
Open Access. © 2019 Xie and Gong, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone
4.0 License.

Open Math. 2019; 17:627–645

Open Mathematics

Research Article

Ting Xie and Zengtai Gong*

Variational-like inequalities for
n-dimensional fuzzy-vector-valued functions
and fuzzy optimization
https://doi.org/10.1515/math-2019-0050

Received November 25, 2018; accepted April 25, 2019

Abstract: The existing results on the variational inequality problems for fuzzy mappings and their applica-

tions were based on Zadeh’s decomposition theorem and were formally characterized by the precise sets

which are the fuzzy mappings’ cut sets directly. That is, the existence of the fuzzy variational inequality

problems in essence has not been solved. In this paper, the fuzzy variational-like inequality problems is

incorporated into the framework of n-dimensional fuzzy number space by means of the new ordering of two

n-dimensional fuzzy-number-valued functions we proposed [Fuzzy Sets and Systems 295 (2016) 19-36]. As

a theoretical basis, the existence and the basic properties of the fuzzy variational inequality problems are

discussed. Furthermore, the relationship between the variational-like inequality problems and the fuzzy op-

timizationproblems is discussed. Finally,we investigate the optimality conditions for the fuzzymultiobjective

optimization problems.

Keywords: n-dimensional fuzzy-number-valued functions, generalized convexity, variational-like inequality,

fuzzy optimization

1 Introduction

Variational inequality theory, where the function is a vector-valued mapping, known either in the form

presented by Hartman and Stampacchia [1] or in the form introduced by Minty [2], has become an effective

and powerful tool for studying awide class of linear/nonlinear problems arising in diverse applied fields such

as optimization and control, mechanics, economics and engineering sciences. Vector variational inequality,

where the function is a matrix-valued mapping, was first introduced and studied by Giannessi [3] in finite-

dimensional Euclidean spaces. This is a generalization of a scalar variational inequality to the vector case

by virtue of multi-criteria considering. In the study of problems related to stochastic impulse control,

Bensoussan and Lions [4] proposed quasi-variational inequality [5–7], where the function is a set-valued

mapping. However, one frequently observes that there are objects that have an ambiguous status in the real

world. The fuzzy set theory, introduced by Zadeh [8] in 1965, offers a wide variety of techniques for analyzing

imprecise data and fuzzy numbers [9] have been investigated extensively. In order to deal with the variational

inequalities derived from some fuzzy environments, in 1989, Chang and Zhu [10] introduced the concepts of

variational inequalities for fuzzy mapping in abstract spaces and investigated the existence of some types
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of variational-like inequalities for fuzzy mappings. Since then, several types of variational inequalities and

complementarity problems for fuzzy mappings have been studied by various researchers [11–18].

On theother hand, variational inequalities are efficient tool for the investigationof optimizationproblems

because these inequalities ensure the existence of efficient solutions, under the condition of convexity or

generalized convexity.Manyworks of these type of inequalities have been focused on looking for the relations

between the solutions of various type of variational inequalities and optimization problems [19, 20]. While

very few investigations have appeared to study the relationships between fuzzy variational inequalities and

fuzzy optimization problems. Wu and Xu [21, 22] introduced the generalized monotonicity of fuzzy mappings

and discussed the relationship between the fuzzy variational-like inequality and fuzzy optimization prob-

lems. Weir [23] and Noor [24, 25] have studied some basic properties of the preinvex functions and their

role in optimization and variational-like inequality problems. In [24], Noor has pointed out that the concept

of invexity plays exactly the same role in variational-like inequality problems as the classical convexity

plays in variational inequality problems, and has shown that the variational-like inequality problems are

well defined in the setting of invexity. Recently, Ruiz-Garzon et al. [26] established relationships between

vector variational-like inequality and optimization problems, under the assumptions of pseudo-invexity.

However, the exiting results on the variational inequalities for fuzzy mappings are focused on two methods.

