
Variational Inference over Combinatorial Spaces

Alexandre Bouchard-Côté∗ Michael I. Jordan∗,†

∗Computer Science Division †Department of Statistics
University of California at Berkeley

Abstract

Since the discovery of sophisticated fully polynomial randomized algorithms for a range of
#P problems [1, 2, 3], theoretical work on approximate inference in combinatorial spaces
has focused on Markov chain Monte Carlo methods. Despite their strong theoretical guar-
antees, the slow running time of many of these randomized algorithms and the restrictive
assumptions on the potentials have hindered the applicability of these algorithms to ma-
chine learning. Because of this, in applications to combinatorial spaces simple exact mod-
els are often preferred to more complex models that require approximate inference [4].
Variational inference would appear to provide an appealing alternative, given the success
of variational methods for graphical models [5]; unfortunately, however, it is not obvious
how to develop variational approximations for combinatorial objects such as matchings,
partial orders, plane partitions and sequence alignments. We propose a new framework that
extends variational inference to a wide range of combinatorial spaces. Our method is based
on a simple assumption: the existence of a tractable measure factorization, which we show
holds in many examples. Simulations on a range of matching models show that the algo-
rithm is more general and empirically faster than a popular fully polynomial randomized
algorithm. We also apply the framework to the problem of multiple alignment of protein
sequences, obtaining state-of-the-art results on the BAliBASE dataset [6].

1 Introduction

The framework we propose is applicable in the following setup: let C denote a combinatorial space,
by which we mean a finite but large set, where testing membership is tractable, but enumeration is
not, and suppose that the goal is to compute

∑

x∈C f(x), where f is a positive function. This setup
subsumes many probabilistic inference and classical combinatorics problems. It is often intractable
to compute this sum, so approximations are used.

We approach this problem by exploiting a finite collection of sets {Ci} such that C = ∩iCi. Each Ci

is larger than C, but paradoxically it is often possible to find such a decomposition where for each i,
∑

x∈Ci
f(x) is tractable. We give many examples of this in Section 3 and Appendix B.1 This paper

describes an effective way of using this type of decomposition to approximate the original sum.

Another way of viewing this setup is in terms of exponential families. In this view, described in
detail in Section 2, the decomposition becomes a factorization of the base measure. As we will
show, the exponential family view gives a principled way of defining variational approximations.
In order to make variational approximations tractable in the combinatorial setup, we use what we
call an implicit message representation. The canonical parameter space of the exponential family
enables such representation. We also show how additional approximations can be introduced in
cases where the factorization has a large number of factors. These further approximations rely on
an outer bound of the partition function, and therefore preserve the guarantees of convex variational
objective functions.

While previous authors have proposed mean field or loopy belief propagation algorithms to approx-
imate the partition function of a few specific combinatorial models—for example [7, 8] for parsing,

1The appendices can be found in the supplementary material.

1

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and

moments is a member of a regular exponential family with canonical parameters θ ∈ R
J :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 − A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑

x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I

measures ν(x) =
∏I

i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition
function assumed to be tractable: Ai(θ) = log

∑

x∈X
exp{〈φ(x),θ〉}νi(x). This computation is

typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),

the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N
∏

m=1

1[
N

∑

n=1

xm,n ≤ 1], ν2(x) =
N
∏

n=1

1[
N

∑

m=1

xm,n ≤ 1]. (2)

2

B
1

B
I

S
1

S
2

S
J

...

... ...

i,j

and Ψj(s) = eθjs.

included: Ψi(x) = νi(x)

potentials between an event (Bi =
by Ψi,j(x, s) = 1[φj(x) = s].
and Ψ () = θ s. ζi′ ξ̄i

...

...

BPMF(θ, A1, . . . , AI)

1: ζ
(1)
i,j = 0

2: for t = 1, 2, . . . , T do

3: ξ̄
(t)
i = θ +

∑

i′:i′ 6=i ζ
(t−1)
i′

4: ζ
(t)
i = logit

(

∇Ai

(

ξ̄
(t)
i

))

− ξ̄
(t)
i

5: end for

6: return µ̂ = logistic
(

θ +
∑

i ζ
(T)
i

)

Figure 1: Left: the bipartite graphical model used for the MRF construction described in Section 2.2. Right:

pseudocode for the BPMF algorithm. See Section 2 and Appendix A.2 for the derivation.

