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Abstract—This paper proposes a joint maximum likelihood
and Bayesian methodology for estimating Gaussian mixture
models. In Bayesian inference, the distributions of parameters
are modeled, characterized by hyperparameters. In the case of
Gaussian mixtures, the distributions of parameters are consid-
ered as Gaussian for the mean, Wishart for the covariance, and
Dirichlet for the mixing probability. The learning task consists
of estimating the hyperparameters characterizing these distri-
butions. The integration in the parameter space is decoupled
using an unsupervised variational methodology entitled varia-
tional expectation–maximization (VEM). This paper introduces
a hyperparameter initialization procedure for the training algo-
rithm. In the first stage, distributions of parameters resulting from
successive runs of the expectation–maximization algorithm are
formed. Afterward, maximum-likelihood estimators are applied
to find appropriate initial values for the hyperparameters. The
proposed initialization provides faster convergence, more accurate
hyperparameter estimates, and better generalization for the VEM
training algorithm. The proposed methodology is applied in blind
signal detection and in color image segmentation.

Index Terms—Bayesian inference, expectation–maximization
algorithm, Gaussian mixtures, maximum log-likelihood estima-
tion, variational training.

I. INTRODUCTION

THIS PAPER develops a new statistically based training
methodology for Gaussian mixtures. Gaussian mixtures

constitute a widely used model in science and technology due
to its modeling and approximation properties [1]–[3]. Gaussian
mixtures have been embedded into radial basis function (RBF)
neural networks and used in several applications [4]–[8]. RBF
networks can be trained in two stages, namely: 1) unsupervised
training for the hidden unit parameters and 2) supervised train-
ing for the output parameters [5], [9]. Learning mixtures of
Gaussians is unsupervised in its most general form and corre-
sponds to the first training stage in RBF networks. Well-defined
statistical properties for mixtures of Gaussians determine the
use of a training algorithm relying onto statistical estimation. In
statistical parameter estimation, we can identify three different
approaches, namely: 1) maximum likelihood; 2) maximum
a posteriori (MAP); and 3) Bayesian inference [10], [11].

Maximum-likelihood algorithms estimate the model para-
meters such that it maximizes a likelihood function. The best
known algorithm that finds maximum-likelihood estimates in
parametric models for incomplete data is the expectation–
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maximization (EM) algorithm [3], [12], [13]. The EM is an
iterative two-step algorithm. The E-step calculates the condi-
tional expectation of the complete data log-likelihood given
the observed data and parameter estimates. The M-step finds
the parameter estimates that maximize the complete data log-
likelihood from the E-step. The EM algorithm has been used
for training RBF networks [7], [8] and for parameter estimation
of Gaussian mixtures [6], [14]. Extensions of the EM algorithm
for pattern recognition include a split and merge methodology
[15]–[17]. MAP estimation consists of finding the parameters
that correspond to the location of the MAP density function and
is used when this density cannot be computed directly [15].

Unlike the MAP method, where we estimate a set of charac-
teristic parameters, Bayesian inference aims to model entirely
the a posteriori parameter probability distribution. Bayesian in-
ference assumes that the parameters are not uniquely described,
but instead are modeled by probability density functions (pdfs)
[10]. This introduces an additional set of hyperparameters mod-
eling distributions of parameters. The a posteriori probability
of a data set is obtained by integrating over the probability dis-
tribution of the parameters. Bayesian approaches do not suffer
from overfitting and have good generalization capabilities [10],
[11], [18]–[24]. Prior knowledge can be easily incorporated
and uncertainty manipulated in a consistent manner. Another
advantage of Bayesian methods over maximum-likelihood ones
is that they achieve models of lower complexity. Main tasks in
algorithms using Bayesian inference consist of defining proper
distribution functions for modeling the parameters as well as
in deriving the appropriate algorithms for integrating over the
entire parameter space. The latter task can be computationally
heavy and may result in intractable integrals. The following
Bayesian approaches, which integrate over the entire parameter
distributions, have been adopted to date: the Laplacian method
[22], Markov chain Monte Carlo (MCMC) [24], and variational
learning [18], [19], [25]–[29]. The Laplacian approach employs
an approximation, using Taylor expansion, for the expression
of the integrals [22]. However, in high dimensions, this approx-
imation becomes computationally expensive and can provide
poor approximation results. MCMCs are a class of algorithms
for sampling from probability distributions based on construct-
ing a Markov chain that has the desired distribution as its
stationary distribution [24]. A selection mechanism can be used
in order to validate a certain sample draw. A reversible jump
MCMC was used for the Bayesian learning of Gaussian mix-
tures [30] and RBF networks [31]. The disadvantage of MCMC
methods is the difficulty to select appropriate distributions and
to design sampling techniques in order to draw appropriate data
samples. Due to their stochastic nature, MCMC algorithms may
require a long time to converge [24]. The variational Bayesian
(VB) approach consists of converting the complex inferring
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problem into a set of simpler calculations, characterized by
decoupling the degrees of freedom in the original problem [20].
This decoupling is achieved at the cost of including additional
parameters that must fit the given model and data. Variational
training has been applied in the Bayesian estimation of time
series [32], [33], while mixed variational and MCMC have been
used in [34].

Variational algorithms are guaranteed to provide a lower
bound on the approximation error [18]–[20], [25], [26], [28],
[35]. The most used graphical models trained by variational
learning include mixtures of Gaussians [27], [37], mean field
methods [20], independent component analysis [23], [36],
mixtures of factor analyzers [35], linear models [29], [33],
and mixtures of products of Dirichlet and multinomial distri-
butions [28].