Since the cut set of a 1-dimensional fuzzy number is a close interval on R, one method is investigates the

n-dimensional fuzzy-vector-valued function whose components are the 1-dimensional fuzzy numbers by

means of the ordering of two fuzzy numbers proposed by Goetschel and Voxman [27] or by Nanda and

Kar [28]; the other method is transformed into the classical set-valued variational inequalities, because the

cut set of an n-dimensional fuzzy number is a nonempty compact convex subset of Rn. To the best of our

knowledge, very few studies have investigated the variational inequalities for n-dimensional fuzzy number-

valued functions directly in n-dimensional fuzzy number space. The main reason is that there is almost no

related research about the ordering and the difference of n-dimensional fuzzy numbers. Until 2016, Gong

and Hai [29] introduced the concept of a convex fuzzy-number-valued function based on a new ordering �c

of n-dimensional fuzzy numbers, and investigated some relations among the convexity and quasiconvex

of n-dimensional fuzzy-number-valued functions, and also study the local-global minimum properties of

the convex fuzzy number-valued functions. The present study is to incorporate the fuzzy variational-like

inequality problems into the framework of n-dimensional fuzzy number space by the new ordering of two n-

dimensional fuzzy numbers, which is a further study in theoretical research andmore convenient in practical

application.

The aim of this paper is to incorporate the fuzzy variational-like inequality problems into the framework

of n-dimensional fuzzy number space. Tomake our analysis possible,we present the preliminary terminology

used throughout this paper in Section 2. In Section 3, the concept of generalizedmonotonicity and invexity for

n-dimensional fuzzy-number-valued functions are presented and someproperties are discussed. In Section 4,

we introduce the fuzzy variational-like inequality based on the order�c and obtain the existence of a solution

of the fuzzy variational-like inequality. The relationship between the variational-like inequality problems

and fuzzy optimization problems is given in Section 5. We investigate the optimality conditions for the fuzzy

multiobjective optimization problems in Section 6. Section 7 concludes this paper.

2 Preliminaries

Throughout this paper, Rn denotes the n-dimensional Euclidean space, Kn and K
n
C denote the spaces of

nonempty compact and compact convex sets of Rn, respectively. Let F(Rn) be the set of all fuzzy subsets

on Rn. A fuzzy set u on Rn is a mapping u : Rn → [0, 1], and u(x) is the degree of membership of the element

x in the fuzzy set u. For each fuzzy set u, we denote its r-level set as [u]r = {x ∈ Rn : u(x) ≥ r} for any
r ∈ (0, 1], and in some references also denoted by ur for short. The support of u we denote by suppu where

suppu = {x ∈ Rn : u(x) > 0}. The closure of suppu defines the 0-level of u, i.e. [u]0 = cl(suppu). Here cl(M)

denotes the closure of set M. Fuzzy set u ∈ F(Rn) is called a fuzzy number if [30, 31]
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(i) u is a normal fuzzy set, i.e., there exists an x0 ∈ Rn such that u(x0) = 1,

(ii) u is a convex fuzzy set, i.e., u(λx + (1 − λ)y) ≥ min{u(x), u(y)} for any x, y ∈ Rn and λ ∈ [0, 1],

(iii) u is upper semicontinuous ,

(iv) [u]0 = cl(suppu) = cl(
⋃

r∈(0,1][u]
r) is compact.

We use En to denote the fuzzy number space. Note that if u : R → [0, 1], then u is a 1-dimensional fuzzy

number, denoted by u ∈ E, and [u]r = [u−(r), u
+(r)] is a close interval on R.

It is clear that each u ∈ Rn can be considered as a fuzzy number u defined by

u(x) =

{
1, x = u,

0, otherwise.
(2.1)

In particular, the fuzzy number 0 is defined as 0(x) = 1 if x = 0, and 0(x) = 0 otherwise.

Example 2.1. Let u ∈ E2 is defined by

u(x, y) =

{√
1 − x2 − y2, x2 + y2 ≤ 1,

0, otherwise,
(2.2)

then [u]r = {(x, y) : x2 + y2 ≤ 1 − r2}, r ∈ [0, 1].

