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Abstract

The mutual information is a core statistical quantity that has applications in all ar-
eas of machine learning, whether this is in training of density models over multiple
data modalities, in maximising the efficiency of noisy transmission channels, or
when learning behaviour policies for exploration by artificial agents. Most learn-
ing algorithms that involve optimisation of the mutual information rely on the
Blahut-Arimoto algorithm — an enumerative algorithm with exponential com-
plexity that is not suitable for modern machine learning applications. This paper
provides a new approach for scalable optimisation of the mutual information by
merging techniques from variational inference and deep learning. We develop our
approach by focusing on the problem of intrinsically-motivated learning, where
the mutual information forms the definition of a well-known internal drive known
as empowerment. Using a variational lower bound on the mutual information,
combined with convolutional networks for handling visual input streams, we de-
velop a stochastic optimisation algorithm that allows for scalable information
maximisation and empowerment-based reasoning directly from pixels to actions.

1 Introduction

The problem of measuring and harnessing dependence between random variables is an inescapable
statistical problem that forms the basis of a large number of applications in machine learning, includ-
ing rate distortion theory [4], information bottleneck methods [26], population coding [1], curiosity-
driven exploration [24, 19], model selection [3], and intrinsically-motivated reinforcement learning
[20]. In all these problems the core quantity that must be reasoned about is the mutual information.
In general, the mutual information (MI) is intractable to compute and few existing algorithms are
useful for realistic applications. The received algorithm for estimating mutual information is the
Blahut-Arimoto algorithm [29] that effectively solves for the MI by enumeration — an approach
with exponential complexity that is not suitable for modern machine learning applications. By com-
bining the best current practice from variational inference with that of deep learning, we bring the
generality and scalability seen in other problem domains to information maximisation problems.
We provide a new approach for maximisation of the mutual information that has significantly lower
complexity, allows for computation with high-dimensional sensory inputs, and that allows us to
exploit modern computational resources.

The technique we derive is generally applicable, but we shall describe and develop our approach
by focussing on one popular and increasingly topical application of the mutual information: as a
measure of ‘empowerment’ in intrinsically-motivated reinforcement learning. Reinforcement learn-
ing (RL) has seen a number of successes in recent years that has now established it as a practical,
scalable solution for realistic agent-based planning and decision making [15, 12]. A limitation of
the standard RL approach is that an agent is only able to learn using external rewards obtained from
its environment; truly autonomous agents will often exist in environments that lack such external
rewards or in environments where rewards are sparsely distributed. Intrinsically-motivated rein-
forcement learning [23] attempts to address this shortcoming by equipping an agent with a number
of internal drives or intrinsic reward signals, such as hunger, boredom or curiosity that allows the
agent to continue to explore, learn and act meaningfully in a reward-sparse world. There are many
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formation maximisation.

ways in which to formally define internal drives, but what all such definitions have in common is
that they, in some unsupervised fashion, allow an agent to reason about the value of information in
the action-observation sequences it experiences. The mutual information allows for exactly this type
of reasoning and forms the basis of one popular intrinsic reward measure, known as empowerment.

Our paper begins by describing the framework we use for online and self-motivated learning (sec-
tion 2) and then describes the general problem associated with mutual information estimation and
empowerment (section 3). We then make the following contributions:

• We develop stochastic variational information maximisation, a new algorithm for scalable es-
timation of the mutual information and channel capacity that is applicable to both discrete and
continuous settings.

• We combine variational information optimisation and tools from deep learning to develop a scal-
able algorithm for intrinsically-motivated reinforcement learning, demonstrating a new applica-
tion of the variational theory for problems in reinforcement learning and decision making.

• We demonstrate that empowerment-based behaviours obtained using variational information max-
imisation match those using the exact computation. We then apply our algorithms to a broad range
of high-dimensional problems for which it is not possible to compute the exact solution, but for
which we are able to act according to empowerment – learning directly from pixel information.

2 Intrinsically-motivated Reinforcement Learning

Intrinsically- or self-motivated learning attempts to address the question of where rewards come
from and how they are used by an autonomous agent. Consider an online learning system that
must model and reason about its incoming data streams and interact with its environment. This
perception-action loop is common to many areas such as active learning, process control, black-box
optimisation, and reinforcement learning. An extended view of this framework was presented by
Singh et al. [23], who describe the environment as factored into external and internal components
(figure 1). An agent receives observations and takes actions in the external environment. Impor-
tantly, the source and nature of any reward signals are not assumed to be provided by an oracle in
the external environment, but is moved to an internal environment that is part of the agent’s decision-
making system; the internal environment handles the efficient processing of all input data and the
choice and computation of an appropriate internal reward signal.