We show in Appendix A.3 that A1 and A2 can be computed in time O(N2) for the SBM.

The last assumption we make is that given a vector s ∈ R
J , there is at most one possible configu-

ration x with φ(x) = s. We call this the rich sufficient statistic condition. Since we are concerned
in this framework with computing expectations, not with parameter estimation, this can be done
without loss of generality. For example, if the original exponential family is curved (e.g., by param-
eter tying), for the purpose of computing expectations one can always work in the over-complete
parameterization, and then project back to the coarse sufficient statistic for parameter estimation.

2.2 Markov random field reformulation

We start by constructing an equivalent but more convenient exponential family. This general con-
struction has an associated bipartite Markov Random Field (MRF) with structure KI,J , shown in
Figure 1. This new bipartite structure should not be confused with the bipartite graph from the
KN,N bipartite graph specific to the BM example: the former is part of the general theory, the latter
is specific to the bipartite matching example.

The bipartite MRF has I random variables in the first graph component, B1, . . . , BI , each having a
copy of X as its domain. In the second component, the graph has J random variables, S1, . . . , SJ ,
where Sj has a binary domain {0, 1}. The pairwise potential between an event {Bi = x} in the first
component and one {Sj = s} in the second is given by Ψi,j(x, s) = 1[φj(x) = s]. The following

one-node potentials are also included: Ψi(x) = νi(x) and Ψj(s) = eθjs.

The equivalence between the two formulations follows from the rich sufficient statistic condition,
which implies (for a full proof of the equivalence, see Appendix A.1):

∑

s1∈{0,1}

∑

s2∈{0,1}

· · ·
∑

sJ∈{0,1}

I
∏

i=1

J
∏

j=1

1[φj(xi) = sj] =

{

1 if x1 = x2 = · · · = xI

0 otherwise.
(3)

This transformation into an equivalent MRF reveals several possible variational approximations.
We show in the next section how loopy belief propagation [18] can be modified to tractably accom-
modate this transformed exponential family, even though some nodes in the graphical model—the
Bis—have a domain of exponential size. We then describe similar updates for mean field [19] and
tree-reweighted [20] variational algorithms. We will refer to these algorithms as BPMF (Belief Prop-
agation on Measure Factorizations), MFMF (Mean Field on Measure Factorizations) and TRWMF
(Tree-Reweighted updates on Measure Factorizations). In contrast to BPMF, MFMF is guaranteed
to converge2, and TRWBF is guaranteed to provide an upper bound on the partition function.3

2.3 Implicit message representation

The variables Bi have a domain of exponential size, hence if we applied belief propagation updates
naively, the messages going from Bi to Sj would require summing over an exponential number of
terms, and messages going from Sj to Bi would require an exponential amount of storage. To avoid
summing explicitly over exponentially many terms, we adapt an idea from [7] and exploit the fact

2Although we did not have convergence issues with BPMF in our experiments.
3Surprisingly, MFMF does not provide a lower bound (see Appendix A.6).

3

that an efficient algorithm is assumed for computing the super-partition function Ai and its deriva-
tives. To avoid the exponential storage of messages going to Bi, we use an implicit representation
of these messages in the canonical parameter space.

Let us denote the messages going from Sj to Bi by Mj→i(s), s ∈ {0, 1} and the reverse messages

by mi→j(x), x ∈ X . From the definitions of Ψi,j ,Ψi,Ψj , the explicit belief propagation updates
are:

mi→j(s) ∝
∑

x∈X

1[φj(x) = s]νi(x)
∏

j′:j′ 6=j

Mj′→i(x)

Mj→i(x) ∝
∑

s∈{0,1}

e
θjs

1[φj(x) = s]
∏

i′:i′ 6=i

mi′→j(s). (4)