Theorem 2.2. [32] If u ∈ En , then

(i) [u]r is a nonempty compact convex subset of Rn for any r ∈ (0, 1],

(ii) [u]r1 ⊆ [u]r2 , whenever 0 ≤ r2 ≤ r1 ≤ 1,

(iii) if rn > 0 and rn converging to r ∈ [0, 1] is nondecreasing, then
⋂∞

n=1[u]
rn = [u]r .

Conversely, suppose for any r ∈ [0, 1], there exists an Ar ⊆ Rn which satisfies the above (i)-(iii), then there

exists a unique u ∈ En such that [u]r = Ar , r ∈ (0, 1], [u]0 =
⋃

r∈(0,1][u]
r ⊆ A0.

Let u, v ∈ En , k ∈ R. For any x ∈ Rn, the addition and scalar multiplication can be defined, respectively, as:

(u + v)(x) = sup
s+t=x

min{u(s), v(t)}, (2.3)

(ku)(x) = u(
x
k
), k ≠ 0, (2.4)

(0u)(x) =

{
1, x = 0,

0, x ≠ 0.
(2.5)

It is well known that for any u, v ∈ En and k ∈ R, the addition u + v and the scalar multiplication ku have the

level sets

[u + v]r = [u]r + [v]r = {x + y : x ∈ [u]r , y ∈ [v]r}, (2.6)

[ku]r = k[u]r = {kx : x ∈ [u]r}. (2.7)

Proposition 2.3. [33] If u, v ∈ En , k, k1, k2 ∈ R, then

(i) k(u + v) = ku + kv,

(ii) k1(k2u) = (k1k2)u,

(iii) (k1 + k2)u = k1u + k2u when k1 ≥ 0 and k2 ≥ 0.

Give two subsets A, B ⊆ Rn and k ∈ R, the Minkowski difference is given by A − B = A + (−1)B = {a − b :

a ∈ A, b ∈ B}. However, in general, A + (−A) = ̸ 0, i.e. the opposite of A is not the inverse of A in Minkowski

addition (unless A = {a} is a singleton). The spacesKn andKn
C are not linear spaces since they do not contain

inverse elements and therefore subtraction is not defined. To partially overcome this situation, Hukuhara

[36] introduced the following H-difference A ⊖ B = C ⇐⇒ A = B + C and an important property of ⊖ is that

A⊖A = {0}, ∀A ∈ Rn and (A+B)⊖B = A, ∀A, B ∈ Rn. The H-difference is unique, but a necessary condition



630 | T. Xie and Z. Gong

for A⊖H B to exist is that A contains a translation {c} + B of B. In order to overcome this situation, Stefanini

[37] defined the generalized Hukuhara difference of two sets A, B ∈ K
n as follows

A ⊖gH B = C ⇐⇒
{

(1) A = B + C,

or (2) B = A + (−1)C.
(2.8)

The generalized Hukuhara difference has been extended to the fuzzy case in [38]. For any u, v ∈ En , the

generalized Hukuhara difference (gH-difference for short) is the fuzzy number w, if it exists, such that

u ⊖gH v = w ⇐⇒
{

(1) u = v + w,

or (2) v = u + (−1)w.
(2.9)

It is possible that the gH-difference of two fuzzy numbers does not exist. To solve this shortcoming, in [39] a

new difference between fuzzy numbers was proposed. Using the convex hull (conv) the new difference was

defined as follows.

Definition 2.4. [39, 40] The generalized difference (g-difference for short) of two fuzzy numbers u, v ∈ En is

given by its level sets as

[u ⊖g v]
r = cl(conv

⋃

β≥r

([u]β ⊖gH [v]β)), ∀r ∈ [0, 1], (2.10)

where the gH-difference⊖gH is with interval operands [u]β and [v]β .

A necessary condition for u ⊖g v to exist is that either [u]r contains a translation of [v]r or [v]r contains a

translation of [u]r for any r ∈ [0, 1].