There are two important components of this framework: the state representation and the critic. We
are principally interested in vision-based self-motivated systems, for which there are no solutions
currently developed. To achieve this, our state representation system is a convolutional neural net-
work [13]. The critic in figure 1 is responsible for providing intrinsic rewards that allow the agent to
act under different types of internal motivations, and is where information maximisation enters the
intrinsically-motivated learning problem.

The nature of the critic and in particular, the reward signal it provides is the main focus of this
paper. A wide variety of reward functions have been proposed, and include: missing information or
Bayesian surprise, which uses the KL divergence to measure the change in an agents internal belief
after the observation of new data [8, 22]; measures based on prediction errors of future states such
predicted L1 change, predicted mode change or probability gain [16], or salient event prediction
[23]; and measures based on information-theoretic quantities such as predicted information gain
(PIG) [14], causal entropic forces [28] or empowerment [21]. The paper by Oudeyer & Kaplan [18]
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currently provides the widest singular discussion of the breadth of intrinsic motivation measures.
Although we have a wide choice of intrinsic reward measures, none of the available information-
theoretic approaches are efficient to compute or scalable to high-dimensional problems: they require
either knowledge of the true transition probability or summation over all configurations of the state
space, which is not tractable for complex environments or when the states are large images.

3 Mutual Information and Empowerment

The mutual information is a core information-theoretic quantity that acts as a general measure of
dependence between two random variables x and y, defined as:

I(x,y) = Ep(y|x)p(x)

[

log

(

p(x,y)

p(x)p(y)

)]

, (1)

where the p(x,y) is a joint distribution over the random variables, and p(x) and p(y) are the cor-
responding marginal distributions. x and y can be many quantities of interest: in computational
neuroscience they are the sensory inputs and the spiking population code; in telecommunications
they are the input signal to a channel and the received transmission; when learning exploration
policies in RL, they are the current state and the action at some time in the future, respectively.

For intrinsic motivation, we use an internal reward measure referred to as empowerment [11, 21]
that is obtained by searching for the maximal mutual information I(·, ·), conditioned on a starting
state s, between a sequence of K actions a and the final state reached s′:

E(s) = max
ω
Iω(a, s′|s) = max

ω
Ep(s′|a,s)ω(a|s)

[

log

(

p(a, s′|s)

ω(a|s)p(s′|s)

)]

, (2)

where a = {a1, . . . , aK} is a sequence of K primitive actions ak leading to a final state s′, and
p(s′|a, s) is the K-step transition probability of the environment. p(a, s′|s) is the joint distribution
of action sequences and the final state, ω(a|s) is a distribution over K-step action sequences, and
p(s′|s) is the joint probability marginalised over the action sequence.

Equation (2) is the definition of the channel capacity in information theory and is a measure of the
amount of information contained in the action sequences a about the future state s′. This measure
is compelling since it provides a well-grounded, task-independent measure for intrinsic motivation
that fits naturally within the framework for intrinsically motivated learning described by figure 1.
Furthermore, empowerment, like the state- or action-value function in reinforcement learning, as-
signs a value E(s) to each state s in an environment. An agent that seeks to maximise this value will
move towards states from which it can reach the largest number of future states within its planning
horizon K. It is this intuition that has led authors to describe empowerment as a measure of agent
‘preparedness’, or as a means by which an agent may quantify the extent to which it can reliably
influence its environment — motivating an agent to move to states of maximum influence [21].

An empowerment-based agent generates an open-loop sequence of actions K steps into the future
— this is only used by the agent for its internal planning using ω(a|s). When optimised using (2),
the distribution ω(a|s) becomes an efficient exploration policy that allows for uniform exploration
of the state space reachable at horizon K, and is another compelling aspect of empowerment (we
provide more intuition for this in appendix A). But this policy is not what is used by the agent for
acting: when an agent must act in the world, it follows a closed-loop policy obtained by a planning
algorithm using the empowerment value (e.g., Q-learning); we expand on this in sect. 4.3. A further
consequence is that while acting, the agent is only ‘curious’ about parts of its environment that can
be reached within its internal planning horizon K. We shall not explore the effect of the horizon in
this work, but this has been widely-explored and we defer to the insights of Salge et al. [21].

