delta method variational inference, two strategies for variational infer-

ence in a large class of nonconjugate models. These methods approximate the variational objective

function with a Taylor approximation, each in a different way. We studied them in two nonconju-

gate models and showed that they work well in practice, forming approximate posteriors that lead

to good predictions. In the examples we analyzed, our methods worked better than methods tailored

for the specific models at hand. Between the two, Laplace inference was better and faster than delta

method inference. These methods expand the scope of variational inference.
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Accuracy Log Likelihood

Separate

Jaakkola and Jordan (1996) 70.5% -0.684

Laplace inference 70.8% -0.569

Delta inference 70.8% -0.571

Pooled

Jaakkola and Jordan (1996) 71.2% -0.685

Laplace inference 71.3% -0.557

Delta inference 71.3% -0.557

Hierarchical

Jaakkola and Jordan (1996) 71.3% -0.685

Laplace inference 71.9% -0.549

Delta inference 71.9% -0.559

Table 2: Comparison of the different methods on the School data using accuracy and averaged log

predictive likelihood. Results are averaged from 10 random splits. (The variance is too

small to report.) We compared Laplace inference, delta inference and Jaakkola and Jor-

dan’s (1996) method in three settings: separate logistic regression models for each school,

a pooled logistic regression model for all schools, and the hierarchical logistic regression

model in Section 4.2. Bold indicates significantly better performance by a standard t-test

(at level 0.05). The hierarchical model performs best.
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Appendix A. Generalization to Complex Models

We describe how we can generalize our approaches to more complex models. Suppose we have

a directed probabilistic model with latent variables θ = θ1:m and observations x. (We will not dif-

ferentiate notation between conjugate and nonconjugate variables.) The log joint likelihood of all

latent and observed variables is

log p(θ,x) = ∑m
i=1 log p(θi |θπi

)+ log p(x |θ),

where πi are the indices of the parents of θi, the variables it depends on.

Our goal is to approximate the posterior distribution p(θ |x). Similar to the main paper, we use

mean-field variational inference (Jordan et al., 1999). We posit a fully-factorized variational family

q(θ) = ∏m
i=1 q(θi),

and optimize ach factor q(θi) to find the member closest in KL-divergence to the posterior.

As in the main paper, we solve this optimization problem with coordinate ascent, iteratively

optimizing each variational factor while holding the others fixed. Recall that Bishop (2006) shows

that this leads to the following update

q(θi) ∝ exp{E−i [log p(θ,x)]} , (22)

where E−i [·] denotes the expectation with respect to ∏ j, j 6=i q(θ j).

Many of the terms of the log joint will be constant with respect to θi and absorbed into the

constant of proportionality. This allows us to simplify the update in Equation 22 to be q(θi) ∝

exp{ f (θi)} where

f (θi) = E−i [log p(θi |θπi
)]+∑{ j:i∈π j} E−i

[

log p(θ j |θπ j
)
]

+E−i [log p(x |θ)] . (23)

As in the main paper, this update is not tractable in general. We use Laplace variational inference

(Section 3.1) to approximate it, although delta method variational inference (Section 3.2) is also

applicable. In Laplace variational inference, we take a Taylor approximation of f (θi) around its

maximum θ̂i. This naturally leads to q(θi) as a Gaussian factor,

q∗(θi)≈ N (θ̂i,−▽2 f (θ̂i)
−1).

The main paper considers the case where θ is a single random variable and updates its variational

distribution. In the more general coordinate ascent setting considered here, we need to compute or

approximate the expected log probabilities (and their derivatives) in Equation 23.
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Now suppose each factor is in the exponential family. (This is weaker than the conjugacy

assumption, and describes most graphical models from the literature.) The log joint likelihood

becomes

log p(θ,x) = ∑m
i=1

(

η(θπi
)⊤t(θi)−a(η(θπi

))
)

+ log p(x |θ),

where η(·) are natural parameters, t(·) are sufficient statistics, and a(η(·)) are log normalizers. (All

are overloaded.) Substituting the exponential family assumptions into f (θi) gives

f (θi) = E−i [η(θπi
)]⊤ t(θi)

+∑{ j:i∈π j}

(

E−i

[

η(θπ j
)
]⊤

E−i [t(θ j)]−E−i

[

a(η(θπ j
))
]

)

+E−i [t(θ)]
⊤

t(x)−E−i [a(η(θ))] .

Here we can use further Taylor approximations of the natural parameters η(·), sufficient statistics

t(·), and log normalizers a(·) in order to easily take their expectations.