Proposition 2.5. [41] Let u, v ∈ En . Then

(i) if the g-difference exists, it is unique,

(ii) u ⊖g u = 0,

(iii) (u + v)⊖g v = u, (u + v)⊖g u = v,

(iv) u ⊖g v = −(v ⊖g u).

Given u, v ∈ En, the distance D : En × En → [0, +∞) between u and v is defined by the equation

D(u, v) = sup
r∈[0,1]

d([u]r , [v]r), (2.11)

where d is the Hausdorff metric given by

d([u]r , [v]r) = inf{ε : [u]r ⊂ N([v]r , ε), [v]r ⊂ N([u]r , ε)}

= max{supa∈[u]r infb∈[v]r ‖a − b‖, supb∈[v]r infa∈[u]r ‖a − b‖}.

N([u]r , ε) = {x ∈ Rn : d(x, [u]r) = infy∈[u]r d(x, y) ≤ ε} is the ε-neighborhood of [u]r . Then, (En , D) is a

complete metric space, and satisfies D(u +w, v +w) = D(u, v), D(ku, kv) = |k|D(u, v) for any u, v, w ∈ En and

k ∈ R.

Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} be the unit sphere of Rn and 〈·, ·〉 be the inner product in Rn , i.e. 〈x, y〉 =∑n
i=1 xiyi ,where x = (x1, x2, · · ·, xn) ∈ Rn , y = (y1, y2, · · ·, yn) ∈ Rn . Suppose u ∈ En , r ∈ [0, 1] and x ∈ Sn−1,

the support function of u is defined by

u*(r, x) = sup
a∈[u]r

〈a, x〉. (2.12)

Theorem 2.6. [42] Suppose u ∈ En , r ∈ [0, 1], then

[u]r = {y ∈ Rn : 〈y, x〉 ≤ u*(r, x), x ∈ Sn−1}. (2.13)
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For u ∈ En , we denote the centroid of [u]r , r ∈ [0, 1] as

(

∫
· · ·

∫
[u]r x1dx1dx2 · · · dxn∫

· · ·
∫
[u]r 1dx1dx2 · · · dxn

,

∫
· · ·

∫
[u]r x2dx1dx2 · · · dxn∫

· · ·
∫
[u]r 1dx1dx2 · · · dxn

, · · ·,

∫
· · ·

∫
[u]r xndx1dx2 · · · dxn∫

· · ·
∫
[u]r 1dx1dx2 · · · dxn

),

where
∫
· · ·

∫
[u]r 1dx1dx2 · · ·dxn is the solidity of [u]

r , r ∈ [0, 1] and
∫
· · ·

∫
[u]r xidx1dx2 · · ·dxn (i = 1, 2, · · ·, n)

is the multiple integral of xi on measurable sets [u]r , r ∈ [0, 1]. Next we define an order�C for E
n .

Let τ : En → Rn be a real vector-valued function defined by ([29])

τ(u) = (2

1∫

0

r

∫
· · ·

∫
[u]r

x1dx1dx2 · · · dxn∫
· · ·

∫
[u]r

1dx1dx2 · · · dxn
dr, 2

1∫

0

r

∫
· · ·

∫
[u]r

x2dx1dx2 · · · dxn∫
· · ·

∫
[u]r

1dx1dx2 · · · dxn
dr,

· · ·, 2

1∫

0

r

∫
· · ·

∫
[u]r

xndx1dx2 · · · dxn∫
· · ·

∫
[u]r

1dx1dx2 · · · dxn
dr), (2.14)

where
∫ 1
0
r

∫
···

∫
[u]r

xidx1dx2···dxn∫
···

∫
[u]r

1dx1dx2···dxn
dr (i = 1, 2, ···, n) is theLebesgue integral of r

∫
···

∫
[u]r

xidx1dx2···dxn∫
···

∫
[u]r

1dx1dx2···dxn
(i = 1, 2, ···, n)

on [0, 1]. The vector-valued function τ is called a ranking value function defined on En .

