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Abstract. A principle of virtual dissipation generalizing d’Alembert’s principle 

to nonlinear irreversible thermodynamics provides a unifying foundation which leads 

to an extremely general variational-Lagrangian analysis of dissipative phenomena. 

Thus a synthesis is achieved between thermodynamics and classical mechanics. The 

present paper applies this principle to the nonlinear thermomechanics of continua 

with dissipation and heat conduction. Field equations, constitutive equations and 

Lagrangian equations with generalized coordinates are derived for nonlinear thermo- 

viscoelastcity, nonlinear thermoelasticity and heat conduction, plasticity, and com- 

pressible heat conducting fluids with Newtonian and non-Newtonian viscosity. The 

thermodynamics of instability is also analyzed from the same fundamental viewpoint. 

1. Introduction. A Lagrangian-variational approach to irreversible thermo- 

dynamics was initiated by the author in 1954-55 [I, 21. It was developed mainly in 

the context of linearity and applied to thermoelasticity [3, 41 viscoelasticity [l, 2, 41, 

porous media [5], and initially stressed porous and continuous media [6, 71. The appli- 

cability of these methods to nonlinear problems was demonstrated in a variety of special 

cases, such as heat transfer [8], porous solids [9] and nonlinear thermoelasticity [lo]. 

A treatment of nonlinear viscoelasticity based on a Lagrangian thermodynamic approach 

has also been presented by Schapery [ll]. 

The theory embodied in the publications cited above provides a unified analysis 

based on Lagrangian formalism and generalized coordinates. Among many advantages, 

the equations have the same form in any coordinate system. Thus basic reciprocity 

properties of linear dissipative systems are immediately evident for a very large class 

of phenomena and boundary conditions. As a consequence, the proof of reciprocity 

properties does not have to be established for each particular case. Basic properties 

for systems with heredity are also obtained from the concept of internal coordinates 

and a general expression derived for the associated operator formalism. The corresponding 
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electric circuit analogy is the impedance of a “black box” containing resistor capacitor 

elements. In addition, this unified analysis is based on a fundamental thermodynamic 

approach. 

These methods also provide a fundamental invariance in the expression of physical 

laws much more general than the traditional tensor invariance, since it includes the 

field variables as a particular case of generalized coordinates. 

The variational principle has recently been extended and referred to as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprinciple 

of virtual dissipation [12]. It encompasses the whole field of nonlinear thermodynamics 

of irreversible systems and constitutes a generalization of d’Alembert’s principle of 

classical mechanics. It should be pointed out that its application provides the field 

equations governing the physical system. This is in contrast with formal variational 

procedures which are based on a knowledge of the field equations. As in classical 

mechanics, the principle may be expressed in Hamiltonian form and leads to Lagrangian 

equations. A brief description of these results is provided in Sees. 2 and 3. This includes 

a discussion of the “collective potential” already introduced earlier [l, 21 in the analysis 

of systems at non-uniform temperature. Two forms of dissipation must also be con- 

sidered: relative and intrinsic dissipation. The entropy is separated into two terms, 

the supplied and produced entropy, the first being associated with the concept of entropy 

displacement as defined earlier [3]. 

Note that the use of a displacement vector for both entropy and material points 

plays an important role in unifying the theory. As pointed out in a more detailed paper 

[12], quasi-reversible systems, while nonlinear and far from equilibrium, may be con- 

sidered as nearly reversible, so that Onsager’s principle becomes applicable. This may 

be embodied in a principle of virtual thermodynamic equilibrium where reverse dissipative 

forces are applied in analogy with the reverse inertia forces of d’Alembert’s principle. 

The purpose of the present paper is to apply the thermodynamic principle of virtual 

dissipation to the thermomechanics of nonlinear dissipative media including heat 

conduction. 

Nonlinear thermoviscoelastic media are considered in Sets. 4 and 5 as a particular 

case of quasi-reversible systems. Temperatures and stresses are expressed in terms 

of large deformations and entropy supplied and produced. Heating due to dissipation 

is included. Field equations and Lagrangian equations are also obtained directly. Results 

derived earlier [l, 2, 43 in linear viscoelasticity are shown to be a particular case and 

are briefly recalled in Sec. 6. 

In Sec. 7 the principle is applied to derive isothermal stress-strain relations for 

viscoelastic-plastic materials and the closely related case of materials with internal 

failures. 

In Sec. 8 a completely general nonlinear thermoelastic theory with finite deforma- 

tions and temperature changes is derived. It yields new field equations and Lagrangian 

equations. This generalizes the results obtained for the quasi-isothermal case [lo]. 

The variational Lagrangian formulation of nonlinear heat conduction originated in 1957 

and included in a later book [S] is shown to be a consequence of thermodynamics through 

the principle of virtual dissipation. In the linear case this result is self-evident [3]. 

Sec. 9 considers compressible viscous fluids with heat conduction for both Newtonian 

and non-Newtonian viscosity. Application of the virtual dissipation principle leads to 

field and Lagrangian equat,ions. A simplified derivation of non-Newtonian constitutive 

equations is given in the Appendix. The particular case of small isothermal displace- 
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ments of an incompressible Newtonian fluid leads to “ linear viscodynamics” , discussed 

in Sec. 10. This is the analogue of linear viscoelasticity except that now viscosity and 

inertia are the two physical features instead of viscosity and elasticity. The use of 

internal coordinates introduces the concept of “viscodynamic operator”  in analogy with 

viscoelastic operators and already obtained and used earlier in the context of porous 

media [5, 61. 

The thermodynamics of unstable systems is analyzed in Sec. 11. Two cases are 

distinguished. In the first the system is initially in a state of unstable thermodynamic 

equilibrium as exemplified by thermoelastic buckling [lo, 141 corresponding to an 

initial state of minimum entropy. The other is an instability in the vicinity of a steady 

state of flow as exemplified by buckling of layered viscous solids in compression. Both 

cases lead to dominant dissipative structures appearing as a dominant wavelength in 

many examples of viscous and viscoelastic instability of layered media [7, 131 discussed 

n the context of irreversible thermodynamics. 

2. Principle of virtual dissipation in nonlinear irreversible thermodynamics. It 

was shown originally in 1954 [l] and in some subsequent work [2-41 that a general 

Lagrangian thermodynamics of irreversible processes can be developed by introducing 

a fundamental non-classical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcollective potential. 

V = U - T,X (2.1) 

where U is the internal energy of the system, S its entropy and T, the constant tem- 

perature of an associated large thermal reservoir which we have called a thermal well. 

The terminology of collective potential for V and thermal well for the isothermal reservoir 

was introduced in a recent paper [12] where the Lagrangian formulation is developed 

for nonlinear irreversible thermodynamics based on a ~eneralixation of d’ Alembert’ s 

principle. The results are briefly summarized here and in the next section in view of 

their application to rheology. 

In spite of a formal similarity, the collective potential (2.1) should not be confused 

with the concept of availability which is not a thermodynamic potential but a measure 

of available energy of a system at uniform temperature. The usefulness of the collective 

potential is due to several important properties. 

One of these is its additive property. The thermodynamic system may be composed 

of a large member of cells each with its own cell potential 

CUE = ub - T,s~ (2.2) 

when Q. and Sk are the internal energy and entropy of the cell. The collective potential 

of the system of cells is 

v = 2 Wk = U - T,S (2.3) 

where 

u= &,, s= ks,. (2.4) 

In particular the cells may all be at different temperatures. Thus the collective potential 

applies to a system with a non-uniform temperature distribution, ~1s shown in many 

applications to thermoelasticity and heat transfer [3, 4, 8, 10, 141. 
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When a particular cell is at uniform temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, another important property 

is obtained by considering the state variables of the cell to be its entropy & and a certain 

number of other variables p1 . We may then write 

(2.5) 

From the classical relations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

au/ask = T, (2.6) 

we derive 

chJ,c = 2 g dqr + Ok ds, 
1 

(2.7) 

where 

& = T, - T, (2.8) 

is the excess temperature above the thermal well. Finally we derive 

ek = awk/ask. (2.9) 

A third important property is obtained from conservation of energy. Assume that 

the system exchanges thermal energy only with the thermal well. Denote by H, the 

thermal energy thus acquired by the thermal well. Energy conservation requires 

dU = dW - dH, (2.10) 

where dW is the work of the externally applied forces. We may also write 

S’ = S + (HJT,) (2.11) 

where X’ is the total entropy of the hypersystem composed of the thermal well, and 

the primary system of internal energy U and entropy S. From Eqs. (2.1), (2.10) and 

(2.11) we derive 

dV - dW = - T,dS’. (2.12) 

In this relation the differentials are to be considered as variations in the vicinity of 

a frozen configuration at a given instant. The relation is valid for all transformations 

whether reversible or not. Consider the system to be defined by a number of generalized 

state variables qi and assume that they are given variations satisfying suitable con- 

servation and mechanical constraints. Eq. (2.12) may then be written as a variational 

principle 

6V - 6W = -T&Y. (2.13) 

By d’Alembert’s principle we may also write 

6W = 2 Qi 6qi - 2 I< 6q, (2.14) 

where Qj are the generalized applied forces while -Ii are the reversed frozen inertia 
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forces at the particular instant considered. The variational principle (2.13) thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbecomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(2.15) 

We have called it the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprinciple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof virtual relative dissipation [12]. 

