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ABSTRACT
Efficiently identifying the most important communities and key transition nodes in weighted and unweighted networks is a prevalent problem
in a wide range of disciplines. Here, we focus on the optimal clustering using variational kinetic parameters, linked to Markov processes
defined on the underlying networks, namely, the slowest relaxation time and the Kemeny constant. We derive novel relations in terms of mean
first passage times for optimizing clustering via the Kemeny constant and show that the optimal clustering boundaries have equal round-trip
times to the clusters they separate. We also propose an efficient method that first projects the network nodes onto a 1D reaction coordinate
and subsequently performs a variational boundary search using a parallel tempering algorithm, where the variational kinetic parameters act
as an energy function to be extremized. We find that maximization of the Kemeny constant is effective in detecting communities, while the
slowest relaxation time allows for detection of transition nodes. We demonstrate the validity of our method on several test systems, including
synthetic networks generated from the stochastic block model and real world networks (Santa Fe Institute collaboration network, a network
of co-purchased political books, and a street network of multiple cities in Luxembourg). Our approach is compared with existing clustering
algorithms based on modularity and the robust Perron cluster analysis, and the identified transition nodes are compared with different notions
of node centrality.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0105099

I. INTRODUCTION

Networks1–8 (or graphs) are a powerful tool to model systems
of many variables, with complex patterns of interactions. Exam-
ples are found in virtually every field, ranging from biology9–14 to
finance,15–18 social sciences19–25 to law,26,27 and literature.28,29

Coarse-grained representations of large complex networks are
often used to gain intuition, which usually require the identification
of clusters (or communities).30–34 Algorithms for cluster detection
in unweighted networks typically rely on topological features of
the network, i.e., they depend only on the usually static connec-
tion patterns and not on the processes that are taking place in
the networks. Exact approaches consider all the different parti-
tions into subnetworks and optimize suitable quantities, such as

the so-called modularity.35,36 However, these scale poorly with the
size of the system: when clustering a network with N nodes into
a coarse-grained one with m nodes, there are mN possible par-
titions. Many clustering problems, therefore, require a search in
an exponentially increasing space with the system size, leading to
non-deterministic polynomial-time (NP) hard problems.37,38 Local,
incremental, and/or deterministic search algorithms, therefore, may
be unable to identify the global optimum, such as most versions of
the popular k-means clustering,39 and thus more advanced global
search algorithms are needed.

Such complexity also arises when performing kinetic cluster-
ings of Markov processes. These are memoryless dynamical pro-
cesses evolving on a finite set of states, which can be seen as
weighted networks, where the nodes represent the Markov states
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and the edge weights are given by the transition rates. In molecular
sciences, the states of such kinetic networks typically represent
selected conformational states of the system, e.g., local minima
and saddle points of an energy landscape, and transition rates
between them are defined in terms of their energy barriers.30,40–45

More recently, such dynamical networks are derived from molec-
ular dynamics (MD) simulations by defining appropriate Markov
State Models (MSMs).46–50 Markov processes have recently become
a prominent tool for modeling and interpreting large simulation
data-sets of complex kinetic systems in many other domains of
academia and industry.51–53

Different coarse-graining techniques can be used to reduce the
dimensionality of MSMs. One option is to group microstates of the
system (nodes) together into macrostates (clusters). These clusters
are normally taken as the metastable states of the system, i.e., sets
of microstates between which the system is slow to move. Hence,
many algorithms for kinetic clustering are related to maximizing the
metastability of the clusters.54–65 Alternative approaches can be used,
e.g., spectral matching.66,67

In this work, we focus on optimal coarse-graining based on
lumping microstates into clusters. Such clusters are then used to
define coarse-grained versions of the original system, where the
nodes (or states) are the clusters and the original kinetics is approx-
imated by effective transitions between clusters.68 This leads to a
transition rate matrix in coarse-grained space, whose eigenvalues
and eigenvectors will differ from those of the original transition
matrix, thus resulting in different kinetics. An alternative to maxi-
mizing the metastability of the clusters is to maximize the timescales
of the eigenprocesses in the clustered system, aiming to variationally
preserve the slowest relaxation times.

The Kemeny constant69 describes the expected time to reach
any target microstate, averaged over all microstates. It can be
expressed as the sum of the timescales of all the eigenprocesses,
defined by the eigenvalues of the transition rates matrix. It was
shown that a coarse-grained MSM satisfies a variational principle
with respect to the Kemeny constant.70 Hence, the Kemeny constant
is an obvious candidate as a variational parameter to be maximized
when performing clustering, as conjectured in recent literature.71–73

In addition to clusters, the notion of transition states (TS) is
of particular importance in the context of MSMs: these are bottle-
neck states that the system passes through while moving between
the metastable clusters. A related notion in network science is
the one of node centrality. Different measures of node centrality
have been introduced to characterize nodes linking between two
or more clusters, e.g., betweeness74 and closeness75 centrality; how-
ever, these are based on topological features of the network and
disregard kinetics information, and hence their use to automati-
cally identifying transition states in kinetic and, more in general,
weighted networks, remains unclear. In earlier work, it was demon-
strated that the slowest timescale in kinetic networks can be used as
a variational parameter for finding transition states effectively;76,77

however, the algorithm developed in Ref. 76 was inefficient when
scaled to high-dimensional systems.

In this work, building on the framework developed in Refs. 70
and 76, we propose a new clustering method based on the optimiza-
tion of the Kemeny constant of the coarse-grained system, which
satisfies a variational principle with respect to the original dynamics
and is effective in finding metastable clusters. We derive properties

of the optimal boundary positions in terms of mean first passage
times (MFPTs). We find that in the optimal clustering of large com-
plex networks each node belongs to its nearest cluster measured via
round-trip times distance.

Our novel implementation aims at accelerating the search for
optimal clustering using parallel tempering,78–80 which is an effi-
cient global and stochastic optimization based on interpreting the
target function to optimize as a physical energy and coupling the
optimization process to several artificial heat baths in parallel.81,82

Our algorithm can similarly be applied to optimize other objective
functions, including the slowest timescale used in Ref. 76 to detect
transition states. In this way, we provide a computationally efficient
way to automatically detect communities as well as transition clus-
ters in complex networks, based on kinetic properties of network
processes.

In Sec. II, we lay down the theoretical framework of the present
work by describing the concepts of network clustering for kinetic
and unweighted networks. In Sec. III, we present new analytical
expressions for the derivative of the Kemeny constant with respect
to the cluster boundary positions for arbitrary number of states
and show that the optimal boundaries correspond to equal round-
trip times between the clusters they separate. We also present a
clustering algorithm, which we name the “parallel tempering vari-
ational clustering” (PTVC), for optimizing clusters using arbitrary
objective functions on complex networks, based on the parallel tem-
pering method used in statistical physics. Finally, in Sec. III D,
we compare clustering resulting from optimizing different objec-
tive functions, i.e., modularity, stability, and Kemeny constant, as
well as using the Perron cluster analysis on synthetic and real-world
networks.

II. THEORY
A. Clustering in complex networks

When working with large or complex networks, one often
encounters problems with visualization and interpretation of obser-
vations due to the absence of a low dimensional space to project
the graph onto. Often, it is helpful to convert a large network into
a smaller one, while preserving the features of interest from the
original network. This conversion is known as network cluster-
ing,83 coarse-graining,84 or graph partitioning85 and is equivalent to
assigning each node of the graph to a community (cluster).86

The clustering of an N-node network into m clusters can be
formally defined by a rectangular N ×m crisp assignment matrix
S, where each entry SiI ∈ {0, 1} indicates whether (1) or not (0)
node i ∈ {1, . . . , N} belongs to cluster I ∈ {1, . . . , m}, satisfying
∑

m
I=1SiI = 1.

Choosing S optimally usually entails maximizing or minimiz-
ing a certain objective function, which depends on the partitioning
itself. It has been widely accepted that the objective function to
use depends on the system modeled by the network and the exact
task at hand; hence, many metrics have been introduced to quan-
tify clustering quality,87,88 which can be separated into two classes:
topology-based and kinetics-based. Kinetic clustering uses kinetic
properties of Markov processes, and it is widely used to clus-
ter kinetic networks, whereas topology-based clustering relies on
structural properties of the network and it is more common with
unweighted networks.
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1. Kinetic networks
Any finite Markov process can be modeled as a weighted

directed network, also called kinetic network, where nodes represent
the discrete states of the Markov process and edge weights represent
the transition rates between different states. The state occupancy
probabilities evolve according to the master equation, which relates
their rate of change to the difference in the probability flux in and
out of the states

dpj(t)
dt

= ∑
i(≠j)
[Kjipi(t) − Kijpj(t)], (1)

where pj(t) is the occupancy probability of state j and K ji is the tran-
sition rate from state i to state j, with K jj = −∑i(≠j)K ij being the rate
of exits from state j. Inserting this definition into Eq. (1) one arrives
at the matrix form

dp
dt
= Kp. (2)

All of the kinetic information of the system is encoded in the eigen-
values λn of the rate matrix K, where n ∈ {1, . . . , N} for a system with
N states, and their corresponding (right and left) eigenvectors.

If the Markov process is irreducible, one of the eigenvalues will
be zero and the rest will all have a negative real part. We will focus
on systems satisfying detailed balance, where the eigenvalues are
guaranteed to be real and can be ordered as follows:

0 = λ1 > λ2 ≥ ⋅ ⋅ ⋅ ≥ λN. (3)

From Eq. (2), it can be seen that the stationary (equilibrium) distri-
bution π is given by the right eigenvector corresponding to the zero
eigenvalue λ1. The other eigenvalues are related to the timescales τn
with which the rate matrix moves probability density between the
oppositely signed regions of the corresponding eigenvector89

τn = −
1
λn

n ∈ {2, . . . , N}. (4)

When the Markov process evolves at discrete times t = nτ
(n ∈ N), the evolution of the state occupancy probabilities is
formulated in terms of the Markov chain

p(n) =Mn
(τ)p(0), (5)

where p(n) is the probability at time step n and M(τ) is the
matrix of transition probabilities between pairs of states over the
lagtime τ. Trivially, Eq. (5) is equivalent to Eq. (2) when identifying
M(τ) = eKτ .

2. Unweighted networks
Unweighted networks are defined by an adjacency matrix A,

where each entry Aij ∈ {0, 1} determines whether (1) or not (0) an
edge is present between nodes i and j, for i, j ∈ {1, . . . , N}. In general,
a network may be directed. For undirected networks, the adjacency
matrix is symmetric, i.e., Aij = Aji∀ i, j.

It is possible to define a diffusion process on an unweighted
network to transforms it into a kinetic network. This allows for the
application of kinetic clustering methods. For diffusion processes on
unweighted networks, the rate matrix K is given by the random walk

normalized Laplacian matrix L90 via K ≡ −L. The matrix L is defined
by

L ≡ I −AΔ−1, (6)

where I is the identity matrix and Δ is a diagonal matrix with
elements Δij = diδij, where di = ∑

N
j=1Aij is the degree of node i.