Definition 2.7. [29] Let u, v ∈ En , C ⊆ Rn be a closed convex cone with 0 ∈ C and C ≠ Rn .We say that u �c v

(u precedes v) if

τ(v) ∈ τ(u) + C. (2.15)

We say that u ≺c v if u �c v and τ(u) ≠ τ(v). Sometimes we may write v �c u (resp. v ≻c u) instead of u �c v

(resp. u ≺c v). In addition, ε̃ ∈ En is said to be an arbitrary positive fuzzy-number if ε̃ ≻c 0 (0 ∈ Rn) and

D(ε̃, 0) < ε, where ε is an arbitrary positive real number.

Example 2.8. If u, v ∈ E1, then τ(u) =
∫ 1
0
r(u−r +u

+
r )dr, τ(v) =

∫ 1
0
r(v−r +v

+
r )dr. Suppose C = R+ = [0, +∞) ⊆ R,

u �c v if and only if τ(u) ≤ τ(v), i.e., τ(v) ∈ τ(u) + [0, +∞). Therefore, when u, v ∈ E1, Definition 2.7 coincides

with the definition of ordering of u, v proposed by Goetschel ([27]).

If u, v ∈ E2, in Definition 2.7, let C be the set of nonnegative orthant of R2, i.e., C = R2+ = {(x1, x2) ∈ R2 :

x1 > 0, x2 > 0)} ⊆ R2.

Example 2.9. A special kind of n-dimension fuzzy numbers is the fuzzy n-cell numbers proposed in [43]. Let u ∈
L(En), i.e., [u]r =

∏n
i=1[u

−
i (r), u

+
i (r)] = [u−1(r), u

+
1(r)] × [u

−
2(r), u

+
2(r)] × · · · × [u

−
n(r), u

+
n(r)] for any r ∈ [0, 1], where

the left endpoint function and the right endpoint function u−i (r), u
+
i (r) ∈ R with u−i (r) ≤ u

+
i (r) (i = 1, 2, · · ·, n),

then we have

τ(u) = (

1∫

0

r(u−1(r) + u
+
1(r))dr,

1∫

0

r(u−2(r) + u
+
2(r))dr, · · · ,

1∫

0

r(u−n(r) + u
+
n(r))dr). (2.16)

For u, v ∈ L(En), suppose C = Rn+ = {(x1, x2, · · · , xn) ∈ Rn : x1 > 0, x2 > 0, · · · , xn > 0)} ⊆ Rn, then we

have u �c v ⇐⇒ τ(u) ∈ τ(v) + c. Furthermore, for k1, k2 ∈ R, we obtain

τ(k1u + k2v) = k1τ(u) + k2τ(v). (2.17)

LetM be a convex set ofm-dimensional Euclidean space Rm and F be an n-dimensional fuzzy-number-valued

function (fuzzy-number-valued function for short) from M into En .

Example 2.10. The following function is a2-dimensional fuzzy-number-valued function. For constants s, t ∈ R,

F : [−
√
− ln 1

5 ,

√
− ln 1

5 ]
2 → E2 is defined as

F(s, t)(x, y) =

{
5
4 e

−[(x−s)2+(y−t)2] − 1
4 , −

√
− ln 1

5 ≤ x, y ≤
√
− ln 1

5

0, otherwise.
(2.18)
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Example 2.11. The following function is a fuzzy 1-cell number function. Furthermore, for constants s ∈ R,

F(s)(x) = f (s)u(x).

F(s)(x) =





x+es

2es , −es ≤ x ≤ es ,√
2es−x
es , es ≤ x ≤ 2es ,

0, otherwise,

(2.19)

where f (s) = es, and

u(x) =





x+1
2 , −1 ≤ x ≤ 1,√
2 − x, 1 < x < 2,

0, otherwise.

