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Abstract

The choice of approximate posterior distribution

is one of the core problems in variational infer-

ence. Most applications of variational inference

employ simple families of posterior approxima-

tions in order to allow for efficient inference, fo-

cusing on mean-field or other simple structured

approximations. This restriction has a signifi-

cant impact on the quality of inferences made

using variational methods. We introduce a new

approach for specifying flexible, arbitrarily com-

plex and scalable approximate posterior distribu-

tions. Our approximations are distributions con-

structed through a normalizing flow, whereby a

simple initial density is transformed into a more

complex one by applying a sequence of invertible

transformations until a desired level of complex-

ity is attained. We use this view of normalizing

flows to develop categories of finite and infinites-

imal flows and provide a unified view of ap-

proaches for constructing rich posterior approxi-

mations. We demonstrate that the theoretical ad-

vantages of having posteriors that better match

the true posterior, combined with the scalability

of amortized variational approaches, provides a

clear improvement in performance and applica-

bility of variational inference.

1. Introduction

There has been a great deal of renewed interest in varia-

tional inference as a means of scaling probabilistic mod-

eling to increasingly complex problems on increasingly

larger data sets. Variational inference now lies at the core of

large-scale topic models of text (Hoffman et al., 2013), pro-

vides the state-of-the-art in semi-supervised classification

(Kingma et al., 2014), drives the models that currently pro-

duce the most realistic generative models of images (Gre-

gor et al., 2014; Rezende et al., 2014), and are a default
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tool for the understanding of many physical and chemical

systems. Despite these successes and ongoing advances,

there are a number of disadvantages of variational methods

that limit their power and hamper their wider adoption as

a default method for statistical inference. It is one of these

limitations, the choice of posterior approximation, that we

address in this paper.

Variational inference requires that intractable posterior dis-

tributions be approximated by a class of known probability

distributions, over which we search for the best approxima-

tion to the true posterior. The class of approximations used

is often limited, e.g., mean-field approximations, implying

that no solution is ever able to resemble the true posterior

distribution. This is a widely raised objection to variational

methods, in that unlike other inferential methods such as

MCMC, even in the asymptotic regime we are unable re-

cover the true posterior distribution.

There is much evidence that richer, more faithful posterior

approximations do result in better performance. For exam-

ple, when compared to sigmoid belief networks that make

use of mean-field approximations, deep auto-regressive

networks use a posterior approximation with an auto-

regressive dependency structure that provides a clear im-

provement in performance (Mnih & Gregor, 2014). There

is also a large body of evidence that describes the detri-

mental effect of limited posterior approximations. Turner

& Sahani (2011) provide an exposition of two commonly

experienced problems. The first is the widely-observed

problem of under-estimation of the variance of the poste-

rior distribution, which can result in poor predictions and

unreliable decisions based on the chosen posterior approx-

imation. The second is that the limited capacity of the pos-

terior approximation can also result in biases in the MAP

estimates of any model parameters (and this is the case e.g.,

in time-series models).

A number of proposals for rich posterior approximations

have been explored, typically based on structured mean-

field approximations that incorporate some basic form of

dependency within the approximate posterior. Another po-

tentially powerful alternative would be to specify the ap-

proximate posterior as a mixture model, such as those de-

veloped by Jaakkola & Jordan (1998); Jordan et al. (1999);
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Gershman et al. (2012). But the mixture approach limits

the potential scalability of variational inference since it re-

quires evaluation of the log-likelihood and its gradients for

each mixture component per parameter update, which is

typically computationally expensive.

This paper presents a new approach for specifying approx-

imate posterior distributions for variational inference. We

begin by reviewing the current best practice for inference

in general directed graphical models, based on amortized

variational inference and efficient Monte Carlo gradient es-

timation, in section 2. We then make the following contri-

butions:

• We propose the specification of approximate poste-

rior distributions using normalizing flows, a tool for

constructing complex distributions by transforming a

probability density through a series of invertible map-

pings (sect. 3). Inference with normalizing flows pro-

vides a tighter, modified variational lower bound with

additional terms that only add terms with linear time

complexity (sect 4).

• We show that normalizing flows admit infinitesimal

flows that allow us to specify a class of posterior ap-

proximations that in the asymptotic regime is able to

recover the true posterior distribution, overcoming one

oft-quoted limitation of variational inference.

• We present a unified view of related approaches for

improved posterior approximation as the application

of special types of normalizing flows (sect 5).

• We show experimentally that the use of general nor-

malizing flows systematically outperforms other com-

peting approaches for posterior approximation.