Alternatively, one can define a discrete-time random walk on
the network links, by means of the transition matrix

M(τ) = (AΔ−1
)

τ
(7)

for an arbitrary integer lagtime τ.
Since the Laplacian [or, equivalently, the transition matrix

given in Eq. (7)] is fully determined by the adjacency matrix, kinetic
clustering based on diffusion or random walks is to make contact
with topology-based clustering, relying purely on network structure.

B. Modularity
A popular metric to assess the quality of a cluster assign-

ment S in unweighted networks is the network modularity.35,91 For
undirected networks, the modularity Q is defined as

Q(S) =
1

Nd̄

m

∑
J=1
∑
i,j

SiJ(Aij −
didj

Nd̄
)SjJ , (8)

where

d̄ = N−1
N

∑
i=1

di

is the average degree of the network.
The most widely used methods to cluster unweighted networks

aim at finding the assignment matrix S that maximizes the network
modularity Q, and several greedy optimization algorithms have been
developed to handle large networks with over 100 × 106 nodes.92,93

However, the modularity suffers from a well-known resolution
limit94 that prevents it from resolving small communities, and it
has been recently criticized as a metrics for information recovery
in a network.95 Moreover, modularity is only based on structural
properties of networks; hence, it does not take into account the
kinetic process that a network may support. However, it has been
shown to be equivalent to a kinetic clustering quality metric named
stability,96 when applied to diffusion processes on unweighted
networks.

C. Kinetic clustering
Optimizing kinetic clustering by lumping together microstates

and defining the best cluster assignment S can be achieved via appro-
priate objective functions, which are designed to enforce desired
kinetic properties in the coarse-grained system. Usually, they depend
on the spectral properties of the Markov process (or Markov chain)
defined in the original state space. A prominent example is the
popular Perron cluster–cluster analysis (PCCA),56 and its improved
version PCCA+, introduced by Deuflhardt and Weber.62,97–99 An
alternative approach is to optimize objective functions that encode
spectral properties of the coarse-grained dynamics.83,100 An advan-
tage of this method is that certain spectral quantities of the coarse-
grained dynamics satisfy a variational principle with respect to the
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original dynamics70,77 and thus provide a framework for performing
a clustering that is variationally optimal.

Below, we review these methods, and, building on the frame-
work presented in Ref. 70, we propose a new clustering method
based on the optimization of the Kemeny constant of the coarse-
grained system.

1. Coarse-grained Markovian processes
Coarse-graining a Markov process formally corresponds to

projecting the Markovian dynamics onto a lower dimensional space,
which generally introduces memory effects and consequently loss
of the Markovian property. Hence, a question arises as to what the
best Markovian approximation is of the resulting non-Markovian
dynamics.

For a given clustering S, it has been shown that projections pre-
serving detailed balance are those for which the Laplace transformed
equilibrium correlation matrix

Ĉ(s) = ∫
∞

0
C(τ)e−sτdτ (9)

in the original and clustered systems satisfy the following relation:77

ĈCG
JI (s) =

N

∑
ij=1

Ĉji(s)SiISjJ. (10)

The entries of the correlation matrix C(τ) are the equilibrium con-
nected correlation functions Cij(τ) of the state occupancy for every
pair of states (i, j), in the original Markovian system, defined as

Cji(τ) =Mji(τ)πi − πiπj, (11)

and CCG
JI (τ) is the equilibrium connected correlation function of the

cluster occupancy for the pair of clusters (I, J) in the coarse-grained
system.

The definition of an effective Markovian dynamics in the lower
dimensional space requires approximations in which Eq. (10) is only
satisfied in specific limits. Different definitions have been considered
for an effectively Markovian coarse-grained dynamics, which corre-
spond to different requirements on the correlation function of the
coarse-grained system. These include the local equilibrium (LE) and
the recently introduced Hummer–Szabo (HS)100 method.

The local equilibrium (LE) reduction method is a popular
choice, with numerically stable implementations also available via
graph transformation.101 It consists in equating the correlation
matrices at a specific finite value of τ,

CLE
JI (τ) =

N

∑
ij=1

Cji(τ)SiISjJ. (12)

Note that this means that the correlation matrices will depend on the
lagtime τ and that, depending how the correlation is used to obtain
a clustering S, the optimum result may depend on τ. The equation
reads, in matrix form,

CLE
(τ) = STC(τ)S. (13)

Hence, it corresponds to the s→∞ limit of Eq. (10). Equation (13),
by using Eq. (11) and a corresponding one for CLE

(τ), provides

a relation for the transition matrix MLE
(τ) of the coarse-grained

dynamics

MLE
(τ)DΠ = STM(τ)DπS, (14)

where Dπ and DΠ are diagonal matrices with the stationary distri-
butions of the original and coarse-grained systems on the diagonal,
respectively. Thus, DΠ = STDπ .

On the other hand, the Hummer–Szabo (HS) method equates
the integral of the correlation matrices over all lagtimes τ, and thus
it corresponds to the s→ 0 limit of Eq. (10),

∫

∞

0
CHS

JI (τ)dτ =∑
i∈I
∑
j∈J
∫

∞

0
Cji(τ)dτ. (15)

In the matrix form, we have

Ĉ HS
= STĈS, (16)

where we have used the short-hand notation Ĉ = Ĉ(0) to denote the
time-integrated connected correlation function.

Equation (16) provides a different definition of the coarse-
grained dynamics with respect to Eq. (13) for the same clustering
S, and it leads to a formulation of the coarse-grained dynamics, that
in continuous time is given in terms of the rate matrix100

KHS
= STπ1T

m −DΠ(ST
(π1N −K)−1DπS)−1, (17)

where 1m is a vector of length m with entries equal to one. The HS
method is known to provide numerically equivalent results to the LE
method at long lagtimes in many model systems.76

In the present work, we will use the HS definition of the coarse-
grained dynamics, as it does not require the choice of a specific
lag-time, it guarantees that MFPTs in the clustered dynamics match
the weighted MFPTs of the microscopic dynamics70 and it has been
shown to replicate the dynamics of the original system more closely
than the LE method.100

Below, we review different methods to identify the cluster
assignment S.

2. Stability
The approach proposed by Barahona et al.96,102 to perform a

kinetic clustering is to maximize a quantity called stability, defined
as the sum of the connected autocovariances of the clusters J at a
specific lagtime τ,

ΩS
(τ) ≡

m

∑
J=1

CLE
JJ (τ) = Tr(CLE

(τ)), (18)

where CLE is calculated using the LE method as in Eq. (13). The
authors have shown that, for a random walk on an unweighted non-
directed network, such that M is given in Eq. (7) and πi = di/Nd̄,
this quantity is equivalent to the network modularity when the time
parameter τ is set to one

ΩS
(1) =

m

∑
J=1
∑
i,j∈J
(

Aji

di

di

Nd̄
−

di

Nd̄
dj

Nd̄
) = Q. (19)
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The authors of the method have proposed to optimize the
quantity defined in Eq. (18) over the assignment matrix S for
varying values of τ.

Since the optimal number of clusters decreases monotonically
when increasing τ, this approach introduces a dependence of the
optimal clustering on the parameter τ, which controls the resolu-
tion of the clustering. This allows for the identification of multiple
clusterings, with finer or coarser structure, for a single network, but
it increases the overall computational cost by requiring to optimize
the clustering for each value of τ to identify the relevant number of
clusters.96

3. Perron clustering
The Perron cluster–cluster analysis (PCCA) is a method for

identifying communities or clusters in nearly uncoupled Markov
chains.56 It exploits the fact that in uncoupled Markov chains,
characterized by a block-diagonal transition matrix, the entries of
the left eigenvectors are constant on each cluster. This allows us
to regroup nodes following the sign structure of the left eigen-
vectors. The assumption is that this sign structure remains stable
under small perturbations, i.e., the transition matrix remains block-
diagonal dominant, so that a similar regrouping is possible in nearly
uncoupled Markov chains.

The original method has been shown to suffer from lack of
robustness, and the PCCA+ has been developed to use in practical
applications.62 The main difference from PCCA is the introduction
of a soft (fuzzy) assignment matrix Ŝ, where each node i is assigned
a clustering vector of length m (number of clusters) satisfying the
conditions of positivity and partition of unity

ŜiI ∈ [0, 1] ∀ i, I, (20)

m

∑
I=1

ŜiI = 1 ∀ i, (21)

hence interpretable as the probability of node i to belong to each
cluster.99

The main assumption of PCCA+ is that the assignment matrix
Ŝ can be related to the eigenvectors of the transition matrix of the
original system, by a transformation matrix T ∈ Rm×m via

Ŝ = XT, (22)

where X = [ΨL
1 , . . . , ΨL

m] ∈ Rn×m and ΨL
k is the left eigenvector of the

transition matrix associated with the kth largest eigenvalue, normal-
ized in such a way that XTDπX = I. The clustering problem then
consists in finding the matrix T that optimizes an objective function
under the constraints defined in Eqs. (22), (20), and (21). Optimiz-
ing T, rather than S, leads to a reduction of the number of variables
to be optimized from (n ×m) to (m2

).
Weber originally proposed the objective function, here denoted

as ΩPCCA +W ,

ΩPCCA+W
≡ Tr(Ŝ TM(τ)DπŜD−1

Π ), (23)

which can be written, for crisp assignment S, as the trace of the
coarse-grained transition matrix obtained using the LE method
defined in Eq. (14).97

However, it was noted in Ref. 98 that the interpretation of
ΩPCCA +W as the trace of a coarse-grained transition matrix is not
valid for soft assignment matrices; so, Roblitz proposed a new
objective function99

ΩPCCA+R
≡ Tr(Ŝ TDπŜD−1

Π ) = Tr(TTTD−1
Π ), (24)

where the second equality uses Eq. (22) and normalization of the
eigenvectors matrix X. Given the property of Ŝ stated in Eq. (21), the
matrix Ŝ TDπŜD−1

Π is stochastic; hence, its trace is upper bounded
by its dimension m, with the value m being attained by any crisp
clustering S. Thus, maximizing ΩPCCA + R is equivalent to making the
clustering Ŝ as crisp as possible.

As the maximization of Eq. (24) over the entries of T is subject
to the constraints Eqs. (22), (20), and (21), the optimal T will depend
on the eigenvectors of the transition matrix M(τ), through X.
Since in a truly Markovian system the eigenvectors of the transition
matrix are independent of the lagtime τ, there is, in principle, no
need to optimize over different values of τ, as in the stability method.
However, it has to be noted that molecular simulations often exhibit
non-Markovian behavior; hence, a dependence on the lagtime is
expected, in practice, when Markov matrices are constructed using
simulation data.

In most applications, the PCCA+ objective function defined in
Eq. (24) is used. In our implementation of the PCCA+ method, we
made the same choice and used the efficient Schur decomposition to
compute X, following Weber et al.103,104

4. Slowest timescale
Recently, a variational kinetic clustering has been proposed in

Ref. 76 that uses crisp assignment matrices and aims to maximize the
second largest eigenvalue of the clustered dynamics. It was shown
that this method is effective in identifying transition states, alongside
to key metastable states.