The task is to get an update equation that does not represent Mj→i(x) explicitly, by exploiting
the fact that the super-partition functions Ai and their derivatives can be computed efficiently. To
do so, it is convenient to use the following equivalent representation for the messages mi→j(s):
ζi,j = log mi→j(1) − log mi→j(0) ∈ [−∞,+∞].4

If we also let fi,j(x) denote any function proportional to
∏

j′:j′ 6=j Mj′→i(x), we can write:

ζi,j = log

(
∑

x∈X
φj(x)fi,j(x)νi(x)

∑

x∈X
(1 − φj(x))fi,j(x)νi(x)

)

= logit

(
∑

x∈X
φj(x)fi,j(x)νi(x)

∑

x∈X
fi,j(x)νi(x)

)

, (5)

where logit(x) = log x − log(1 − x). This means that if we can find a parameter vector ξi,j ∈ R
J

such that

fi,j(x) = exp〈φ(x), ξi,j〉 ∝
∏

j′:j′ 6=j

Mj′→i(x),

then we could write ζi,j = logit
(

∇jAi(ξi,j)
)

. We derive such a vector ξi,j as follows:

∏

j′:j′ 6=j

Mj′→i(x) =
∏

j′:j′ 6=j

∑

sj′∈{0,1}

e
θj′sj′1[φj′(x) = sj′]

∏

i′:i′ 6=i

mi′→j′(sj′)

=
∏

j′:j′ 6=j

e
θj′φj′ (x)

∏

i′:i′ 6=i

mi′→j′(φj′(x))

∝ exp

∑

j′:j′ 6=j

φj′(x)

θj′ +
∑

i′:i′ 6=i

ζi′,j′

,

where in the last step we have used the assumption that φj has domain {0, 1}, which implies that
mi→j(φj(x)) = exp{φj(x) log mi→j(1) + (1 − φj(x)) log mi→j(0)} ∝ exp{φj(x)ζi,j}. The

required parameters are therefore:
(

ξi,j

)

j′
= 1[j 6= j′]

(

θj′ +
∑

i′:i′ 6=i ζi′,j′

)

.

2.4 Reuse of partition function computations

Naively, the updates derived so far would require computing each super-partition function J times at
each message passing iteration. We show that this can be reduced to computing each super-partition
function only once per iteration, a considerable gain.

We first define the vectors:

ξ̄i = θ +
∑

i′:i′ 6=i

ζi′ ,

and then rewrite the numerator inside the logit function in Equation (5) as follows:

∑

x∈X

φj(x)fi,j(x)νi(x) =
∑

s∈{0,1}

∑

x:φj(x)=s

exp{〈φ(x), ξ̄i〉} · e
−ξ̄i,js · s · νi(x)

= e
Ai(ξ̄i)−ξ̄i,j∇jAi(ξ̄i),

4In what follows, we will assume that ζi,j ∈ (−∞, +∞). The extended real line is treated in Appendix C.1.

4

and similarly for the denominator:
∑

x∈X

fi,j(x)νi(x) = e
Ai(ξ̄i)−ξ̄i,j∇jAi(ξ̄i) + e

Ai(ξ̄i)(1 −∇jAi(ξ̄i))

= e
Ai(ξ̄i)

(

1 + (e−ξ̄i,j − 1)∇jAi(ξ̄i)
)

.

After plugging in the reparameterization of the numerator and denominator back into the logit
function in Equation (5) and doing some algebra, we obtain the more efficient update ζi,j =
logit

(

∇Ai(ξ̄i,j)
)

− ξ̄i,j , where the logit function of a vector, logitv, is defined as the vector of
the logit function applied to each entry of the vector v. See Figure 1 for a summary of the BPMF
algorithm.

2.5 Other variational algorithms

The ideas used to derive the BPMF updates can be extended to other variational algorithms with
minor modifications. We sketch here two examples: a naive mean field algorithm, and a TRW
approximation. See Appendix A.2 for details.