2. Amortized Variational Inference

To perform inference it is sufficient to reason using the

marginal likelihood of a probabilistic model, and requires

the marginalization of any missing or latent variables in

the model. This integration is typically intractable, and

instead, we optimize a lower bound on the marginal like-

lihood. Consider a general probabilistic model with ob-

servations x, latent variables z over which we must inte-

grate, and model parameters θ. We introduce an approxi-

mate posterior distribution for the latent variables qφ(z|x)
and follow the variational principle (Jordan et al., 1999) to

obtain a bound on the marginal likelihood:

log pθ(x) = log

∫

pθ(x|z)p(z)dz (1)

= log

∫

qφ(z|x)
qφ(z|x)

pθ(x|z)p(z)dz (2)

≥−IDKL[qφ(z|x)‖p(z)]+Eq [log pθ(x|z)]=−F(x), (3)

where we used Jensen’s inequality to obtain the final equa-

tion, pθ(x|z) is a likelihood function and p(z) is a prior

over the latent variables. We can easily extend this for-

mulation to posterior inference over the parameters θ, but

we will focus on inference over the latent variables only.

This bound is often referred to as the negative free energy

F or as the evidence lower bound (ELBO). It consists of

two terms: the first is the KL divergence between the ap-

proximate posterior and the prior distribution (which acts

as a regularizer), and the second is a reconstruction error.

This bound (3) provides a unified objective function for op-

timization of both the parameters θ and φ of the model and

variational approximation, respectively.

Current best practice in variational inference performs

this optimization using mini-batches and stochastic gra-

dient descent, which is what allows variational infer-

ence to be scaled to problems with very large data

sets. There are two problems that must be addressed

to successfully use the variational approach: 1) effi-

cient computation of the derivatives of the expected log-

likelihood ∇φEqφ(z)[log pθ(x|z)], and 2) choosing the

richest, computationally-feasible approximate posterior

distribution q(·). The second problem is the focus of this

paper. To address the first problem, we make use of two

tools: Monte Carlo gradient estimation and inference net-

works, which when used together is what we refer to as

amortized variational inference.

2.1. Stochastic Backpropagation

The bulk of research in variational inference over the years

has been on ways in which to compute the gradient of the

expected log-likelihood ∇φEqφ(z)[log p(x|z)]. Whereas

we would have previously resorted to local variational

methods (Bishop, 2006), in general we now always com-

pute such expectations using Monte Carlo approximations

(including the KL term in the bound, if it is not analytically

known). This forms what has been aptly named doubly-

stochastic estimation (Titsias & Lazaro-Gredilla, 2014),

since we have one source of stochasticity from the mini-

batch and a second from the Monte Carlo approximation of

the expectation.

We focus on models with continuous latent variables, and

the approach we take computes the required gradients us-

ing a non-centered reparameterization of the expectation

(Papaspiliopoulos et al., 2003; Williams, 1992), combined

with Monte Carlo approximation — referred to as stochas-

tic backpropagation (Rezende et al., 2014). This approach

has also been referred to or as stochastic gradient vari-

ational Bayes (SGVB) (Kingma & Welling, 2014) or as

affine variational inference (Challis & Barber, 2012).

Stochastic backpropagation involves two steps:

• Reparameterization. We reparameterize the latent

variable in terms of a known base distribution and

a differentiable transformation (such as a location-

scale transformation or cumulative distribution func-
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tion). For example, if qφ(z) is a Gaussian distribution

N (z|µ, σ2), with φ = {µ, σ2}, then the location-scale

transformation using the standard Normal as a base

distribution allows us to reparameterize z as:

z ∼ N (z|µ, σ2)⇔ z = µ+ σǫ, ǫ ∼ N (0, 1)

• Backpropagation with Monte Carlo. We can now

differentiate (backpropagation) w.r.t. the parameters

φ of the variational distribution using a Monte Carlo

approximation with draws from the base distribution:

∇φEqφ(z)[fθ(z)]⇔ EN (ǫ|0,1)[∇φfθ(µ+ σǫ)] .

A number of general purpose approaches based on Monte

Carlo control variate (MCCV) estimators exist as an alter-

native to stochastic backpropagation, and allow for gradi-

ent computation with latent variables that may be contin-

uous or discrete (Williams, 1992; Mnih & Gregor, 2014;

Ranganath et al., 2013; Wingate & Weber, 2013). An im-

portant advantage of stochastic backpropagation is that, for

models with continuous latent variables, it has the lowest

variance among competing estimators.