In most approaches, parameter initialization is considered
random, defined in a given range of values. However, an
inappropriate initialization could lead to overfitting and poor
generalization [33], [36], [38]. In [4], it was shown how the
RBF network performance is improved by using a suitable
initialization. k-means clustering was used in [4] for initializing
the hidden unit centers of the RBF network, implemented by
Gaussian means. The posterior of a set of parameters, model-
ing an autoregressive model, is initialized using a maximum-
likelihood approximation in [33]. In our study, we employ
a maximum log-likelihood estimation procedure for hyperpa-
rameter initialization for variational mixtures of Gaussians.
The proposed variational method is called the variational
expectation–maximization (VEM) algorithm. The initialization
of the proposed approach relies on the dual EM algorithm.
The parameters estimated from multiple runs of a first-stage
EM are used as inputs for the second-stage EM. Data samples
are used for initializing the second EM algorithm whose aim
is to provide appropriate hyperparameter initialization [38],
[39]. The number of mixture components is chosen according
to the Bayesian information criterion (BIC) [27], [33], [40]
that corresponds to the negative of the minimum description
length criterion (MDL) [41]. The VEM algorithm is applied to
source separation in phase- and amplitude-modulated signals
when assuming intersymbol and interchannel interference, and
in color image segmentation.

The variational inference methodology is introduced in
Section II. Section III provides the selection of the proba-
bility distributions that are used for modeling the parameters
in the context of Gaussian mixtures. In Section IV, the dual
EM algorithm and the maximum log-likelihood initialization
procedure are outlined. The variational algorithm is described
in Section V. In Section VI, we provide a set of experimental
results for the proposed methodology, while in Section VII the
conclusions of the present study are drawn.

II. VARIATIONAL INFERENCE FRAMEWORK

In signal processing or pattern classification problems, we
are usually provided only with a subset of data to be modeled.
The data samples that are provided, x = {xi, i = 1, . . . ,M},
where M is the number of data samples, correspond to the
observed data, while other data that are consistent with the

underlying probability are unseen or hidden. One of the aims
in parametric estimation is to represent both the observed and
the hidden data by means of a pdf characterized by a set of pa-
rameters. The set of parameters is found by means of a training
algorithm [2]. The ability of an algorithm trained on incomplete
data to model the hidden data is called generalization. We want
to estimate the probability p(x, z, t), where x is the given data,
z represents the unseen data, and t represents the modeling
parameters. For the given data, we can define the marginal log-
likelihood or the evidence as

Lt(x) = log
∫∫

p(x, z, t)dzdt. (1)

Most machine learning algorithms estimate the model para-
meters by maximizing the likelihood of the given data set.
Often, the training algorithm may get stuck in a local minima or
may provide a biased solution to the likelihood maximization.
Overfitting and poor generalization are other causes of concern
when using maximum-likelihood techniques [18], [22], [27],
[32], [36]. The most known algorithm implementing the maxi-
mization of the log-likelihood is the EM algorithm [3], [6]–[8],
[12], [13], [15].

In Bayesian learning, direct estimation of the model parame-
ters is replaced by the inference of a set of distributions model-
ing those parameters. Bayesian learning is used to approximate
posterior densities using distributions of parameters. Let us
consider a variational a posteriori probability distribution
q(z, t|x, θ), approximating the true posterior p(z, t|x), where
θ refers to a set of hyperparameters that model distributions
of parameters. By using Jensen’s inequality, from the true log-
likelihood defined in (1), we can derive [18], [27]

Lt(x) = log
∫∫

q(z, t|x, θ) p(x, z, t)
q(z, t|x, θ)dzdt

≥
∫∫

q(z, t|x, θ) log
p(x, z, t)
q(z, t|x, θ)dzdt

=Fθ(x) (2)

where Fθ(x) represents the variational free energy. We can
observe that Fθ(x) consists of a lower bound for the marginal
log-likelihood.

According to Bayes theorem, we have

p(x, z|t) =
p(x, z, t)
p(z, t|x)

. (3)

After applying the logarithm and multiplying both the numer-
ator and the denominator with q(z, t|x, θ), we can define the
variational log-likelihood Lθ(x) as

Lθ(x) =
∫∫

q(z, t|x, θ) log p(x, z, t)dzdt

−
∫∫

q(z, t|x, θ) log p(z, t|x)dzdt. (4)
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We can rewrite the above expression of the log-likelihood
function as

Lθ(x) =Fθ(x) + KL (q(x), p(x))

=
∫∫

q(z, t|x, θ) log
p(x, z, t)
q(z, t|x, θ)dzdt

+
∫∫

q(z, t|x, θ) log
q(z, t|x, θ)
p(z, t|x)

dzdt. (5)

The first term Fθ(x) consists of the variational free energy,
while the second term KL(q(x), p(x)) is the Kullback–Leibler
(KL) divergence between the variational a posteriori probabil-
ity density q(z, t|x, θ) and the true posterior p(z, t|x), i.e.,

KL (q(x), p(x)) =
∫∫

q(z, t|x, θ) log
q(z, t|x, θ)
p(z, t|x)

dzdt. (6)

We can observe from the inequality (2) that the variational
free energy is a lower bound on the true log-likelihood function.
The equality occurs if the approximate posterior is equal to the
true posterior. VB learning aims to maximize this lower bound
and therefore brings the approximate posterior as close as
possible to the true posterior. What a learning algorithm needs
to do is to find an appropriate variational posterior q(z, t|x, θ)
and to estimate its parameters θ such that it maximizes Lθ(x).
It can be observed from (6) that KL(q(x), p(x)) is a similarity
measure between the true a posteriori and its variational ap-
proximate q(z, t|x, θ). When the two distributions are identical,
then the KL divergence is zero. This divergence represents an
error function, expressing the difference between Lθ(x) and its
bound Fθ(x).

III. BAYESIAN MODELING OF MIXTURES OF GAUSSIANS

Due to their excellent approximation properties, mixtures of
Gaussians have been used in various applications [4]–[7], [9],
[14], [15], [17], [21], [36], [39], [46]. A mixture of Gaussians
approximates a given probability density as

p(x) =
N∑

i=1

αi√
(2π)d|Σi|

exp
[
−1

2
(x − µi)T Σ−1

i (x − µi)
]
(7)

where d is the data dimension, t = {α,Σ, µ} represents a set of
parameters, and N corresponds to the number of components.
A Gaussian mixture is implemented by an RBF network, where
the hidden unit activation function is Gaussian [4]–[6], [31].
The number of mixture components corresponds to the number
of hidden units required by the RBF network. In order to
achieve probability normalization, in Gaussian mixtures we
impose a constraint onto the mixing parameters

N∑
i=1

αi = 1. (8)

In a probability estimation problem, we want to estimate all
the parameters such that our model approximates as closely as
possible the true probability. Various algorithms can be used for

finding the Gaussian mixture parameters. Supervised training
algorithms include gradient descent [4], while for unsupervised
classification we can mention robust learning vector quantiza-
tion approaches [5], [9], stochastic algorithms such as MCMC
[31], as well as the EM algorithm [7], [15].