4 Scalable Information Maximisation

The mutual information (MI) as we have described it thus far, whether it be for problems in empow-
erment, channel capacity or rate distortion, hides two difficult statistical problems. Firstly, comput-
ing the MI involves expectations over the unknown state transition probability. This can be seen by
rewriting the MI in terms of the difference between conditional entropies H(·) as:

I(a, s′|s) = H(a|s)−H(a|s′, s), (3)

where H(a|s)=−Eω(a|s)[logω(a|s)] and H(a|s′, s)=−Ep(s′|a,s)ω(a|s) [log p(a|s
′, s)]. This com-

putation requires marginalisation over the K-step transition dynamics of the environment p(s′|a, s),

3



which is unknown in general. We could estimate this distribution by building a generative model
of the environment, and then use this model to compute the MI. Since learning accurate generative
models remains a challenging task, a solution that avoids this is preferred (and we also describe one
approach for model-based empowerment in appendix B).

Secondly, we currently lack an efficient algorithm for MI computation. There exists no scalable
algorithm for computing the mutual information that allows us to apply empowerment to high-
dimensional problems and that allow us to easily exploit modern computing systems. The current
solution is to use the Blahut-Arimoto algorithm [29], which essentially enumerates over all states,
thus being limited to small-scale problems and not being applicable to the continuous domain. More
scalable non-parametric estimators have been developed [7, 6]: these have a high memory footprint
or require a very large number of observations, any approximation may not be a bound on the
MI making reasoning about correctness harder, and they cannot easily be composed with existing
(gradient-based) systems that allow us to design a unified (end-to-end) system. In the continuous
domain, Monte Carlo integration has been proposed [10], but applications of Monte Carlo estimators
can require a large number of draws to obtain accurate solutions and manageable variance. We
have also explored Monte Carlo estimators for empowerment and describe an alternative importance
sampling-based estimator for the MI and channel capacity in appendix B.1.

4.1 Variational Information Lower Bound

The MI can be made more tractable by deriving a lower bound to it and maximising this instead —
here we present the bound derived by Barber & Agakov [1]. Using the entropy formulation of the MI
(3) reveals that bounding the conditional entropy component is sufficient to bound the entire mutual
information. By using the non-negativity property of the KL divergence, we obtain the bound:

KL[p(x|y)‖q(x|y)] ≥ 0⇒ H(x|y) ≤ −Ep(x|y) [log qξ(x|y)]

Iω(s) = H(a|s)−H(a|s′, s) ≥ H(a) +Ep(s′|a,s)ωθ(a|s)[log qξ(a|s
′, s)] = Iω,q(s) (4)

where we have introduced a variational distribution qξ(·) with parameters ξ; the distribution ωθ(·)
has parameters θ. This bound becomes exact when qξ(a|s

′, s) is equal to the true action posterior
distribution p(a|s′, s). Other lower bounds for the mutual information are also possible: Jaakkola &
Jordan [9] present a lower bound by using the convexity bound for the logarithm; Brunel & Nadal
[2] use a Gaussian assumption and appeal to the Cramer-Rao lower bound.

The bound (4) is highly convenient (especially when compared to other bounds) since the transition
probability p(s′|a, s) appears linearly in the expectation and we never need to evaluate its probability
— we can thus evaluate the expectation directly by Monte Carlo using data obtained by interaction
with the environment. The bound is also intuitive since we operate using the marginal distribution on
action sequences ωθ(a|s), which acts as a source (exploration distribution), the transition distribution
p(s′|a, s) acts as an encoder (transition distribution) from a to s′, and the variational distribution
qξ(a|s

′, s) conveniently acts as a decoder (planning distribution) taking us from s′ to a.

4.2 Variational Information Maximisation

A straightforward optimisation procedure based on (4) is an alternating optimisation for the param-
eters of the distributions qξ(·) and ωθ(·). Barber & Agakov [1] made the connection between this
approach and the generalised EM algorithm and refer to it as the IM (information maximisation)
algorithm and we follow the same optimisation principle. From an optimisation perspective, the
maximisation of the bound Iω,q(s) in (4) w.r.t. ω(a|s) can be ill-posed (e.g., in Gaussian models,
the variances can diverge). We avoid such divergent solutions by adding a constraint on the value of
the entropy H(a), which results in the constrained optimisation problem:

Ê(s) = max
ω,q
Iω,q(s) s.t. H(a|s)<ǫ, Ê(s) =max

ω,q
Ep(s′|a,s)ω(a|s)[−

1
β
lnω(a|s)+ln qξ(a|s

′, s)] (5)

where a is the action sequence performed by the agent when moving from s to s′ and β is an inverse
temperature (which is a function of the constraint ǫ).