This approach has been shown to be variationally optimal in
Ref. 77, where it was proven that the slowest timescale of the clus-
tered system is always smaller or equal to the one of the original
network

τorig
2 ≥ τCG

2 , (25)

regardless of the protocol (LE or HS) used to coarse-grain the
dynamics.

However, the method has only been tested on systems that
contain either a small number of metastable states or a spectral
gap between the slowest and second slowest timescales. The per-
formance of this method on systems with several metastable states,
where τn ≈ τ2 for n > 2, remains to be investigated. The existence
of multiple slow processes of similar timescale may require a varia-
tional parameter that incorporates multiple timescales. An interest-
ing generalization of the slowest timescale would be considering an
objective function that is the sum of the largest relaxation times

ΩSum(h)
≡

h+1

∑
i=2

τCG
i , (26)

where h is the number of timescales considered.
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5. Kemeny constant
In Markovian systems, the sum of all timescales is known as the

Kemeny constant, which is also equivalent with the weighted sum of
all mean first passage times (MFPTs) tji from a selected state i to all
other states j, where the weights are the equilibrium populations πj

of the target states j,70,105,106

ζorig
≡

N

∑
n=2

τn =
N

∑
j=1

πjtji. (27)

Remarkably, the result is independent of the choice of the initial
state i.69

Since the MFPTs in a Markovian system can be expressed in
terms of time-integrated correlation functions,70 the Kemeny con-
stant can be expressed as the trace of a matrix called “deviation
matrix” or “fundamental matrix,” which is related to the time-
integrated correlation matrix,107

ζorig
= Tr(ĈD−1

π ). (28)

The Kemeny constant of the coarse-grained system can be
written similarly, and it will depend on the protocol used to
coarse-grain the dynamics. For the HS method,

ζHS
= Tr(STĈSD−1

Π ). (29)

In Ref. 70, it was shown that the Kemeny constant of the system
clustered according to the HS method is bounded by the value
of the Kemeny constant in the original system. In particular, the
Kemeny constant of the initial and clustered systems are related by a
transparent relation, when the HS reduction method is applied,70

ζHS
= ζorig

−
m

∑
J=1

1
ΠJ
∑

j∈J,i∈J
πjtjiπi. (30)

The second term on the right-hand side (RHS) represents the expec-
tation value of the MFPTs if two states are drawn from within the
same cluster with their equilibrium probabilities. This term vanishes
when each cluster consists of only one node (i.e., no clustering is
performed), and, for a fixed number of clusters, it becomes smaller
as the clusters become increasingly metastable, i.e., intra-cluster
dynamics is fast as compared to all time scales. The relation above
shows that maximizing the Kemeny constant of the clustered system,
for a fixed number of clusters, leads to a variationally optimal par-
titioning, aimed at identifying the clusters with fastest intra-cluster
(and the slowest inter-cluster) dynamics.

In conclusion, the Kemeny constant appears to be an objective
function that quantifies the metastability of the coarse-grained sys-
tem, similarly to the modularity, stability, and PCCA+W; however,
it has a few advantages when compared to the other measures. One
advantage is that it accounts for the information about the system
dynamics at all lagtimes, via the integrated correlation function Ĉ, so
that it does not rely on the choice of a particular lagtime τ. In addi-
tion, it is variationally optimal and it has a simple interpretations in
terms of other kinetic quantities, such as the system timescales and
the mean first passage times. Such relations allow for the derivation
of explicit formulas for the optimal position of the cluster boundaries

that maximize the Kemeny constant in simple systems, e.g., dif-
fusive processes on 1D potential, as shown in Sec. III A. These
features make the Kemeny constant an attractive quantity for the
detection of metastable clusters in both, kinetic and unweighted
networks.

D. Parallel tempering
Considering the case of clustering a network with N nodes

into a coarse-grained one with m nodes, results in mN possible
partitioning. Hence, exact clustering algorithms scale poorly with
the size of the system, with most clustering problems known to be
NP-hard;38 therefore, one often uses approximate algorithms to
obtain a solution efficiently.

One approach, known as the Louvain method,92,108 is to itera-
tively join clusters together until the objective function (modularity)
is maximized. Although this approach is fast to execute, it is not
readily applicable to many objective functions, such as the Kemeny
constant, which always decreases when joining clusters together,
following Eq. (30).

Another approach to reducing the complexity of the cluster
assignment, consists in defining an ordering for the nodes in the
network, i.e., in projecting the nodes onto a one-dimensional space.
Subsequently, the task of finding m optimally selected subsets in a
network of N nodes, is reduced to finding m − 1 separating bound-
aries. Two spaces that have been used for the projections are the
eigenvector associated with the slowest process, and the commit-
tor probability with respect to the two most “distant” nodes in the
network, often defined as the pair (i, j) with the largest MFPT, tij.
This, however, requires the computation of the MFPTs for all the
nodes in the network, which has a large computational cost for large
networks.

The problem of extremizing a function dependent on the clus-
ter assignment of the nodes in a network is very common in statisti-
cal physics. In particular, assigning a cluster to a node is equivalent
to assigning a spin value to a node in the Potts model;109–111 hence,
one can apply methods devised in statistical physics to simulate large
physical systems for the task at hand.

Parallel tempering78,79,112–114 is a simulation method115 that was
developed for the purpose of studying physical systems coupled to a
heat bath over extended temperature intervals, in particular, down
to small temperatures. It consists in running s parallel simulations
of the same system, i.e., different replicas, each at a different temper-
ature116 and allows replicas to be exchanged between neighboring
temperatures. This results in the high temperature replicas explor-
ing the configuration space freely while the low temperature replicas
exploring the low energy regions more extensively, hence overall
reducing the time to escape from a local minimum of the energy.
When concentrating on the sampled configurations of replicas while
being at the very low temperatures, the approach was, in particular,
used to find the global minimum energy configurations of complex
physical systems, for example, for spin glasses, which is NP-hard.117

Clearly, any objective function of a system to be optimized can be
considered as an “energy” which allows one to use parallel tempering
as a general-purpose optimization method.81,82

Here, we use the algorithm to obtain clusterings; therefore, we
use a corresponding notation. In detail, every simulation of a replica
α evolves according to a standard Metropolis-Hastings algorithm.
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This means, one generates a Markov chain S(0)
→ S(1)

→ ⋅ ⋅ ⋅ of clus-
tering configurations (we omit the α here for brevity), which is not
to be confused with the Markov chains of the MSM. For a given
clustering S = S(l) at “time” l, exhibiting energy E = E(S(l)

), a trial
configuration S′ is randomly constructed, where the corresponding
energy is denoted as E′. Typically S′ is obtained by a random small
change to S. The construction probability that S′ is obtained from
S is denoted as C(S→ S′). Often this is constant, but not always.
Now, the trial configuration will become the next configuration in
the Markov chain, i.e., S(l+1)

= S′ with the acceptance probability
p(α)acc that depends on the difference between the energies E and E′

and on the temperature T(α) of the replica α,

p(α)acc = min(1, e(E−E′)/kBT(α) C(S′ → S)
C(S→ S′)

), (31)

where kB is the Boltzmann constant. Otherwise, with probability
1 − p(α)acc , the current configuration will be kept, i.e., S(l+1)

= S(l). Note
that the fraction is one if the construction probability is constant.
This choice for the acceptance probability ensures detailed balance
between neighboring configurations at the same temperature, hence
leads to convergence to the Boltzmann equilibrium measure. A stan-
dard time unit in this standard simulation is a sweep. Within a
sweep, each degree of freedom is allowed to be changed on average
once within a trial configuration.

At regular time intervals, typically after a sweep for each replica
is performed, configurations at different temperatures (in different
replicas) are interchanged with a probability

pαβ = min(1, e
(E(α)

−E(β)
)( 1

kBT(α) −
1

kBT(β) )
), (32)

where α and β are the indices of the simulations being interchanged
and E(α,β) are the energies of the configurations in replicas α and
β, respectively. Here again, detailed balance is guaranteed; hence,
the simulation will equilibrate with respect to the product measure
of two neighboring replicas. In practice, one usually only considers
moves between replicas where the temperatures are direct neigh-
bors in the ordered list of temperatures. This applies to all pairs of
(neighboring) temperatures, i.e., for the full system.

The temperature set {Tα
} needs to be specified. A standard rule

of thumb is that the empirical acceptance frequency of an exchange
between neighboring temperatures should be roughly 0.5. Usually,
one performs short test simulations for various sets of temperatures.
Thus, if the observed frequency is too small, one would move the
respective two temperatures closer to each other, possibly one has
to increase the number s of temperatures. For very high acceptance
frequencies, it is opposite. Typically, this results in sets where at low
temperatures the differences between neighboring temperatures are
small, while at high temperatures, the differences are large. In the
present work, we follow the same main idea, but use a different
protocol as explained in Sec. III B.

III. RESULTS
A. Analytic maximization of the Kemeny constant

In this work we propose to use the Kemeny constant of the
coarse-grained dynamics as the objective function to maximize, in

order to identify the optimal clustering. Given that the Kemeny con-
stant is related to MFPTs by a simple relation, it turns out that for
systems diffusing in a 1D potential, one can calculate analytically the
position of the optimal boundaries between clusters.

1. Diffusion in 1D symmetric potential: Three-state
clustering

In this section, we consider a 1D system diffusing in a symmet-
ric potential U(x). We first consider clustering the system into three
clusters. Since the potential is symmetric, we assume that the posi-
tion of the boundaries separating the clusters are also symmetric,
and positioned at −a and a, where 0 is the center of the 1D space.
It is the aim of the clustering to determine the most suitable cluster
boundary a.