In the case of naive mean field applied the graphical model described in Section 2.2, the updates
take a form similar to Equations (4), except that the reverse incoming message is not omitted when
computing an outgoing message. As a consequence, the updates are not directional and can be
associated to nodes in the graphical model rather than edges:

Mj(s) ∝
∑

x∈X

1[φj(x) = s]νi(x)
∏

j

mi(x)

mi(x) ∝
∑

s∈{0,1}

e
θjs

1[φj(x) = s]
∏

i

Mj(s).

This yields the following implicit updates:5

ξ
(t) = θ +

∑

i

ζ
(t−1)
i

ζ
(t)
i = logit

(

∇Ai

(

ξ
(t)

))

, (6)

and the moment approximation µ̂ = logistic(ξ).

In the case of TRW, lines 3 and 6 in the pseudocode of Figure 1 stay the same, while the update in
line 4 becomes:

(

ξi,j

)

j′
=

θj′ − ρi→j′ζi,j′ +
∑

i′:i′ 6=i

ρi′→j′ζi′,j′

 ·

{

ρj′→i if j′ 6= j
(1 − ρi→j) otherwise,

(7)

where ρi→j are marginals of a spanning tree distribution over KI,J . We show in Appendix A.2 how
the idea in Section 2.4 can be exploited to reuse computations of super-partition functions in the
case of TRW as well.

2.6 Large factorizations

In some cases, it might not be possible to write the base measure as a succinct product of factors.
Fortunately, there is a simple and elegant workaround to this problem that retains good theoretical
guarantees. The basic idea is that dropping measures with domain {0, 1} in a factorization can only
increase the value of the partition function. This solution is especially attractive in the context of
outer approximations such as the TRW algorithm, because it preserves the upper bound property of
the approximation. We show an example of this in Section 3.2.

3 Examples of factorizations

In this section, we show three examples of measure factorizations. See Appendix B for two more
examples (partitions of the plane, and traveling salesman problems).

5Assuming that naive mean field is optimized coordinate-wise, with an ordering that optimizes all of the
mi’s, then all of the Mj’s.

5

(a) A

C

T

A

C

A

C

G

T ACC

(b)

A C

AC

AC

TA

CT

AC

T

CT

Monotonicity

violation

Transitivity

violation

Partial order

violation

(c)

A

C D

F

G

B

E

F I

Figure 2: (a) An example of a valid multiple alignment between three sequences. (b) Examples of invalid

multiple sequence alignments illustrating what is left out by the factors in the decomposition of Section 3.2.

(c) The DAG representation of a partial order. An example of linearization is A,C,D,B,E,F,G,H,I. The fine red

dashed lines and blue lines demonstrate an example of two forests covering the set of edges, forming a measure

decomposition with two factors. The linearization A,D,B,E,F,G,H,I,C is an example of a state allowed by one

factor but not the other.

3.1 More matchings

Our approach extends naturally to matchings with higher-order (augmented) sufficient statistic,
and to non-bipartite/non-perfect matchings. Let us first consider an Higher-order Bipartite Model
(HBM), which has all the basic sufficient statistic coordinates found in SBM, plus those of the form
φj(x) = xm,n · xm+1,n+1. We claim that with the factorization of Equation (2), the super-partition
functions A1 and A2 are still tractable in HBM. To see why, note that computing A1 can be done
by building an auxiliary exponential family with associated graphical model given by a chain of
length N , and where the state space of each node in this chain is {1, 2, . . . , N}. The basic suffi-
cient statistic coordinates φj(x) = xm,n are encoded as node potentials, and the augmented ones as

edge potentials in the chain. This yields a running time of O(N3) for computing one super-partition
function and its gradient (see Appendix A.3 for details). The auxiliary exponential family technique
used here is reminiscent of [21].

Extension to non-perfect and non-bipartite matchings can also be done easily. In the first case, a
dummy “null” node is added to each bipartite component. In the second case, where the original

space is the set of
(

N
2

)

alignment indicators, we propose a decomposition into N measures. Each

one checks that a single node is connected to at most one other node: νn(x) = 1[
∑N

n′=1 xn,n′ ≤ 1].