At all times we use very general source and decoder distributions formed by complex non-linear
functions using deep networks, and use stochastic gradient ascent for optimisation. We refer to
our approach as stochastic variational information maximisation to highlight that we do all our
computation on a mini-batch of recent experience from the agent. The optimisation for the decoder
qξ(·) becomes a maximum likelihood problem, and the optimisation for the source ωθ(·) requires
computation of an unnormalised energy-based model, which we describe next. We summmarise the
overall procedure in algorithm 1.
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4.2.1 Maximum Likelihood Decoder

The first step of the alternating optimisation is the optimisation of equation (5) w.r.t. the decoder q,
and is a supervised maximum likelihood problem. Given a set of data from past interactions with
the environment, we learn a distribution from the start and termination states s, s′, respectively, to
the action sequences a that have been taken. We parameterise the decoder as an auto-regressive
distribution over the K-step action sequence:

qξ(a|s
′, s) = q(a1|s, s

′)
K
∏

k=2

q(ak|fξ(ak−1, s, s
′)), (6)

We are free to choose the distributions q(ak) for each action in the sequence, which we choose as
categorical distributions whose mean parameters are the result of the function fξ(·) with parameters
ξ. f is a non-linear function that we specify using a two-layer neural network with rectified-linear
activation functions. By maximising this log-likelihood, we are able to make stochastic updates to
the variational parameters ξ of this distribution. The neural network models used are expanded upon
in appendix D.

4.2.2 Estimating the Source Distribution

Given a current estimate of the decoder q, the variational solution for the distribu-
tion ω(a|s) computed by solving the functional derivative δIω(s)/δω(a|s) = 0 under

the constraint that
∑

a ω(a|s) = 1, is given by ω⋆(a|s) = 1
Z(s) exp (û(s,a)) , where

u(s,a) = Ep(s′|s,a)[ln qξ(a|s, s
′)], û(s,a) = βu(s,a) and Z(s) =

∑

a e
û(s,a) is a normalisation

term. By substituting this optimal distribution into the original objective (5) we find that it can be
expressed in terms of the normalisation function Z(s) only, E(s) = 1

β
logZ(s).

The distribution ω⋆(a|s) is implicitly defined as an unnormalised distribution — there are no direct
mechanisms for sampling actions or computing the normalising function Z(s) for such distributions.
We could use Gibbs or importance sampling, but these solutions are not satisfactory as they would
require several evaluations of the unknown function u(s,a) per decision per state. We obtain a
more convenient problem by approximating the unnormalised distribution ω⋆(a|s) by a normalised
(directed) distribution hθ(a|s). This is equivalent to approximating the energy term û(s,a) by a
function of the log-likelihood of the directed model, rθ:

ω⋆(a|s) ≈ hθ(a|s)⇒ û(s,a) ≈ rθ(s,a); rθ(s,a) = lnhθ(a|s) + ψθ(s). (7)

We introduced a scalar function ψθ(s) into the approximation, but since this is not dependent on
the action sequence a it does not change the approximation (7), and can be verified by substituting
(7) into ω⋆(a|s). Since hθ(a|s) is a normalised distribution, this leaves ψθ(s) to account for the
normalisation term logZ(s), verified by substituting ω⋆(a|s) and (7) into (5). We therefore obtain a

cheap estimator of empowerment E(s) ≈ 1
β
ψθ(s).

To optimise the parameters θ of the directed model hθ and the scalar function ψθ we can minimise
any measure of discrepancy between the two sides of the approximation (7). We minimise the
squared error, giving the loss function L(hθ,ψθ) for optimisation as:

L(hθ,ψθ)=Ep(s′|s,A)

[

(β ln qξ(a|s,s
′)− rθ(s,a))

2
]

. (8)

At convergence of the optimisation, we obtain a compact function with which to compute the em-
powerment that only requires forward evaluation of the function ψ. hθ(a|s) is parameterised using
an auto-regressive distribution similar to (18), with conditional distributions specified by deep net-
works. The scalar function ψθ is also parameterised using a deep network. Further details of these
networks are provided in appendix D.

4.3 Empowerment-based Behaviour policies

Using empowerment as an intrinsic reward measure, an agent will seek out states of maximal em-
powerment. We can treat the empowerment value E(s) as a state-dependent reward and can then
utilise any standard planning algorithm, e.g., Q-learning, policy gradients or Monte Carlo search.
We use the simplest planning strategy by using a one-step greedy empowerment maximisation. This
amounts to choosing actions a = argmaxa C(s, a), where C(s, a) = Ep(s′|s,a) [E(s)]. This policy
does not account for the effect of actions beyond the planning horizon K. A natural enhancement is
to use value iteration [25] to allow the agent to take actions by maximising its long term (potentially
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Algorithm 1: Stochastic Variational Information
Maximisation for Empowerment