An alternate form of the principle is obtained by considering a collection of cells 

and the entropy of each cell & to be composed of two terms 

b = Sk + Sk*, (2.16) 

where Sk is the entropy supplied to the cells and s ,+* is the entropy produced by the cell. 

Since S’ is the total entropy generated in the hypersystem an obvious property is 

S’ = 5 Sk*. (2.17) 

Hence (2.15) is written 

6v + 2 Ii 6qi - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQi 6qi + T, 2 6&* = 0. 

On the other hand, 

6v= 5 ~‘6q,+$fk6(sk+sk*) ’ 

1 k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
Substituting this value into Eq. (2.18) and using relation (2.9), we obtain 

(2.18) 

(2.19) 

(2.20) 

where aR denotes a restricted variation obtained by excluding the variation &s,* of 

the produced entropy. We have called (2.20) the principle of virtual intrinsic dissipation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

WI. 
The physical reason for these two forms of dissipation follows from a distinction 

between a relative dissipation rate T,Sk* and an intrinsic dissipation rate TkSk* where 

kk* is the rate of entropy production which has been discussed in more detail earlier [12]. 

The quantity T,&* is the heat produced at the temperature T, . It is not entirely lost 

in the presence of a thermal well at a lower temperature T, , since some of it may be 

transformed into work equal to e&k* = (T, -  TI)ik* by a Carnot cycle. Note that 

the total relative dissipation is proportional to the total rate of entropy production 

S’ of the hypersystem, namely 

2 T,S,* = T,&‘. (2.21) 

We have defined generalized dissipative forces Xi by writing 

2 Xi 6qi = 5 Tk 6sk*. (2.22) 

They are frozen dissipative forces for a given state of the system at a given instant. 

In terms of dissipative forces the principle of virtual dissipation is written 

(2.23) 
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Integrated with respect to time it acquires a Hamiltonian form 

t 

S[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6,V + i: Ii 6qi + 2 Xi 6qi - 2 Qi 6qi 

II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 dt = 0. (2.24) 

However, nothing essentially new is added by writing it in this form, whose main interest 

is to provide an immediate derivation of expression (2.29) below for the inertia forces. 

Finally it should be pointed out that a complete physical description requires a 

knowledge of the frozen dissipative forces in terms of the state of the system qi and 

the velocities pi . This is expressed by rate equations 

xi = h(ql , cio (2.25) 

with the basic inequality 

2 Rigi 2 0. (2.26) 

If some of the mechanical forces Qi are derived from a potential G we introduce 

a  mixed collective potential 

s=V+G (2.27) 

The principle of virtual dissipation (2.23) then becomes 

686 + 2 li 6q, + 2 Xi 6q; - & Qi 6qi = 0. (2.28) 

For example, G may represent a gravity or an electrostatic potential. 

The system will be called holonomic in a generalized thermodynamic sense if the 

variations Ciq, are arbitrary while respecting at the same time not only the mechanical 

constraints but basic conservation constraints of mass energy and electric 

For such a  holonomic system, a well-known classical derivation in 

kinetic energy 3 yields the following expression for the inertia forces 

charge. 

terms of the 

(2.29) 

The variational principle (2.28) then leads immediately to Lagrungian type equations 

(2.30) 

for the generalized coordinates. 

Principle of virtual thermodynamic equilibrium. The variational principle (2.15) may 

be interpreted in a different way by defining relative dissipative forces Xi’ putting 

T, SS’ = C Xi’  6qi (2.31) 

We then replace Qi by Qi - Xi’ in Eq. (2.15). This yields 

6V + 2 Ii 6qi - 2 Qi 6q< + 2 Xi’  6q< = -l’ , 6X,’  (2.32) 

where 6S,’ is the virtual change of entropy for a system subject to forces Qii reverse 

inertia forces -Ii and reverse dissipative forces -Xi’ . Putting 6SVf = 0 leads to the 
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variational principle (2.15); this amounts to stating that by reversing the dissipative 

forces the system is in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvirtual thermodynamic equilibrium. 

Isothermal and quasi-isothermal systems. For an isothermal system at the uniform 

constant temperature T, of the thermal well, the collective potential coincides with 

the classical Helmholtz free energy. 

Note that for a system of cells, we may integrate Eqs. (2.7) first for ok = 0 and 

then for dql = 0. This yields for the cell potential 

SOk = Vk(r) + sei ek d& , (2.33) 
0 

where vkCr) is the Helmholtz free energy of the cell at the temperature T, while the 

integral is evaluated for constant values Q~ . When & is small, i.e. for a quasi-isothermal 

system, expression (2.33) becomes 

Uk = cuk(r) + 3(c&/TJ = (2.34) 

where ck is the heat capacity of the cell at the temperature T, . It remains a function 

of qI . The case of nonlinear quasi-isothermal thermoelasticity was developed in detail 

earlier [lo]. 

3. Nonlinear quasi-reversible systems and Onsager’s principle. D’Alembert’s 

principle may be interpreted in a more fundamental thermodynamic context. When 

reverse relative dissipative and inertia forces are applied, the instantaneous state of 

the system is one of both mechanical and thermodynamic virtual equilibrium. If the 

actual dissipative forces Xi’ are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnow applied to this system its equilibrium is disturbed. 

In particular, if the actual transformations are quasi-reversible, the disturbance of the 

virtual equilibrium by the dissipative forces may be assumed small and, as pointed 

out earlier [12], Onsager’s principle becomes applicable [ 15-181. 

For a system of cells, at different temperatures, we may express Onsager’s principle 

for a cell in the form 

dDlC 
T, 6s,* = __ 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a@, ql (3.1) 

where q6 are the cell coordinates while 

D, = ; 5 blmgl& = &YY,&* (3.2) 

is the dissipation function of the cell and s k* its rate of entropy production. It is easy 

to show [12] that for generalized coordinates qi for the total system we may write 

2 T, Bsk* = 

with the total dissipation function 

(3.3) 

(3.4) 

In these expressions b Im and bdi are functions respectiveIy of ql and qi . By definition 

it follows from (3.4) that the generalized intrinsic dissipative force is 
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xi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaD/aiq . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.5) 

This form of Onsager’s principle has been used extensively by the author in earlier work. 

Minimum dissipation. A principle of instantaneous minimum dissipation already 

formulated earlier [2] in a more restricted context may be stated as follows [12]. Consider 

the system in its instantaneous frozen state, the direction of the velocity vector pi is 

given by the minimum principle 

D = minimum (3.6) 

when only the velocities Q~ are varied while obeying the constraint 

2 X,tji = constant 

This principle is a consequence of Eq. (3.1). If the system is holonomic the frozen values 

of Xi are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Xi = -g - Ii + Qi . 
I 

These are expressed in terms of the applied forces Qi and the instantaneous state and 

acceleration field of the system. For an isothermal of quasi-isothermal system we may 

write 

Hence in this case the minimum dissipation principle becomes a minimum rate of entropy 

production principle 

iY = minimum. (3.10) 

In narticular this is the case for linear systems [a-4]. 

Lagrangian equations. If the system is holonomic and quasi-reversible the Lagrangian 

equations (2.30) are formulated in terms of a dissipation function. They become 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa3 
Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWi z z z 

(-)-$,+z+z=Qi* (3.11) 

The thermodynamics is contained in D by means of entropy production rates and in 6 

as a mixed thermodynamic and mechanical collective potential. 

