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1. Introduction

In this paper, we general fifth-order boundary value problem

y(v)(x) = g(x)y + q(x) (1.1)

with boundary conditions

y(a) = A1, y′(a) = A2, y′′(a) = A3, y(b) = B1, y′(b) = B2, (1.2)

where y(x) and f(x, y) are real and as many times differentiable as required for x ∈ [a, b]; and

Ai, i = 1, 2, 3 and Bi, i = 1, 2 are real finite constants. This type of boundary value problems

arises in the mathematical modeling of the viscoelastic flows and other branches of mathemat-

ical, physical, and engineering sciences, see [1–7] and the references therein. Several numerical
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methods including spectral Galerkin and collocation, decomposition, and sixth-order B-spline

have been developed for solving fifth-order boundary value problems, see [1, 7] and the refer-

ences therein. The use of spline function in the context of fifth-order boundary value problems

was studied by Fyfe [3], who used the quintic polynomial spline functions to develop con-

sistency relation connecting the values of solution with fifth-order derivative at the respective

nodal points. He [8–18] developed the variational iteration method and homotopy perturba-

tion method for solving linear, nonlinear, initial, and boundary value problems. It is worth

mentioning that the origin of variational iteration method can be traced back to Inokuti et al.

[19], but the real potential of this technique was explored by He [13–18]. Moreover, He re-

alized the physical significance of the variational iteration method, its compatibility with the

physical problems and applied this promising technique to a wide class of linear and nonlin-

ear, ordinary, partial, deterministic, or stochastic differential equation; see [13–18]. The homo-

topy perturbation method [8–12, 17] was also developed by He by merging two techniques:

the standard homotopy and the perturbation. The homotopy perturbation method was for-

mulated by taking the full advantage of the standard homotopy and perturbation methods.

The variational iteration method and homotopy perturbation method have been applied to a

wide class of functional equations; see [4, 5, 8–36] and the references therein. In these meth-

ods, the solution is given in an infinite series usually converging to an accurate solution, see

[4, 5, 8–22, 25–36] and the references therein. In a later work, Ghorbani [23, 24] splits the non-

linear term into a series of polynomials calling them as He’s polynomials. Recently, Noor and

Mohyud-Din used homotopy perturbation, variational iteration, and the iterative methods [4–

6] for solving the fifth-order boundary value problems. The results are very encouraging and

reveal the complete reliability of the new algorithm.

Inspired and motivated by the ongoing research in this area, we use the variational iter-

ation method coupled with He’s polynomials for solving the fifth-order boundary value prob-

lems in this paper. It is worth mentioning that the proposed method is an elegant combination

of variational iteration and the homotopy perturbation methods and is mainly due to Ghor-

bani [23, 24]. The use of He’s polynomials in the nonlinear term was first introduced by Ghor-

bani, see [23, 24]. The proposed algorithm provides the solution in a rapid convergent series

which may lead the solution in a closed form. In this technique, the correction functional is

developed [13–22] and the Lagrange multipliers are calculated optimally via variational the-

ory. The use of Lagrange multipliers reduces the successive application of the integral operator

and the cumbersome of huge computational work, while still maintaining a very high level of

accuracy. Finally, He’s polynomials are introduced in the correction functional and the com-

parison of like powers of p gives solutions of various orders. The proposed iterative scheme

takes full advantage of variational iteration method and the homotopy perturbation method.

It is worth mentioning that the suggested method is applied without any discritization, restric-

tive assumption, or transformation and is free from round off errors. Unlike the method of

separation of variables that requires initial and boundary conditions, the method provides an

analytical solution by using the initial conditions only. The proposed method works efficiently

and the results so far are very encouraging and reliable. The fact that the proposed VIMHP

solves nonlinear problems without using Adomian’s polynomials can be considered as a clear

advantage of this method over the decompositionmethod. Several examples are given to verify

the reliability and efficiency of the algorithm.
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2. Variational iteration method

To illustrate the basic concept of the technique, we consider the following general differential

equation:

Lu +Nu = g(x), (2.1)

where L is a linear operator, N a nonlinear operator, and g(x) is the forcing term. According

to variational iteration method [5, 13–22, 25, 32–36], we can construct a correct functional as

follows:

un+1(x) = un(x) +

∫x

0

λ
(
Lun(s) +Nũn(s) − g(s)