As described in the previous section, in the VB framework,
we replace the true a posteriori distribution p(z, t|x) with an
approximation q(z, t|x, θ). In the case of a Gaussian mixture,
as in (7), this means to calculate a distribution for each model
parameter and to integrate over the entire parameter space as
in (4). For the sake of algebraic convenience, we choose the
posterior q(z, t|x, θ) as the conjugate prior of the given pa-
rameterized data distribution p(x, z, t) [27], [29]. This choice
ensures that both distributions p(x, z, t) and q(z, t|x, θ) belong
to the same family of distributions.

In the case of the parameters t, characterizing mixtures of
Gaussians, the following conjugate priors are considered: a
joint Normal–Wishart distribution for mean and inverse covari-
ance matrix, and a joint Dirichlet distribution for the mixing
parameters. We assume that the joint Normal–Wishart distribu-
tion can be factorized into a Normal and a Wishart distribution
for each component mean and covariance, respectively, as

NW(µ,Σ|m,S, ν, β) = N (µ|m, βS)W(Σ|ν,S). (9)

The Normal distribution for the mean is N (µ|m, βS), where
β is a scaling factor and m is the hypermean of the mean
distribution. This distribution is parameterized as

N (µ|m, βS) ∼ 1√
(2π)d|βS|

× exp
[
−1

2
(µ− m)T (βS)−1(µ− m)

]
. (10)

A Wishart distribution W(Σ|ν,S) is the conjugate prior for the
inverse covariance matrix

W(Σ|ν,S)∼ |S|− ν
2 |Σ| (ν−d−1)

2

2
νd
2 π

d(d−1)
4 Πd

k=1Γ
(

ν+1−k
2

) exp
[
−Tr(S−1Σ)

2

]
(11)

where ν are the degrees of freedom, Tr denotes the trace of the
resulting matrix (the sum of the diagonal elements), and Γ(·)
represents the Gamma function

Γ(x) =

∞∫
0

τx−1 exp(−τ)dτ. (12)

The mixing probabilities, after considering the normalization
condition (8), are modeled as a joint Dirichlet distribution

D(α|λ1, . . . , λN ) =
Γ
(∑N

j=1 λj

)
ΠN

j=1Γ(λj)
ΠN

i=1α
λi−1
i . (13)

As we have observed in (2), we have to find a likelihood
function that is as close as it can get to the lower bound provided
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by the free energy Fθ(x). The expression Lθ(x) from (4) can
be seen as a penalized likelihood, where the penalty is KL
divergence between the variational posterior and prior distribu-
tions. In order to simplify the calculations, we consider that the
approximating a posteriori distribution can be factorized into
a distribution of the hidden variables and a distribution of the
parameters. Moreover, we consider that we can factorize the
latter distribution into its individual components

q(z, t|x, θ) = q(z|x, θ)q(t|x, θ)

= q(z|x, θ)
N∏

i=1

D(αi|λ1, . . . , λN )

×W(Σi|ν,S)N (µi|m, βS) (14)

where i denotes each Gaussian mixture component. This factor-
ization is derived from the mean field analysis [20] and assumes
that the hyperparameter posterior distributions are independent
of each other and of those of the hidden variables z.

The estimation of the distribution from (14) is done in
two steps. In the first step, the a posteriori probabilities are
evaluated. In the second step, the parameters t are calculated
and used to derive the hyperparameters θ such that they max-
imize the a posteriori probabilities. The two steps are iterated
until the variation in the likelihood function Lθ(x), from one
iteration to another, becomes very small. Alternatively, the KL
distance can be used for assessing the effectiveness of estimat-
ing q(z, t|x, θ), by comparing the variational likelihood Lθ(x)
from one iteration to another. Hyperparameter estimation can
be done using the VB algorithm [25], [29], [37].

In our approach, we use an initialization procedure for
the hyperparameters based on estimating the maximum log-
likelihood from parameter distributions. The model parameters
t can be estimated from the maximum log-likelihood for the
given data set. The EM algorithm finds an approximation to the
maximum log-likelihood solution. However, the EM algorithm
is known to be sensitive to the initialization of its parameters
[6]. In variational training, the number of parameters, called
hyperparameters, is larger when compared to those required
by the EM algorithm, and this makes the issue of initialization
even more sensitive [33], [36], [39]. In Section IV, we describe
a hyperparameter initialization procedure using the dual EM
algorithm.

The activation region of a hidden unit in a Gaussian network
is ellipsoidal as modeled by the covariance matrix [4], [5], [7].
In the case of the proposed Bayesian approach, the activation
region is given by the integration over the distributions of para-
meters as provided in (10), (11), and (13). In this context, the
hypermean m can be seen as the center of the activation region
corresponding to the mean distribution, while the covariance
matrix S provides its shape in d dimensions. The covariance of
the Gaussian function can be represented geometrically with
a shape that is identical with that of the mean distribution
covariance, while the two shapes differ in size by a scaling
factor β < 1. While S characterizes the maximum likelihood
of the inverse of Wishart distribution, βS shows the precision

Fig. 1. Topology of the variational Gaussian network.

of estimation for the hypermean and represents geometrically
an ellipsoidal activation region [38].

The topology of the variational Gaussian neural network is
provided in Fig. 1. The number of Gaussian mixture com-
ponents is equal to the number of hidden units. The para-
meters are implicit, while the entire hyperparameter set θ =
{m,S, β, ν, λ} is estimated using the VEM algorithm, which
is described in the following sections. Variational learning
is expected to provide better data estimation by taking into
account the uncertainty in the parameter estimation. On the
other hand, better generalization is expected while maintaining
the good localization and modeling capabilities. Variational
learning for Gaussian networks is also expected to provide
models that require fewer hidden units.