4. Nonlinear thermo-viscoelasticity; stress-strain relations. We propose to call 

“viscoelastic”  a rheological system which is quasi-reversible from the thermodynamic 

viewpoint, as desciibed in the preceding section. Hence the dissipative forces are linear 

functions of the rates Qi while the coefficients may be nonlinear functions of the state 

variables qi . This distinguishes viscoelasticity from plasticity where the dissipative 

forces are not linear functions of the rates. We shall derive the stress-strain relations 

using the concept of internal coordinates introduced earlier in the context of linear 

viscoelasticity [ 11. 

A first step in this direction was accomplished by Schapery [ll]. This type of approach 

is fundamentally different from the work of Coleman [19]. 

Finite strain of a unit element. In order to establish the stress-strain relations it is 
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sufficient to consider a homogeneous deformation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunit element, i.e. a sample of 

material which is initially a cube of unit size. The original coordinates xi become 

ti = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX( + Ui (4.1) 

after deformation. The summation convention for dummy indices will be used hereafter. 

The linear relations 

with 

‘UC = eijxj (4.2) 

eij = rji (4.3) 

define six Cartesian components of finite strain [7]. However, as already pointed out 

and illustrated [7, lo], other Cartesian definitions may be used by introducing three 

relations different from (4.3) in order to eliminate the solid rotation which is included 

in the nine coefficients Eii . 

The present analysis may also be done in terms of non-Cartesian definitions of 

finite strain using the classical Green’s tensor. For simplicity we shall restrict ourselves 

to the particular definitions (4.2), (4.3). 

The corresponding stress components are defined by the virtual work principle 

SW = Tii 6Cij (4.4) 

where 7ii = rii and SW is the virtual work of the forces rii acting on the faces of the 

unit element. 

Internal and external coordinates. The unit element is defined thermodynamically 

by the six strain components eii , its entropy S, and a large number of internal coordinates 

pk . The variables eij may be called external. However, the entropy variable S is of a 

special nature, since it may be written as 

S = s-l-s,* (4.5) 

where s is the entropy supplied reversibly to the unit element by heating from the outside 

while a,* is the entropy produced by the irreversibility. Hence s may be considered 

as an external variable while the entropy produced s,” may be considered as an internal 

non-holonomic variable. 

Stress-strain relations. These relations will be derived in a very general form where 

both the stresses 7ij and the excess temperature 19 will be considered as arbitrary forces 

applied to the element. The response of the element to these forces are the external 

coordinates represented by the six strain components Eii and the entropy s supplied 

to the element. The differential heat energy supplied is Tds where T = 0 + T, is the 

temperature of the element. 

The cell potential of the unit element is 

‘u = Lu(6i , s, q!J (4.6) 

It is a function of cii , S = s + s,* and a large number of internal coordinates qk . 

The intrinsic dissipation rate of the unit element is 

TS,”  = 2~ = ~D,(Q , iii , S, q,t , &J. (4.7) 

Since we have assumed the viscoelastic material to be quasi-reversible by definition, 
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the dissipation function %,, is a quadratic function of iii and rjk with coefficients de- 

pendent on tii , S and qk . The dissipative forces are 

xii = aDD,/aaii j (4.3) 

Xk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaa>,/ag, . (4.9) 

We shall apply the virtual intrinsic dissipation principle (2.23) (applying only variations 

6tii and 6qk since 65, being independent, may be put equal to zero). We obtain 

(4.10) 

Since eii , qk are holonomic variables they may be varied arbitrarily. This leads to the 

six equations 

(4.11) 

A seventh equation is derived from relation (2.9): 

e = au/a5 (4.12) 

In addition, by cancelling the coefficients of 6qk in (4.10) we obtain a large number 

of equations 

E+$po (4.13) 

associated with the internal coordinates qk . Eqs. (4.13) govern the time history of the 

internal coordinates in terms of eii and S. They are linear in a,+ . The values of qk and Q.t 

are determined from these equations as functionals of rii(t) and S(t) 

Qk = %[Gi@), a)1 QE = Sk[cii(Oj s(t>l. (4.14) 

The nature of these functionals is strongly conditioned by the positive-definite character 

of V and Q, . From Eqs. (4.11) and (4.12) we obtain 

(4.15) 

These relations are the thermodynamic stress-strain relations in terms of heredity 

functionals of cii and S. Note that according to Eq. (4.5) S = s + s,*. If the supplied 

entropy s and the strain eij are given we may still determine s,* by the additional equa- 

tions (4.7). In many cases we may assume that the entropy produced, s,*, does not 

contribute substantially to the state variable S. This amounts to writing approximately 

s = s, (4.16) 

considering the system as quasi-holonomic. In such a case Eqs. (4.15) express 7ii and 

8 as functionals of the strain history ~,~(t) and the supplied entropy history s(t). In 

practice this assumption (4.16) may be introduced as a first approximation. In a second 

approximation s* is determined as a function of time by Eq. (4.7). 
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A case of particular interest is that of a quasi-holonomic system while at the same 

time 2) and ZD, are of the form 

where &k and b,, are constants. Eqs. (4.13) become 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c alkqk + 2 &kg, = a, = -A, - B, . (4.18) 

Applying a fundamental solution of these equations derived in linear thermodynamics 

[l, 2, 41 (see also Sec. 6 below), we obtain the explicit linear functionals 

qk = 51, = 5 ckl(*) ,-’ exp [X,(t’ - t)]a, dt, 
0 (4.19) 

where 1, are non-negative internal relaxation constants and Ckl(‘) = elk(*) are non- 

negative matrices. This type of result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwa s also discussed in the context of the nonlinear 

mechanics of porous solids [9]. 

5. Field and Lagrangian equations for a nonlinear thermoviscoelastic continuum. 

It is worth pointing out that thermodynamic field and Lagrangian equations of a non- 

linear viscoelastic continuum may be derived directly from the virtual dissipation 

principle without a priori knowledge of the physical differential equations which govern 

the system. 

We shall first recall briefly the Cartesian description of the finite deformation of 

the continuum. The material displacements Ui are expressed as function of time and 

the initial coordinates xi : 

u< = Ui(Zk ) 2). (5.1) 

In a  small domain around a material point the differential transformation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dUi = C&iidXj (5.2) 

where 

aij = au,/ax, . (5.3) 

We consider the local transformation 

dug = r,,dx, (5.4) 

with eii = eii such that the two transformations (5.2) and (5.4) differ only by a  solid 

rotation. The Cartesian finite strain is represented by the six components cii and the 

associated stress 7i i is defined by the virtual work equation (4.4). This has been discussed 

extensively elsewhere [7, lo] as have other alternative definitions. Actually we are not 

restricted to the particular choice (5.4), and the analysis presented here is easily repeated 

with other measures of strain, including Green’s tensor. It will be assumed that eii 
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may be expressed in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaii . A useful expression valid to the second order derived 

by the author in 1939 (see [7]) is 
. 

eii = eLi + 3(ekiwki + ekiWki + wkioki) (5.5) 

where 

eii = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+(a ij + a id>, wij = $(aii - aii). (5.6) 

Field equations of nonlinear viscoelasticity. In the preceding section the stress-strain 

relations were derived for a unit element. The field equations for a nonlinear thermo- 

viscoelastic continuum undergoing non-homogeneous deformations and heat conduction 

may be derived from the same general principles. The continuum is considered as a 

collection of infinitesimal cells. The collective potential of the continuum is then 

v = pm (5.7) 
an 

where fi is the jnitial space defined by the initial coordinates xi , and dQ = dxldxzdxs 

is the element, of initial volume. The cell potential “u of the unit element is 

9) = U(Ci , s, q/c , XL> (5.8) 

It is analogous’to (4.6) except for an additional dependence on the initial location z( . 

The local entropy production S* in the present case is composed of two distinct 

terms. We write for the local intrinsic dissipation of the unit element 

TB” = 2a>, + 23&r (5.9) 

where 

2Q = 23&i , iii , s, Qk , ,gk , 20, 

2Dr = ThiiS,Si ) 

(5.10) 

and T is the local temperature [lo] [I I]. 

The value of 3, is the dissipation function due to the viscoelasticity. It is the same 

&s (4.7) except of an additional dependence on the initial coordinates X( . The entropy 

production due to heat conduction generates the intrinsic dissipation ~~ . The coeRi- 

cients Xii = Xii represent the thermal resistivity tensor. It depends on the deformation 

cii , the local entropy S, the internal coordinates qk and the location 2; . We write 

xii = Xii(Cij ) s, qk , xl). (5.11) 

We also write 

T = T(eii 7 Sy qk 9 G>* (5.12) 

The vector Si is the entropy displacement, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa  term already introduced earlier [3, 4, lo]. 