Finally, for some variables we may be able to exactly compute f (θi) and form the q∗(θi) with-

out further approximations. (These are conjugate variables for which the complete conditional

p(θi |θ−i,x) is available in closed form.) These variables were separated out in the main paper; here

we note that they can be updated exactly in the coordinate ascent algorithm.

Appendix B. The Correlated Topic Model

The correlated topic model is described in Section 4.1. We identify the quantities from Equation 6

and Equation 7 that we need to compute f (θ) in Equation 11,

h(z) = 1, t(z) = ∑n zn,

η(θ) = θ− log{∑k exp{θk}} ,

a(η(θ)) = 0.

With this notation,

f (θ) = η(θ)⊤Eq(z) [t(z)]−
1
2
(θ−µ0)

⊤Σ−1
0 (θ−µ0),

where Eq(z) [t(z)] is the expected word counts of each topic under the variational distribution q(z).
Let π ∝ exp{η(θ)} be the topic proportions. Using ∂πi/∂θ j = πi(1[i= j] − π j), we obtain the

gradient and Hessian of the function f (θ) in the CTM,

▽ f (θ) = Eq(z) [t(z)]−π∑K
k=1

[

Eq(z) [t(z)]
]

k
−Σ−1

0 (θ−µ0),

▽2 f (θ)i j = (−πi1[i= j]+πiπ j)∑K
k=1

[

Eq(z) [t(z)]
]

k
− (Σ−1

0 )i j.

where 1[i= j] = 1 if i = j and 0 otherwise. Note that ▽ f (θ) is all we need for Laplace inference.

In delta method variational inference, we also need to compute the gradient of

Trace
{

▽2 f (θ)Σ
}

=
(

−∑K
k=1 πkΣkk +πT Σπ

)

∑K
k=1

[

Eq(z) [t(z)]
]

k
−Trace(Σ−1

0 Σ).

Following Braun and McAuliffe (2010), we assume Σ is diagonal in the delta method. (In Laplace

inference, we do not need this assumption.) This gives

∂Trace
{

▽2 f (θ)Σ
}

∂θi

= πi(1−2πi)(∑k πkΣkk −1).
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These quantities let us implement the algorithm in Figure 1 to infer the per-document posterior of

the CTM hidden variables.

As we discussed Section 4.1, we use this algorithm in variational EM for finding maximum like-

lihood estimates of the model parameters. The E-step runs posterior inference on each document.

Since the variational family is the same, the M-step is as described in Blei and Lafferty (2007).

Appendix C. Bayesian Logistic Regression

Bayesian logistic regression is described in Section 4.2.

The distribution of the observations z1:N fit into the exponential family as follows,

h(z) = 1, t(z) = [z1, . . . ,zN ],

η(θ) = [logσ(θ⊤tn), logσ(−θ⊤tn)]
N
n=1,

a(η(θ)) = 0.

In this set up, t(z) represents the whole set of labels. Since z is observed, its “expectation” is just

itself. With this notation, f (θ) from Equation 11 is

f (θ) = η(θ)⊤t(z)− 1
2
(θ−µ0)

⊤Σ−1
0 (θ−µ0).

The gradient and Hessian of f (θ) are

▽ f (θ) = ∑N
n=1 tn

(

zn,1 −σ(θT tn)
)

−Σ−1
0 (θ−µ0),

▽2 f (θ) =−∑N
n=1 σ(θT tn)σ(−θT tn)tntT

n −Σ−1
0 . (24)

This is the standard Laplace approximation to Bayesian logistic regression (Bishop, 2006).

For delta variational inference, we also need the gradient for Trace
{

▽2 f (θ)Σ
}

. It is

∂Trace
{

▽2 f (θ)Σ
}

∂θi

=−
N

∑
n=1

σ(θT tn)σ(−θT tn)(1−2σ(θT tn))tntT
n Σtn.

Here we do not need to assume Σ is diagonal, since the special structure of the Hessian in Equa-

tions 24 makes the computation of Trace
{

▽2 f (θ)Σ
}

fairly simple.

C.1 Hierarchical Logistic Regression

Here we describe how we update the global hyperparameters (µ0,Σ0) (Equations 20 and 21) in

hierarchical logistic regression. At each iteration, we first compute the variational distribution of

coefficients θm for each problem m = 1, ...,M,

q(θm) = N (µm,Σm).

We then estimate the global hyperparameters (µ0,Σ0) using the MAP estimate. These come from

the following update equations,

µ0 =

(

Σ0Φ−1
1

M
+ Ip

)−1

∑M
m=1 µm

M
,

Σ0 =
Φ−1

0 +∑M
m=1(µm −µ0)(µm −µ0)

⊤

M+ν− p−1
,

where p is the dimension of coefficients θm.
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