The epigraph of F, denoted by epi(F), is defined as

epi(F) = {(t, u) : t ∈ M, u ∈ En , F(t) �c u}. (2.20)

For u, v ∈ En , we say that u and v are comparable, if either u �c v or v �c u,; otherwise, they are

non-comparable. F is said to be a comparable fuzzy-number-valued function if for each pair t1, t2 ∈ M and

t1 ≠ t2, F(t1) and F(t2) are comparable; otherwise, F is said to be a non-comparable fuzzy-number-valued

function.

F is said to be lower semicontinuous (l.c.) at t0 ∈ M, if for any ε̃ ≻c 0, there exists a neighborhood U of

t0, when t ∈ U, we have F(t0) ≺c F(t) + ε̃; F is said to be upper semicontinuous (u.c.) at t0 ∈ M, if for any

ε̃ ≻c 0, there exists a neighborhood U of t0,when t ∈ U,we have F(t) ≺c F(t0)+ ε̃. F is continuous at t0 ∈ M,

if it is both l.c. and u.c. at t0, and that it is continuous if and only if it is continuous at every point ofM ([29]).

Definition 2.12. ([29]) Let F : M → En be a fuzzy-number-valued function.

(1) An element t0 ∈ M is called a local minimum point of F if there exists a neighborhood U of t0, F(t0) �c F(t)

for any t ∈ U .

(2) An element t0 ∈ M is called a global minimum point of F if F(t0) �c F(t) for any t ∈ M.

(3) An element t0 ∈ M is called a strictly local minimum point of F if there exists a neighborhood U of t0,

F(t0) ≺c F(t) for any t ∈ U and t ≠ t0.

(4) An element t0 ∈ M is called a strictly global minimum point of F if F(t0) ≺c F(t) for any t ∈ M and t ≠ t0.

Definition 2.13. Let A = (u1, u2, · · · , un) ∈ (En)n, ui ∈ En , i = 1, 2, · · · , n, and T = (t1, t2, · · · , tn) ∈ Rn be

an n-dimensional fuzzy vector and an n-dimensional real vector, respectively. We define the product of a fuzzy

vector with a real vector as TA =
∑n

i=1 tiui, which is an n-dimensional fuzzy number. In addition, if TA = 0,

then we say A is fuzzy orthogonal to T.

We denote the fuzzy vector 0 by 0 = {0, 0, · · · , 0︸ ︷︷ ︸
n

}, where 0 ∈ En. If A = (u1, u2, · · · , un) ∈ (E)n, ui ∈ E1, i =

1, 2, · · · , n, then Definition 2.13 coincides with Definition 2.4 proposed in [34]. It is not difficult to obtain

[TA]r =
n⋃

i=1

ti[ui]
r =

n⋃

i=1

{tixi : x ∈ [ui]
r}. (2.21)

For any n-dimensional fuzzy vectors X and Y, let X = {X1, X2, · · · , Xn}, Y = {Y1, Y2, · · · , Yn}, we use
the following convention for equalities and inequalities throughout the paper:

(a) X ≤ Y ⇐⇒ xi �c yi , i = 1, 2, · · · n, with strict inequality holding for at least one i;

(b) X ≦ Y ⇐⇒ xi �c yi , i = 1, 2, · · · n;

(c) X = Y ⇐⇒ xi =c yi , i = 1, 2, · · · n;

(d) X < Y ⇐⇒ xi ≺c yi , i = 1, 2, · · · n.

In the following, we assume that the fuzzy-number-valued function F : M → En and fuzzy-vector-valued

function F : M → (En)n are comparable, respectively.
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Definition 2.14. Let F : M → (En)n be an n-dimensional fuzzy-vector-valued function, denoted by F(t) =

(u1(t), u2(t), · · · , un(t)), where ui(t) (i = 1, 2, · · · , n) is a fuzzy-number-valued function on M. For the sake of

brevity, F is called a fuzzy-vector-valued function.

(1) F is said to be a comparable fuzzy-vector-valued function if any ui(t) (i = 1, 2, · · · , n) is a comparable fuzzy-

number-valued function.