Considering the definition of the Kemeny constant in Eq. (27),
taking the central cluster, denoted “2” and containing the region
(−a, a), as the starting state, and using the symmetry of the
boundaries, we obtain

ζCG
= 2Π1tCG

12 , (33)

where Π1 is the equilibrium occupation probability of cluster 1,
which is equal to Π3 by symmetry, and tCG

12 is the MFPT from I = 2
to J = 1 in the coarse-grained system. In Ref. 70, we have derived an
expression for tCG

JI for discrete-state Markov processes. By replacing
summations with integrals in that expression, we can similarly write,
for Markov processes in continuous space,

tCG
JI =

1
ΠIΠJ

∫
I
dx∫

J
dy π(y)tyxπ(x)

−
1

Π2
J
∫

J
dx∫

J
dy π(y)tyxπ(x), (34)

where π(x) = e−U(x)/kT
/Z is the Boltzmann distribution and

Z = ∫ dx e−U(x)/kT is the partition function.
Both Π1 and tCG

12 are dependent on a, and one can maximize ζCG

with respect to the position of the boundary a, by equating ∂ζCG
/∂a

to zero, which results in the following relation (see Appendix A):

Π1t−aa − t̄a2 +
Π2

Π1
t̄−a1 = 0, (35)

where

t̄xI = ∫
I
dy

txyπ(y)
ΠI

(36)

denotes the MFPT from cluster I to a single position x.
Moreover, we can write (see derivation in Appendix A)

∂ζCG

∂a
= 2π(a)[tRT

3a − tRT
2a ], (37)

where

tRT
Jα = t̄αJ + t̂Jα (38)

represents the round-trip time118,119 between the single position of
the boundary α and the cluster J, with t̂Jα defined in Eq. (A16).
This quantity naturally provides a distance metric based on mean

J. Chem. Phys. 158, 104112 (2023); doi: 10.1063/5.0105099 158, 104112-7

© Author(s) 2023

 19 Septem
ber 2023 21:32:22

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

first passage times, as it satisfies the symmetry property tRT
IJ = tRT

JI
and the triangle inequality. Interestingly, the round-trip times for
two-state systems have been related to the flux between the two
states.120 Moreover, round-trip times, also called commute times,
have been previously considered for clustering121,122 and applied for
image classification.123

From Eq. (37), it is clear that the optimal position of the bound-
ary a is such that the round-trip times from the clusters that it
separates are equal,

∂ζCG

∂a
= 0 ⇔ tRT

3a = tRT
2a . (39)

By symmetry, −a makes the round-trip times tRT
1−a and tRT

2−a equal.
To test the result in Eq. (35) on numerical examples, we con-

sider systems diffusing in 1D double- and triple-well potentials of
mean force (PMF), given by

U(X) = cos(α(X + π)) + e−X2

, X ∈ [−π; π], (40)

where α = 2, 3 is the number of wells (local minima).
To map the continuous motion in 1D to a Markov process on a

linear chain, we discretize the configuration space X in N bins, which
we label with i. We define the transition rates governing the motion
between the bins as K ji = 0 for j ≠ i ± 1 and

K(i±1)i = Ae−[U(i±1)−U(i)]/2kBT , (41)

where A is a constant set to 1, and T is the temperature of the system,
set to 298 K in our examples.

Then, the MFPT matrix t is obtained from the transition rates
matrix K using the formula70

tji =
1
πj
[(π1T

n −K)−1
jj − (π1T

n −K)−1
ji ]. (42)

From these, ζCG is computed by using the definition of the
Kemeny constant ζCG

= ∑J≠IΠJ tCG
JI and Eq. (34) for the coarse-

grained MFPTs. In addition, the LHS of Eq. (35), denoted as Δζ, is
computed for each value of the boundary position a, using Eq. (42).

Figure 1 shows Δζ as a function of the boundary position a and
the position of the boundaries for which ζCG is maximized, for α = 2
panel (a) and α = 3 panel (b), respectively. At these positions, Δζ
vanishes as expected. For comparison, the optimal boundary posi-
tion resulting from the maximization of the slowest timescale of
the clustered system, τCG

2 , is shown in the same plot. We compute
τCG

2 for each value of a using the relation77 τCG
2 = Π1t−aa + t̄−a1. The

boundary position that maximizes τCG
2 is known to satisfy77

Π1t−aa − t̄−a1 = 0. (43)

The left-hand side (LHS) of Eq. (43), denoted with Δτ2, is seen to
vanish at the positions that maximize τCG

2 , as expected.
When the number of potential wells (i.e., metastable states) is

lower than the number of clusters, both methods identify a transi-
tion cluster, which is broader when the Kemeny constant is max-
imized. Conversely, when the number of potential wells is greater
or equal than the number of clusters, the two methods lead to very

FIG. 1. Three-state clustering of system diffusing on symmetric 1D double well
(a) and triple well (b) potentials (black line, y axes on right in kcal/mol units).
The dashed lines show the boundary positions corresponding to maxima of the
relaxation time τCG

2 (red diamonds, dashed red line) and Kemeny constant ζCG

(blue squares, dashed blue line) in the clustered system. Symbols highlight the
end points of these lines. Δζ (blue curve with squares) defined via the relation
in Eq. (35) and Δτ2 (red curve with diamonds) defined via Eq. (43) are plotted
against the boundary position. The zeros of Δζ and of Δζ yield the correspond-
ing optimum boundary positions, respectively. The inset shows ζCG (blue squares)
and τCG

2 (red diamonds).

similar boundaries positions, which are found around the top of the
potential barriers (Fig. 5). The approach presented here assumes a
symmetric potential and symmetrically placed optimal boundaries.
In Sec. III A 2, we relax these assumptions and develop a more
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general method, applicable to an arbitrary number of boundaries
and clusters.

2. Diffusion in 1D potential: m-state clustering
Next, we consider coarse-graining a system diffusing in a 1D

asymmetric potential into m states. When considering motion in
a continuous one-dimensional space, with clusters defined by the
positions of the separating barriers bL, we can compute the derivative
of the coarse-grained Kemeny constant with respect to any barrier
position bL,

∂ζCG

∂bL
= π(bL)[tRT

bL(L+1) − tRT
bLL], (44)

where π(x) is the probability density function of the position in
space, and tRT

Jα is the round-trip time given in Eq. (38). See the full
derivation of the result in Appendix B.

From Eq. (44), it is clear that the position of the barrier
bL maximizes the coarse-grained Kemeny constant when bL is at
equal round-trip distance from cluster L and cluster L + 1.

3. Random walk on linear chain: m-state clustering
In the case of a 1D lattice, or linear chair, we can obtain a com-

putationally efficient formula for the finite difference ΔζCG when
moving each boundary position bJ , J = 1, . . . , m − 1 from cluster
J + 1 to J (that is the discrete-space analog of the partial derivatives
of the Kemeny constant with respect to the barrier positions). This
is found to be (see Appendix C for details)

ΔζCG
(bJ , J + 1→ J) = πbJ ×

⎡
⎢
⎢
⎢
⎢
⎣

∑S<JΠS

Π2
J
∑
j∈J

πjtjbJ −
∑S≥JΠS

Π2
J
∑
i∈J

πitbJ i

+
∑S≤J+1ΠS

Π2
J+1

∑
i∈J+1

πitbJ i −
∑S>J+1ΠS

Π2
J+1

∑
j∈J+1

πjtjbJ

⎤
⎥
⎥
⎥
⎥
⎦

.

(45)

The optimal boundary positions correspond to the set of boundaries
where ΔζCG

(bJ , J + 1→ J) is closest to 0.
To test the results of Eq. (45) on analytical potentials, we first

identify the optimal solution by exhaustive search, represented by
the vector b∗ = (b∗1 , b∗2 , . . . , b∗m−1). We then compute the values
of ΔζCG

(bJ , J + 1→ J) for all possible positions of bJ between the
optimal boundaries b∗J−1 and b∗J+1, where the remaining boundaries
b∗(J) = (b∗1 ⋅ ⋅ ⋅ b

∗
J−1, b∗J+1 ⋅ ⋅ ⋅ b

∗
m−1) are kept constant. For this pur-

pose, we considered the symmetric three-well potential defined by
Eq. (40) with α = 3, and an asymmetric four-well potential with
barriers of varying height, defined by

U(X) = 0.1X(cos X − 1) ∀X ∈ [0, 8π]. (46)

For the symmetric three-well potential [Fig. 2(a)], the boundary
positions that maximize ζ are found at the two local maxima of the
potential, consistently with results from Fig. 1(a). This is also the case
in the asymmetric four-well potential [Fig. 2(b)], where the optimal
boundary is identified at the top of the barrier. In both examples,
the optimal positions coincide with the locations where the numer-
ical derivative given in Eq. (45) is theoretically predicted to vanish
(Fig. 2 colored curves with symbols).

FIG. 2. Three-state (a) and four-state (b) clustering of system diffusing on sym-
metric (a) and asymmetric (b) 1D potentials (black line, y axes on right in kcal/mol
units), respectively. Colored dashed lines show the boundary positions corre-
sponding to the global maximum of ζCG found by exhaustive search. Dashed
lines show ∂ζCG

/∂bJ with each color (blue, red, or green) and associated symbol
(square, diamond and x) corresponding to a different value of J (1, 2, 3, respec-
tively), were computed using Eq. (45) for all possible positions of bJ ∈ (bJ−1, bJ+1)

when the optimal positions bI for all I ≠ J are kept fixed.

4. Random walks on complex networks: m-state
clustering

The result provided in Eq. (44) extends to higher dimensional
lattices and complex networks. Several important processes can be
modeled as random walks on complex networks. These include
diffusive processes in higher dimensions: upon discretizing the
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configuration space of such systems in N states, there are in general
multiple paths between two states i and j, as described by the links of
a networks.

Using the assumption that the population of the selected node
is small compared to the cluster populations, πα ≪ ΠA and πα ≪ ΠB,
we find that the change in the coarse-grained Kemeny constant upon
moving node α from cluster A to B is given as

ΔζCG
(α, A→ B) = πα[tRT

αA − tRT
αB ], (47)

where πα is the equilibrium probability of node α (see derivation
in Appendix D). We note that in contrast to linear chains, in com-
plex networks, there is no natural 1D ordering of nodes; hence, the
analytical expressions given by Eq. (45) do not hold as they rely on
relations of the type tba = tbj + tja∀ j ∈ (a, b), which are valid only
when all transitions between a and b go via the intermediate state j.

Based on our final results from Eq. (47), the optimal assignment
of node α will be the closest cluster as measured via the round trip
time distance (assuming that the individual population of α is small
compared to those of the clusters). Otherwise, we could increase the
Kemeny constant by moving α from its current cluster to another
one to which its round trip time is smaller. Therefore, in an optimal
clustering of a large complex network that maximizes the Kemeny
constant, each node belongs to its nearest cluster measured by the
round trip time distance.

B. Parallel tempering variational clustering
Here we propose to use a parallel tempering approach for

finding the clustering that optimizes an arbitrary objective function.
In the context of network clustering, we replace the energy

term Eα in Eqs. (31) and (32) by the objective function one aims to
optimize. The temperature Tα

i is a parameter that governs the accep-
tance probability of a change in clustering assignments, such that the
larger Tα

i , the higher the probability of accepting a move that does
not improve the objective function.

To generate an initial starting configuration for the paral-
lel tempering algorithm, we generate an easy to obtain clustering.
Therefore, we first find a one-dimensional ordering of the nodes of
the network. For this purpose, we consider a kinetic process on the
network, characterized by the rate matrix K, and we determine the
first and the last nodes of the ordering, i and j respectively, as those
with the largest MFPT tij. Although the MFPTs are not symmetric,
this definition of first and last nodes, that we will refer to as “extreme
nodes” (red nodes in Fig. 3), allows for a meaningful projection as a
starting point of our simulation, while remaining applicable to any
system. The remaining nodes are then ordered based on their com-
mittor probabilities, i.e., the probability to first reach one state before
the others. With this 1D ordering of the states, different clusterings
are generated randomly, by placing boundaries randomly along the
1D coordinate. The clustering with the highest value of the objective
function is selected, among those randomly generated, as the starting
configuration for the PTVC algorithm.

