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	e variational iteration method (VIM) is applied to solve the boundary layer problem of magnetohydrodynamic 
ow over a
nonlinear stretching sheet. 	e combination of the VIM and the Padé approximants is shown to be a powerful method for solving
two-point boundary value problems consisting of systems of nonlinear di�erential equations. And the comparison of the obtained
results with other available results shows that the method is very e�ective and convenient for solving boundary layer problems.

1. Introduction

It is well known that most of the phenomena that arise in
mathematical physics and engineering �elds can be described
by partial di�erential equations. Recent advances of partial
di�erential equations are stimulated by new examples of
applications in 
uid mechanics, viscoelasticity, mathematical
biology, electrochemistry, and physics. 	ere are many tra-
ditional and recently developed methods to give numerical
and analytical approximate solutions of nonlinear di�eren-
tial equations such as Euler method, Runge-Kutta method,
Taylor series method, Adomian decomposition method [1],
Variational iteration method [2, 3], Hankel-Padé method [4],
DTM-Padé method [5], homotopy perturbation method [6],
and Hamiltonian method [7].

In this paper, we consider the model proposed by authors
in [1] describing the problem of the boundary layer 
ow of
an incompressible viscous 
uid over a nonlinear stretching
sheet. 	e boundary layer 
ow is o�en encountered in many
engineering and industrial processes. Such processes include
the aerodynamic extrusion of plastic sheets, hot rolling, glass
�ber production, and so on [1, 4, 5]. And various aspects
of the stretching 
ow problem were discussed by various

investigators. Chiam [8] analyzed the MHD 
ow of a viscous

uid bounded by a stretching surface with power law velocity.
He presented the numerical solution of the boundary value
problem by utilizing the Runge-Kutta shooting algorithm
with Newton iteration. Here, we aim to solve the MHD 
ow
caused by a sheet with nonlinear stretching.	e approximate
solution of the nonlinear problem is obtained by the varia-
tional iteration method.

	e variational iteration method [2] is a type of Lagrange
multiplier method to �nd analytical solutions. 	e method
gives the possibility to solve many kinds of non linear
equations. In this method, general Lagrange multipliers
are introduced to construct correction functional for the
problems. 	e multipliers can be identi�ed optimally via
variational theory. It has been used to solve e�ectively, easily,
and accurately a large class of nonlinear problems with
approximation [9].

2. Basic Idea of the VIM

	e basic idea was systematically illustrated and discussed in
[9, 10]. To illustrate the basic idea of the VIM, we consider the
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following general nonlinear system:

� [� (�)] + � [� (�)] = � (�) , (1)

where �, �, and �(�) are the linear operator, the nonlinear
operator, and a given continuous function, respectively. 	e
basic character of the method is to construct a correction
functional for the system, which reads

��+1 (�) = �� (�) + ∫�
0
� (	) [��� (	) + ��̃� (	) − � (	)] 	,

(2)

where � is a Lagrange multiplier which can be identi�ed
optimally via the variational theory.	e subscript � indicates
the �th approximation, and �̃� denotes a restricted variation,
that is, ��̃� = 0.
3. Problem Statement and

Governing Equations

We consider the magnetohydrodynamic (MHD) 
ow of an
incompressible viscous 
uid over a stretching sheet at � =0. 	e 
uid is electrically conducting under the in
uence
of an applied magnetic �eld �(�) normal to the stretching
sheet. 	e induced magnetic �eld is neglected. 	e resulting
boundary layer equations are as follows [1]:

���� + �V�� = 0, (3)

����� + V

���� = ]

�2���2 − ��2 (�)� �, (4)

where � and V are the velocity components in the � and �
directions, respectively, ] is the kinematic viscosity, � is the

uid density, and � is the electrical conductivity of the 
uid.
In (4), the external electric �eld and the polarization e�ects
are negligible, and in [8]

� (�) = �0�(�−1)/2. (5)

	e boundary conditions corresponding to the nonlinear
stretching of a sheet are

� (�, 0) = ���, V (�, 0) = 0,
� (�, �) �→ 0 as � �→ ∞. (6)

Upon making use of the following substitutions:

� = √ � (� + 1)2] �(�−1)/2�, � = ����� (�) , (7)

V = −√�] (� + 1)2 �(�−1)/2 [� (�) + � − 1� + 1��� (�)] , (8)

Substituting (8) into (3)–(6), the resulting nonlinear di�eren-
tial system can be written in the following form:

���� + ���� − "��2 −#�� = 0, (9)