IV. MAXIMUM LOG-LIKELIHOOD

HYPERPARAMETER INITIALIZATION

Most iterative algorithms used in pattern recognition and for
training neural networks assume a random initialization, in a
certain range of values, for the model parameters. However,
algorithms such as EM may not converge properly due to an
unsuitable initialization. Moreover, the solution at convergence
is not optimal and may provide overfitting and poor general-
ization. When increasing the number of model parameters, we
are facing an even more challenging problem in choosing their
initial values. In this paper, we adopt a hierarchical maximum
log-likelihood initialization approach to the hyperparameter
estimation problem. At each level of the hierarchy, we employ
algorithms that run onto the model parameters estimated by the
algorithm at the previous level. In the first stage, we employ
the EM algorithm using a set of random initializations. After
several runs of the EM algorithm on the same data set, we form
distributions of the estimated model parameters. Eventually, a
maximum log-likelihood criterion is applied onto distributions
of parameters in order to initialize the hyperparameters for the
VEM algorithm.
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For the sake of notational simplicity, let us denote

D(x;µi,Σi) = −1
2
(x − µi)T Σ−1

i (x − µi). (15)

For the initialization of the hyperparameters corresponding
to the mean distribution, we employ a dual-EM algorithm [38].
During the first stage, the EM algorithm for Gaussian mixtures
is applied on the given data set {xi, i = 1, . . . ,M} [3], [7],
[12], [15]. In the E-step, the a posteriori probabilities are
estimated as

P̂ I
EM(i|xj) =

α̂i|Σ̂i|−
1
2 exp

[
D(xj ; µ̂i, Σ̂i)

]
∑N

k=1 α̂k|Σ̂k|−
1
2 exp

[
D(xj ; µ̂k, Σ̂k)

] (16)

where D(xj ;µi,Σi) is provided by (15). In the M-step, we
update the parameters of the Gaussian mixture as

α̂i =

∑M
j=1 P̂

I
EM(i|xj)
M

(17)

µ̂i,EM =

∑M
j=1 xjP̂

I
EM(i|xj)∑M

j=1 P̂
I
EM(i|xj)

(18)

Σ̂i =

∑M
j=1 P̂

I
EM(i|xj)(xj − µ̂i,EM)(xj − µ̂i,EM)T∑M

j=1 P̂
I
EM(i|xj)

(19)

where M is the number of data samples. We run the EM
algorithm L times, by considering various random initializa-
tions, each time for the same number of iterations. The total
number of estimated Gaussian means, corresponding to the
given model, by EM is LN , where N is the number of com-
ponents. All the parameters estimated in each of the runs are
stored, forming data sample distributions for each Gaussian
network parameter. We assume that these distributions can be
characterized parametrically by a set of hyperparameters. The
parametric description of these probabilities is given by (10) for
the means µ, by (11) for the covariance matrices Σ, and by (13)
for the mixing probabilities α.

The next step consists of estimating the hyperparameters
characterizing the distributions formed in the previous step.
This estimation corresponds to a second level of embedding.
The distribution of the means provided by the EM algorithm,
as calculated by (18), can be modeled again as a mixture
of Gaussians, with an identical number of components N .
We apply a second EM algorithm onto the distributions of
parameters provided by successive runs of the first EM. In the
second EM, we consider randomly selected data samples as
the initial starting points for the hypermeans. The second EM
equations are similar with those from (16)–(19). The E-step
corresponds to the calculation of the a posteriori probabilities
for parameters

P̂ II
EM(i|µ̂j) =

âi|Ŝi|−
1
2 exp

[
D(µ̂j ; m̂i, Ŝi)

]
∑N

k=1 âk|Ŝk|−
1
2 exp

[
D(µ̂j ; m̂k, Ŝk)

] (20)

where D(µ̂j ; m̂i, Ŝi) is provided by (15). In the M-step of the
dual EM, we calculate the hyperparameters of the Gaussian
network as

âi =

∑LN
j=1 P̂

II
EM(i|µ̂j)

LN
(21)

m̂i,EM =

∑LN
j=1 µ̂jP̂

II
EM(i|µ̂j)∑LN

j=1 P̂
II
EM(i|µ̂j)

(22)

Ŝi,EM =

∑LN
j=1 P̂

II
EM(i|µ̂j)(µ̂j − m̂i,EM)(µ̂j − m̂i,EM)T∑LN

j=1 P̂
II
EM(i|µ̂j)

.

(23)

The EM algorithm corresponds to the maximum log-
likelihood estimate of the given model when representing the
given data set [3], [12]. In order to find the number of mixture
components, we use the BIC [40] that corresponds to the
negative of the MDL criterion [15], [41]. The maximization of
the BIC criterion, when varying N , provides the appropriate
number of hidden units.

The hyperparameters of the VEM are initialized as follows.
The hypermeans m̂(0) are calculated by averaging the resulting
means as they are provided in (22). The hyperparameter β
represents a scaling factor of the covariance matrices corre-
sponding to the data distributions Σ̂, resulting from (19), to
those corresponding to the mean distributions ŜEM, resulting
from (23). This hyperparameter is initialized as the average of
the eigenvalues of the matrix Σ̂Ŝ−1

EM. Consequently, it can be
calculated as the value of the trace divided by the dimension of
the space

β̂i(0) =

∑L
k=1 Tr

(
Σ̂ikŜ−1

ik,EM

)
dL

(24)

where L is the number of runs for the initial EM algorithm.
The Wishart distribution W(Σ|ν,S) characterizes the in-

verse of the covariance matrix. The degrees of freedom are
initialized for the VEM algorithm as equal to the number of
dimensions

ν̂i(0) = d. (25)

For the initialization of Ŝ, we consider the distribution of Σ̂
resulting from (19). We apply a Cholesky factorization onto the
matrices Σ̂k, k = 1, . . . , L, resulting from successive runs of
the EM algorithm. The Cholesky factorization results into an
upper triangular matrix Rk and a lower triangular matrix RT

k

such that

Σ̂
−1

ik = RikRT
ik. (26)