)
ds, (2.2)

where λ is a Lagrange multiplier [13–19], which can be identified optimally via variational it-

eration method. The subscripts n denote the nth approximation, ũn is considered as a restricted

variation, that is, δũn = 0; and (2.2) is called as a correct functional. The solution of the linear

problems can be solved in a single iteration step due to the exact identification of the Lagrange

multiplier. The principles of variational iteration method and its applicability for various kinds

of differential equations are given in [13–19]. In this method, it is required first to determine

the Lagrange multiplier λ optimally. The successive approximation un+1, n ≥ 0 of the solution

u will be readily obtained upon using the determined Lagrange multiplier and any selective

function u0, consequently, the solution is given by

u = lim
n→∞

un. (2.3)

For the convergence and error estimates of variational iteration method, see Ramos [35].

3. Homotopy perturbation method

To explain the homotopy perturbation method, we consider a general equation of the type

L(u) = 0, (3.1)

where L is an integral or differential operator. We define a convex homotopyH(u, p) by

H(u, p) = (1 − p)F(u) + pL(u), (3.2)

where F(u) is a functional operator with known solutions v0, which can be obtained easily. It

is clear that for

H(u, p) = 0, (3.3)

we have

H(u, 0) = F(u), H(u, 1) = L(u). (3.4)
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This shows that H(u, p) continuously traces an implicitly defined curve from a starting point

H(v0, 0) to a solution function H(f, 1). The embedding parameter monotonically increases

from zero to unit as the trivial problem F(u) = 0 is continuously deforms the original problem

L(u) = 0. The embedding parameter p ∈ (0, 1] can be considered as an expanding parameter

[3, 8–11, 23, 24]. The homotopy perturbation method uses the homotopy parameter p as an

expanding parameter [4, 8–12, 23, 24, 27–31] to obtain

u =
∞∑

i=0

piui = u0 + pu1 + p2u2 + p3u3 + · · · . (3.5)

If p → 1, then (3.5) corresponds to (3.2) and becomes the approximate solution of the form

f = lim
p→1

u =
∞∑

i=0

ui. (3.6)

It is well known that series (3.6) is convergent for most of the cases and also the rate of con-

vergence depends upon L(u); see [4, 8–12, 23, 24, 27–31]. We assume that (3.6) has a unique

solution. The comparisons of like powers of p give solutions of various orders.

4. Variational iteration method using He’s polynomials (VIMHP)

To illustrate the basic concept of the variational homotopy perturbation method, we consider

the following general differential equation:

Lu +Nu = g(x), (4.1)

where L is a linear operator,N a nonlinear operator, and g(x) is the forcing term. According to

variational iteration method [5, 6, 13–22, 25, 26, 32–36], we can construct a correct functional

as follows:

un+1(x) = un(x) +

∫x

0

λ(ξ)
(
Lun(ξ) +Nũn(ξ) − g(ξ)

)
dξ, (4.2)

where λ is a Lagrange multiplier [13–19], which can be identified optimally via variational it-

eration method. The subscripts n denote the nth approximation, ũn is considered as a restricted

variation, that is, δũn = 0; and (4.2) is called as a correct functional. Now, we apply the homo-

topy perturbation method

∞∑

n=0

p(n)un = u0(x) + p

∫x

0

λ(ξ)

(
∞∑

n=0

p(n)L
(
un

)
+

∞∑

n=0

p(n)N
(
ũn

)
)
dξ −

∫x

0

λ(ξ)g(ξ)dξ, (4.3)

which is the coupling of variational iteration and He’s polynomials. The comparison of like

powers of p gives solutions of various orders.
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5. Numerical applications

In this section, we apply the variational iteration method using He’s polynomials (VIMHP) for

solving the fifth-order boundary value problems. We develop the correct functional and cal-

culate the Lagrange multipliers optimally via variational theory, which reduces the successive

application of the integral operator. The selection of initial value is done carefully because the

approximants are heavily dependant upon initial value. He’s polynomials are introduced in

the correct functional and finally, the comparison of like powers of p gives solutions of various

orders. Numerical results are very encouraging. For the sake of comparison, we take the same

examples as used in [4–7].