It is defined by writing the rate of entropy flow as 

Si = fii/T (5.13) 

where fii is the rate of thermal flow across an area initially equal to unity and initially 

normal to the xi axis. The value of BDT has been derived and discussed extensively 

earlier [lo]. 
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An important property of Si is represented by the following relations. The total 

local entropy of the unit element is 

where 

s=s+s* (5.14) 

s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-asi/axi (5.15) 

is the local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAentropy supplied, while s* is the local entropy produced as defined by Eqs. 

(5.9). 

It should be pointed that in FD,, and !BT the rate variables Si are uncoupled to either 

Bii or Qn. . Otherwise cross-products would be present such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa sign reversal of Si 

would generate a change in entropy production. However, this must be excluded because 

of physical symmetry invariance. The variables defining the system are the fields ui , Si 

of material and entropy displacements, the entropy produced s*, and the internal 

coordinates qk . 

We now apply the principle of virtual dissipation (2.23) by varying only the variables 

ui and Si inside the domain Q. The dissipative forces associated w&h cii and Si are 

xii = asv/aiii , 

Xi = a330,./aSi = TXijSj . 

(5.16) 

The variational principle (2.23) applied to the whole continuum now becomes 

n 

J (~3~2) + pi& hi + X1, 6el, + Xi 6Si - ~63% hi) dQ (5.17) 
n 

where C% is the body force per unit mass and p is the initial mass density. We may write 

(5.18) 

or 

(5.19) 

This result is obtained by using Eqs. (4.11) and (4.12). We now introduce expression 

(5.19) into the variational principle (5.17) and integrate by parts taking into account 

the holonomic constraints (5.3) and (5.15) of continuity and conservation, namely 

u,, = aui/azi , s = -a&/ax6 . (5.20) 

This yields an expression with arbitrary variations 6~~ and 6Si whose coefficients must 

vanish. As a consequence we obtain six field equations for ui and Si : 

In addition a seventh equation (5.9) is availab e for the entropy produced, s*. Note i 

that the last three of Eqs. (5.21) represent the law of heat conduction. Mechanical 

and thermodynamic heredity properties are implicit in the field equations (5.21) since 
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the internal coordinates qk in the values of rii and Xii must be expressed by means 

of the functionals (4.14). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lagrangian equatiolzs of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnonlinear thermoviscoelasticity. If the entropy produced s* 

does not contribute significantly to the state variables, the system is quasi-holonomic 

and we write approximately 

s = s. (5.22) 

In this case the nonlinear thermoviscoelastic continuum is described by the two fields 

% = Ui(Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2 * * - qn , 21 , 0 , 
(5.23) 

xi = S&1, q2 *  *  *  qn , 21 , t> 

with generalized coordinates q* . In addition, the local internal coordinates qL are given 

by the functionals (4.14) in terms of the fields ui and Si . In this case it is possible to 

derive Lagrangian-type equations for the continuum. 

Following earlier procedure, we consider temperatures to be “applied” at the 

boundary A as thermal forces dependent on location and time. This may be taken 

into account by adding thermal driving reservoirs at the boundary. These reservoirs 

are then included in the collective potential, which is written 

V = /vdn+ /kdA (5.24) 
R A 

The cell potentials CUE representing the applied boundary temperatures are evaluated 

per unit initial area. As a consequence of (2.7) we may write 

6’uT = Oni6Si (5.25) 

where ni is the unit outward normal of the initial boundary. We derive 

8V, = /~vRG?Q+/ Bni6SidA. (5.26) 
R A 

Note that this variation is performed for an instantaneous configuration at a particular 

instant, so that in the final result 8 may be given functions of time. 

The total dissipation function of the continuum is 

D = 
s 

(3” + a>,) CZQ. (5.27) 
R 

The dissipative force associated with the generalized coordinate qi is 

xi (‘) = aD/a@ . (5.28) 

We shall assume that the body forces ~3; per unit mass are derived from a potential 4 

so that, 

s pai 6ui do = 1 pS+dB = 6G (5.29) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n R 

With these results the variational principle (2.28) with independent variations of qi is 

.I 
A (fi 6ui - 19ni 8s;) dA = 0 (5.30) 686 + Ii 6qi + Xi(*) 6qi - 
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where fi are boundary forces per unit initial area and 

6= s ll&l+f2 (5.31) 
R 

is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmixed collective potential. Equating to zero the coefficients of 6qi in the variational 

principle (5.30) and introducing the values (2.29) and (5.28) for Ii and Xica), we obtain 

with generalized thermomechanical forces 

The kinetic energy is 

(5.32) 

(5.34) 

These Lagrangian equations are similar to (3.7) except for the fact that D and 6 are 

functionals of qi since they contain the local internal coordinates qk which are themselves 

expressed by the functionals (4.14). 

Note that in the case of linear viscoelasticity this type of functional Lagrangian 

equation was already introduced using integro-differential operators [4, 71. 

6. Linear thermodynamics and viscoelasticity. The generalized coordinates qi may 

represent linearized perturbations from a thermodynamic state of equilibrium. In this 

case we may write (with constants mii , bi j , aii) 

3 = imiiQifji , D = +biigiQi , 6 = $aiiqiqi , (6.1) 

The Lagrangian equations become [4, 71 

miiqj + biigi + aiiqi = Qi . (6.2) 

For linear thermodynamics the auxiliary variable S* due to entropy production is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

second-order negligible quantity, and the system is holonomic. Applying Eqs. (6.1) 

with internal variables qk and putting 3 = 0, it was shown [l, 2, 41 that the external 

variables q* and the corresponding driving forces are related by the following equations: 

qi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&i&i, Qi = 2;, (6.3) 

where 

(6 -4) 

These quantities are symmetric operators where p = d/dt, X, and ra are non-negative 

as well as the matrices Cii’*‘, Zii’*‘, Zii and Zii’. The significance of the fractional 
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-L--z(t) = e-“” 
t 

P+a s e""'x(t') dt’, 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(6.5) 

s 

t 
P __- x(t) = emat 

p+a 

e.’  
0 

’  $7 dt. 

The operational notation is extremely general and convenient, since relations (6.3) 

remain valid when qi and Qi are proportional to the exponential function of time, 

exp (pt), where p is either real, complex or pure imaginary (p = io). Thus a single 

formalism represents instability (p real and positive), harmonic response (p imaginary), 

and damped natural oscillations (p complex). 

A viscoelastic material is a particular case where the stress 7ij and the strain eij 

play the role of external driving forces and external coordinates. The stress-strain 

relations obtained from (6.3) are [l, 21 

7;; = .9:fElk ) (6.6) 

where 

There results are extremely general, and provide a basic invariance for compound 

systems. For example, a composite material where each component satisfies the basic 

Lagrangian equations (6.1) also satisfies the same Lagrangian equations, Hence the 

stress-strain relations of the composite retain the invariant form (6.6). The symmetry 

property .8;, = $ji is also invariant for composite systems, thus providing immediately 

reciprocity relations of a very general type for all thermodynamic and mechanical 

systems. In particular, these results have been applied to porous media [5], [6], where 

the stress-strain relations include fluid micro-seepage, thermoelastic and viscoelastic 

properties, with internal coordinates representing a large category of physical, chemical 

and electrical phenomena. An outline of the linear thermodynamics of viscoelasticity 

may also be found in a book by Fung [21]. 

7. Thermodynamics of plasticity. A fundamental thermodynamic distinction 

between nonlinear viscoelasticity and plasticity is brought out by assuming the following 

physical model. We consider again a unit element and assume the medium to obey 

the laws of linear thermodynamics except at a large number of “slip centers” which 

are essentially nonlinear. This linear system is characterized by the six strain components 

eSj and a large number of internal coordinates qk . These internal coordinates are of a 

very general nature. They may describe elastic deformation, small dislocation motions, 

local thermoelastic effects with small temperature changes, small chemical and phase 

disturbances, thermodiffusion, viscous properties of intercrystalline boundaries, etc. 

For small perturbations of this type the system described by the coordinates Eii and 

qk obeys t’he general equations of linear thermodynamics obtained earlier [l, 2, 41 and 

briefly described in the preceding section. In this linear formulation the temperature 

changes due to entropy production are neglected, but small thermoelastic effects are not. 