2.2. Inference Networks

A second important practice is that the approximate pos-

terior distribution qφ(·) is represented using a recogni-

tion model or inference network (Stuhlmüller et al., 2013;

Rezende et al., 2014; Dayan, 2000; Gershman & Good-

man, 2014; Kingma & Welling, 2014). An inference net-

work is a model that learns an inverse map from observa-

tions to latent variables. Using an inference network, we

avoid the need to compute per data point variational param-

eters, but can instead compute a set of global variational

parameters φ valid for inference at both training and test

time. This allows us to amortize the cost of inference by

generalizing between the posterior estimates for all latent

variables through the parameters of the inference network.

The simplest inference models that we can use are diagonal

Gaussian densities, qφ(z|x) = N (z|µφ(x), diag(σ
2
φ(x))),

where the mean function µφ(x) and the standard-deviation

function σφ(x) are specified using deep neural networks.

2.3. Deep Latent Gaussian Models

In this paper, we study deep latent Gaussian models

(DLGM), which are a general class of deep directed graph-

ical models that consist of a hierarchy of L layers of Gaus-

sian latent variables zl for layer l. Each layer of latent vari-

ables is dependent on the layer above in a non-linear way,

and for DLGMs, this non-linear dependency is specified by

deep neural networks. The joint probability model is:

p(x, z1, . . . , zL) = p (x|f0(z1))
L
∏

l=1

p (zl|fl(zl+1)) (4)

where the Lth Gaussian distribution is not dependent on

any other random variables. The prior over latent vari-

ables is a unit Gaussian p(zl) = N (0, I) and the observa-

tion likelihood pθ(x|z) is any appropriate distribution that

is conditioned on z1 and is also parameterized by a deep

neural network (figure 2). This model class is very gen-

eral and includes other models such as factor analysis and

PCA, non-linear factor analysis, and non-linear Gaussian

belief networks as special cases (Rezende et al., 2014).

DLGMs use continuous latent variables and is a model

class perfectly suited to fast amortized variational inference

using the lower bound (3) and stochastic backpropagation.

The end-to-end system of DLGM and inference network

can be viewed as an encoder-decoder architecture, and this

is the perspective taken by Kingma & Welling (2014) who

present this combination of model and inference strategy

as a variational auto-encoder. The inference networks used

in Kingma & Welling (2014); Rezende et al. (2014) are

simple diagonal or diagonal-plus-low rank Gaussian distri-

butions. The true posterior distribution will be more com-

plex than this assumption allows for, and defining multi-

modal and constrained posterior approximations in a scal-

able manner remains a significant open problem in varia-

tional inference.

3. Normalizing Flows

By examining the bound (3), we can see that the optimal

variational distribution that allows IDKL[q‖p] = 0 is one

for which qφ(z|x) = pθ(z|x), i.e. q matches the true pos-

terior distribution. This possibility is obviously not realiz-

able given the typically used q(·) distributions, such as in-

dependent Gaussians or other mean-field approximations.

Indeed, one limitation of the variational methodology due

to the available choices of approximating families, is that

even in an asymptotic regime we can not obtain the true

posterior. Thus, an ideal family of variational distributions

qφ(z|x) is one that is highly flexible, preferably flexible

enough to contain the true posterior as one solution. One

path towards this ideal is based on the principle of nor-

malizing flows (Tabak & Turner, 2013; Tabak & Vanden-

Eijnden, 2010).

A normalizing flow describes the transformation of a prob-

ability density through a sequence of invertible mappings.

By repeatedly applying the rule for change of variables,

the initial density ‘flows’ through the sequence of invert-

ible mappings. At the end of this sequence we obtain a

valid probability distribution and hence this type of flow is

referred to as a normalizing flow.

3.1. Finite Flows

The basic rule for transformation of densities considers an

invertible, smooth mapping f : IRd → IRd with inverse
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f−1 = g, i.e. the composition g ◦ f(z) = z. If we use

this mapping to transform a random variable z with distri-

bution q(z), the resulting random variable z′ = f(z) has a

distribution :

q(z′) = q(z)

∣

∣

∣

∣

det
∂f−1

∂z′

∣

∣

∣

∣

= q(z)