Parameters: ξ variational, λ convolutional, θ
source
while not converged do
x← {Read current state}
s = ConvNetλ(x) {Compute state repr.}
A ∼ ω(a|s) {Draw action sequence.}
Obtain data (x,a,x′) {Acting in env. }
s′ = ConvNetλ(x

′) {Compute state repr.}
∆ξ ∝ ∇ξ log qξ(a|s, s

′) (18)
∆θ ∝ ∇θL(hθ, ψθ) (8)
∆λ ∝ ∇λ log qξ(a|s, s

′) +∇λL(hθ, ψθ)
end while
E(s) = 1

β
ψθ(s) {Empowerment}
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Figure 3: Comparing exact vs approx-
imate empowerment. Heat maps: em-
powerment in 3 environments: two
rooms, cross room, two-rooms; Scatter
plot: agreement for two-rooms.

discounted) empowerment. A third approach would be to use empowerment as a potential function
and the difference between the current and previous state’s empowerment as a shaping function with
in the planning [17]. A fourth approach is one where the agent uses the source distribution ω(a|s)
as its behaviour policy. The source distribution has similar properties to the greedy behaviour pol-
icy and can also be used, but since it effectively acts as an empowered agents internal exploration
mechanism, it has a large variance (it is designed to allow uniform exploration of the state space).
Understanding this choice of behaviour policy is an important line of ongoing research.

4.4 Algorithm Summary and Complexity

The system we have described is a scalable and general purpose algorithm for mutual information
maximisation and we summarise the core components using the computational graph in figure 2 and
in algorithm 1. The state representation mechanism used throughout is obtained by transforming raw
observations x,x′ to produce the start and final states s, s′, respectively. When the raw observations
are pixels from vision, the state representation is a convolutional neural network [13, 15], while for
other observations (such as continuous measurements) we use a fully-connected neural network –
we indicate the parameters of these models using λ. Since we use a unified loss function, we can
apply gradient descent and backpropagate stochastic gradients through the entire model allowing for
joint optimisation of both the information and representation parameters. For optimisation we use a
preconditioned optimisation algorithm such as Adagrad [5].

The computational complexity of empowerment estimators involves the planning horizon K, the
number of actionsN , and the number of states S. For the exact computation we must enumerate over
the number of states, which for grid-worlds is S ∝ D2 (forD×D grids), or for binary images is S =

2D
2

. The complexity of using the Blahut-Arimoto (BA) algorithm is O(NKS2) = O(NKD4) for

grid worlds orO(NK22D
2

) for binary images. The BA algorithm, even in environments with a small
number of interacting objects becomes quickly intractable, since the state space grows exponentially
with the number of possible interactions, and is also exponential in the planning horizon. In contrast,
our approach deals directly on the image dimensions. Using visual inputs, the convolutional network
produces a vector of size P , upon which all subsequent computation is based, consisting of an L-
layer neural network. This gives a complexity for state representation of O(D2P + LP 2). The
autoregressive distributions have complexity ofO(H2KN), whereH is the size of the hidden layer.
Thus, our approach has at most quadratic complexity in the size of the hidden layers used and linear
in other quantities, and matches the complexity of any currently employed large-scale vision-based
models. In addition, since we use gradient descent throughout, we are able to leverage the power of
GPUs and distributed gradient computations.

5 Results

We demonstrate the use of empowerment and the effectiveness of variational information maximi-
sation in two types of environments. Static environments consists of rooms and mazes in different
configurations in which there are no objects with which the agent can interact, or other moving ob-
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Figure 4: Empowerment for a room environ-
ment, showing a) an empty room, b) room with
an obstacle c) room with a moveable box, d)
room with row of moveable boxes.

Figure 5: Left: empowerment landscape for
agent and key scenario. Yellow is the key and
green is the door. Right: Agent in a corridor
with flowing lava. The agent places a bricks to
stem the flow of lava.

jects. The number of states in these settings is equal to the number of locations in the environment,
so is still manageable for approaches that rely on state enumeration. In dynamic environments, as-
pects of the environment change, such as flowing lava that causes the agent to reset, or a predator
that chases the agent. For the most part, we consider discrete action settings in which the agent has
five actions (up, down, left, right, do nothing). The agent may have other actions, such as picking
up a key or laying down a brick. There are no external rewards available and the agent must reason
purely using visual (pixel) information. For all these experiments we used a horizon of K = 5.