FIG. 3. Illustration of PTVC algorithm. Extreme nodes (having maximal MFPT values) are indicated with red. Clusters are indicated in blue and yellow, and selected bordering
nodes are indicated in green.
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After initialization of replicas at different temperatures, the
PTVC algorithm will no longer be constrained to the 1D projection.
Then for each replica, at each time-step of the simulation, we find
all the border nodes in the networks and we sample uniformly at
random one node i∗ from this set, and then among the neighboring
clusters of i∗, a cluster J∗ is sampled uniformly again. Finally assign-
ing node i∗ to cluster J∗ is proposed as a trail clustering. We define a
node i ∉ J as border note of cluster J if there exist a node j such that
AijSjJ = 1. We define a cluster I to be neighbor of a cluster J if there
are two nodes i, j such that AijSjJSiI = 1.

The value of the objective function for the clustering after
assigning node i∗ to cluster J∗ is calculated, and the move is accepted
or rejected following the acceptance probability in Eq. (31).

The method outlined above (and summarized in Fig. 3) can be
applied to arbitrary parameters considered as objective function or
energy E. We will use the Kemeny constant and the slowest timescale
of the coarse-grained system, respectively, with the purpose of
identifying both stable clusters and key transition states.

Other methods in the field of network cluster identification
have employed the idea of introducing the concept of tempera-
ture to accelerate a variational search through conformations,84

typically presented as “simulated annealing” methods. These sim-
ulated annealing approaches have been shown to find optimized
parameter values but are slow. Our method differs from these
existing methods in a number of important respects.

Simulated annealing progressively heats and cools the sys-
tems to explore configurations. In contrast, parallel tempering
runs parallel simulations at multiple temperatures and interchanges
configurations at neighboring temperatures.

Our method employs the kinetic timescales of the system as
the variational parameter to identify transition states, as opposed to
modularity, and we introduce a kinetically motivated initial ordering
of the states to enhance the quality of the starting clustering.

C. PTVC algorithm implementation details
Following Eq. (31), the Metropolis–Hastings acceptance prob-

ability shall be pα
acc = min(1, e(E−E′)/kT(α) C(S′→S)

C(S→S′)) to ensure detailed

balance, i.e., equilibrium sampling over all temperatures T(α). Usu-
ally, the number of border nodes and neighbor clusters will differ
before and after the proposed move, hence the term C(S′→S)

C(S→S′) is not
constant. Nevertheless, we set this term to 1 in our applications as the
preservation of detailed balance is not required for the optimization
task, hence lowering the computational cost.

One practical consideration that requires discussion is the
choice of temperature to be used, which has no physical motivation
here and exists only to control the probability of accepting proposed
switches for different simulations. To determine the temperature
to use, we propose to initialize the s simulations at equally spaced
increasing temperatures values T = T(i), where i ∈ {1, . . . , s}, with
T(1)
< T(2)

< ⋅ ⋅ ⋅ < T(s). We note that it is also possible to optimize the
temperature range and spacing using various objectives,124,125 e.g.,
to achieve faster round trip times or possibly more relevant relax-
ation times in the system.126,127 In our applications presented here,
we have used s = 50 simulations, and initial temperatures bounded
by T(1)

= 0.001 and T(s)
= 1.

This effectively enforces that, at first, mostly the proposed
moves that optimize the parameter are accepted. From here, we can
then increase the temperatures until the average acceptance proba-
bility reaches a desired value, which we set to 50%. We achieve this
by the computing the proportion of accepted moves since the lat-
est temperature update (pa

) every ten sweeps and then update the
temperatures using the formula Tnew

= T × log(pa
)

log(0.5) This ensures that
temperatures are high enough for the system to explore the whole
configuration space, but not high enough to cause the algorithm to
accept every proposed move.

The value of the objective functions was monitored over simu-
lations of 20 000 sweeps, with s = 50 different temperatures, and the
clustering with the highest objective function was chosen.

D. Clustering results
We use the PTVC algorithm in five test systems to maxi-

mize three different parameters: (i) the modularity [Eq. (8)], (ii)
the Kemeny constant [Eq. (30)], and (iii) the slowest timescale τ2
(Sec. II C 4). We compare the resulting clusterings with that of
PCCA+. Our test systems consist of a diffusion process in a 1D
potential, a synthetic network generated from the stochastic block
model (SBM)128 and three real-world networks.

1. One-dimensional energy profile
Before applying the method to complex networks, we test the

PTVC method on a simple 1D model, where the results can be eas-
ily interpreted and compared to an exhaustive search for the global
maximum.

We consider a potential with four wells of varying depth,
defined by Eq. (S1). When clustering into three states, we obtain
identical clusters for PCCA+, the Kemeny constant and τ2 cluster-
ing (Fig. 4). These correspond to the three most stable local minima

FIG. 4. Clustering a 1D multi-well potential into three clusters (blue circles, red triangles, and green squares symbols with black vertical lines showing the boundaries) using
PTVC with the three different target functions: modularity (b), the Kemeny constant (c), and τ2 (d), respectively. PCCA+ clustering (a) also shown for comparison.
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FIG. 5. Clustering a 1D multi-well potential into four clusters (blue circles, red triangles, and green squares symbols with black vertical lines showing the boundaries) using
PTVC with the three different target functions: modularity (b), the Kemeny constant (c), and τ2 (d), respectively. PCCA+ clustering (a) also shown for comparison.

on the potential energy profile separated by the top of the barriers.
However, modularity clusters the coordinate space into three equal
clusters, independently on the underlying free energy profile. This is
expected as all networks corresponding to a 1D profile have the same
tridiagonal connectivity.

The optimal four-state clustering on the same potential (Fig. 5
and Table I) also results in the same clusters for PCCA+ and the
Kemeny constant, identifying all four local minima. Analogously as
for three-state clustering, modularity identifies an equal spacing of
the reaction coordinate into four parts, which does not take into
account the free energy profile. Interestingly, however, τ2 cluster-
ing results in a fourth state that is a transition state (TS), suggesting
that the highest energy local minimum is less important for the slow-
est timescale of the process, and a cluster with the TS node is more
optimal to maximize τ2. Therefore, the number of metastable clus-
ters can be determined by observing the first time the maximization

TABLE I. One-dimensional potential energy surface reduced to four clusters as
shown in Fig. 5. Values of each objective function: the Kemeny constant, τ2 and
modularity (columns) for each clustering method PCCA+, objective functions Kemeny
constant, τ2 and modularity (rows) are shown. The largest value for each objective
function is highlighted in bold.

Clustering method Kemeny τ2 Modularity

PCCA+ 53 185 41 780.6 0.417 16
Kemeny 53 185 41 780.6 0.417 16
τ2 52 308 41 781.3 0.380 43
Modularity 52 865 41 660.2 0.422 34

of ζCG and τCG
2 yield different results. Analogously, the eigen-

value spectrum also suggests three metastable states for this system
[Fig. S1(a)]. In general, once we move beyond the number of
metastable states, the Kemeny constant identifies smaller metastable
states, and τ2 finds a cluster with very small population around the
dominant barrier.

2. Stochastic block model
To analyze more complex networks beyond the one-

dimensional connectivity, we generated three-state random
networks using the stochastic block model (SBM) (Fig. 6). The adja-
cency matrix of a random SBM network is constructed according to

P(Aij = 1) =
cW(Xi, Xj)

NP(Xi)P(Xj)
, (48)

where Xi ∈ 1, . . . , m indicates the cluster of node i, P(X) is the prob-
ability of a node being in cluster X, W(X, X′) is the probability of
a link existing between cluster X and X′, N is the total number of
nodes in the network, and c = 4 is the average connectivity of the net-
work. In our applications, we have used the uniform distribution for
P(X) = 1/m, with m = 3 clusters, N = 99 nodes in total, and intra-
cluster and inter-cluster edge existence probability of W(X, X) = 0.7
for all X and W(X, X′) = 0.005 for all X ≠ X′, respectively.

For SBM networks, there is no notion of dynamics, hence we
consider a random walk on the network, with the Laplacian intro-
duced in Eq. (6). Therefore, the dynamics of an unbiased walker
is characterized by frequent intra-cluster transitions and rare inter-
cluster transitions so that the network communities correspond to
the clusters as metastable states.

FIG. 6. Clustering of a three-state stochastic block model network into four clusters using PTVC with the three different target functions: modularity (b), the Kemeny constant
(c), and τ2 (d). PCCA+ clustering (a) also shown for comparison.
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TABLE II. Values of the Kemeny constant, τ2 and modularity for a three-state
stochastic block model network reduced to four clusters using the PCCA+ method,
and the optimization for the Kemeny constant, τ2, and modularity. Bolded numbers
indicate the largest value of the respective objective function.

Clustering method Kemeny τ2 Modularity

PCCA+ 65.342 40.774 0.364 5
Kemeny 65.574 40.807 0.359 08
τ2 65.373 40.942 0.378 32
Modularity 65.091 40.796 0.396 52

We used the PTVC algorithm to identify three clusters within
a three-state SBM network for all three variational parameters. As
expected, we obtain the correct clustering using all three methods as
well as using PCCA+ (Fig. S2 and Table S1).

The results for four clusters (Fig. 6 and Table II) show a
consistent picture with the 1D example. PCCA+ and Kemeny sub-
divides one of the clusters in two approximately equal-sized clusters,
whereas τ2-optimal clustering identifies a transition cluster sepa-
rating one small metastable cluster from the others. Modularity
identifies the three expected clusters and assigns a single node to an
additional fourth cluster.

Moreover, we find that the identified TS contains both the
nodes with highest closeness and betweenness centrality (Fig. S3),
which indeed reflects the nature of transition states: they are posi-
tioned between metastable states, most of the paths go through them,
and they are close to all the other nodes.

3. Santa Fe collaboration network
As a first example of a real world network that is small enough

for clear visualization, we consider the Santa Fe collaboration net-
work (Fig. 7).129 In this network, links are drawn between 118
researchers at the Santa Fe institute who appeared as co-authors
on at least one publication. The nodes then form clusters corre-
sponding to three main research groups, linked by cross-disciplinary
researchers.

We apply random-walk dynamics on this network and cluster
it into three states (Fig. S4 and Table S2), which corresponds to the
number of metastable clusters predicted by the spectral gap (Fig.
S1), we find that the resulting clusterings are identical for all four
methods, as in the previously considered networks.

TABLE III. Values of the Kemeny constant, τ2 and modularity for the Santa Fe
collaboration network reduced to five clusters using the PCCA+ method, and the
optimization for the Kemeny constant, τ2 and modularity. Bolded numbers indicate
the largest value of the respective objective function.

Clustering method Kemeny τ2 Modularity

PCCA+ 335.58 238.51 0.417 49
Kemeny 336.2 238.8 0.415 04
τ2 333.11 239.9 0.416 52
Modularity 334.53 236.52 0.419 99

When clustering into four states (Fig. S4 and Table S3), we
find that the τ2-optimal clustering still finds a transition cluster sep-
arating two of the metastable regions as expected. However, the
Kemeny-optimal clustering no longer behaves similarly to PCCA+
clustering and is instead identical to the τ2-optimal one.