� (0) = 0, �� (0) = 1, �� (∞) = 0, (10)

where

" = 2�1 + � , # = 2��20�� (1 + �) . (11)

	e parameter " is a measure of the pressure gradient,
and # is the magnetic parameter. Positive " denotes the
favorable negative pressure gradient, and negative " denotes
the unfavorable positive pressure gradient; naturally, " = 0
denotes the 
at plate. For the special case of " = 1, the exact
analytical solution of (9) is [11]

� (�) = 1 − exp (−√1 +#�)
√1 +# . (12)

4. Approximate Solution by the VIM

In order to obtain VIM solution of (9), we construct a
correction functional which reads

��+1 (�)
= �� (�) + ∫�

0
� (') [�3�� (')�'3 + �̃� (') �

2�̃� (')�'2 − "

× (��̃� (')�' )2 −#��̃� (')�' ]
]
',

(13)

where �(') is the general Lagrangian multiplier which can be

identi�ed optimally via the variational theory. And �̃�(') is
considered as a restricted variation, that is, ��̃�(') = 0. We
omit asterisks for simplicity. Its stationary conditions can be
obtained as follows:

1 + ��� (')55555�=� = 0, �� (')55555�=� = 0, ���� (') = 0.
(14)

	e Lagrange multipliers can be readily identi�ed as the
following form:

� (') = −12(' − �)2. (15)

As a result, we obtain the following variational iteration
formula

��+1 (�)
= �� (�) − 12 ∫�

0
(' − �)2 [�3�� (')�'3 + �̃� (') �

2�̃� (')�'2 − "

× (��̃� (')�' )2 −#��̃� (')�' ]
]
'.
(16)

Now, we assume that an initial approximation

�0 (�) = 7 + 8� + ��2. (17)
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where 7, 8, and � are unknown constants to be further
determined.

By the iteration formula (16) and the initial approxima-
tion (17), we can obtain directly the �rst-order approximate
solution as follows:

�1 (�) = �0 (�) − 12 ∫�
0
(' − �)2

× [�3�0 (')�'3 + �0 (') �2�0 (')�'2
−"(��0 (')�' )2 −#��0 (')�' ] '

= 7 + 8� + ��2 − �230�5 + 8#6 �3 + �#12 �4�5

+ "826 �3 + "�215 − 7�3 �3 − 8�12�4 + 8�"6 �4

= 7 + 8� + ��2 + 8# + "82 − 27�6 �3

+ �# + 8� (2" − 1)12 �4 + (2" − 1) �230 �5.
(18)

Making use of the initial conditions �(0) = 0, ��(0) = 1, we
can readily obtain the results as follows:

7 = 0, 8 = 1, � = 12��� (0) , (19)

where ���(0) = @ will be examined in this work, according
the initial condition ��(∞) = 0.

	en,

�1 (�) = � + 12@�2 + # + "6 �3 + @ (# + 2" − 1)24 �4

+ (2" − 1) @2120 �5.
(20)

And the following second-order approximate solution can be
obtained

�2 (�) = �1 (�) − 12 ∫�
0
(' − �)2

× [�3�1 (')�'3 + �1 (') �2�1 (')�'2
−"(��1 (')�' )2 −#��1 (')�' ] '

= � + 12@�2 + # + "6 �3 + @ (# + 2" − 1)24 �4

+ [(2" − 1) @2120 + "260 + "#40 − 160 + #2120 − #60] �5

+ ("2@72 + "#@72 − "@60 + #2@720 − #@90 + @240) �6

+ ( "3840 + "2#420 + "2@2252 − "21260 + "#2840 + "#@2504
−"#630 − 2"@2315 − #21260 − #@2630 + 11@25040) �7

+ ( "3@1008 + "2#@672 + "2@32016 − 5"2@4032 + "#2@2016
− 13"#@8064 − 7"@31260 + "@2688 − #2@2688 + #@2688
+ 11@340320) �8

+ ("3@22592 + "2#@22592 − 37"2@260480 + "#2@218144
− 13"#@225920 + 53"@2181440 − #2@224192 + #@26480
− @224192) �9

+ ( "3@312960 + "2#@325920 − "2@37200 − 13"#@3259200
+ 7"@386400 + #@364800 − @364800) �10

+ ( "3@4142560 − "2@479200 + 7"@4950400 − @4712800) �11.
(21)

	erefore, according to (13), we can easily obtain higher-
order approximate solution as follows:

� (�) = G0 + G1� + G2�2 + G3�3 + G4�4 + G5�5 + ⋅ ⋅ ⋅ , (22)

by using mathematical so�ware such as MATLAB.
It is evident that the main problem for solving (21) is to

obtain the value of���(0), thenwe can resort to any numerical
integration routine to obtain the solution of the problem. For
this purpose, we will employ the Padé method to determine
this unknown value with high accuracy.