5.1 Effectiveness of the MI Bound

We first establish that the use of the variational information lower bound results in the same be-
haviour as that obtained using the exact mutual information in a set of static environments. We
consider environments that have at most 400 discrete states and compute the true mutual informa-
tion using the Blahut-Arimoto algorithm. We compute the variational information bound on the
same environment using pixel information (on 20× 20 images). To compare the two approaches we
look at the empowerment landscape obtained by computing the empowerment at every location in
the environment and show these as heatmaps. For action selection, what matters is the location of the
maximum empowerment, and by comparing the heatmaps in figure 3, we see that the empowerment
landscape matches between the exact and the variational solution, and hence, will lead to the same
agent-behaviour.

In each image in figure 3, we show a heat-map of the empowerment for each location in the environ-
ment. We then analyze the point of highest empowerment: for the large room it is in the centre of
the room; for the cross-shaped room it is at the centre of the cross, and in a two-rooms environment,
it is located near both doors. In addition, we show that the empowerment values obtained by our
method constitute a close approximation to the true empowerment for the two-rooms environment
(correlation coeff = 1.00, R2=0.90). These results match those by authors such as Klyubin et al.
[11] (using empowerment) and Wissner-Gross & Freer [28] (using a different information-theoretic
measure — the causal entropic force). The advantage of the variational approach is clear from this
discussion: we are able to obtain solutions of the same quality as the exact computation, we have far
more favourable computational scaling (one that is not exponential in the size of the state space and
planning horizon), and we are able to plan directly from pixel information.

5.2 Dynamic Environments

Having established the usefulness of the bound and some further understanding of empowerment,
we now examine the empowerment behaviour in environments with dynamic characteristics. Even
in small environments, the number of states becomes extremely large if there are objects that can
be moved, or added and removed from the environment, making enumerative algorithms (such as
BA) quickly infeasible, since we have an exponential explosion in the number of states. We first
reproduce an experiment from Salge et al. [21, §4.5.3] that considers the empowered behaviour of
an agent in a room-environment, a room that: is empty, has a fixed box, has a moveable box, has
a row of moveable boxes. Salge et al. [21] explore this setup to discuss the choice of the state
representation, and that not including the existence of the box severely limits the planning ability of
the agent. In our approach, we do not face this problem of choosing the state representation, since
the agent will reason about all objects that appear within its visual observations, obviating the need
for hand-designed state representations. Figure 4 shows that in an empty room, the empowerment is
uniform almost everywhere except close to the walls; in a room with a fixed box, the fixed box limits
the set of future reachable states, and as expected, empowerment is low around the box; in a room
where the box can be moved, the box can now be seen as a tool and we have high empowerment
near the box; similarly, when we have four boxes in a row, the empowerment is highest around the
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Figure 6: Empowerment planning in a lava-filled
maze environment. Black panels show the path
taken by the agent.
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Figure 7: Predator (red) and agent (blue) sce-
nario. Panels 1, 6 show the 3D simulation.
Other panels show a trace of the path that the
predator and prey take at points on its trajectory.
The blue/red shows path history; cyan shows the
direction to the maximum empowerment.

boxes. These results match those of Salge et al. [21] and show the effectiveness of reasoning from
pixel information directly.

Figure 6 shows how planning with empowerment works in a dynamic maze environment, where lava
flows from a source at the bottom that eventually engulfs the maze. The only way the agent is able to
safeguard itself, is to stem the flow of lava by building a wall at the entrance to one of the corridors.
At every point in time t, the agent decides its next action by computing the expected empowerment
after taking one action. In this environment, we show the planning for all 9 available actions and a
bar graph with the empowerment values for each resulting state. The action that leads to the highest
empowerment is taken and is indicated by the black panels1.

Figure 5(left) shows two-rooms separated by a door. The agent is able to collect a key that allows
it to open the door. Before collecting the key, the maximum empowerment is in the region around
the key, once the agent has collected the key, the region of maximum empowerment is close to
the door2. Figure 5(right) shows an agent in a corridor and must protect itself by building a wall of
bricks, which it is able to do successfully using the same empowerment planning approach described
for the maze setting.

5.3 Predator-Prey Scenario

We demonstrate the applicability of our approach to continuous settings, by studying a simple 3D
physics simulation [27], shown in figure 7. Here, the agent (blue) is followed by a predator (red) and
is randomly reset to a new location in the environment if caught by the predator. Both the agent and
the predator are represented as spheres in the environment that roll on a surface with friction. The
state is the position, velocity and angular momentum of the agent and the predator, and the action is
a 2D force vector. As expected, the maximum empowerment lies in regions away from the predator,
which results in the agent learning to escape the predator3.