The fact that the Kemeny and τ2-optimal clusterings are iden-
tical can be seen as a consequence of the fact that the additional
cluster is also metastable but too small to be detected via spectral gap;
hence, it is insightful to look for one more cluster. We find indeed
that when optimizing for five clusters (Fig. 7 and Table III), the
Kemeny-optimal and τ2-optimal clusterings are no longer identical,
and the latter successfully identifies the two regions separating the
three initial metastable states into distinct clusters. Again, we find
that the two additional clusters contain nodes with high closeness
and betweenness centrality (Fig. S5).

In conclusion, our method retrieves all the communities when
the number of clusters used coincide with the number of commu-
nities detected via spectral gap analysis, and it allows us to identify
transition clusters containing the nodes with the highest centrality
when used with a larger number of clusters.

4. Political books co-purchasing network
Our next real-world network is one of political books: each

node represents a book, and an edge is present between two books
if they appear as being often co-purchased on Amazon. Thus, for
our clustering approach, we also use the random-walk dynamics.
The data have been compiled by Valdis Krebs.130 Based on a reading
of the descriptions and reviews of the books on Amazon, the nodes
have been labeled manually by Mark Newman into one of three cate-
gories: “liberal” (blue), “neutral” (red), and “conservative” (green)131

(Fig. S6), providing a comparison to our clusterings.

FIG. 7. Clustering of the Sante Fe Institute collaboration network into five clusters using PTVC with the three different target functions: modularity (b), the Kemeny constant
(c), and τ2 (d). PCCA+ clustering (a) also shown for comparison.
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FIG. 8. Clustering of the political books co-purchase network into three clusters using PTVC with the three different target functions: modularity (b), the Kemeny constant
(c), and τ2 (d). PCCA+ clustering (a) also shown for comparison. The “conservative” and “liberal” books clusters (blue and green) are similarly detected by all parameters,
with differences mainly on the “transition” cluster (red).

TABLE IV. Values of the Kemeny constant, τ2 and modularity for the political book
network reduced to three clusters using the PCCA+ method, and the optimization for
the Kemeny constant, τ2 and modularity. Bolded numbers indicate the largest value
of the respective objective function.

Clustering method Kemeny τ2 Modularity

PCCA+ 29.944 25.041 0.358 79
Kemeny 29.954 25.237 0.358 43
τ2 29.023 25.653 0.347 39
Modularity 29.524 25.062 0.359 54

The spectral gap analysis detects two metastable states (Fig. S1),
corresponding to the categories “liberal” and “conservative” as we
could expect, while the “neutral” category will be considered as the
transition state between the two. We observe that partitioning into
two clusters yields identical clusterings for all dynamical clustering
methods and a very similar clustering for modularity (Fig. S7 and
Table S4). When optimizing for three clusters yields results con-
sistent with our previous observations (Fig. 8 and Table IV). On
one hand the Kemeny constant and PCCA+ converge to a similar
clustering. On the other hand the τ2-optimal clustering is seen to
separate the two stable states (Fig. 8), while the small transition clus-
ter contains nodes with high closeness and betweenness centrality

(Fig. S8). Modularity does not separate the two stable states fully
and identifies a third cluster somewhat different from Kemeny and
PCCA+.

The manual labeling (Fig. S6) is not retrieved by any of the
kinetic clusterings we have tried. This can be explained by mul-
tiple factors: the edges here are binary, i.e., they do not measure
how strongly connected (co-purchased) two books are; hence, all the
information about the strength of the connection is lost. Given that
our method is based on the dynamics of the network, which is highly
dependent on the weights of the edges (transition rates), we can
expect it to lead to a different clustering in the presence of weights,
which may be closer to the manual clustering with a weighted net-
work. Additionally, the manual labeling have been made by a single
person, and therefore it is prone to the subjectivity of this person’s
judgment. The discrepancy between the τ2-optimal clustering and
the labeling can be used to suggest reconsideration of the labeling or
to gather a more robust dataset for the task at hand. Furthermore, it
also suggests that there is no completely neutral opinion, but some
bias exists toward liberal or conservative orientation.

5. Streets network
Finally, we consider a subset of the open street map road net-

works of Luxembourg (Fig. 9). The graph is an undirected and
unweighted version of the largest strongly connected component of

FIG. 9. Street network of Luxembourg
from DIMACS10,136,132 and the sub-
set we consider. Latitude and longi-
tude in decimal degrees; the colored
circles highlight the main cities in this
geographic area.
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FIG. 10. Clustering of the subset of Luxembourg streets network (Fig. 9, right) into two (top) and three (bottom) states. PCCA+ clustering (a), modularity (b), the Kemeny
constant (c), and τ2 (d) optimized clusters are shown for comparison.

the corresponding open street map road networks.132 Due to the
large size of the network (114 599 nodes), we have taken a subset
of the initial graph (Fig. 9, right), the subset contains two medium-
sized cities (Everlange and Useldange), as well as a few smaller cities
(Reimberg and Shandel).

In the absence of data about the dynamics in this network, we
applied the Laplacian method described in Sec. II A 2 to obtain

TABLE V. Values of the Kemeny constant, τ2 and modularity for the Luxembourg
roads network reduced to two clusters using the PCCA+method, and the optimization
for the Kemeny constant, τ2 and modularity. Bolded numbers indicate the largest
value of the respective objective function.

Clustering method Kemeny τ2 Modularity

PCCA+ 14 327 14 327 0.373 65
Kemeny 14 593 14 593 0.374 04
τ2 14 593 14 593 0.374 04
Modularity 13 280 13 280 0.373 67

TABLE VI. Values of the Kemeny constant, τ2 and modularity for the Luxembourg
roads network reduced to three clusters using the PCCA+ method, and the optimiza-
tion for the Kemeny constant, τ2 and modularity. Bolded numbers indicate the largest
value of the respective objective function.

Clustering method Kemeny τ2 Modularity

PCCA+ 19 973 15 007 0.405 7
Kemeny 20 007 15 035 0.404 99
τ2 18 167 15 374 0.399 9
Modularity 15 260 13 144 0.413 05

the random walk dynamics. We find that the spectral gap analysis
determines that there are two metastable states.

Similarly to what we observe in the previous networks, when
optimizing for two clusters, the partitions from all four methods
provide similar results (Fig. 10, top and Table V). Each of the
two clusters contains one of the two largest cities of the network,
Everlange and Useldange (Fig. 9, right).

When clustering into three states (Fig. 10, bottom and
Table VI), we find that PCCA+ provides a sensible clustering, identi-
fying the third largest city, Schandel, into the third cluster, similarly
to the Kemeny-optimal clustering. The modularity-optimal cluster-
ing splits the left-hand cluster, we can see that the additional cluster
corresponds to a part of one of the largest cities (Everlange). The
τ2-optimal clustering maintains the two main cities unseparated,
and instead assigns the third largest city as well as the main road
connecting the two main cities into the third, transition cluster, thus
completely separating the two main cities.

IV. CONCLUSIONS
Network clustering is a crucial component of analysis of large

datasets in most fields. Here, we present a theoretical framework for
clustering based on the dynamical properties of networks. We intro-
duce variational clustering protocols using the Kemeny constant
and the slowest relaxation time. Building upon our earlier com-
putational and theoretical work on the Kemeny constant,70,76,77 we
derived a novel theoretical expression for the gradient of the Kemeny
constant with respect to clustering, and provided an analytical solu-
tion for the optimal clustering of a 1D potential maximizing the
Kemeny constant, for an arbitrary number of clusters. We showed
that boundaries in optimal clustering correspond to equal round-
trip times between clusters they separate. We further extended this

J. Chem. Phys. 158, 104112 (2023); doi: 10.1063/5.0105099 158, 104112-15

© Author(s) 2023

 19 Septem
ber 2023 21:32:22

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

result to complex networks, in general, and showed that in the opti-
mal clustering maximizing the Kemeny constant each node belongs
to the cluster that is the closest as measured by the round-trip time
distance measure.

To enable more efficient clustering in complex systems, we
described in the present work an algorithmic protocol, PTVC, allow-
ing for the identification of clusters in large and complex networks
by using parallel tempering to maximize any variational parameter
or objective function. Using this algorithm, we compared differ-
ent objective functions (modularity, Kemeny constant, and slowest
timescale τ2) as well as PCCA+ on the examples of two model
networks and three real data-derived networks.

The optimization using the Kemeny constant is shown to
successfully identify the key metastable states, in both weighted
and unweighted networks, illustrating the proof of the variational
result.70 Moreover, maximizing τ2 has shown to consistently identify
less stable states, which can be considered as transition clusters, in
addition to the metastable states. These transition clusters appear to
contain nodes with high closeness and betweenness centrality. While
the vast majority of clustering methods focus on detecting commu-
nities (metastable states), we present results suggesting that the use
of specific timescales τi can be used to also efficiently identifying key
transition states in complex systems.

This new approach of maximizing specific timescales (τi)

or their sum (Kemeny) opens up new and exciting potential
research avenues and applications. For one, this method can effec-
tively identify key transition states from a Markov model. In
the context of molecular simulations, this can be incorporated to
analyze and enhance the sampling of the system’s configuration
space.133

Furthermore, spectral properties are related via the Kemeny
constant to mean first passage times, which can be more readily
available from numerical data, and can be evaluated numerically
effectively.134–136 The novel analytical expression for the gradient of
the Kemeny constant, ∂ζCG

/∂bJ , and its discrete form using round
trip times, derived in this work, also opens the possibilities to employ
alternative implementations of our clustering method, based on, e.g.,
gradient descent techniques, thus avoiding an exhaustive search over
the space of possible boundary positions. This will be explored in
future work.

SUPPLEMENTARY MATERIAL

The supplementary material contains the definition of the
irregular 1D potential; numerical values for the Kemeny constant,
τ2, and modularity for the various networks clustered into differ-
ent number of clusters; spectral gaps; additional clustering results
including centrality measures.
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APPENDIX A: DIFFUSION ON 1D SYMMETRIC
POTENTIAL: THREE-STATE CLUSTERING

In this section, we consider a system diffusing in a 1D potential
symmetric about 0. We consider clustering the system in three clus-
ters, which we shall denote with 1, 2, 3. Taking 0 as the center of the
1D space, we denote with a the position of the boundary between
cluster 2 and 3 and, due to the symmetry of the potential, −a will
denote the boundary between 1 and 2.

The clustered mean first passage times are given in Eq. (34) and
can be written compactly as

tCG
JI =

1
ΠJ
∫

J
dx π(x)[t̄xI − t̄xJ] (A1)

in terms of the MFPTs to the single position x from the clusters I
and J, respectively, as defined in Eq. (36).

Inserting this into the expression for the Kemeny constant pro-
vided for a symmetric system coarse-grained into three clusters, in
Eq. (33), we obtain

ζCG
/2 = ∫

−a

−∞
dx π(x)(t̄x2 − t̄x1). (A2)

Differentiating with respect to a using the Leibniz integral rule yields
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∂ζCG
/2

∂a
= −π(−a)(t̄−a2 − t̄−a1) + ∫

−a

−∞
dx π(x)

∂

∂a
(t̄x2 − t̄x1).