∣

∣

∣

∣

det
∂f

∂z

∣

∣

∣

∣

−1

, (5)

where the last equality can be seen by applying the chain

rule (inverse function theorem) and is a property of Jaco-

bians of invertible functions. We can construct arbitrarily

complex densities by composing several simple maps and

successively applying (5). The density qK(z) obtained by

successively transforming a random variable z0 with distri-

bution q0 through a chain of K transformations fk is:

zK = fK ◦ . . . ◦ f2 ◦ f1(z0) (6)

ln qK(zK) = ln q0(z0)−
K
∑

k=1

ln det

∣

∣

∣

∣

∂fk
∂zk

∣

∣

∣

∣

, (7)

where equation (6) will be used throughout the paper as a

shorthand for the composition fK(fK−1(. . . f1(x))). The

path traversed by the random variables zk = fk(zk−1) with

initial distribution q0(z0) is called the flow and the path

formed by the successive distributions qk is a normalizing

flow. A property of such transformations, often referred

to as the law of the unconscious statistician (LOTUS), is

that expectations w.r.t. the transformed density qK can be

computed without explicitly knowing qK . Any expectation

EqK [h(z)] can be written as an expectation under q0 as:

EqK [h(z)] = Eq0 [h(fK ◦ fK−1 ◦ . . . ◦ f1(z0))], (8)

which does not require computation of the the logdet-

Jacobian terms when h(z) does not depend on qK .

We can understand the effect of invertible flows as a se-

quence of expansions or contractions on the initial density.

For an expansion, the map z′ = f(z) pulls the points z

away from a region in IRd, reducing the density in that re-

gion while increasing the density outside the region. Con-

versely, for a contraction, the map pushes points towards

the interior of a region, increasing the density in its interior

while reducing the density outside.

The formalism of normalizing flows now gives us a sys-

tematic way of specifying the approximate posterior distri-

butions q(z|x) required for variational inference. With an

appropriate choice of transformations fK , we can initially

use simple factorized distributions such as an independent

Gaussian, and apply normalizing flows of different lengths

to obtain increasingly complex and multi-modal distribu-

tions.

3.2. Infinitesimal Flows

It is natural to consider the case in which the length of the

normalizing flow tends to infinity. In this case, we obtain

an infinitesimal flow, that is described not in terms of a fi-

nite sequence of transformations — a finite flow, but as a

partial differential equation describing how the initial den-

sity q0(z) evolves over ‘time’: ∂
∂t
qt(z) = Tt[qt(z)], where

T describes the continuous-time dynamics.

Langevin Flow. One important family of flows is given by

the Langevin stochastic differential equation (SDE):

dz(t) = F(z(t), t)dt+G(z(t), t)dξ(t), (9)

where dξ(t) is a Wiener process with E[ξi(t)] = 0 and

E[ξi(t)ξj(t
′)] = δi,jδ(t − t′), F is the drift vector and

D = GG⊤ is the diffusion matrix. If we transform a

random variable z with initial density q0(z) through the

Langevin flow (9), then the rules for the transformation

of densities is given by the Fokker-Planck equation (or

Kolmogorov equations in probability theory). The density

qt(z) of the transformed samples at time t will evolve as:

∂

∂t
qt(z)=−

∑

i

∂

∂zi
[Fi(z, t)qt]+

1

2

∑

i,j

∂2

∂zi∂zj
[Dij(z, t)qt] .

In machine learning, we most often use the Langevin flow

with F (z, t) = −∇zL(z) and G(z, t) =
√
2δij , where

L(z) is an unnormalised log-density of our model.

Importantly, in this case the stationary solution for qt(z)
is given by the Boltzmann distribution: q∞(z) ∝ e−L(z).
That is, if we start from an initial density q0(z) and

evolve its samples z0 through the Langevin SDE, the re-

sulting points z∞ will be distributed according to q∞(z) ∝
e−L(z), i.e. the true posterior. This approach has been ex-

plored for sampling from complex densities by Welling &

Teh (2011); Ahn et al. (2012); Suykens et al. (1998).

Hamiltonian Flow. Hamiltonian Monte Carlo can also be

described in terms of a normalizing flow on an augmented

space z̃ = (z,ω) with dynamics resulting from the Hamil-

tonianH(z,ω) = −L(z)− 1
2ω

⊤Mω; HMC is also widely

used in machine learning, e.g., Neal (2011). We will use the

Hamiltonian flow to make a connection to the recently in-

troduced Hamiltonian variational approach from Salimans

et al. (2015) in section 5.