We generate L sub-Gaussian random vectors B, each of dimen-
sion d, whose coordinates are independent random variables
N (0,1). The matrix Ŝ will be initialized as [11]

Ŝi(0) =
∑L

k=1 RikBk(BkRik)T

L
. (27)
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For the Dirichlet parameters, we use the maximum log-
likelihood estimation for the joint Dirichlet distribution (13)
[42]. By applying the logarithm in the distribution from (13)
and after differentiating the resulting formula with respect to the
parameters λi, i = 1, . . . , N , we obtain the iterative expression

ψ (λi(t)) = ψ

(
N∑

k=1

λk(t− 1)

)
+ E [log(α̂i)] (28)

where t is the iteration number, E[log(α̂i)] is the expectation
of the logarithm of the mixing probability α̂i, which is derived
from the distributions obtained from successive runs of (17),
and where ψ(·) is the digamma function (the logarithmic deriv-
ative of the Gamma function)

ψ(λi) =
Γ′(λi)
Γ(λi)

(29)

where Γ(·) is provided in (12) and Γ′(λi) is its derivative with
respect to λi. We consider the mean of the mixing probability
distribution as an appropriate estimate for α̂i. For estimating
the parameter λi, we first invert ψ(λi) from (28) and afterward
iteratively update using the Newton–Raphson algorithm as

λi(t) = λi(t− 1) − ψ (λi(t)) − ψ (λi(t− 1))
ψ′ (λi(t))

(30)

where ψ′(λi(t)) is the derivative of ψ(λi(t)) with respect to
λi(t) and t is the iteration number. Just a few iterations are
usually necessary to achieve convergence. The values for the
Dirichlet hyperparameters achieved at convergence are denoted
by λ̂i(0), i = 1, . . . , N , and correspond to the maximum log-
likelihood [42].

V. VARIATIONAL EXPECTATION-MAXIMIZATION

The direct implementation of (4) would amount to a very
heavy computational task involving multidimensional integra-
tion. This complex inferring problem is decomposed in a set of
simpler calculations, characterized by decoupling the degrees
of freedom in the original problem, as provided by (14). An
extension of the EM algorithm called VB has been used to
provide a simpler calculation of the expressions from (14)
[25], [29], [37]. In our approach, we employ a maximum
log-likelihood hyperparameter initialization as described in
Section IV. The initial hyperparameter values are denoted by
θ(0) = {m̂(0), Ŝ(0), β̂(0), ν̂(0), λ̂(0)}. The algorithm using
this initialization is named VEM.

The VEM is an iterative method that consists of two steps
at each iteration, namely: 1) variational expectation (VE) and
2) variational maximization (VM). In the VE-step, we compute
the expectation of the a posteriori probabilities given the hidden
variable distributions q(z, t|x, θ) and their hyperparameters θ.
In the VM-step, we find the hyperparameters θ that maximize
the variational log-likelihood given the observed data and their
a posteriori probabilities. For a mixture of Gaussians, the
updating equations employed at each step can be derived as
follows.

For the VE-step, we calculate the a posteriori probabilities
for each data sample xj , depending on the hyperparameters

P̂ (i|xj)

= exp
[
−1

2
log |Ŝi| +

1
2
d log 2

+
1
2

d∑
k=1

ψ

(
ν̂i + 1 − k

2

)
+ ψ(λ̂i) − ψ

(
N∑

k=1

λ̂k

)

− ν̂i

2
(xj − m̂i)T β̂iŜ−1

i (xj − m̂i) −
d

2β̂i

]
(31)

where i = 1, . . . , N is the mixture component, d is the dimen-
sionality of the data, j = 1, . . . ,M denotes the data index,
and ψ(·) is the digamma function provided in (29). Each
a posteriori probability shows the activation level of the hidden
unit i, when the graphical model, whose topology is shown in
Fig. 1, is presented with the data sample xj .

In the VM-step, we perform an intermediary calculation of
the mean parameter, as in the EM algorithm, but considering
the a posteriori probabilities from (31) as

µ̂i,VEM =

∑M
j=1 xjP̂ (i|xj)∑M

j=1 P̂ (i|xj)
. (32)

The hyperparameters of the distribution of means are updated
as in (33) and (34), shown at the bottom of the page, while
the hyperparameters corresponding to the scaling factor and the
degrees of freedom are updated as

β̂i = β̂i(0) +
M∑

j=1

P̂ (i|xj) (35)

ν̂i = ν̂i(0) +
M∑

j=1

P̂ (i|xj). (36)

m̂i =
β̂i(0)m̂i(0) +

∑M
j=1 xjP̂ (i|xj)

β̂i(0) +
∑M

j=1 P̂ (i|xj)
(33)

Ŝi = Ŝi(0)+
M∑

j=1

P̂ (i|xj)(xj − µ̂i,VEM)(xj − µ̂i,VEM)T +
β̂i(0)(µ̂i,VEM − m̂i(0))(µ̂i,VEM − m̂i(0))T∑M

j=1 P̂ (i|xj)

β̂i(0) +
∑M

j=1 P̂ (i|xj)
(34)
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Fig. 2. Flowchart of the VEM training algorithm.

The parameters for Dirichlet distribution are updated as

λ̂i = λ̂i(0) +
M∑

j=1

P̂ (i|xj). (37)

The algorithm is iterative with VE and VM steps alternating
at each iteration. The average log-likelihood of the given data
set is calculated as

Lθ,t(x) =
1
M

M∑
j=1

log pt(xj |θ) (38)

where pt(xj |θ) is the a posteriori probability calculated by
(7) at iteration t, corresponding to the mixture model resulting
from the summation of all component probabilities from (31),
calculated for each data sample. The effectiveness of the given
data modeling is shown by the increase in the log-likelihood
with each iteration. Convergence is achieved when we obtain a
small variation in the normalized log-likelihood

Lθ,t(x) − Lθ,t−1(x)
Lθ,t(x)

< ε (39)

where ε is a small quantity.