(A3)
From Eq. (36), we have

t̄x2 = ∫

a

−a
dz p2(z)txz (A4)

with

p2(x) =
π(x)
Π2

, Π2 = ∫

a

−a
dx π(x), (A5)

and hence

∂

∂a
t̄x2 = p2(a)txa + p2(−a)tx−a + ∫

a

−a
dz

∂

∂a
p2(z)txz. (A6)

Substituting

∂

∂a
p2(z) =

∂

∂a
π(z)

Π2(a)
= −

π(z)
Π2

2(a)
∂

∂a
Π2(a)

= −
p2(z)
Π2(a)

∂

∂a
Π2(a)

= −[p2(a) + p2(−a)]p2(z), (A7)

we get

∂

∂a
t̄x2 = p2(a)txa + p2(−a)tx−a − [p2(a) + p2(−a)]t̄x2. (A8)

Similarly, for t̄x1 = ∫
−a
−∞

dz p1(z)txz ,

∂

∂a
t̄x1 = p1(−a)(t̄x1 − tx−a). (A9)

Collecting all the terms, and using p2(a)π(x) = p2(x)π(a) and
similarly for −a,

∂

∂a
ζCG
/2 = −π(−a)(t̄−a2 − t̄−a1) + π(a)∫

−a

−∞
dx p2(x)txa

+π(−a)∫
−a

−∞
dx p2(x)tx−a

− [π(a) + π(−a)]∫
−a

−∞
dx p2(x)t̄x2

−π(−a)∫
−a

−∞
dx p1(x)(t̄x1 − tx−a). (A10)

Using π(a) = π(−a), due to the symmetry of the potential, and
that ∀ x ∈ 1 t̄x2 = tx−a + t̄−a2 and txa = tx−a + t−aa,

1
π(a)

∂

∂a
ζCG
/2 = −(t̄−a2 − t̄−a1) + ∫

−a

−∞
dx p2(x)(tx−a + t−aa)

+∫

−a

−∞
dx p2(x)tx−a − 2∫

−a

−∞
dx p2(x)(tx−a + t̄−a2)

−∫

−a

−∞
dx p1(x)(t̄x1 − tx−a).

Simplifying, and using Π1 =Π3 due to the symmetry of the potential,

1
π(a)

∂

∂a
ζCG
/2 = −t̄−a2 + t̄−a1 +

Π1

Π2
t−aa − 2

Π1

Π2
t̄−a2

−∫

−a

−∞
dx p1(x)(t̄x1 − tx−a)

= −(1 + 2
Π1

Π2
)t̄−a2 + t̄−a1 +

Π1

Π2
t−aa

−∫

−a

−∞
dx p1(x)(t̄x1 − tx−a)

= −
1

Π2
t̄−a2 + t̄−a1 +

Π1

Π2
t−aa

−∫

−a

−∞
dx p1(x)(t̄x1 − tx−a).

Equating ∂ζCG/∂a to zero, we obtain

−
1

Π2
t̄−a2 + t̄−a1 +

Π1

Π2
t−aa = ∫

−a

−∞
dx p1(x)(t̄x1 − tx−a).

Because of symmetry, this is equivalent to

−
1

Π2
t̄a2 + t̄a3 +

Π3

Π2
t−aa = ∫

−a

−∞
dx p1(x)[t̄x1 − tx−a].

One can write the right-hand side (RHS) in terms of the Kemeny
constant

ζCG
/2 = ∫

−a

−∞
dx π(x)(t̄x2 − t̄x1)

= Π1∫

−a

−∞
dx p1(x)[t̄x2 − t̄x1]

= Π1∫

−a

−∞
dx p1(x)[(tx−a + t̄−a2) − t̄x1]

= Π1∫

−a

−∞
dx p1(x)[tx−a − t̄x1] +Π1 t̄−a2 (A11)

to get

−
1

Π2
t̄a2 + t̄a3 +

Π3

Π2
t−aa = t̄−a2 −

ζCG

2Π1
= t̄−a2 − tCG

12 , (A12)

where, in the last step, we used Eq. (33), or, using equivalence of
states 1 and 3,

Π1t−aa − t̄a2 +Π2(t̄−a1 − t̄−a2 + tCG
12 ) = 0. (A13)

Another identity can be obtained by using the relation of the quan-
tities above to the Kemeny constant of the original process ζorig

= ∫
∞

−∞
dx π(x)txy. Writing

1
Π1
∫

−a

−∞
dx π(x)t̄x1 =

1
Π2

1
∫

−a

−∞
dx π(x)∫

−a

−∞
dy π(y)txy

=
1

Π2
1
∫

−a

−∞
dy π(y)(ζ − ∫

∞

−a
dx π(x)txy)

=
1

Π1
(ζ − ∫

∞

−a
dx π(x)t̄x1) (A14)

and using Eq. (A1) and t̄x2 = tx−a + t̄−a2 ∀ x ∈ 1, we obtain
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tCG
12 = ∫

−a

−∞
dx

π(x)
Π1
(tx−a + t̄−a2 − t̄x1)

= ∫

−a

−∞
dx

π(x)
Π1

tx−a + t̄−a2 − ∫

−a

−∞
dx

π(x)
Π1

t̄x1

= ∫

−a

−∞
dx

π(x)
Π1

tx−a + t̄−a2 −
1

Π1
[ζ − ∫

+∞

−a
dx π(x)t̄x1]

= ∫

−a

−∞
dx

π(x)
Π1

tx−a + t̄−a2 −
1

Π1
[ζorig

− ∫

+∞

−a
dx π(x)(tx−a + t̄−a1)]

= ∫

−a

−∞
dx

π(x)
Π1

tx−a + t̄−a2 −
1

Π1
[∫

−a

−∞
dx π(x)tx−a − (1 −Π1)t̄−a1]

= t̄−a2 +
1 −Π1

Π1
t̄−a1. (A15)

Substituting in Eq. (A13), one finally obtains a relation between
MFPTs and the stationary distribution of the coarse-grained that
holds when the Kemeny constant is maximized with respect to the
two boundary positions −a and a.

Π1t−aa − t̄a2 +
Π2

Π1
t̄−a1 = 0. (A16)

This expression will be tested in Sec. III A 1.
A more interpretable result can be derived as follows: Defining

t̂Jα = ∫
J
dx

π(x)
ΠJ
(txα − t̄xJ) (A17)

and using Eqs. (33) and (A11), we can interpret t̂1−a = −t̄−a2 + tCG
12

as the MFPT to cluster 1 from its right boundary. Then, rearranging
Eq. (A10), we have

∂

∂a
ζCG
/2 = −π(−a)(t̄−a2 − t̄−a1) + π(a)∫

−a

−∞
dx p2(x)(txa − t̄x2)

+π(−a)∫
−a

−∞
dx p2(x)(tx−a − t̄x2) + π(−a)(tCG

12 − t̄−a2).

(A18)

Using the symmetry of the potential, we can expand the above
equation as follows (this corresponds to starting the derivation from
ζCG
= Π1tCG

12 +Π3tCG
32 instead of ζCG

= 2Π1tCG
12 ):

∂

∂a
ζCG
= −π(−a)(t̄−a2 − t̄−a1) + π(a)∫

−a

−∞
dx p2(x)(txa − t̄x2) + π(−a)∫

−a

−∞
dx p2(x)(tx−a − t̄x2)

+π(−a)(tCG
12 − t̄−a2) − π(a)(t̄a2 − t̄a3) + π(a)∫

+∞

a
dx p2(x)(txa − t̄x2)

+π(−a)∫
+∞

a
dx p2(x)(tx−a − t̄x2) + π(a)(tCG

32 − t̄a2). (A19)

Writing

∂Π2tCG
22

∂a
= π(a)(t̄a2 − t̄a2) − π(−a)(t̄−a2 − t̄−a2) + ∫

a

−a
dx π(x)[

∂ t̄x2

∂a
−
∂ t̄x2

∂a
]

= ∫

a

−a
dx π(x){p2(a)txa + p2(−a)tx−a − [p2(a) + p2(−a)]t̄x2 − p2(a)txa − p2(−a)tx−a + [p2(a) + p2(−a)]t̄x2}

= ∫

a

−a
dx π(x)p2(a)(txa − t̄x2 − txa) + ∫

a

−a
dx π(x)p2(−a)(tx−a − t̄x2 − tx−a) + ∫

a

−a
dx π(x)[p2(a) + p2(−a)]t̄x2

= ∫

a

−a
dx π(a)p2(x)(txa − t̄x2) + ∫

a

−a
dx π(−a)p2(x)(tx−a − t̄x2) + π(a)∫

a

−a
dx p2(x)(t̄x2 − txa) + π(−a)∫

a

−a
dx p2(x)(t̄x2 − tx−a)

= −π(a)t̂2a − π(−a)t̂2−a + π(a)∫
a

−a
dx p2(x)(txa − t̄x2) + π(−a)∫

a

−a
dx p2(x)(tx−a − t̄x2). (A20)
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We now add Eq. (A20) to both sides of Eq. (A19). Equation (A20)
is equal to zero; hence, it will not alter the result, but will allow to
simplify the RHS,

∂

∂a
ζCG
= π(a)[(t̂3a + t̄a3) − (t̂2a + t̄a2)]

+π(−a)[(t̂1−a + t̄−a1) − (t̂2−a + t̄−a2)]

+π(a)∫
+∞

−∞
dx p2(x)(txa − t̄x2)

+π(−a)∫
+∞

−∞
dx p2(x)(tx−a − t̄x2). (A21)

Writing again π(a)p2(x) = p2(a)π(x) in the last two terms,
we note that these vanish as ∫

+∞

−∞
dx π(x)tx−a and ∫

+∞

−∞
dx π(x)txa

are equal to the Kemeny constant of the original system, ζorig, and
∫
+∞

−∞
dx π(x)t̄x2 = ∫ dy p2(y)∫

+∞

−∞
dx π(x)txy = ζorig as well. Hence,

we are left with

∂

∂a
ζCG
= π(−a)[(t̂1−a + t̄−a1) − (t̂2−a + t̄−a2)]

+ π(a)[(t̂3a + t̄a3) − (t̂2a + t̄a2)]. (A22)

Finally, using the definition of round-trip times given in Eq. (38),
we find

∂ζCG

∂a
= π(a)[tRT

3a − tRT
2a ] + π(−a)[tRT

1−a − tRT
2−a].