6 Conclusion

We have developed a new approach for scalable estimation of the mutual information by exploiting
recent advances in deep learning and variational inference. We focussed specifically on intrinsic
motivation with a reward measure known as empowerment, which requires at its core the efficient
computation of the mutual information. By using a variational lower bound on the mutual infor-
mation, we developed a scalable model and efficient algorithm that expands the applicability of
empowerment to high-dimensional problems, with the complexity of our approach being extremely
favourable when compared to the complexity of the Blahut-Arimoto algorithm that is currently the
standard. The overall system does not require a generative model of the environment to be built,
learns using only interactions with the environment, and allows the agent to learn directly from vi-
sual information or in continuous state-action spaces. While we chose to develop the algorithm in
terms of intrinsic motivation, the mutual information has wide applications in other domains, all
which stand to benefit from a scalable algorithm that allows them to exploit the abundance of data
and be applied to large-scale problems.

Acknowledgements: We thank Daniel Polani for invaluable guidance and feedback.
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2
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3
Videos:
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A Empowerment as Path-counting

We can obtain a further intuitive understanding of empowerment by examining analytical properties
of equation (2). For simplicity, we focus on deterministic and discrete environments. In this setting,
the transition probability p(s′|s,a) is a delta distribution p(s′|s,a) = δ(s′−T (s,a)), where T (s,a)
is a transition function that starts in state s, executes the action sequence a and provides the resulting
state. Solving equation (2) for the optimal source distribution ω(a|s), using Blahut-Arimoto [4],
yields the fixed-point iteration:

ω(k+1)(a|s) =
1

Z(s)

ω(k)(a|s)
∑

A′:T (s,A′)=T (s,A)ω
(k)(a′|s)

, (9)

where Z(s) is a normalising constant. By starting the recursion (9) with a uniform distribution,

ω(1)(a|s) ∝ 1, the solution to the recursion at the next iteration ω(2)(a|s) is: ω(2)(a|s) ∝ 1
n(a,s) ,

where n(a, s) is the number of alternative action-paths a′ that terminate at the same state as the
action-path a, starting from the state s. We can also relate the quantity n(a, s) with a more intuitive
number, n(s′, s), which is the number of different action-paths that brings the agent from state s to
the state s′, n(a, s) =

∑

s′ p(s
′|a, s)n(s′, s).

If ω(k)(a|s) = ω(k)(a′|s), for all a′ such that T (s,a′) = T (s,a) then the r.h.s. of (9) does not

depend on ω(k)(a|s). Since the function n(a, s) satisfies this property, we conclude that ω(2)(a|s)
is a fixed point of (9). The optimal source distribution and resulting empowerment are:

ω(∞)(a|s) = 1
Z(s)

1
n(a,s) ; E(s) = logZ(s) = log

∑

A
1

n(a,s) = log n(s), (10)

where n(s) is the number of different states that can be reached from state s at horizon K. We
demonstrate this reasoning using a tree-structured environment in figure 8.

An agent selecting its actions uniformly will in general not visit all terminal states uniformly, unless
every action-path terminates at a different state. However, if an agent selects its actions according the

the distribution ω(∞)(a|s) it will visit terminal states uniformly. This can be seen by computing the

marginal distribution of terminal states p(s′|s) =
∑

A δ(s
′ − T (s,a))ω(∞)(a|s) = 1

n(s) . Therefore

the distribution ω(∞)(a|s) can be seen as an efficient exploration policy, that allows the agent to
explore all states uniformly. This adds to a similar analysis presented by Salge et al. [3, §4.4.6].

s1

D

U

a
c
ti
o
n
s

s6

s2 s5

s3 s4

Figure 8: Tree-structured environment. Each node represents a reachable state and showing possible
transitions by taking the up or down action.

B Model-based Empowerment

The approach we described in the main text was ’model-free’ in the sense that it did not use a model
of the transition dynamics of the environment. Building accurate transition models can be hard and
much success in RL has been achieved with model-free methods. Ideally, we would like to use
a model-based method, since this will allow for reasoning about task-independent aspects of the
world, allow for transfer learning across domains and potentially faster learning. We describe here
model-based approaches that we developed for empowerment. These methods were not as efficient
for reasons which we describe below, and hence were not part of our main text.

10



B.1 Importance Sampling Estimator

The most-generic model-based empowerment method is to approximate the empowerment using
generic importance-sampling estimator. We assume that a model of the environment p(s′|ai, s) is
available, but at this point will not specify how this model is obtained.