4. Inference with Normalizing Flows

To allow for scalable inference using finite normalizing

flows, we must specify a class of invertible transformations

that can be used and an efficient mechanism for computing

the determinant of the Jacobian. While it is straightforward

to build invertible parametric functions for use in equa-

tion (5), e.g., invertible neural networks (Baird et al., 2005;

Rippel & Adams, 2013), such approaches typically have

a complexity for computing the Jacobian determinant that

scales as O(LD3), where D is the dimension of the hidden

layers and L is the number of hidden layers used. Further-

more, computing the gradients of the Jacobian determinant
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involves several additional operations that are alsoO(LD3)
and involve matrix inverses that can be numerically unsta-

ble. We therefore require normalizing flows that allow for

low-cost computation of the determinant, or where the Ja-

cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z+ uh(w⊤z+ b), (10)

where λ = {w ∈ IRD,u ∈ IRD, b ∈ IR} are free pa-

rameters and h(·) is a smooth element-wise non-linearity,

with derivative h′(·). For this mapping we can compute

the logdet-Jacobian term in O(D) time (using the matrix

determinant lemma):

ψ(z) = h′(w⊤z+ b)w (11)

det
∣

∣

∣

∂f
∂z

∣

∣

∣
= | det(I+ uψ(z)⊤)| = |1 + u⊤ψ(z)|. (12)

From (7) we conclude that the density qK(z) obtained by

transforming an arbitrary initial density q0(z) through the

sequence of maps fk of the form (10) is implicitly given

by:

zK = fK ◦ fK−1 ◦ . . . ◦ f1(z)

ln qK(zK) = ln q0(z)−
K
∑

k=1

ln |1 + u⊤
k ψk(zk)|. (13)

The flow defined by the transformation (13) modifies the

initial density q0 by applying a series of contractions and

expansions in the direction perpendicular to the hyperplane

w⊤z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-

tions that modify an initial density q0 around a reference

point z0. The transformation family is:

f(z) = z+ βh(α, r)(z− z0), (14)

det

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

= [1 + βh(α, r)]
d−1

[1 + βh(α, r) + h′(α, r)r)] ,

where r = |z − z0|, h(α, r) = 1/(α + r), and the param-

eters of the map are λ = {z0 ∈ IRD, α ∈ IR, β ∈ IR}.
This family also allows for linear-time computation of the

determinant. It applies radial contractions and expansions

around the reference point and are thus referred to as radial

flows. We show the effect of expansions and contractions

on a uniform and Gaussian initial density using the flows

(10) and (14) in figure 1. This visualization shows that we

can transform a spherical Gaussian distribution into a bi-

modal distribution by applying two successive transforma-

tions.

Not all functions of the form (10) or (14) will be invert-

ible. We discuss the conditions for invertibility and how to

satisfy them in a numerically stable way in the appendix.
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Figure 1. Effect of normalizing flow on two distributions.

Inference network Generative model

Figure 2. Inference and generative models. Left: Inference net-

work maps the observations to the parameters of the flow; Right:

generative model which receives the posterior samples from the

inference network during training time. Round containers repre-

sent layers of stochastic variables whereas square containers rep-

resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution

with a flow of length K, qφ(z|x) := qK(zK), the free en-

ergy (3) can be written as an expectation over the initial

distribution q0(z):

F(x) = Eqφ(z|x)[log qφ(z|x)− log p(x, z)]

= Eq0(z0) [ln qK(zK)− log p(x, zK)]

= Eq0(z0) [ln q0(z0)]− Eq0(z0) [log p(x, zK)]

− Eq0(z0)

[

K
∑

k=1

ln |1 + u⊤
k ψk(zk)|

]

. (15)

Normalizing flows and this free energy bound can be used

with any variational optimization scheme, including gener-

alized variational EM. For amortized variational inference,

we construct an inference model using a deep neural net-

work to build a mapping from the observations x to the

parameters of the initial density q0 = N (µ, σ) (µ ∈ IRD

and σ ∈ IRD) as well as the parameters of the flow λ.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the

amortized inference algorithm for DLGMs described by

(Kingma & Welling, 2014; Rezende et al., 2014), which

we summarize in algorithm 1. By using an inference net-
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Algorithm 1 Variational Inf. with Normalizing Flows

Parameters: φ variational, θ generative

while not converged do

x← {Get mini-batch}
z0 ∼ q0(•|x)
zK ← fK ◦ fK−1 ◦ . . . ◦ f1(z0)
F(x) ≈ F(x, zK)
∆θ ∝ −∇θF(x)
∆φ ∝ −∇φF(x)

end while

work we are able to form a single computational graph

which allows for easy computation of all the gradients

of the parameters of the inference network and the gen-

erative model. The estimated gradients are used in con-

junction with preconditioned stochastic gradient-based op-

timization methods such as RMSprop or AdaGrad (Duchi

et al., 2010), where we use parameter updates of the form:

(θt+1,φt+1) ← (θt,φt) + Γt(gt
θ,g

t
φ), with Γ is a diago-

nal preconditioning matrix that adaptively scales the gradi-

ents for faster minimization.