3.2 Multiple sequence alignment

We start by describing the space of pairwise alignments (which is tractable), and then discuss the
extension to multiple sequences (which quickly becomes infeasible as the number of sequences
increases). Consider two sequences of length M and N respectively. A pairwise sequence alignment
is a bipartite graph on the characters of the two sequences (where each bipartite component has
the characters of one of the sequences) constrained to be monotonic: if a character at index m ∈
{1, . . . ,M} is aligned to a character at index n ∈ {1, . . . , N} and another character at index m′ >
m is aligned to index n′, then we must have n′ > n. A multiple alignment between K sequences of
lengths N1, N2, . . . , NK is a K-partite graph, where the k-th components’ vertices are the characters
of the k-th sequence, and such that the following three properties hold: (1) each pair of components
forms a pairwise alignment as described above; (2) the alignments are transitive, i.e., if character
c1 is aligned to c2 and c2 is aligned to c3 then c1 must be aligned to c3; (3) the alignments satisfy
a partial order property: there exists a partial order p on the connected components of the graph
with the property that if C1 <p C2 are two distinct connected components and c1 ∈ C1, c2 ∈ C2

are in the same sequence, then the index of c1 in the sequence is smaller than the index of c2. See
Figure 2(a,b) for an illustration.

We use the technique of Section 2.6, and include only the pairwise alignment and transitiv-
ity constraints, creating a variational objective function that is an outer bound of the origi-

nal objective. In this factorization, there are
(

K
2

)

pairwise alignment measures, and T =

6

(a)

0.1 1 10 100 1000

Time (s)

0

0.1

0.2

0.3

0.4

M
ea

n
 R

M
S

FPRAS

BPMF

(b)

0.5 0.6 0.7 0.8 0.9 1

Bipartite Graph Density

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
 R

M
S

FPRAS

Mean Field

Loopy BP (c)

10 20 30 40 50 60

Graph size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
ea

n
 N

o
rm

al
iz

ed
 L

o
ss HBM-F1

HBM-F2

Figure 3: Experiments discussed in Section 4.1 on two of the matching models discussed. (a) and (b) on SBM,

(c), on HBM.

∑

k,k′,k′′:k 6=k′ 6=k′′ 6=k NkNk′Nk′′ transitivity measures. We show in Appendix A.4 that all the mes-

sages for one iteration can be computed in time O(T).

3.3 Linearization of partial orders

A linearization of a partial order p over N objects is a total order t over the same objects such
that x ≤p y ⇒ x ≤t y. Counting the number of linearizations is a well-known #P problem [22].
Equivalently, the problem can be view as a matching between a DAG G = (V,E) and the integers
{1, 2, . . . , N} with the order constraints specified on the edges of the DAG.

To factorize the base measure, consider a collection of I directed forests on V , Gi = (V,Ei), i ∈ I
such that their union covers G: ∪iEi = E. See Figure 2(c) for an example. For a single forest Gi, a
straightforward generalization of the algorithm used to compute HBM’s super-partition can be used.
This generalization is simply to use sum-product with graphical model Gi instead of sum-product
on a chain as in HBM (see Appendix A.5 for details). Again, the state space of the node of the
graphical model is {1, 2, . . . , N}, but this time the edge potentials enforce the ordering constraints
of the current forest.

4 Experiments

4.1 Matchings

As a first experiment, we compared the approximation of SBM described in Section 2 to the Fully
Polynomial Randomized Approximation Scheme (FPRAS) described in [23]. We performed all our
experiments on 100 iid random bipartite graphs of size N , where each edge has iid appearance prob-
ability p, a random graph model that we denote by RB(N, p). In the first and second experiments, we
used RB(10, 0.9). In this case, exact computation is still possible, and we compared the mean Root
Mean Squared (RMS) of the estimated moments to the truth. In Figure 3(a), we plot this quantity as
a function of the time spent to compute the 100 approximations. In the variational approximation,
we measured performance at each iteration of BPMF, and in the sampling approach, we measured
performance after powers of two sampling rounds. The conclusion is that the variational approxi-
mation attains similar levels of error in at least one order of magnitude less time in the RB(10, 0.9)
regime.