In order to estimate the necessary number of mixture com-
ponents in the VEM algorithm, corresponding to the number of
hidden units from the graphical model, we use the BIC criterion
in a similar way as for the EM algorithm in the initialization
procedure. This criterion can be rewritten in terms of the KL
divergence between the parameter distribution posterior and the
parameter distribution prior [33]. The model selection criterion
becomes

CVEM(N) = Lθ(x) − N

2

[
3 + d +

d(d + 1)
2

]
logM (40)

where the first term corresponds to (38) at convergence, N is the
number of components, and M of data samples. The number of
components N is decided as that corresponding to the largest
CVEM(N).

The flowchart showing the main steps for the proposed VEM
methodology is displayed in Fig. 2. This flowchart shows the
initialization of the VEM as done by the dual-EM algorithm.
The calculation of each parameter is identified in separate
blocks in Fig. 2.

The computational complexity for the EM algorithm is of
the order O(Md2N) for each iteration [3], where M is the
number of data, d is the space dimension, and N is the number
of components. This computational complexity per iteration
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corresponds to the first initialization stage, where the EM
algorithm is run for L iterations. The second EM also requires
a similar computational complexity, but for LN data samples.
This corresponds to the order of computational complexity of
O((NL)d2N) = O(Ld2N2) per iteration for a certain number
of iterations, until convergence. Usually, it is assumed that
LN � M . The orders of the computational complexity for the
VE-step of the VEM algorithm and that for the E-step of the
EM algorithm are identical per iteration, as it can be observed
from (16) and (31) [25]. The computation required for the VM-
step is only marginally higher than that of the M-step of the EM
algorithm and has the same order of complexity O(Md2N).

VI. EXPERIMENTAL RESULTS

In the following, we describe the experimental results ob-
tained after applying the proposed variational training method-
ology in two different applications: blind signal detection and
color image segmentation.

A. Blind Signal Detection

For this application, we consider artificially generated signals
that are used in communication systems. We consider two
cases of modulated signals: quadrature amplitude modulated
signals (QAM) and phase-shifting keying (PSK)-modulated
signals [43]. Each such signal can be represented as a point
in the complex number space. For 4-QAM, we have four
source signals located at (1, 1), (1, −1), (−1, 1), and
(−1, −1). The first component represents the in-phase compo-
nent, while the second represents the in-quadrature component.
Due to various communication channel conditions, such signals
are distorted at the receiver forming clusters of data points
called constellations. The aim of this application is to identify
correctly each one of the four source signals that has been
transmitted. In this case, we assume additive Gaussian noise
corresponding to a signal-to-noise ratio (SNR) of 8 dB and no
interference. The 4-QAM signal constellations are displayed
in Fig. 3.

In the second case, we consider 8-PSK signals. In this
situation, the eight signal sources are equidistantly located on a
circle in the complex signal space. We assume intersymbol and
interchannel perturbations together with Gaussian noise. The
perturbation channel equations considered in the case of 8-PSK
signals are the same with those used in [44], i.e.,

xI(t) = I(t) + 0.2I(t− 1) − 0.2Q(t)
− 0.04Q(t− 1) + N (0, 0.11)

xQ(t) =Q(t) + 0.2Q(t− 1) + 0.2I(t)
+ 0.04I(t− 1) + N (0, 0.11) (41)

where (xI(t), xQ(t)) forms the in-phase and in-quadrature
signal components at time t, and I(t) and Q(t) correspond to
the original signal symbols. The Gaussian noise in this case
corresponds to an SNR of 22 dB. We consider all possible
combinations of interference for (I , Q) and generate a total
of 64 signals, which are grouped in eight signal constellations
corresponding to the distorted signals. For the following exper-

Fig. 3. Blind detection of 4-QAM signals using VEM algorithm.

Fig. 4. Blind detection of 8-PSK signals using VEM algorithm.

iments, we have generated 960 signals, assuming equal prob-
abilities for all interference cases. These signal constellations
are represented in Fig. 4. From this figure, we can observe that
signal constellations corresponding to different sources overlap
due to interference and noise. Such overlaps among signal
constellations cause a challenging problem to a blind source
separation algorithm.

In this application, blind detection is treated as an unsuper-
vised classification problem. Due to intersymbol, interchannel,
and noise interference, each signal constellation is formed from
eight clusters, according to (41). We aim to represent these
constellations using a variational Gaussian mixture model. The



NASIOS AND BORS: VARIATIONAL LEARNING FOR GAUSSIAN MIXTURE MODELS 857

Fig. 5. Convergence illustrated by KL divergence for the mean distributions
in 8-PSK data.

task in this application is to identify the transmitted symbol for
each received signal [44].

We consider a Bayesian statistical model such as that pro-
vided in Section III. We apply the VEM algorithm by using
the maximum-likelihood estimation initialization described in
Section IV. The first stage of the dual EM algorithm was run on
the given data samples by using random initialization. Conse-
quently, distributions of parameters corresponding to mixtures
of Gaussians were formed. The second stage of the dual EM
algorithm was run several times on the distributions of resulting
means, while the initialization for the Gaussian means was
provided by randomly selected data samples. All the hyperpa-
rameters are properly initialized for the VEM algorithm using
maximum log-likelihood estimators as presented in Section IV.
The location of means provided by the initialization procedure
is marked by “∗”, the ideal location for the hypermeans is
marked by circles, while the hypermeans estimated by the
VEM algorithm are marked by “+” in Figs. 3 and 4 for
4-QAM and 8-PSK detection problems, respectively. In these
figures, the covariance matrices characterizing the Wishart
distribution S and the distribution of means βS are marked
by their corresponding ellipses. Due to the overlap between
constellations corresponding to distinct Gaussian components,
the initial hypermean estimates provided by the maximum log-
likelihood estimation are biased. In Fig. 5, the convergence of
KL divergence for the mean distributions is displayed. The KL
divergence between the estimated distribution N̂i(m̂i, Ŝi) of
each mixture component and its corresponding ideal distribu-
tion Ni(µi,Σi), for i = 1, . . . , N is calculated as

KL(N̂i;Ni) =
1
2

(
log

|Σi|
|Ŝi|

+ Tr
(
Σ−1

i Ŝi

)