The algorithmic complexity of jointly sampling and com-

puting the log-det-Jacobian terms of the inference model

scales as O(LN2) + O(KD), where L is the number of

deterministic layers used to map the data to the parame-

ters of the flow, N is the average hidden layer size, K is

the flow-length and D is the dimension of the latent vari-

ables. Thus the overall algorithm is at most quadratic mak-

ing the overall approach competitive with other large-scale

systems used in practice.

5. Alternative Flow-based Posteriors

Using the framework of normalizing flows, we can provide

a unified view of recent proposals for designing more flexi-

ble posterior approximations. At the outset, we distinguish

between two types of flow mechanisms that differ in how

the Jacobian is handled. The work in this paper considers

general normalizing flows and presents a method for linear-

time computation of the Jacobian. In contrast, volume-

preserving flows design the flow such that its Jacobian-

determinant is equal to one while still allowing for rich pos-

terior distributions. Both these categories allow for flows

that may be finite or infinitesimal.

The Non-linear Independent Components Estimation

(NICE) developed by Dinh et al. (2014) is an instance of

a finite volume-preserving flow. The transformations used

are neural networks f(·) with easy to compute inverses g(·)
of the form:

f(z) = (zA, zB + hλ(zA)), (16)

g(z′) = (z′A, z
′
B − hλ(z′A)). (17)

where z = (zA, zB) is an arbitrary partitioning of the vec-

tor z and hλ is a neural network with parameters λ. This

form results in a Jacobian that has a zero upper triangu-

lar part, resulting in a determinant of 1. In order to build

a transformation capable of mixing all components of the

initial random variable z0, such flows must alternate be-

tween different partitionings of zk. The resulting density

using the forward and inverse transformations is given by :

ln qK(fK ◦ fK−1 ◦ . . . ◦ f1(z0)) = ln q0(z0), (18)

ln qK(z′) = q0(g1 ◦ g2 ◦ . . . ◦ gK(z′)). (19)

We will compare NICE to the general transformation ap-

proach described in section 2.1. Dinh et al. (2014) assume

the partitioning is of the form z = [zA = z1:d, zB =
zd+1:D]. To enhance mixing of the components in the flow,

we introduce two mechanisms for mixing the components

of z before separating them in the disjoint subgroups zA
and zB . The first mechanism applies a random permutation

(NICE-perm) and the second applies a random orthogonal

transformation (NICE-orth)1.

The Hamiltonian variational approximation (HVI) devel-

oped by Salimans et al. (2015) is an instance of an in-

finitesimal volume-preserving flow. For HVI, we consider

posterior approximations q(z,ω|x) that make use of addi-

tional auxiliary variables ω. The latent variables z are inde-

pendent of the auxiliary variables ω and using the change

of variables rule, the resulting distribution is: q(z′,ω′) =
|J|q(z)q(ω), where z′,ω′ = f(z,ω) using a transforma-

tion f . Salimans et al. (2015) obtain a volume-preserving

invertible transformation by exploiting the use of such tran-

sition operators in the MCMC literature, in particular the

methods of Langevin and Hybrid Monte Carlo. This is an

extremely elegant approach, since we now know that as the

number of iterations of the transition function tends to in-

finity, the distribution q(z′) will tend to the true distribu-

tion p(z|x). This is an alternative way to make use of the

Hamiltonian infinitesimal flow described in section 3.2. A

disadvantage of using the Langevin or Hamiltonian flow

is that they require one or more evaluations of the likeli-

hood and its gradients (depending in the number of leapfrog

steps) per iteration during both training and test time.

6. Results

Throughout this section we evaluate the effect of using nor-

malizing flow-based posterior approximations for inference

in deep latent Gaussian models (DLGMs). Training was

performed by following a Monte Carlo estimate of the gra-

dient of an annealed version of the free energy (20), with

respect the model parameters θ and the variational param-

eters φ using stochastic backpropoagation. The Monte

1 Random orthogonal transformations can be generated by
sampling a matrix with independent unit-Gaussian entries Ai,j ∼
N (0, I) and then performing a QR-factorization. The resulting
Q-matrix will be a random orthogonal matrix (Genz, 1998).
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Table 1. Test energy functions.