Example 5.1 (see [4–7]). Consider the following nonlinear boundary value problem of fifth-

order,

y(v)(x) = e−xy2(x) (5.1)

with boundary conditions

y(0) = y′(0) = y′′(0) = 1; y(1) = y′(1) = e. (5.2)

The exact solution for this problem is

y(x) = ex. (5.3)

The correct functional for the boundary value problem (5.1) and (5.2) is given as

yn+1(x) = yn(x) +

∫x

0

λ(s)

(
d5yn

dx5
− e−xỹ2

n(x)

)
ds. (5.4)

Making the correct functional stationary, using λ = (1/4!)(s − x)4, as the Lagrange multiplier

[13–18, 36], we get the following iterative formula:

yn+1(x) = yn(x) +

∫x

0

1

4!
(s − x)4

(
d5yn

dx5
− e−xỹ2

n(x)

)
ds,

yn+1(x) = 1 + x +
1

2!
x2 +

1

3!
Ax3 +

1

4!
Bx4 +

∫x

0

1

4!
(s − x)4

(
d5yn

dx5
− e−xỹ2

n(x)

)
ds,

(5.5)

where

A = y′′′(0), B = y(iv)(0). (5.6)

Applying the variational iteration method using He’s polynomials,

y0 + py1 + p2y2 + · · · = 1 + x +
1

2!
x2 +

1

3!
Ax3 +

1

4!
Bx4

+ p

∫x

0

1

4!
(s − x)4

(
d5y0

dx5
+ p

d5y1

dx5
+ p2

d5y2

dx5
+ p3

d5y3

dx5
+ · · ·

)
ds

− p

∫x

0

1

4!
(s − x)4e−x

(
ỹ0 + pỹ1 + p2ỹ2 + · · ·

)2
ds.

(5.7)
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Comparing the coefficient of like powers of p, consequently, we obtain the following approxi-

mants:

p(0):y0(x) = 1,

p(1):y1(x) = 1 + x2 +

(
1

6
A −

1

6

)
x3 +

(
1

24
B +

1

24

)
x4

− e−x,

p(2):y2(x) = 1 + x2 +

(
1

6
A −

1

6

)
x3 +

(
1

24
B +

1

24

)
x4

− e−x + 70A + 140B +
2111

16

−

(
575

8
+ 40A + 70B + (60 + 30A + 70B)e−x

)
x

+

(
143

8
+ 10A + 15B − (12 + 5A + 15B)e−x

)
x2

−

(
31

12
+
4

3
A +

5

3
B +

(
4

3
+
1

3
A +

5

3
B

)
e−x

)
x3

+

(
5

24
+

1

12
A +

1

12
B −

(
1

12
+

1

12
B

)
e−x

)
x4

×
(
(132 + 70A + 140B)e−x

)
+

1

16
e−2x,

...

(5.8)

The series solution is given as

y(x) = 1 + x +
1

2
x2 +

1

6
Ax3 +

1

24
Bx4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

(
1

20160
A −

1

40320

)
x8

+

(
1

18144
−

1

362880

)
x9 +

1

3628800
x10 +

(
1

995840
A2

−
1

997920
A +

1

1900800

)
x11

+

(
−

1

3421440
A2 +

1

2280960
A −

1

6842880
B +

1

6842880
AB −

101

479001600

)
x12 +O

(
x13).

(5.9)

Imposing the boundary conditions at x = 1 and using y(1) = y′(1) = e leads to the following

system:

32863

197120
A +

1996097

47900160
B +

1

4790016
A2 +

1

6842880
AB = e −

1202243083

479001600
,

285343

570240
A +

665471

3991680
B +

1

498960
A2 +

1

570240
AB = e −

2729207

1330560
.

(5.10)

The solution of the above system gives

A = 0.9999967742, B = 1.0000145020. (5.11)
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Table 1: Error estimates.

x Exact solution
∗Errors

HPM B-spline VIM ADM ITM VIMHP

0.0 1.000000000 0.000 0.0000 0.000 0.000 0.000 0.000

0.1 1.105170918 1.0E–9 –7.0E–4 1.0E–9 1.0E–9 1.0E–9 1.0E–9

0.2 1.221402758 2.0E–9 –7.2E–4 2.0E–9 2.0E–9 2.0E–9 2.0E–9

0.3 1.349858808 1.0E–8 4.1E–4 1.0E–8 1.0E–8 1.0E–8 1.0E–8

0.4 1.491824698 2.0E–8 4.6E–4 2.0E–8 2.0E–8 2.0E–8 2.0E–8

0.5 1.648721271 3.1E–8 4.7E–4 3.1E–8 3.1E–8 3.1E–8 3.1E–8

0.6 1.822118800 3.7E–8 4.8E–4 3.7E–8 3.7E–8 3.7E–8 3.7E–8

0.7 2.013752707 4.1E–8 3.9E–4 4.1E–8 4.1E–8 4.1E–8 4.1E–8

0.8 2.225540928 3.1E–8 3.1E–4 3.1E–8 3.1E–8 3.1E–8 3.1E–8

0.9 2.459603111 1.4E–8 1.6E–4 1.4E–8 1.4E–8 1.4E–8 1.4E–8

1.0 2.718281828 0.000 0.000 0.000 0.000 0.000 0.000
∗

Error = exact solution − series solution.