The system is assumed quasi-isothermal, all temperatures deviating only slightly from 

the thermal well temperature. 
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To the internal coordinates characterizing the linear system we must add others 

denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqII which describe the motion of the slip centers. However these slip centers 

are not free to move according to linear laws and they exert a force -X8 on the linear 

system. By reaction a force X, is exerted on the slip centers. 

Plastic behavior is introduced by assuming a nonlinear relation between the dis- 

placement q. and the force X, applied to it: 

q. = F*(X). (7.1) 

This relation is not necessarily single-valued, thus allowing for hysteresis. The linear 

portion of the system behaves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a thermodynamic system subject to the applied forces 

7i i and - X, . According to earlier results [ 1, 2,4] the behavior of the system is described 

by the operational relations 

where the operators are 

(7.2) 

(7.3) 

These expressions coincide with those of Eqs. (6.6), (6.7) if the summations are replaced 

by integrals. The spectral distributions Zii”“(r) and YZj*(r) are generalized functions. 

They represent a discrete summation as a particular case if we introduce delta functions. 

We now eliminate q8 and X, between Eqs. (7.1) and (7.2). We derive 

Tii = .ziipyerr” + 2 P/q- Pii”eii). (7.4) 

These general stress-strain relations represent the combined viscoelastic and nonlinear 

plastic behavior. 

Entropy production and variational viewpoints. The result expressed by Eqs. (7.4) 

may obviously be brought into the unifying framework of the variational principles 

formulated in the foregoing sections by considering the system to be represented by 

the following invariants. The cell potential of the unit element is 

which is a quadratic function of the variables with constant 

dissipation is 

(7.5) 

coefficients. The rate of 

(7.6) 

where D is a quadratic function with constant coefficients The entropy production is 

thus separated into two groups of terms. The group 

T,& = X,@ , (7.7) 

characterizes separately the dissipation due to plasticity. 
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The Lagrangian equations are 

F!: + 2 = Ti, 
II *I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

au -- -_=o + dD 
aqk aqk 

aD -x -= 
ad8 * 

(7.8) 

This is a linear system with internal coordinates qk implying the operational relations 

(7.2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Strain-hardening. If we assume that the number of slip centers diminishes as the 

deformation progresses, the material will exhibit strain-hardening. This amounts to 

saying that a particular slip q. cannot progress above a certain value beyond which 

it remains constant. This may be expressed by introducing functions F,(X,) which 

have a limiting constant value beyond a certain magnitude. Other physical types of 

strain-hardening may be taken into account by similar procedures. 

Materials with internal failure. Composite materials with fiber components may 

exhibit irreversible behavior due to gradual breaking of the fibers. Granular materials 

may also exhibit a similar behavior due to gradual failure or extension of microcracks. 

Such behavior may be included here by assuming that the local forces X, drop to zero 

in increasing number once they reach a certain value. The stress-strain relations are 

then of the same form as (7.4). 

It should be noted that in crack propagation the energy dissipated is not necessarily 

transformed into heat locally. Actually it may simply become non-retrievable by acoustic 

radiation. Furthermore, in accordance with the Griffith theory of brittle fracture, it 

may be transformed into non-retrievable surface energy in the form of surface tension. 

Although this is not actually an entropy production in the true thermodynamic sense, 

the formulation retains the form of a dissipation of energy. 

8. Nonlinear thermoelasticity and heat conduction. A purely elastic medium 

deforms with associated temperature changes and consequently generates entropy 

through heat conduction. In addit’ion to an earlier linear treatment [3, 41, the quasi- 

isothermal nonlinear case was discussed extensively elsewhere [lo]. A general nonlinear 

analysis derived from the variational principle (2.23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwa s also developed in a recent 

publication [12] and is outlined hereafter. This approach to nonlinear thermoelasticity 

differs fundamentally from the work of other investigators [22-241 derived from classical 

concepts. 

Essentially the results may be obtained from the case of viscoelasticity analyzed 

in Sec. 5 by putting equal to zero Q and the internal variables qk . The cell potential 

of the unit clement is 

“0 = W(eii ) S, Z,). (8.1) 

The elastic continuum is described by the material displacement ui , the entropy dis- 

placement Xi and the entropy produced s*. The local entropy is 

s=s+s* 03.2) 
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The stress-strain relations (8.12), as already shown in a more restricted context 

[3, 4, lo], may be expressed differently by writing (8.10) as 

&I = Tiideij + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeds. (8.14) 

This being an exact differential, we may integrate CPU along a path 6 = 0, then maintain- 

ing constant the deformation eii we vary only 8. This yields 

7J = W,(Cij) + S,’ @(Eii) dS (8.15) 

where V, is the classical isothermal free energy for 0 = 0. The stress is 

where 

7,) - = CN,/&ii (8.17) 

are the isdthermal stress-strain relations for 0 = 0. In particular, for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquasi-isothermal 

case (0 small) already analyzed in detail elsewhere [IO] we write 

(8.18) 

where c(cii) is the heat capacity per unit initial volume at the strain eii . 

Lagrangian equations. If the entropy produced s* does not contribute significantly 

to the value of the state variables, we may introduce the quasi-holonomic approximation 

s = S. The fields ui and Si are then expressed in terms of generalize&coordinates qi 

by Eqs. (5.23). In general they may contain the time t explicitly. However, without 

restricting the generality we may assume that t does not appear explicitly in these 

equations. We may then introduce the following expressions. 

A collective potential V may be written of variation 

6V = .I 61i(Eii 9 S, ~1) dil + 1 Oni 6s; cZA (8.19) 
A 

where the second integral extended to the boundary A is the collective potential of 

purely thermal cells representing “driving temperatures” at the boundary A. We 

may write 

6V = sVr(qi) + / eni sSi dA. 
A 

(8.20) 

The kinetic energy is 

.I 
/Y&z& d0 = +nii(qJ&Cj; (8.21) 

R 

and the dissipation function is 
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For body forces derived from a potential 4, we also write the mixed collective zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s=V’+G 

potential 

(8.23) 

where G is expressed by (5.29). 

The Lagrangian equations derived directly from the variational principle (2.28) 

are written 

(8.24) 

The generalized thermomechanical boundary force Qi is given by expression (5.33). 

Nonlinedr heat covxiuction. The case of pure heat conduction is derived from the 

preceding analysis by assuming zero deformation (eii = 0). The variational principle 

was treated and applied extensively in a sequence of papers originating in 1957 and 

collected in a monograph [S]. The system is completely described in this case by the 

heat displacement field Hi . It is therefore holonomic with corresponding Lagrangian 

equations. The entropy S and temperature T are determined by 

h= _!!!6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
axi 

(8.25) 

which was referred to as the “heat content” [S]. 

In the present case the variational principle (8.9) is written 

s (SEMI + TXiiBi 6Si) dfJ = 0 (8.26) 
n 

where 

Hence (8.26) becomes 

(8.27) 

Replacing 6Hi/T by 6Hi , we obtain 

s 
(0 6h + Xiifii 6Hi) dQ = 0 (8.29) 

n 

where t,he value 0 = B(h) is a function of h. By adding thermal cells at the boundary, 

the term 06h may be considered to include these cells. This amounts to adding a surface 

integral at the boundary A. Eq. (8.29) becomes 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e 6h + xi,&, 6HJ d0 = -1 en, 6H, dA. 
A 

(8.30) 

This is the variational principle derived in 1957 by the author (see [S]). The corresponding 

Lagrangian equations are obtained by writing 

Hi = Hi(ql 7 42 3 * * * qn 7 XI 9 t> (8.31) 
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in terms of generalized coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi . They are 

where 

V = l clS.2 s,’ 19 dh 

was referred to as the thermal potential and 

‘;=-S, kaqi 
f?n %L4 

(8.32) 

(8.33) 

(8.34) 

as the generalized thermal force. The thermal dissipation function is 

D = $ / XiiHiHi da. (8.35) 
R 

These results were developed and applied extensively in a monograph [S] to the more 

general subject of heat transfer. 

9. Compressible and heat-conducting Newtonian and non-Newtonian viscous fluids. 

The principle of virtual dissipation constitutes a powerful tool for deriving field and 

Lagrangian equations of Newtonian and non-Newtonian fluids either homogeneous or 

heterogeneous in any coordinate system including the effect of compressibility and heat 

conduction as well as the heat generated by friction. We shall describe the flow field 

by material coordinates, where a fluid particle of initial coordinates zi is displaced as 

a function of time to a point, of coordinates 

& = Xi + U;(& ) t). 