(2) For s, t ∈ M, we define g-difference of fuzzy-vector-valued functions as

F(s)⊖g F(t) = (u1(s)⊖g u1(t), u2(s)⊖g u2(t) · · · , un(s)⊖g un(t)). (2.22)

Example 2.15. Let f (t) = (t1, t2, t3) = (et , e
t(et−1)
3 , e

t

3 ) ∈ R3, t ∈ R, be a 3-dimensional real-vector-valued

function, and u = (u1, u2, u3) ∈ (E)3 (ui ∈ E, i = 1, 2, 3) be a 3-dimensional fuzzy-vector-valued function,

where

u1 =





x + 2, −2 ≤ x ≤ −1,

1, −1 ≤ x ≤ 0,

0, otherwise,

u2 =

{
1, 0 ≤ x ≤ 1,

0, otherwise,

and

u3 =

{
1 − x, 0 ≤ x ≤ 1,

0, otherwise.

Then according to Definition 2.13, we have the following 1-dimensional fuzzy-number-valued function F :

(0,∞)2 → E and

F(t)(x) = fu = f1u1 + f2u2 + f3u3





2et+x
et , −2et ≤ x ≤ −et ,

1, −et ≤ x ≤ e2t−et

3 ,
2et−3x

et , e2t−et

3 ≤ x ≤ e2t

3 ,

0, otherwise,

and

Fr(t) = [et(r − 2),
et(et − r)

3
]

= et[r − 2, 0] +
et(et − 1)

3
[0, 1] +

et

3
[0, 1 − r], ∀r ∈ [0, 1].

Theorem 2.16. Let F,G ∈ (En)n . Then

(i) if the g-difference exists, it is unique,

(ii) F⊖g F = 0,

(iii) (F + G)⊖g G = F, (F + G)⊖g F = G,

(iv) F⊖g G = −(G⊖g F).

Proof . It is not difficult to obtain from Proposition 2.5 and Definition 2.14.

Definition 2.17. Let F : M → (En)n be a fuzzy-vector-valued function, denoted by F(t) =

(u1(t), u2(t), · · · , un(t)), where ui(t) (i = 1, 2, · · · , n) is a fuzzy-number-valued function on M.

(1) F is said to be lower semicontinuous (l.c.) at t0 ∈ M if there exists a neighborhood U of t0, any ui(t) (i =

1, 2, · · · , n) is l.c. at t0.

(2) F is said to be upper semicontinuous (u.c.) at t0 ∈ M if there exists a neighborhood U of t0, any ui(t) (i =

1, 2, · · · , n) is u.c. at t0.

A fuzzy-vector-valued function F : M → (En)n is continuous at t0 ∈ M, if it is both l.c. and u.c. at t0, and that it

is continuous if and only if it is continuous at every point of M.
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Definition 2.18. Let F : M → En be a fuzzy-number-valued function, t0 = (t01, t
0
2, · · · , t

0
m) ∈ intM. If g-

difference F(t01, · · · , t
0
j + h, · · · , t

0
m)⊖g F(t

0
1, · · · , t

0
j , · · · , t

0
m) exists and there exists uj ∈ En (j = 1, 2, · · · ,m),

such that

lim
h→0

F(t01, · · · , t
0
j + h, · · · , t

0
m)⊖g F(t

0
1, · · · , t

0
j , · · · , t

0
m)

h
= uj ,

thenwe say that F has the jth partial generalizedderivative (g-derivative for short) at t0, denotedby uj = ∂F/∂t0j .

Here the limit is taken in the metric space (En , D). If all the partial g-derivatives at t0 exist, then we say F is said

to be generalized differentiable (g-differentiable for short) on t0. If F is g-differentiable at any interior point

of M, then F is said to be g-differentiable on M. The fuzzy vector (u1, u2, · · · , um) ∈ (En)m is said to be the

gradient of F at t0, denoted by∇F(t0), that is,

∇F(t0) = (u1, u2, · · · , um) = (∂F/∂t01, ∂F/∂t
0
2, · · · , ∂F/∂t

0
m).