5. Padé Approximation

It is well known that Padé approximations [12] have the
advantage of manipulating the polynomial approximation
into a rational function of polynomials. 	is manipulation
provides us with more information about the mathematical
behavior of the solution. Besides that, power series are not
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Table 1: Comparison of the values of ���(0) obtained by the
variational iteration method and other methods [1] for various
values ofM when " = 1.
# VIM ADM [1] Exact [1]

1.0 −1.41421 −1.41421 −1.41421
5.0 −2.44948 −2.44948 −2.44948
10.0 −3.31662 −3.31662 −3.31662
50.0 −7.14142 −7.14142 −7.14142
100.0 −10.04987 −10.04987 −10.04987
500.0 −22.38302 −22.38302 −22.38302
Table 2: Comparison of the values of ���(0) obtained by the varia-
tional iteration method and the modi�ed Adomian decomposition
method [1] for various values of " andM.

# " = −1.5 " = 1.5 " = 5
VIM ADM [1] VIM ADM [1] VIM ADM [1]

1.0 −0.6530 −0.6532 −1.5253 −1.5252 −2.1529 −2.1528
5.0 −2.0852 −2.0852 −2.5162 −2.5161 −2.9414 −2.9414
10 −3.0562 −3.0562 −3.3663 −3.3663 −3.6957 −3.6956
50 −7.0239 −7.0239 −7.1647 −7.1647 −7.3256 −7.3256
100 −9.9667 −9.9666 −10.0776 −10.0776 −10.1816 −10.1816
500 −22.3458 −22.3457 −22.3905 −22.3904 −22.4426 −22.4425

useful for large values of �, say � = ∞. 	is can be attributed
to the possibility that the radius of convergence may not be
su�ciently large to contain the boundaries of the domain.
	erefore, the combination of the series solution through
the decomposition method or any other series solution
method with the Padé approximation provides an e�ective
tool for handling boundary value problems on in�nite or
semi-in�nite domains. Furthermore, it is noted that Padé
approximants can be easily evaluated by using Matlab.

	erefore, we suppose that the solution �(�) can be
expanded as a Taylor series about � = 0

� (�) = ∞∑
�=0

����. (23)

Padé approximant, symbolized by [J/�], is a rational func-
tion de�ned by

[ J�] (�) = ∑	�=0 M���
∑
�=0 N��� . (24)

If we selected J = �, then the approximants [�/�]
are called diagonal approximants. More importantly, the
diagonal approximants are the most accurate approximants;
therefore, we have to construct only diagonal approximants.

	en,

M0 + M1� + M2�2 + M3�3 + ⋅ ⋅ ⋅ + M
�
N0 + N1� + N2�1 + N3�3 + ⋅ ⋅ ⋅ + N
�

= G0 + G1� + G2�2 + G3�3 + G4�4 + ⋅ ⋅ ⋅ .

(25)
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Figure 1: Comparison between the approximate solution by the
VIM and exact solution for " = 1 and# = 10.

By using cross multiplication in (25), we �nd

M0 + M1� + M2�2 + M3�3 + ⋅ ⋅ ⋅ + M
�

= G0N0 + (G1N0 + N1G0) � + (G2N0 + N1G1 + N2G0) �2
+ (G3N0 + N1G2 + N2G1 + N3G0) �3 + ⋅ ⋅ ⋅ .

(26)

Using the boundary condition ��(∞) = 0, the diagonal
approximant [�/�] vanishes if the coe�cient of � with the
highest power in the numerator vanishes. By putting the
coe�cients of the highest power of � equal to zero, we can
easily obtain the values of ���(0) listed in Tables 1 and 2
and Figure 1, using Matlab. 	e order of Padé approximation
[12/12] has su�cient accuracy; on the other hand, if the order
of Padé approximation increases, the accuracy of the solution
increases.

Substituting (21) and the value of ���(0) into (8), we can
easily obtain the second-order approximate solution of (3)-
(4).

6. Conclusion

In this paper, the variational iteration method is used
to obtain approximate solutions of magnetohydrodynamics
boundary layer equations. 	e analytical solutions of the
governing nonlinear boundary layer problem are obtained.
Without using the Padé approximation, the analytical solu-
tion that were obtained by the VIM cannot satisfy the
boundary condition at in�nity ��(∞) = 0. 	e combination
of the VIM and the Padé approximants is shown to be
a powerful method for solving two-point boundary value
problems consisting of systems of nonlinear di�erential
equations. And the obtained solutions are in good agreement
with exact values.
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