Next, we show in Figure 3(b) the behavior of the algorithms as a function of p, where we also
added the mean field algorithm to the comparison. In each data point in the graph, the FPRAS was
run no less than one order of magnitude more time than the variational algorithms. Both variational
strategies outperform the FPRAS in low-density regimes, where mean field also slightly outperforms
BPMF. On the other hand, for high-density regimes, only BPMF outperforms the FPRAS, and mean
field has a bias compared to the other two methods.

The third experiment concerns the augmented matching model, HBM. Here we compare two types
of factorization and investigate the scalability of the approaches to larger graphs. Factorization F1
is a simpler factorization of the form described in Section 3.1 for non-bipartite graphs. This ignores
the higher-order sufficient statistic coordinates, creating an outer approximation. Factorization F2,

7

Sum of Pairs score (SP)

BAliBASE protein group BPMF-1 BPMF-2 BPMF-3 Clustal [24] ProbCons [25]

short, < 25% identity 0.68 0.74 0.76 0.71 0.72
short, 20% — 40% identity 0.94 0.95 0.95 0.89 0.92
short, > 35% identity 0.97 0.98 0.98 0.97 0.98

All 0.88 0.91 0.91 0.88 0.89

Table 1: Average SP scores in the ref1/test1 directory of BAliBASE. BPMF-i denotes the average SP of the

BPMF algorithm after i iterations of (parallel) message passing.

described in Section 3.1 specifically for HBM, is tighter. The experimental setup is based on a gen-
erative model over noisy observations of bipartite perfect matchings described in Appendix C.2. We
show in Figure 3(c) the results of a sequence of these experiments for different bipartite component
sizes N/2. This experiments demonstrates the scalability of sophisticated factorizations, and their
superiority over simpler ones.

4.2 Multiple sequence alignment

To assess the practical significance of this framework, we also apply it to BAliBASE [6], a standard
protein multiple sequence alignment benchmark. We compared our system to Clustal 2.0.12 [24],
the most popular multiple alignment tool, and ProbCons 1.12, a state-of-the-art system [25] that also
relies on enforcing transitivity constraints, but which is not derived via the optimization of an objec-
tive function. Our system uses a basic pair HMM [26] to score pairwise alignments. This scoring
function captures a proper subset of the biological knowledge exploited by Clustal and ProbCons.6

The advantage of our system over the other systems is the better optimization technique, based on
the measure factorization described in Section 3.2. We used a standard technique to transform the
pairwise alignment marginals into a single valid multiple sequence alignment (see Appendix C.3).
Our system outperformed both baselines after three BPMF parallel message passing iterations. The
algorithm converged in all protein groups, and performance was identical after more than three itera-
tions. Although the overall performance gain is not statistically significant according to a Wilcoxon
signed-rank test, the larger gains were obtained in the small identity subset, the “twilight zone”
where research on multiple sequence alignment has focused.

One caveat of this multiple alignment approach is its running time, which is cubic in the length of
the longest sequence, while most multiple sequence alignment approaches are quadratic. For exam-
ple, the running time for one iteration of BPMF in this experiment was 364.67s, but only 0.98s for
Clustal—this is why we have restricted the experiments to the short sequences section of BAliBASE.
Fortunately, several techniques are available to decrease the computational complexity of this algo-
rithm: the transitivity factors can be subsampled using a coarse pass, or along a phylogenetic tree;
and computation of the factors can be entirely parallelized. These improvements are orthogonal to
the main point of this paper, so we leave them for future work.

5 Conclusion

Computing the moments of discrete exponential families can be difficult for two reasons: the struc-
ture of the sufficient statistic that can create junction trees of high tree-width, and the structure of
the base measures that can induce an intractable combinatorial space. Most previous work on vari-
ational approximations has focused on the first difficulty; however, the second challenge also arises
frequently in machine learning. In this work, we have presented a framework that fills this gap.
It is based on an intuitive notion of measure factorization, which, as we have shown, applies to
a variety of combinatorial spaces. This notion enables variational algorithms to be adapted to the
combinatorial setting. Our experiments both on synthetic and naturally-occurring data demonstrate
the viability of the method compared to competing state-of-the-art algorithms.