At the displaced point ti the velocity is 

(9.1) 

and the strain rate is 

eij’ = f($+%). 

As in (5.2) and (5.3), we write 

dt: = Aiidzi , (9.4) 

where 

Aii = d&/&ri = 6ii + aii , Uij = &Ui/dXi . (9.5) 

A fluid element of initial volume dQ acquires after deformation a volume Ada where 

A = det (Aii) = det (6;i + oii) (9.6) 

is the Jacobian of the transformation of initial to final coordinates. It represents the 

volume of an initial unit volume. 



VARIATIONAL-LAGRANGIAN IRREVERSIBLE THERMODYNAMICS 23.5 

In order to apply the variational principle with material coordinates, we need to 

express the strain rate in terms of initial coordinates. This is easily obtained by writing 

aa atii axk 

ati - G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalj 

The derivatives &ri/& are evaluated by solving 

we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dxi = B,idtj 

(9.7) 

the linear equations (9.4) for dxi ; 

(9.8) 

where the matrix [Bi j] is the inverse of the matrix [Aii]. Hence 

!%=B,,=Cii 
alj ” A ’ 

(9.9) 

where Cii is the cofactor of Aii in the determinant A. Thus (9.7) becomes 

atii a2ii 

aif 
- z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,ci = CiikBkj 

k 

(9.10) 

and the strain-rate (9.3) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t?ij’ = $(d,&,j + cijJ?k,). (9.11) 

We shall assume the general case of a non-homogeneous fluid. This is taken into account 

by introducing the initial coordinates in the thermodynamic properties. The temperature 

of the unit element of fluid is 

T = T(A, S, xi). (9.12) 

It is a function of its volume A, its entropy S and its initial location xi . The cell potential 

of the unit element is also written 

2) = U(A, S, xi) 

and the collective potential of the fluid is 

(9.13) 

I’ = iV(A, S, xi) d0 (9.14) 

where the entropy is S = s + s*. We may also obtain quite simply the dissipation due 

to thermal conduction. The derivation does not depend on the Newtonian or non- 

Newtonian character of the fluid. We assume that the thermal conductivity k of the 

fluid in the deformed state remains isotropic. This thermal conductivity k is defined 

in the conventional way in terms of M/a& . It is different from the thermal conductivity 

Kii introduced below and defined in terms of the initial coordinates. The value of k 

depends only on the change of volume A, the entropy S and the initial coordinate Xi : 

k = k(A, S, xi). (9.15) 

The rate of entropy production in a unit element of fluid due to conduction is 

(9.16) 

The factor which multiplies the volume A obviously represents the rate of entropy 
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production in the unit volume measured after deformation, We introduce the coordinate 

transformation from 4; to xi and (9.16) becomes 

. * 
Sl 

Kij ae de -- 
= T’- aXi dXj 

with 

(9.17) 

(9.18) 

This expression is the thermal conductivity defined for the deformed fluid element 

in terms of a8/dxi . Note the invariance of this expression under solid rotation, since 

(&zi/a&)(~zi/a&) is the associated metric tensor of the transformation of Ei to x1 . We 

denote by Xii the inverse of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKij and put zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

de/ dmi = -A,,&, . (9.19) 

With this value (9.17) becomes 

BP* = XijSiBi (9.20) 

which acquires the same form as previously. Note that Xii is now anisotropic not because 

the material has become physically anisotropic but because the local thermal conduction 

is described in terms of heat flow and thermal gradients in a direction normal to the 

faces of a deformed element, i.e. a parallelepiped. Hence 

Xij = X<j(Uii 7 Sp Xl) (9.21) 

is now a function of the deformation. 

The value of hi j which is the inverse of Kii is obtained from (9.18) by noting the 

identity 

Hence 

KirA ah ah _ a. -- 

1cA ax, axj ” 

and 

(9.22) 

(9.23) 

(9.24) 

Newtionian$uid. For a Newtonian compressible fluid the intransic rate of dissipation 

of the unit element due to the viscosity is 

2BD, = TS,* = A(Xe” + 2qeij’eij’) (9.25) 

where 

A = x(A, S, xi) 

rl = ~(4 S, xi) 

(9.26) 
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are two viscosity coefficients, and 

e’ = 6. e..’ II 21 * 

In the absence of shear, putting ei j’ = $e’6ii , we find 

Ts,* = A(i + $q)e”. 

(9.27) 

The coefficient X + (3)~ represents a bulk viscosity for isotropic volume changes. The 

existence of such a viscosity even for a perfect gas was shown from a statistical viewpoint 

in a recent paper by Voisin [25]. In most cases this viscosity is neglected by putting 

x + Qq = 0. (9.28) 

We write the invariants in the form 

Hence 

where 

(9.29) 

(9.30) 

& 
i i 

!.I” = “I1 & It = & !J” ii = GiiF” = wi&w + d&L& + bJi”) (9.31) 

represents an isot’ropic viscosity tensor. We substitute the values (9.11) of eii’ into 

expression (9.31). This yields 

2D, = ABi~Bv~&,,~ikdi;(irv . (9.32) 

The rate of dissipation in the unit element due to thermal conduction is obtained from 

(8.5) and (9.20): 

2~~ = T&* = TX&$ . (9.33) 

The total rate of entropy production in the unit element is 

g* = i v* + QT * = $ (a + s> (9.34) 

and the corresponding virtual dissipation is 

(9.35) 

The principle of virtual dissipation (2.20) for the whole fluid is written 

s (S,W + pii, 6Ui - $Bi 6Ui + T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&*) ClQ (9.36) 
R 

where 

and 

(9.37) 

Uii = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaUi/aXj ) S = -dSi/dXi . (9.38) 



238 M. A. BIOT 

We substitute t,he values (9.35) and (9.37) of TM and 6R’u into the integral (9.36) 

and integrate by parts using the holonomic constraints (9.38). We vary 6ui and SS~ 

arbitrarily inside Q. This yields 

(9.39) 

Thus we obtain six field equations which govern the motion and heat conduction of a 

compressible heterogeneous Newtonian fluid. We remember that p represents the 

initial density at xi and CJ& is the body force at xi + ui . In addition to ui and si , there 

is a seventh variable involved, s*, which is the entropy produced by the friction and by 

heat conduction. The additional equation is (9.34). 

In the part,icular case of an incompressible isothermal homogeneous Newtonian 

fluid a virtual work principle was formulated by Lieber [26]. 

Non-Newtonian jluid. It is easy to show that the relation between the instantaneous 

stress uii’ due to strain rate eii’ for a nonlinear fluid (see Appendix) has the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, , F, , FS are functions of the three strain rate invariants 

I, = e’ = C?,i’ 6ij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 

I, = ei,‘eii’, 

I, = f?ij’eik’t?ki’. 

as well as the change of volume A, the local entropy S and the initial corrdinates xi 

if the fluid in non-homogeneous. We write 

F< = Fi (1, ) IS , 1, 7 A, S, zk)* 

The rate of dissipation of the unit element is 

Ts * = Auii’eii’. ” 

We note that, using expression (9.11) for eii’, the viscous 

of oii , ci,, , A, S and zi is 

(9.42) 

stress written as a function 

@ii ’ = gii’(arv , & , At S, G). (9.43) 

From expression (2.22), considering frozen dissipative forces uii’, the virtual dissipation 

due to viscosity is 

(9.44) 

Since time differentials and variations play the same role we may use (9.11) and obtain 

(9.45) 

Hence the virtual dissipation due to viscosity is 

T&Y,* = Riisaii (9.46) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R<i = Aa,k’Bjk . (9.47) 

We substitute this expression of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT&Y, * in the principle of virtual dissipation (2.20) and 

proceed as in the case of the Newtonian fluid. We obtain the field equations 

-- a;, (9.48) 
z 

The seventh equation for the rate of entropy production is now 

Lagrangian equations 

holonomic approximation 

+ $ Uij’eij’ . (9.49) 

for Newtonian and non-Newtonian fluids. Using the quasi- 

s = s, 

i.e. assuming that the entropy production does not contribute significantly to the 

thermodynamic state of the system, we may derive general Lagrangian equations for 

linear and non-linear compressible viscous fluids with heat conduction. Isothermal 

and quasi-isothermal cases are also holonomic. 

The fluid is now completely described by two fields expressed by Eqs. (Fj.23), i.e. 

u, = Ui(Q1 ) qz *. * qn. , 21 , 0, (9.50) 

xi = S,(q1 , q2 ... qn , 11 I 0. 