From symmetry of the potential, the above equation simplifies to

∂ζCG

∂a
= 2π(a)[tRT

3a − tRT
2a ]. (A23)

APPENDIX B: DIFFUSION ON 1D POTENTIAL:
m -STATE CLUSTERING

Considering a continuous one-dimensional space clustered
into m clusters, each cluster J can be characterized by two
boundaries, bJ−1 and bJ , i.e., one has J = (bJ−1, bJ) for each state
J = 1, . . . , m. The first and final (i.e., m-th) clusters are bounded
by the lower and upper boundaries b0 and bm of the configuration
space, which can take arbitrary values, including ±∞. Using the
continuous formulation of Eq. (30),

ζCG
= ζorig

−
m

∑
J=1

1
ΠJ
∫

J
dy∫

J
dx π(y)tyxπ(x), (B1)

and Eq. (36), we can write

ζCG
= ζorig

−
m

∑
J=1
∫

bJ

bJ−1

dy π(y)t̄yJ. (B2)

The Kemeny derivative with respect to a boundary position bL takes
only contributions from J = L or J = L + 1, giving

∂ζCG

∂bL
= −

∂

∂bL
[∫

bL

bL−1

dy π(y)t̄yL + ∫

bL+1

bL

dy π(y)t̄y(L+1)]. (B3)

We apply the Leibniz differentiation rule to the first (α) and second
(β) integrals of Eq. (B3) separately,

∂

∂bL
α = π(bL)t̄bLL + ∫

bL

bL−1

dy π(y)
∂

∂bL
t̄yL,

∂

∂bL
β = −π(bL)t̄bL(L+1) + ∫

bL+1

bL

dy π(y)
∂

∂bL
t̄y(L+1).

(B4)

Expanding t̄yL and using the Leibnitz rule again, we get

∂

∂bL
t̄yL =

π(bL)

ΠL
(tybL − t̄yL),

∂

∂bL
t̄y(L+1) =

π(bL)

ΠL+1
(t̄y(L+1) − tybL).

(B5)

Inserting Eq. (B5) in Eq. (B4) and rearranging, we have

∂α
∂bL
= π(bL)[t̄bLL + ∫

bL

bL−1

dy
π(y)
ΠL
(tybL − t̄yL)],

∂β
∂bL
= −π(bL)t̄bL(L+1) −

π(bL)

ΠL+1
∫

bL+1

bL

dy π(y)(tybL − t̄y(L+1)).
(B6)

Using for the integrals the shorthand notation provided in Eq. (A16),
we can write

∂

∂bL
α = π(bL)(t̄bLL + t̂LbL),

∂

∂bL
β = −π(bL)(t̄bL(L+1) + t̂(L+1)bL

).

Inserting Eq. (B7) in Eq. (B3),

∂ζCG

∂bL
= π(bL)[(t̄bL(L+1) + t̂(L+1)bL) − (t̄bLL + t̂LbL)], (B7)

and using the definition of round-trip times given in Eq. (38), we
obtain

∂ζCG

∂bL
= π(bL)[tRT

bL(L+1) − tRT
bLL]. (B8)

This shows that the derivative vanishes when the following equality
is satisfied:

tRT
bL(L+1) = tRT

bLL. (B9)

This provides an intuitive interpretation of our results: the optimal
clusters L ad L + 1 (obtained by maximizing the Kemeny constant)
are those which have the same round-trip times to the separating
barrier bL.
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APPENDIX C: DISCRETE RANDOM WALK ON 1D
POTENTIAL: m -STATE CLUSTERING

Here we consider the case of a 1D discrete system, i.e., a ran-
dom walk on a linear chain. In discrete systems, we replace the
partial derivative of the coarse-grained Kemeny constant ζCG, with
respect to the barrier position bL, with the finite difference between
the assignments of a node bL to clusters L and L + 1, respectively. In
particular, if the clusters are ordered so that J < J + 1 < J + 2 < ⋅ ⋅ ⋅,
moving the barrier α to “the right,” corresponds to moving the node
bL to “the left,” i.e., from cluster J + 1 to J. Hence, the equivalent to
∂ζCG

/∂bL in discrete space is

ΔζCG
(bL, L + 1→ L) = ζCG

(bL ∈ L) − ζCG
(bL ∈ L + 1). (C1)

We can obtain a computationally efficient formula for the finite
difference of the coarse-grained Kemeny constant. Following a

similar derivation as in the previous section, expanding Eq. (B7) and
replacing the integrals with sums, we obtain

ΔζCG

πbL

=
1

Π2
L
∑
i∈L
∑
j∈L

πjtjiπi −
1

ΠL
∑
j∈L

πjtjbL

−
1

ΠL
∑
i∈L

πitbLi −
1

Π2
L+1
∑

i∈L+1
∑

j∈L+1
πiπjtji

+
1

ΠL+1
∑

j∈L+1
πjtjbL +

1
ΠL+1

∑
i∈L+1

πitbLi. (C2)

We use the following property of the mean first passage times in one-
dimensional space:

tji =

⎧⎪⎪
⎨
⎪⎪⎩

tjbj + tbjj if j > bj > i,
tjbj − tibj if j < i < bj,

(C3)

and expand the double sums in Eq. (C2) as follows:

∑
i∈L
∑
j∈L

πjtjiπi =∑
i∈L

πi

⎡
⎢
⎢
⎢
⎢
⎣

∑
j

πjtji −∑
j∉L

πjtji

⎤
⎥
⎥
⎥
⎥
⎦

=∑
i∈L

πi
⎛

⎝
ζorig
−

L−1

∑
S=1
∑
j∈S

πjtji −
M

∑
S=L+1

∑
j∈S

πjtji
⎞

⎠
=∑

i∈L
πi

⎡
⎢
⎢
⎢
⎢
⎣

ζorig
−

L−1

∑
S=1
∑
j∈S

πj(tjbL − tibL)

−
M

∑
S=L+1

∑
j∈S

πj(tjbL + tbLi)

⎤
⎥
⎥
⎥
⎥
⎦

= ΠLζorig
−∑

i∈L

L−1

∑
S=1
∑
j∈S

πiπj(tjbL − tibL) −∑
i∈L

M

∑
S=L+1

∑
j∈S

πiπj(tjbL + tbLi)

= ΠL
⎛

⎝
ζorig
−∑

j∉L
πjtjbL

⎞

⎠
+

L−1

∑
S=1

ΠS∑
i∈L

πitibL −
M

∑
S=L+1

ΠS∑
i∈L

πitbLi =
L

∑
S=1

ΠS∑
j∈L

πjtjbL −
M

∑
S=L+1

ΠS∑
i∈L

πitbLi,

and, similarly,

∑
i∈L+1

∑
j∈L+1

πjtjiπi =
M

∑
S=L+1

ΠS ∑
j∈L+1

πjtjbL −
L

∑
S=1

ΠS ∑
i∈L+1

πitbLi.

Inserting these equations into Eq. (C2) yields the finite difference of
the Kemeny constant on a linear chain

ΔζCG

πbL

=
∑S<LΠS

Π2
L
∑
j∈L

πjtjbL −
∑S≥LΠS

Π2
L
∑
i∈L

πitbLi

+
∑S≤L+1ΠS

Π2
L+1

∑
i∈L+1

πitbLi −
∑S>L+1ΠS

Π2
L+1

∑
j∈L+1

πjtjbL. (C4)

APPENDIX D: RANDOM WALKS ON COMPLEX
NETWORKS: m -STATE CLUSTERING

Below we will show that the result obtained in Appendix B
holds in complex networks, up to an approximation.

As a discrete equivalent of the Kemeny constant-derivative with
respect to barrier position, we consider the finite difference in the
coarse-grained Kemeny constant ζCG between the case when node α
is assigned to cluster B or A,

ΔζCG
(α, A→ B) = ζCG

(α ∈ B) − ζCG
(α ∈ A). (D1)

For convenience, we define FJI as follows:

FJI =∑
i∈I
∑
j∈J

πjtjiπi. (D2)

This leads to a shorter formulation of Eq. (30) and Eq. (34),

ζCG
= ζorig

−∑
J

FJJ

ΠJ
, (D3)

tCG
JI =

FJI

ΠJΠI
−

FJJ

Π2
J

. (D4)

If we consider splitting a cluster Γ into two clusters A and B, i.e.,
Γ = A ∪ B, the following property holds:

FΓΓ = FAA + FAB + FBA + FBB. (D5)

Additionally, we define A+ = A ∪ {α} and B+ = B ∪ {α}, i.e., as the
union of the node α and the clusters A and B respectively, implying
that A and B do not contain α; hence,

ΠA+ = ΠA + πα. (D6)
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Using Eq. (D3) and dropping (α, A→ B) for simplicity, we
rewrite Eq. (D1) as follows:

ΔζCG
=

⎡
⎢
⎢
⎢
⎢
⎣

ζorig
− ∑

J∉{A,B}

FJJ

ΠJ
−

FB+B+

ΠB+
−

FAA

ΠA

⎤
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎣

ζorig
− ∑

J∉{A,B}

FJJ

ΠJ
−

FA+A+

ΠA+
−

FBB

ΠB

⎤
⎥
⎥
⎥
⎥
⎦

. (D7)

Simplifying the first two terms in the brackets and rearranging, we
have

ΔζCG
= [

FBB

ΠB
−

FB+B+

ΠB+
] − [

FAA

ΠA
−

FA+A+

ΠA+
]

=
ΠB+FBB −ΠBFB+B+

ΠB+ΠB
−

ΠA+FAA −ΠAFA+A+

ΠA+ΠA
. (D8)

Expanding FX+X+ and ΠX+ on the numerator, by using Eqs. (D5) and
(D6), respectively, and simplifying the cancelling terms

ΔζCG
= [

ΠαFBB

ΠB+ΠB
−

FαB + FBα + Fαα

ΠB+
]

− [
ΠαFAA

ΠA+ΠA
−

FAα + FαA + Fαα

ΠA+
]. (D9)

From tαα = 0, we have Fαα = 0, and then dividing by πα and
rearranging, we have

ΔζCG

πα
= [

FAα

παΠA+
−

FAA

ΠA+ΠA
+

FαA

παΠA+
]

− [
FBα

παΠB+
−

FBB

ΠB+ΠB
+

FαB

παΠB+
]. (D10)

Under the approximation Π+A ≃ ΠA and Π+B ≃ ΠB, which hold for
πα ≪ ΠA, ΠB,

ΔζCG

πα
= [

FAα

παΠA
−

FAA

ΠAΠA
+

FαA

παΠA
] − [

FBα

παΠB
−

FBB

ΠBΠB
+

FαB

παΠB
].

(D11)

We can use the formula for the coarse-grained mean first passage
times in terms of F, Eq. (D4), and simplify

ΔζCG

πα
= [tCG

Aα + tCG
αA ] − [t

CG
Bα + tCG

αB ]. (D12)

As tCG
Aα is the mean first passage time from a cluster that contains a

single node α to cluster A, this is the discrete-space analog of the
mean first passage time t̂Aα defined in Eq. (A16) for diffusion in
continuous space, and, similarly, tCG

αA is analogous to t̄αA defined in
Eq. (36).

Upon defining, as before, the round-trip time tRT
αA = tCG

Aα + tCG
αA ,

we can finally rewrite (D12) in the intuitive way

ΔζCG
(α, A→ B) = πα[tRT

αA − tRT
αB ]. (D13)

This suggests that, given a network with M clusters, the cluster B to
which a new node α should be assigned, in order to maximize the
Kemeny constant, is the one with minimum round trip time to α,
provided that πα ≪ ΠL∀ L = 1, . . . , M.
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