6More precisely it captures long gap and hydrophobic core modeling.

8

References

[1] Alexander Karzanov and Leonid Khachiyan. On the conductance of order Markov chains. Order,
V8(1):7–15, March 1991.

[2] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. In Proceedings of the Annual ACM Symposium on
Theory of Computing, pages 712–721, 2001.

[3] David Wilson. Mixing times of lozenge tiling and card shuffling Markov chains. The Annals of Applied
Probability, 14:274–325, 2004.

[4] Adam Siepel and David Haussler. Phylogenetic estimation of context-dependent substitution rates by
maximum likelihood. Mol Biol Evol, 21(3):468–488, 2004.

[5] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1:1–305, 2008.

[6] Julie Thompson, Frédéric Plewniak, and Olivier Poch. BAliBASE: A benchmark alignments database for
the evaluation of multiple sequence alignment programs. Bioinformatics, 15:87–88, 1999.

[7] David A. Smith and Jason Eisner. Dependency parsing by belief propagation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 145–156, Honolulu,
October 2008.

[8] David Burkett, John Blitzer, and Dan Klein. Joint parsing and alignment with weakly synchronized
grammars. In North American Association for Computational Linguistics, Los Angeles, 2010.

[9] Bert Huang and Tony Jebara. Approximating the permanent with belief propagation. ArXiv e-prints,
2009.

[10] Yusuke Watanabe and Michael Chertkov. Belief propagation and loop calculus for the permanent of a
non-negative matrix. J. Phys. A: Math. Theor., 2010.

[11] Ben Taskar, Dan Klein, Michael Collins, Daphne Koller, and Christopher Manning. Max-margin parsing.
In EMNLP, 2004.

[12] Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discriminative matching approach to word align-
ment. In EMNLP 2005, 2005.

[13] John Duchi, Daniel Tarlow, Gal Elidan, and Daphne Koller. Using combinatorial optimization within
max-product belief propagation. In Advances in Neural Information Processing Systems, 2007.

[14] Aron Culotta, Andrew McCallum, Bart Selman, and Ashish Sabharwal. Sparse message passing algo-
rithms for weighted maximum satisfiability. In New England Student Symposium on Artificial Intelligence,
2007.

[15] Percy Liang, Ben Taskar, and Dan Klein. Alignment by agreement. In North American Association for
Computational Linguistics (NAACL), pages 104–111, 2006.

[16] Percy Liang, Dan Klein, and Michael I. Jordan. Agreement-based learning. In Advances in Neural
Information Processing Systems (NIPS), 2008.

[17] Leslie G. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci., 1979.

[18] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief propagation. In Advances
in Neural Information Processing Systems, pages 689–695, Cambridge, MA, 2001. MIT Press.

[19] Carsten Peterson and James R. Anderson. A mean field theory learning algorithm for neural networks.
Complex Systems, 1:995–1019, 1987.

[20] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-reweighted belief propagation algo-
rithms and approximate ML estimation by pseudomoment matching. In Proceedings of the International
Conference on Articial Intelligence and Statistics, 2003.

[21] Alexandre Bouchard-Côté and Michael I. Jordan. Optimization of structured mean field objectives. In
Proceedings of Uncertainty in Artifical Intelligence, 2009.

[22] Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 1991.

[23] Lars Eilstrup Rasmussen. Approximating the permanent: A simple approach. Random Structures and
Algorithms, 1992.

[24] Des G. Higgins and Paul M. Sharp. CLUSTAL: a package for performing multiple sequence alignment
on a microcomputer. Gene, 73:237–244, 1988.

[25] Chuong B. Do, Mahathi S. P. Mahabhashyam, Michael Brudno, and Serafim Batzoglou. PROBCONS:
Probabilistic consistency-based multiple sequence alignment. Genome Research, 15:330–340, 2005.

[26] David B. Searls and Kevin P. Murphy. Automata-theoretic models of mutation and alignment. In Proc Int
Conf Intell Syst Mol Biol., 1995.

9