They represent material and entropy displacements as functions of generalized coor- 

dinates qi . The collective potential (9.14) is now 

I’ = lw(A, a, Gi) c1n = V(q, , qa * * * q. , 0. (9.51) 

For a Newtonian fluid the dissipation function is 

D = \(a), + Do,) C/8 (9.52) 
*n 

where a>, and ‘& are defined by (9.32) and (9.33). 

It embodies the total dissipation due to viscous friction and heat conduction. If 

the body force is derived from a potential G such as gravity we introduce a mixed 

collective potential 6 as given by (5.31). We may write 

@(q, , qz * * * qn , 0 = V + G (9.53) 

Lagrangian equations for the Newt,onian fluid may then be derived as Eqs. (8.24) for 

thermoelasticity. They are 

(9.54) 

The kinetic energy 3 is defined by expression (5.34) and Qi is a thermomechanical 

boundary force which is given by Eq. (5.33) and takes into account both mechanical 

and thermal boundary forces. 
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If the fields (9.50) do not contain the time explicitly, the kinetic energy (5.34) and 

the dissipation function (9.52) are quadratic forms in pi as in Eqs. @al), (8.22). 

For a non-Newtonian fluid the Lagrangian equations are the same as (9.54) except 

for the dissipative term. The virtual dissipation of the whole fluid due to viscosity is 

derived by integrating the dissipation of the unit element (9.46) over the volume 3. 

We write 

T6s* = v s Rii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGa ii dil = Rj 6qi (9.55) 
R 

where 

The Lagrangian equations for the non-Newtonian fluid are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ Ri + g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQi 

(9.56) 

(9.57) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D,. = s a)T dQ (9.58) 
n 

is the dissipation function due to heat conduction. 

10. Linear viscodynamics. Of special interest is the Lagrangian formulation of 

incompressible viscous Newtonian fluids for small motions and negligible thermal 

effects. Following a terminology used earlier by the author in the analysis of acoustic 

propagation [5], such a system may be called viscodynamic. Linear viscodynamics 

involves essentially the interaction of viscous and dynamic forces in analogy with 

linear viscoelasticity which envolves the interaction of linear dissipat,ivc or viscous 

forces with elastic forces. 

The small displacement field of the fluid is represented by 

Ui = UiiQj (10.1) 

where Uii(z,) are given fields, satisfying incompressibility, and qi are generalized co- 

ordinates. The kinetic energy and the dissipation function are 

3 = $miiQiQ’i , D = $b<iQ<@ i . (10.2) 

The Lagrangian equations are 

miiQi + b,idi = Qi (10.3) 

where Qi are the generalized forces applied at the boundary. Body forces are neglected. 

Operationally we put p = d/dt and write 

(m,ip + b,i)pq, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ; . (10.4) 

Except for the replacement of qi by pqi , Eqs. (10.4) are mathematically the same 

as those of linear viscoelasticity. If there is a large number of internal coordinates, 
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i.e. internal velocity fields such that Qi = 0, relations between observed velocities and 

applied forces are related by 

a’i = &Qi , Qi = .&ji (10.5) 

where Aii and gii are the symmetric operators (6.4). For example at high frequency, i.e. 

for p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiw (with a large value of the circular frequency u), we write 

Q< = Zii’p’qi s (10.6) 

This relation is purely inertial and the system behaves as a perfect fluid. 

Acoustic propagation in porous solids. W e have applied the previous results in a 

theory of acoustic propagation in a porous solid by generalizing Darcy’s law in the 

form C5, 6] 

(10.7) 

where ap/axi is the pressure gradient of the pore fluid and tic is the volumetric velocity 

of the pore fluid relative to the solid. The viscodynamic operator is 

pii = 2 T-j YiiCR) + Yii + Yii'P 
8 

(10.8) 

where P,i is a symmetric operational tensor of second order. It is interesting to note 

that if the pore geometry exhibits cubic symmetry, as in the case of piled spheres, 

the tensor Pii is isotropic. For high frequencies the viscodynamic operator reduces 

to Yi i’p which represents purely inertial effects of a perfect fluid, while at low frequency 

it becomes Y,i corresponding to Poiseuille flow and the classical Darcy’s law. The 

variation of Pii with frequency is due to the change in microvelocity fields in the pores 

from Poiseuille flow to potential flow. It may be looked upon FM due to the change 

of amplitude of the various microvelocity fields uii~i which play the role of internal 

coordinates. 

11. Thermodynamics of instability. Basically there are two fundamentally different 

types of instabilities which may be considered. One type is an unstable static equilibrium, 

the other is the instability in the vicinity of a steady state [34]. 

Unstable static equilibrium. The linearized Lagrangian equations for perturbations 

qi in the vicinity of an equilibrium state are 

(11.1) 

where 3, 20, 6 are the quadratic forms (6.1) for the kinetric energy the dissipation func- 

tions and the mixed collective potential. Equilibrium corresponds to 6 = 0. It may 

be unstable if 6 is nqt positive definite. It was shown [7, 141 that instability of this 

type is non-oscdlafory. A typical example is thermoelastic buckling discussed extensively 

earlier [lo, 141. It was pointed out that incipient isothermal buckling [lo] occurs for 

a buckling load derived from isothermal elastic moduli. Creep buckling occurs at a 

rate controlled by the thermal conductivity of the purely elastic material. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As shown in [14], it provides a mechanical model for the more general case of an 

unstable thermodynamic equilibrium at minimum entropy. 
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The case of buckling of an embedded viscoelastic layer in a viscoelastic medium 

was also analyzed, showing that the physical behavior is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfundamentally conditioned by 

the thermodynamics [13]. 

Dissipative structures for unstable linear systems. A horizontally stratified system 

of incompressible Newtonian fluids in a gravity field with density inversions, i.e. when 

some layers are denser than those below, provides an example of a linear dissipative 

system for small motion. The system is in unstable static equilibrium when the layers 

are horizontal. The case has been extensively analyzed in the context of geophysics 

[7, 27, 281. A fundamental aspect of the physics may be illustrated on the simple case 

[7] of a viscous layer of viscosity TJ, thickness h, and density p lying on a rigid base, 

surmounted by a semi-infinite medium of viscosity q’ and density p’ . It was shown [7] 

that the effect of the gravity field is the same as applying a vertical force f per unit 

area at the interface equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f = (P’ - Phw(~) (11.2) 

where g is the gravity acceleration and w is the vertical deflection of the interface along 

the horizontal direction X. Assume a sinusoidal deflection of the interface 

w = q cos lx. (11.3) 

Consider a vertical slab of unit thickness of the system. Per unit length along z the 

change in potential due to gravity is obviously (L large) 

fw dx = - +(p’  - p)gq’ . (11.4) 

Similarly, the dissipation function must be of the form 

D = @,j” (11.5) 

where b depends on the wavelength. The Lagrangian equation is 

Z+$=o. (11 .S) 

For a solution 

q = exp (PO, (11.7) 

Eq. (11.6) leads to 

p = 4 b’ - p) 
b ”  

(11.8) 

The wavelength for which b is minimum yields the maximum value of p and the fastest 

rate of growth of the deflection. The corresponding wavelength was called the dominant 

wavelength, and represents a dissipative structure which will gradually emerge for any 

initial perturbation of the interface. 

The existence of dissipative structures away from equilibrium was postulated by 

Prigogine and Glansdorff [29] as due to nonlinearity. The foregoing discussion shows 

that such dissipative structures are also generated in unstable linear systems in the 

vicinity of equilibrium [34]. 
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Note that a fluid layer heated from the bottom is not in initial thermodynamic 

equilibrium but in an initial state of thermal flow. Hence oscillatory instability is not 

excluded in this case [33]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Instability in the vicinity of a steady state. The concept of steady state may be defined 

as one where the generalized coordinates are either linear or almost linear functions 

of time for time intervals within certain limits. We represent the steady state as 

4i = G%(t) (11.9) 

where (pi are linear or almost linear. Assuming a holonomic system, the stability may 

be analyzed by a perturbation methods, writing the generalized coordinates as 

Qi = cp,@) + Qi’ (11.10) 

where qi’ are unknown small perturbations. 