We generate S samples ai from the source distribution ωt(a|s) with importance weights αt,i (
∑

i αt,i = 1, αt,i > 0∀i = 1 . . . S ) at iteration t,

{ai, αt,i} ∼ ω
t(a|s). (11)

The samples ai are kept constant through the optimization and only the importance weights are
adapted to maximize the MI. Additionally, for each action-sequence sample ai we generate J future-
state samples s′k,i from the transition model p(s′|ai, s),

s′k,i ∼ p(s
′|ai, s)∀i = 1 . . . S, k = 1 . . . J. (12)

We could approximate all quantities required to compute the MI from the samples ai and s′k,i, but we

shall instead, directly approximate the Blahut-Arimoto iteration. For this we compute a distortion
Dt,i at the t-th iteration using:

Dt,i ≈
1

J

J
∑

k=1

ln
p(s′k,i|ai)

pt(s′k,i)
, (13)

where pt(s
′) =

∑

i p(s
′|ai, s)αt,i and find a new set of normalized weights αt+1,i such that

ωt+1(a|s) best approximates the Blahut-Arimoto update. This yields a simple update rule for the
importance weights,

lnαt+1,i = lnαt,i +Dt,i − ct+1, (14)

where ct+1 =
∑

i αt,i expDt,i is a normalizing constant. The algorithmic complexity of the update

(14) is O(S), but the cost of computing the distortion (13) scales as O(JS2). This approach is
applicable to the continuous domain, but typically requires a large number of samples for accurate
estimation of the empowerment.

B.2 Efficient Optimisation

In the case of smooth transition models p(s′|ai, s) and policy ωθ(a|s), a more efficient algorithm can
be derived using stochastic backpropagation [2, 1] in which we rewrite both the model and policy
as s′ = f(ai, s, ξm) and a = hθ(s, ξp) where ξm, ξp ∼ N (0, I) and f and h are differentiable func-
tions. Using this representation, we can rewrite the variational objective function 4 as an expectation
under ξm, ξp:

Iω,q(s) = Eξm,ξp [log qξ(hθ(s, ξp)|f(hθ(s, ξp), s, ξm), s)− logωθ(hθ(s, ξp)|s)] (15)

The reparametrised bound 15 can now be optimized with respect to the parameters θ of the policy
using stochastic gradient ascent.

C Deriving the Blahut-Arimoto Iterations from the Variational Bound

Here we show that the Blahut-Arimoto algorithm can be derived from the variational bound (8).
The variational distribution q(a|s′, s) that maximises the bound (8) is the posterior distribution over
actions given present and future states,

q⋆(a|s′, s) = p(a|s′, s) ∝ p(s′|a, s)ω(a|s). (16)

The Blahut-Arimoto algorithm is obtained by replacing equation (16) in equation (10) and rearrang-
ing the terms:

ωt+1(a|s) ∝ exp
(

βEp(s′|s,A)[ln qt(a|s, s
′)]
)

∝ exp
(

βEp(s′|s,A)[ln pt(a|s
′, s)]

)

∝ exp

(

βEp(s′|s,A)

[

ln
p(s′|a, s)ωt(a|s)

pt(s′|s)

])

∝ ωt(a|s) exp

(

βEp(s′|s,A)

[

ln
p(s′|a, s)

pt(s′|s)

])

. (17)
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D Neural Network Description

D.1 State representation using convolutional networks

For observations that are images, we make use of a convolutional network to obtain a state rep-
resentation. We use the same convolutional network for all experiments. After each convolution
we apply a rectified non-linearity. For all experiments , we make use a 10 filters for each layer of
the convolution. The first convolution consists of 4 × 4 kernels with a stride of 1, and the second
convolution consists of 3 × 3 kernels with a stride of 2. The output of the convolution is passed
through a fully connected layer with 100 hidden units, followed by a rectified non-linearity. This
100-dimensional representation is what forms the state representation s, s′ used for the variational
information maximisation components that follow this processing stage.

D.2 Parameterisation of other networks

We also use neural networks in the parameterisation of the decoder distribution qξ(a|s, s
′) and in

the directed model hθ(a|s). This distribution is of the form:

qξ(a|s
′, s) = q(a1|s, s

′)

K
∏

k=2

q(ak|fξ(ak−1, s, s
′)), (18)

where we must specify the form of the per action distributions q(ak). This distribution is Gaussian
distribution whose mean and variance are parameterised by a two-layer neural network:

q(ak) =N (ak|µξ(ak−1, s, s
′), σ2

ξ (ak−1, s, s
′)) (19)

µξ(ak−1, s, s
′) =g(Wµη + b) (20)

log σξ(ak−1, s, s
′) =g(Wση + b) (21)

η =ℓ(W2g(W1x+ b1) + b2) (22)

where η is a two-layer neural network which forms the shared component of the distribution. g(·) is
an element-wise non-linearity, which is the rectified non-linearity in our case: Rect(x) = max(0, x).
The scalar function ψθ(s), also is specified by a two-layer neural network.
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