Potential U(z)

1: 1
2

(

‖z‖−2
0.4

)2

− ln

(

e
− 1

2

[

z1−2
0.6

]2

+ e
− 1

2

[

z1+2
0.6

]2
)

2: 1
2

[

z2−w1(z)
0.4

]2

3: − ln

(

e
− 1

2

[

z2−w1(z)
0.35

]2

+ e
− 1

2

[

z2−w1(z)+w2(z)
0.35

]2
)

4: − ln

(

e
− 1

2

[

z2−w1(z)
0.4

]2

+ e
− 1

2

[

z2−w1(z)+w3(z)
0.35

]2
)

with w1(z) = sin
(

2πz1
4

)

, w2(z) = 3e
− 1

2

[

(z1−1)
0.6

]2

,

w3(z) = 3σ
(

z1−1
0.3

)

and σ(x) = 1/(1 + e−x).

Carlo estimate is computed using a single sample of the

latent variables per data-point per parameter update.

A simple annealed version of the free energy is used since

this was found to provide better results. The modified

bound is:

zK = fK ◦ fK−1 ◦ . . . ◦ f1(z)
Fβt(x) = Eq0(z0)

[

ln pK(zK)− log p(x, zK)
]

= Eq0(z0) [ln q0(z0)]− βtEq0(z0) [log p(x, zK)]

− Eq0(z0)

[

K
∑

k=1

ln |1 + uTk ψk(zk)|
]

(20)

where βt ∈ [0, 1] is an inverse temperature that follows a

schedule βt = min(1, 0.01+ t/10000), going from 0.01 to

1 after 10000 iterations.

The deep neural networks that form the conditional prob-

ability between random variables consist of determinis-

tic layers with 400 hidden units using the Maxout non-

linearity on windows of 4 variables (Goodfellow et al.,

2013) . Briefly, the Maxout non-linearity with window-

size ∆ takes an input vector x ∈ IRd and computes:

Maxout(x)k = maxi∈{∆k,∆(k+1)} xi for k = 0 . . . d/∆.

We use mini-batches of 100 data points and RMSprop

optimization (with learning rate = 1 × 10−5 and

momentum = 0.9) (Kingma & Welling, 2014; Rezende

et al., 2014). Results were collected after 500, 000 parame-

ter updates. Each experiment was repeated 100 times with

different random seeds and we report the averaged scores

and standard errors. The true marginal likelihood is esti-

mated by importance sampling using 200 samples from the

inference network as in (Rezende et al., 2014, App. E).

6.1. Representative Power of Normalizing Flows

To provide an insight into the representative power of den-

sity approximations based on normalizing flows, we pa-

rameterize a set of unnormalized 2D densities p(z) ∝
exp[−U(z)] which are listed in table 1.

In figure 3(a) we show the true distribution for four cases,
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(d) Comparison of KL-divergences.

Figure 3. Approximating four non-Gaussian 2D distributions.

The images represent densities for each energy function in table

1 in the range (−4, 4)2. (a) True posterior; (b) Approx poste-

rior using the normalizing flow (13); (c) Approx posterior using

NICE (19); (d) Summary results comparing KL-divergences be-

tween the true and approximated densities for the first 3 cases.

which show distributions that have characteristics such as

multi-modality and periodicity that cannot be captured with

typically-used posterior approximations.

Figure 3(b) shows the performance of normalizing flow

approximations for these densities using flow lengths of

2, 8 and 32 transformations. The non-linearity h(z) =
tanh(z) in equation (10) was used for the mapping and

the initial distribution was a diagonal Gaussian, q0(z) =
N (z|µ, σ2I). We see a substantial improvement in the ap-

proximation quality as we increase the flow length. Fig-

ure 3(c) shows the same approximation using the volume-

preserving transformation used in NICE (Dinh et al., 2014)

for the same number of transformations. We show sum-

mary statistics for the planar flow (13), and NICE (18) for

random orthogonal matrices and with random permutation

matrices in 3(d). We found that NICE and the planar flow

(13) may achieve the same asymptotic performance as we

grow the flow-length, but the planar flow (13) requires far

fewer parameters. Presumably because all parameters of

the flow (13) are learned, in contrast to NICE which re-

quires an extra mechanism for mixing the components that

is not learned but randomly initialized. We did not observe

a substantial difference between using random orthogonal

matrices or random permutation matrices in NICE.

6.2. MNIST and CIFAR-10 Images

The MNIST digit dataset (LeCun & Cortes, 1998) contains

60,000 training and 10,000 test images of ten handwritten
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Figure 4. Effect of the flow-length on MNIST.