Consequently, the series solution is given as

y(x) = 1 + x + 0.5x2 + 0.166666236x3 + 0.04166727092x4 + 0.008333333333x5 + 0.00138888888x6

+ 0.000198412x7 + 0.00002480142729x8 + 0.00005236x9 + 0.000000275x10

− 0.00000898x11
− 0.000000064x12 +O(x13),

(5.12)

which is in full agreement with [4–7].

Table 1 shows the exact values and the errors obtained by using the homotopy per-

turbation method (HPM) [4], variational iteration method (VIM) [5], decomposition method

(ADM) [7], the sixth degree B-spline method [1], iterative method (ITM) [6], and the varia-

tional iteration method using He’s polynomials (VIMHP) for x = 0.0, 0.1, 0.2, . . . , 1.0. The table

clearly indicates the improvements as compared with B-spline method. Higher accuracy can

be obtained by evaluating more components of y(x).

Remark 5.2. The numerical results clearly indicate that the results obtained by HPM, VIM,

ADM, ITM, and the proposed VIMHP are the same. Moreover, it shows the improvements

as compare to B-spline method.

Example 5.3 (see [4–7]). Consider the following linear boundary value problem of fifth-order:

y(v)(x) = y − 15ex − 10xex (5.13)

with boundary conditions

y(0) = 0, y′(0) = 1, y′′(0) = 0; y(1) = 0, y′(1) = −e. (5.14)

The exact solution of the problem is

y(x) = x (1 − x) ex. (5.15)
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The correct functional for the boundary value problem (5.13) and (5.14) is given as

yn+1(x) = yn(x) +

∫x

0

λ(s)

(
d5yn

dx5
−
(
ỹn(x) − 15ex − 10xex

))
ds. (5.16)

Making the correct functional stationary, using λ = (1/4!)(s − x)4, as the Lagrange multiplier

[13–18, 36], we get the following iterative formula:

yn+1(x) = yn(x) +

∫x

0

1

4!
(s − x)4

(
d5yn

dx5
−
(
ỹn(x) − 15ex − 10xex

))
ds,

yn+1(x) = x +
1

3!
Ax3 +

1

4!
Bx4 +

∫x

0

1

4!
(s − x)4

(
d5yn

dx5
−
(
ỹn(x) − 15ex − 10xex

))
ds,

(5.17)

where

A = y′′′(0), B = y(iv)(0). (5.18)

Applying the variational iteration method using He’s polynomials,

y0 + py1 + p2y2 + · · · = x +
1

3!
Ax3 +

1

4!
Bx4

+ p

∫x

0

1

4!
(s − x)4

(
d5y0

dx5
+ p

d5y1

dx5
+ p2

d5y2

dx5
+ p3

d5y3

dx5
+ · · ·

)
ds

+ p

∫x

0

1

4!
(s − x)4

(
15ex + 10xex −

(
ỹ0 + pỹ1 + p2ỹ2 + · · ·

))
ds.

(5.19)

Comparing the coefficient of like powers of p, consequently, we obtain the following approxi-

mants:

p(0):y0(x) = −35 − 24x −
15

3
x2 +

(
1

6
A −

5

6

)
x3 +

(
5

24
+

1

24
B

)
x4 + (35 − 10x)ex,

p(1):y1(x) = −120 − 99x − 40x2 +

(
1

6
A − 10

)
x3 +

(
−
40

24
+

1

24
B

)
x4

−
7

24
x5

−
1

30
x6

−
1

336
x7 +

(
1

40320
A −

1

8064

)
x8

+

(
1

362880
B +

1

72576

)
x9 + (120 − 20x)ex,

p(2):y2(x) = −255 − 224x −
195

2
x2 +

(
1

6
A −

55

2

)
x3 +

(
−
135

24
+

1

24
B

)
x4

− x5
−

63

1440
x6

−
26

1008
x7 +

(
1

40320
A −

12

8064

)
x8

+

(
1

362880
B −

8

72576

)
x9

−
1

103680
x10

−
1

166320
x11

−
1

31933440
x12 + (255 − 30x)ex + · · · ,

...