+ (m̂i − µi)T Σ−1
i (m̂i − µi) − d

)
(42)

where |Σi| denotes the determinant of the matrix Σi corre-
sponding to the modulated signal and noise. For comparison
purposes, we consider the EM algorithm and the VB algorithm.
The VB algorithm infers the a posteriori probabilities accord-

Fig. 6. Convergence of VEM and VB with different initializations.

ing to the methodology described in Section V but assumes
random hyperparameter initialization in an appropriate range
of values for each hyperparameter [29], [37]. In Fig. 6, we
show the global convergence in terms of the log-likelihood as
calculated by (38) for the proposed algorithm and for the VB
algorithm. The favorable initialization for the VEM algorithm,
achieved by applying maximum log-likelihood techniques on
distributions of parameters resulting from several runs of the
EM algorithm, is the value corresponding to iteration 1 on the
curve marked with circles from Fig. 6. We can observe that
the VEM algorithm provides a higher log-likelihood at the
convergence than the VB algorithm while eliminating the de-
pendency on the hyperparameter initialization. Table I shows
comparative results when applying VEM, VB, and EM algo-
rithms on 4-QAM- and 8-PSK-modulated signals. The errors
are measured in terms of global as well as local estimation
of individual parameters. For the global estimation, we con-
sider the KL divergence for the posterior distributions and
the misclassification error on both training and test sets. The
comparison measures consist of the KL of the posterior

KL
(
P̂ (i|xj);P (i|xj)

)
=

1
MN

M∑
j=1

N∑
i=1

P̂ (i|xj) log
P̂ (i|xj)
P (i|xj)

(43)

where the a posteriori probabilities P (i|xj) for the given
training set can be easily calculated in the case of known
signals for 4-QAM and 8-PSK signals. The misclassification
error is also calculated for both the training and the test set. For
validation purposes, we consider the estimation of individual
hyperparameters such as the hypermean bias and the mixing
probability bias, both evaluated between the estimated and their
ideal values. In Table I, we also show the number of iterations
required by each algorithm in order to reach convergence. For
estimating the number of components, we have considered the
BIC criterion and used the cost functions from (40) for VEM
and VB. A similar formula was used for the EM algorithm
when assuming its corresponding number of parameters. In
Figs. 7 and 8, we display the BIC criterion for 4-QAM and
8-PSK signals, respectively. From these two plots, we can
observe that all three algorithms found the right number of
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TABLE I
COMPARISON AMONG VEM, VB, AND EM ALGORITHMS IN BLIND

SOURCE SEPARATION OF MODULATED SIGNALS

Fig. 7. BIC for 4-QAM.

Fig. 8. BIC for 8-PSK.

components as four in 4-QAM and eight in 8-PSK-modulated
signals. However, the maxima in the BIC criterion are better
defined for the VB algorithm in the case of 4-QAM signals
and for the VEM in the case of 8-PSK signals. From the
experimental results, we conclude that the VEM algorithm
provides a better estimation of the model parameters, eventually
achieving better source separation when compared with the
other estimation algorithms.

According to the analysis from the previous section, the
difference in the order of computational complexity of the VEM
algorithm with respect to the EM, as well as with the VB
algorithm, if assuming an identical number of iterations, con-
sists only of the computational complexity of the initialization
procedure. That would require O(Md2N) per iteration, for L
iterations in the first EM stage, and O(Ld2N2) per iteration un-
til convergence for the second stage of the dual-EM algorithm
used for the initialization of the VEM. However, the number
of required iterations until convergence is smaller for the VEM
algorithm than is in the case of the other algorithms, as can be
seen from Table I.

B. Color Image Segmentation by Color Clustering

In this application, we segment several color images using
only color clustering when employing the proposed methodol-
ogy. Three images called “Sunset,” “Lighthouse,” and “Forest”
are shown in Fig. 9(a)–(c). We can observe that the “Sunset” im-
age displays a rather dark lighting variation in the background,
“Lighthouse” contains a mixture of homogeneous color areas
and textures in day time lighting conditions, while “Forest”
displays natural textures. The first step consists of transforming
the color coordinate system from RGB to L∗u∗v∗. L∗u∗v∗

represents an appropriate color coordinate system that has been
used for segmenting color images [39], [45], [46].

The input space is three-dimensional (3-D), each pixel repre-
senting a vector of three color components. In order to reduce
the amount of data, we sample the images by two on each
axis. The initialization is performed by employing the dual
EM algorithm and by estimating the hyperparameter maximum
log-likelihood onto distributions of parameters. The first EM is
run by considering ten different random initializations for the
parameters, and its output results into a total of 10N values for
each parameter of the graphical model. The second EM was
initialized with data samples from the given data set and is
run on the distribution of means resulting from the first EM.
We use the maximum log-likelihood methodology provided
in Section IV in order to initialize the hyperparameters for
the VEM algorithm. After running the VEM algorithm, as
described in Section V, we obtain a set of hyperparameters
corresponding to the variational Gaussian model. Given these
hyperparameters, we calculate the a posteriori probabilities
(31) for the entire image and consider hard decisions for color
image segmentation by taking the MAP probabilities

Vk =
{
xj |k = arg

N
max
i=1

P̂ (i|xj)
}
. (44)

As a consequence, each image is split in a set of regions
based on color similarity in the L∗u∗v∗ space by considering
a variational Gaussian mixture model for each color image.

The segmented “Sunset” image is shown in Fig. 10(a) when
considering seven mixture components, in Fig. 10(b) when
considering ten mixture components, and in Fig. 10(c) when us-
ing eight mixture components. Each region Vk, k = 1, . . . , N ,
segmented according to (44), is displayed in the color corre-
sponding to the hypermeans of the respective regions. From
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Fig. 9. Original images to be segmented. (a) “Sunset.” (b) “Lighthouse.” (c) “Forest.” (Color version available online at http://ieeexplore.ieee.org.)

Fig. 10. Segmentation of “Sunset” image when using VEM algorithm. (a) Using seven components. (b) Using ten components. (c) Using eight components.
(Color version available online at http://ieeexplore.ieee.org.)