While the procedure is quite general, we may simplify the analysis by restricting 

ourselves to a formulation in terms of intrinsic dissipative forces and to systems where 

inertia forces are negligible. The Lagrangian equations (2.30) for such systems are 

g + R, = Qi . (11.11) 

We denote by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas/aqi and I?, the values d@/dq, and Ri for the steady state solution 

pi(t) = qi . Since the steady state is a solution of the Lagrangian equations (11.11) 

of the system, we may write 
- 

g + R, = Q* * (11.12) 

Perturbed values are 

where a2i+/aqiaqi , al?/aq, and al?/@@, are the unperturbed values of d26/aqidqi , 

aR/aqi , and dR/d& . Substitution of the perturbed values (11.13) in the Lagrangian 

equations (ll.ll), taking into account Eqs. (11.12), yields 

(11.14) 

with 

(11.15) 

Eqs. (11.14) for the perturbations qi’ may have increasing or decreasing solutions 

indicating stability of instability of the steady state. However, the assumption of 

symmetry of C& and aii and positive-definiteness of @ii is not valid in this case, hence 

unstable solutions may be oscillatory. 

It is interesting to examine the case of a quasi-reversible system with a dissipation 
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function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD and a corresponding dissipative force Ri : 

In this case 

(11.16) 

(11.17) 

where 6ii and dEib/aqi are the values of bji and 8bik/aqi for qi = cpi(t). Note that in 

this case @ii is symmetric and positive-definite. However, there may be cases where 

(aE<k/aqi)+, g (a6~Jaqi)&. In such cases we also have aii s aii and the instability 

is non-oscillatory. An example of such a case is given below. 

Dissipative structure for an un.stuble steady state. Folding instability of a strati$ed 

viscous medium in compression, As an example of instability in the vicinity of a steady 

state leading to a dissipative structure, consider a highly viscous layer embedded in an 

infinite medium of much smaller viscosity. The materials are assumed incompressible 

and we neglect body forces and temperature.changes; hence we put 6 = 0. 

Consider an initial length L of the layer, along the middle plane which coincides 

with the x axis. We assume that the whole system is compressed in the direction of the 

layer at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa  constant rate, so that the initial distance L at t = 0 becomes 

L’ = L - /3t (11.18) 

at time t. We may take 

cp&) = Pt (11.19) 

to be the generalized coordinate describing the initial steady state. The perturbation 

is the lateral deflection w(x, t) of the layer normal to its initial plane. It may be written 

as a Fourier expansion 

w = 2 qn’ sin 1,x (11.20) 

where I, = ?m/L (n = 1, 2, . . .) and qn’ are the perturbations of the initial steady state. 

We first evaluate the dissipation function of the layer. The deformation is assumed 

to be an incompressible plane strain with principal strains c1 and e2 satisfying the condi- 

tion of incompressibility el + eZ = 0. Applying expression (9.25) to this case, the dissipa- 

tion function of the layer per unit transversal dimension normally to the plane strain is 

L 

D, = 2q, dx 
s s 

+h/2 

;I2 dy (11.21) 
0 -h/2 

where y is measured along the thickness h of the layer of viscosity vl . The strain is 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL at02 -- 
/ E1 - 2L 0 so 

ax dx-y!$&~. (11.22) 

The second term represents the bending strain. Substituting (11.20) and (11.22) in 

(11.21) and neglecting higher-order terms in qJ, we obtain 

(11.23) 
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The dissipation function of the two half-spaces on each side of the layer is easily obtained 

by distributing a sinusoidal load 

F,(z) = F, sin 1,~ (11.24) 

on the half-space, producing a rate of deflection of the surface 

tin(x) = Q?*’ sin E,x. (11.25) 

The relation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, and a,, has been evaluated many times earlier [7, 131. We find 

F, = 21,7&, (11.26) 

where Q is the viscosity of the half-space. The dissipation function of the two half-spaces 

is expressed in terms of the total power dissipated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

(11.27) 

The total dissipation function is 

D = D, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, 

and the Lagrangian equations for the perturbations are 

aD/&j,’  = 0 

or 

(11.28) 

(11.29) 

-27,8hl,‘q,’ + L(Qq,h31,4 -l- 2&,&n = 0. 

These equations are uncoupled and the solution of each equation is 

qn’  = Cnepn’  

where C, are constants and 

(11.30) 

(11.31) 

(11.32) 

This value p, depends on 1, and hence on the wavelength. If we consider 1, to vary 

continuously, p, is maximum for 

Z,h = (6r/z/~$‘~. (11.33) 

This corresponds to a wavelength d: = 27r/l, whose amplitude grows at the fastest rate, 

and which was referred to in earlier work as the dominant wavelength [7, 131. Thus we 

end up with an unstable phenomenon showing a regular sinusoidal pattern which emerges 

gradually as a dissipative structure. Note that in this particular case the instability 

is non-oscillatory although the initial state is not one of thermodynamic equilibrium. 

The case of a single layer considered above is a particular case of a very general 

phenomenon of viscous buckling of a stratified viscous medium in compression. Its 

general theory has been treated extensively earlier [7]. It illustrates the properties 

of a thermodynamic system in an unstable steady flow generating a dissipative structure 

in the form of regular folds. This phenomenon is fundamental in the theory of geological 

structures of sedimentary rock, as well as the theory of creep buckling of composite 

multilayered plates. 
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It should be noted that Eq. (11.29) expresses minimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdissipation where Qi’ are 

varied arbitrarily. This is a particular case of the general theorem of Sec. 3. 

Dominant unstable structures. Minimum principle. As shown by the previous examples, 

unstable perturbations in many cases may be governed by equations of the type 

%Qi’ + -gf7 = 0 
I 

(11.34) 

where 

jj = &ji’&.’ (11.35) 

with constant coefficients a, i and 6; i . For a system initially in unstable static equilibrium, 

a general theorem [7, 141 shows that the instability is non-oscillatory. This is a con- 

sequence of the symmetry property aii = aii and the positive-definite character of 

the dissipation function D. For the case of instability in the vicinity of a steady state 

this may not be applicable. However, in the particular example (11.30) for an initial 

steady state the symmetry property (aii = aji) is valid and as a consequence the 

instability is non-oscillatory. In all such cases we may of course apply the minimum 

instantaneous dissipation theorem of Eqs. (3.6) and (3.7). However, we may formulate 

an additional minimum property by considering the exponential characteristic modal 

solutions 

4i 
1(a) = C8epat (11.36) 

for those cases where the characteristic values p, are real and positive. The particular 

modal solution for which p, is maximum represents a dominant structure which will 

emerge after sufficient time. This structure is independent of the initial conditions. In 

the two examples discussed above, one of unstable equilibrium of a layered fluid under 

gravity, and the other of folding instability and a layered viscous medium initially 

undergoing a steady compressive flow, the dominant structure is a periodic sinusoidal 

spatial distribution. For each modal solution we may write 

(11.37) 

The dominant structure is such that 

6, iqi’(s)qi’(s) = minimum 

for 

C%liai’(8)qi’(8) = constant. 

(11.38) 

(11.39) 

Appendix. Stress-strain law for non-Newtonian fluids. The most general relation 

between stress and strain-rate for a non-Newtonian isotropic fluid may be derived 

quite simply as follows. Because of isotropy, principal directions of stress coincide with 

principal directions of strain-rate. We may write the principal stresses u1’u2’u3’ a~ 

functions of the principal strain-rates e,‘e,‘e,’ in the form 

CT, = F, + Fnel’ + F,e,“, 

u2 = F, + Fzez’ -I-  F3ez”, (A.11 

u3 = F, + Fze3’ + F3e3”, 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, , Fz , F, are three functions of e,‘, e,‘, e3’. It is always possible to write the 

stresses in this form since we may consider Eqs. (A.l) to determine F, , F, , F, as three 

unknowns. The system of equations, and hence the unknowns, remain the same for 

all permutations of the indices for ui and ei’. Therefore F,F,F, are symmetric functions 

of e,‘ez’e,’ and hence functions only of the invariants 

1, = eij’6ij , I, = eii’e,i’, I, = e,,‘e,,‘e!,,‘, (A.2) 

F, = F,(I, , 1, , 1s) 

F, = FdI, , 1, , 1,) (A.3) 

F, = J’,(I, , 1, , I,> 

Finally, for directions other that the principal directions we may write (A.l) as 

uii I = F,&, + Fzeii’ + F,eik’eki’ (A.4) 

which establishes relations (9.40). For an incompressible fluid this yields the result of 

Reiner [30] and Rivlin [31]. The particular case aii’ = aD/aeii’ where D is a function 

of the invariants was discussed by Ziegler [32]. 
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