(5.20)
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Table 2: Error estimates.

x Exact solution
∗Errors

HPM B-spline VIM ADM ITM VIMHP

0.0 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.099465 –3E–11 –8.0E–3 –3E–11 –3E–11 –3E–11 –3E–11

0.2 0.195424 –2E–10 –1.2 E–3 –2E–10 –2E–10 –2E–10 –2E–10

0.3 0.283470 –4E–10 –5.0 E–3 –4E–10 –4E–10 –4E–10 –4E–10

0.4 0.358038 –8E–10 3.0 E–3 –8E–10 –8E–10 –8E–10 –8E–10

0.5 0.412180 –1.2E–9 8.0 E–3 –1.2E–9 –1.2E–9 –1.2E–9 –1.2E–9

0.6 0.437309 –2E–9 6.0 E–3 –2E–9 –2E–9 –2E–9 –2E–9

0.7 0.422888 –2.2E–9 –0.000 –2.2E–9 –2.2E–9 –2.2E–9 –2.2E–9

0.8 0.356087 –1.9E–9 9.0 E–3 –1.9E–9 –1.9E–9 –1.9E–9 –1.9E–9

0.9 0.221364 –1.4E–9 –9.0E–3 –1.4E–9 –1.4E–9 –1.4E–9 –1.4E–9

1.0 0.000000 0.000 0.000000 0.000 0.000 0.000 0.000
∗

Error = exact solution − series solution.

The series solution is given as

y(x) = x +
1

6
Ax3 +

1

24
Bx4

−
1

8
x5

−
1

30
x6

−
1

144
x7 +

(
−

1

896
+

1

40320
A

)
x8

+

(
−

1

72576
+

1

362880
B

)
x9

−
1

45360
x10 +

1

403200
x11

−
1

3991680
x12

−
A

622702080
x12

−
1

44478720
x13

−

(
B

8717029120
−

1

544864320

)
x14 +O

(
x15).

(5.21)

Imposing the boundary conditions at x = 1 and using y(1) = y′(1) = −e leads to the following

system:

148284463

889574400
A +

15121

362880
B = −

648723077

778377600
,

239595841

479001600
A +

6721

40320
B = −e −

3468127

29937600
.

(5.22)

The solution of the above system gives

A = −2.99999988, B = −8.00000054. (5.23)

The series solution is given by

y(x) = x − 0.49999998x3
− 0.33333355x4

− 0.125x5
− 0.03333333x6

− 0.006944444x7

− 0.0011904762x8
− 0.0001736111x9

− 0.0000220458x10
− 0.000002488x11

− 0.000000244x12
− 0.000000022x13

− 0.000000001x14 +O
(
x15),

(5.24)

which is in full agreement with [4–7].

Table 2 shows the exact values and the errors obtained by using the homotopy perturba-

tionmethod (HPM)[4], variational iterationmethod (VIM) [5], decompositionmethod (ADM)
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[7], the sixth degree B-spline method [1], iterative method (ITM) [6], and the variational iter-

ation method using He’s polynomials (VIMHP) for x = 0.0, 0.1, 0.2, . . . , 1.0. The table clearly

indicates the improvements as compared with B-spline method. Higher accuracy can be ob-

tained by evaluating more components of y(x).

Remark 5.4. The numerical results clearly indicate that the results obtained by HPM, VIM,

ADM, ITM, and the proposed VIMHP are the same. Moreover, it shows the improvements

as compare to B-spline method.

6. Conclusions

In this paper, we applied the variational iteration method using He’s polynomials (VIMHP)

for finding the solution of boundary value problems of fifth-order. The method is applied in

a direct way without using linearization, transformation, discretization, or restrictive assump-

tions. It may be concluded that VIMHP is very powerful and efficient in finding the analytical

solutions for a wide class of boundary value problems. The method gives more realistic se-

ries solutions that converge very rapidly in physical problems. It is worth mentioning that

the method is capable of reducing the volume of the computational work as compared to the

classical methods while still maintaining the high accuracy of the numerical result, the size

reduction amounts to the improvement of performance of approach. The fact that the VIMHP

solves nonlinear problems without using Adomian’s polynomials is a clear advantage of this

technique over the decomposition method.
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