Table 2. Comparison of negative log-probabilities on the test set

for the binarised MNIST data.
Model − ln p(x)

DLGM diagonal covariance ≤ 89.9
DLGM+NF (k = 10) ≤ 87.5
DLGM+NF (k = 20) ≤ 86.5
DLGM+NF (k = 40) ≤ 85.7
DLGM+NF (k = 80) ≤ 85.1
DLGM+NICE (k = 10) ≤ 88.6
DLGM+NICE (k = 20) ≤ 87.9
DLGM+NICE (k = 40) ≤ 87.3
DLGM+NICE (k = 80) ≤ 87.2

Results below from (Salimans et al., 2015)

DLGM + HVI (1 leapfrog step) 88.08
DLGM + HVI (4 leapfrog steps) 86.40
DLGM + HVI (8 leapfrog steps) 85.51

Results below from (Gregor et al., 2014)

DARN nh = 500 84.71
DARN nh = 500, adaNoise 84.13

digits (0 to 9) that are 28 × 28 pixels in size. We used the

binarized dataset as in (Uria et al., 2014). We trained differ-

ent DLGMs with 40 latent variables for 500, 000 parameter

updates.

The performance of a DLGM using the (planar) nor-

malizing flow (DLGM+NF) approximation is com-

pared to the volume-preserving approaches using NICE

(DLGM+NICE) on exactly the same model for different

flow-lengths K, and we summarize the performance in fig-

ure 4. This graph shows that an increase in the flow-length

systematically improves the bound F , as shown in figure

4(a), and reduces the KL-divergence between the approx-

imate posterior q(z|x) and the true posterior distribution

p(z|x) (figure 4(b)). It also shows that the approach us-

ing general normalizing flows outperforms that of NICE.

We also show a wider comparison in table 2. Results are

included for the Hamiltonian variational approach as well,

but the model specification is different and thus gives an

indication of attainable performance for this approach on

this data set.

The CIFAR-10 natural images dataset (Krizhevsky & Hin-

ton, 2010) consists of 50,000 training and 10,000 test RGB

images that are of size 3x32x32 pixels from which we ex-

tract 3x8x8 random patches. The color levels were con-

verted to the range [ǫ, 1 − ǫ] with ǫ = 0.0001. Here we

used similar DLGMs as used for the MNIST experiment,

Table 3. Test set performance on the CIFAR-10 data.

K = 0 K = 2 K = 5 K = 10

− ln p(x) -293.7 -308.6 -317.9 -320.7

but with 30 latent variables. Since this data is non-binary,

we use a logit-normal observation likelihood, p(x|µ,α) =
∏

i

N (logit(xi)|µi
,αi)

xi(1−xi)
, where logit(x) = log x

1−x
. We sum-

marize the results in table 3 where we are again able to

show that an increase in the flow length K systematically

improves the test log-likelihoods, resulting in better poste-

rior approximations.

7. Conclusion and Discussion

In this work we developed a simple approach for learn-

ing highly non-Gaussian posterior densities by learning

transformations of simple densities to more complex ones

through a normalizing flow. When combined with an amor-

tized approach for variational inference using inference

networks and efficient Monte Carlo gradient estimation, we

are able to show clear improvements over simple approxi-

mations on different problems. Using this view of normal-

izing flows, we are able to provide a unified perspective of

other closely related methods for flexible posterior estima-

tion that points to a wide spectrum of approaches for de-

signing more powerful posterior approximations with dif-

ferent statistical and computational tradeoffs.

An important conclusion from the discussion in section 3

is that there exist classes of normalizing flows that allow us

to create extremely rich posterior approximations for vari-

ational inference. With normalizing flows, we are able to

show that in the asymptotic regime, the space of solutions

is rich enough to contain the true posterior distribution. If

we combine this with the local convergence and consis-

tency results for maximum likelihood parameter estimation

in certain classes of latent variables models (Wang & Tit-

terington, 2004), we see that we are now able overcome the

objections to using variational inference as a competitive

and default approach for statistical inference. Making such

statements rigorous is an important line of future research.

Normalizing flows allow us to control the complexity of the

posterior at run-time by simply increasing the flow length

of the sequence. The approach we presented considered

normalizing flows based on simple transformations of the

form (10) and (14). These are just two of the many maps

that can be used, and alternative transforms can be designed

for posterior approximations that may require other con-

straints, e.g., a restricted support. An important avenue of

future research lies in describing the classes of transforma-

tions that allow for different characteristics of the posterior

and that still allow for efficient, linear-time computation.
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