Fig. 11. Segmentation of “Lighthouse” image using VEM algorithm. (a) Using eight components. (b) Using ten components. (c) Using nine components.
(Color version available online at http://ieeexplore.ieee.org.)

Fig. 12. Segmentation of “Forest” image using VEM algorithm. (a) Using five components. (b) Using six components. (c) Using nine components. (Color version
available online at http://ieeexplore.ieee.org.)

these images, we can observe a good separation of the palm tree
from the background as well as smooth segmentation of the twi-
light shadows in the background. A segmented “Lighthouse”
image is displayed in Fig. 11(a) when using eight components,
in Fig. 11(b) when using ten components, and in Fig. 11(c)
when considering nine components. In these segmented images,

we can observe a good separation of the sky from the sea and
ground, respectively. In Fig. 12(a), we represent the segmented
“Forest” when using five components, Fig. 12(b) for six com-
ponents, and in Fig. 12(c) when considering nine components.
In all these images, we can observe a good texture segmentation
based exclusively on color information.
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Fig. 13. Estimating the number of Gaussian mixture components using BIC. (a) “Sunset” image. (b) “Lighthouse” image. (c) “Forest” image.

The number of mixture components has been calculated
using BIC (40) [40]. The plots displaying the evaluation of
CVEM(N) for a set of different numbers of components, for
each image, are displayed in Fig. 13. From Fig. 13(a), we
observe that seven components are needed to segment the
“Sunset” image; from Fig. 13(b) we observe that eight compo-
nents would be more appropriate for the “Lighthouse” image;
while from Fig. 13(c) we remark that five components would
be sufficient for the “Forest” image. As we observe from
these plots, according to the BIC criterion, the images are not
properly segmented for a small number of components. When
reaching a certain threshold in the number of mixture compo-
nents we achieve the saturation in the cost function CVEM(N).
The segmentation results from Figs. 10–12 are considered only
for the most appropriate number of hidden units. In Fig. 14, we
display the variation of the average log-likelihood Lθ(x) for
the VEM algorithm at each iteration for the best case and when
assuming the appropriate number of mixture components.

The EM algorithm has been recently used for color im-
age segmentation [17], [45]. We compare the proposed vari-
ational color segmentation algorithm with the EM algorithm.
In Fig. 15, we provide comparative segmentation results for
the three images when using the EM algorithm for the most
appropriate number of components. The numerical comparison
criteria consists of the average likelihood and the peak SNR
(PSNR), expressed in decibels. The average likelihood is cal-
culated as the average of the log-likelihood for all the image
pixels, where the likelihood for each pixel is provided in (38)
and Lθ(x) denotes the log-likelihood obtained at convergence.
PSNR is calculated when converting the color image in a
grey-level image and after considering the hypermeans as the
reference values for the segmented regions, i.e.,

PSNR = 20 log10


 255M√∑M

j=1(xj − µ̂k)2


 (45)

where xj denotes the grey-level value at pixel j and µ̂k is the
hypermean estimate that is assigned to that pixel, following the
conversion from color to grey level, after the decision given by

xj → µ̂k if xj ∈ Vk (46)

Fig. 14. Convergence in log-likelihood for the VEM algorithm when segment-
ing the three color images.

for j = 1, . . . ,M , according to (44). The convergence condi-
tion corresponds to ε = 0.01 in (39). In the first stage of the
dual-EM initialization stage for the VEM algorithm, we use the
same initialization as for the EM, but considering a prefixed
number of iterations. For both EM and VEM algorithms we
consider the result as the average of ten different runs. The
comparison results are shown in Table II, where we consider
the mean result and the standard deviation for the given results.

From Table II, we can observe that the average log-likelihood
for the “Forest” image is larger than that for the “Sunset” and
“Lighthouse.” On the other hand, the PSNR for the same image
is smaller than those of the other images. A higher PSNR
signifies better image segmentation. In the case of the “Forest”
image, the higher proportion of texture in the image causes a
higher PSNR when represented by fewer mixture components.
In all three color images, we have obtained better segmentation
results, according to the average likelihood, PSNR, as well as
visually, when using the VEM algorithm instead of the EM.

VII. CONCLUSION

This paper introduces a new Bayesian algorithm for estimat-
ing parameters in Gaussian mixture models. In Bayesian infer-
ence approaches, we integrate over distributions of parameters
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Fig. 15. Image segmentation using EM algorithm when considering the most appropriate number of components. (a) Using seven components. (b) Using eight
components. (c) Using five components. (Color version available online at http://ieeexplore.ieee.org.)

TABLE II
COMPARISON BETWEEN EM AND VEM ALGORITHMS

IN COLOR IMAGE SEGMENTATION

in order to get better fitting and generalization capabilities. A
variational approach is deterministic in nature and was shown
to ensure the existence of a lower bound on the approximation
error. The proposed algorithm estimating hyperparameters of
mixtures of Gaussian distributions is unsupervised. We analyze
a new hyperparameter initialization methodology by employing
a hierarchical approach for distribution estimation. In the
first stage, a dual-EM algorithm is run several times on the
given data set. The successive runs of the first EM algorithm
provide distributions of parameters. Maximum log-likelihood
is employed on these distributions in order to initialize the
hyperparameters. The variational algorithm called VEM uses
the maximum log-likelihood results as the initial values for
hyperparameters. Experimental results have shown that con-
vergence is achieved in fewer iterations, while the final results
are improved, by using the proposed initialization. The number
of necessary hidden units corresponding to the number of
mixture components is estimated using the BIC. The proposed
algorithm is applied on both artificial and real data. The first
experimental study includes tests on blind signal detection
in PSK- and QAM-modulated signals. Low detection errors
and reliable model estimation has been achieved when using
the VEM algorithm. In the second experiment, the proposed
methodology was used to segment several color images, rep-
resented in the L∗u∗v∗ color space. The results show good
color image segmentation when employing the VEM algorithm.

Although the computational complexity required by the VEM
algorithm is higher than that of the EM or VB, due to the
initialization procedure, the number of necessary iterations until
convergence is lower.
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