In addition, t0 ∈ M is said to be a stationary point of F if∇F(t0) = 0.

Note that if M = [a, b], then Definition 2.18 coincides with the definition of F is g-differentiable on [a, b]

proposed by Gong and Hai ([41]).

We call F : [a, b] → (L(En))n, denoted by F = (F1, F2, · · · , Fn), is an n-dimensional fuzzy n-cell vector-

valued function (fuzzy n-cell vector-valued function for short). If F = (f1(t)u1, f2(t)u2, · · · , fn(t)un), where

fi : [a, b] → R, ui ∈ L(En), i = 1, 2, · · · n, then the gradient of F at t0 is defined as

∇F(t0) = (∇F1,∇F2, · · · ,∇Fn),

and it is not difficult to obtain∇Fi = (ui∂fi/∂t
0
1, ui∂fi/∂t

0
2, · · · , ui∂fi/∂t

0
m), i = 1, 2, · · · n.

Definition 2.19. The function η : M ×M → Rn is said to be a skew function if

η(x, y) = −η(y, x), ∀x, y ∈ M. (2.23)

Definition 2.20. [35] An n-dimensional fuzzy set u is a fuzzy cone if u(γx) = u(x) for all γ > 0 and x ∈ Rn.

Definition 2.21. LetA = (u1, u2, · · · , un) ∈ (En)n (ui ∈ En , i = 1, 2, · · · , n) be an n-dimensional fuzzy vector.

A fuzzy dual cone of A is the n-dimensional fuzzy vector A* given by

A
*(y) =

(
inf

x∈Rn:xy<0
(1 − u1(x)), inf

x∈Rn:xy<0
(1 − u2(x)), · · · , inf

x∈Rn:xy<0
(1 − un(x))

)
(2.24)

for nonzero y ∈ Rn, and A*(0) = (1, 1, · · · , 1︸ ︷︷ ︸
n

).

Notice that if A = (u) ∈ En is a 1-dimensional fuzzy vector, i.e., an n-dimensional fuzzy number, then

Definition 2.21 reduces to Definition 8 proposed in [35].

3 Generalized convex fuzzy-number-valued functions

It is well known that the role of generalized monotonicity of the operator in vector variational inequality

problems corresponds to the role of generalized convexity of the objective function in the optimization

problem. In this section, we generalize convexity from vector-valuedmaps to fuzzy number-valued functions.

The concepts of invexity and generalizedmonotonicity for n-dimensional fuzzy-number-valued functions are

presented and some relative properties are discussed. In the following, suppose M ⊆ Rn be a convex set.

Definition 3.1. The mapping F : M → (En)n is said to be

(1) fuzzy monotone over M if

(y − x)(F(y)⊖g F(x)) �c 0, ∀x, y ∈ M. (3.1)
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(2) fuzzy invex monotone over M if there exists a continuous map η : M ×M → Rn such that

η(y, x)(F(y)⊖g F(x)) �c 0, ∀x, y ∈ M. (3.2)

Note that this definition reduces to the definition of monotone functions if η(y, x) = y − x.

(3) fuzzy strictly invex monotone over M if there exists a continuous map η : M ×M → Rn such that

η(y, x)(F(y)⊖g F(x)) �c 0, ∀x, y ∈ M, x ≠ y. (3.3)

Definition 3.2. A g-differentiable fuzzy mapping F : M → En is called

(1) fuzzy invex (FIX) with respect to a function η : M ×M → Rn, if for all x, y ∈ M

F(x)⊖g F(y) �c η(x, y)∇F(y). (3.4)

(2) fuzzy strictly invex (FSIX) with respect to a function η : M ×M → Rn, if for all x, y ∈ M

F(x)⊖g F(y) ≻c η(x, y)∇F(y), ∀x ≠ y. (3.5)

(3) fuzzy incave (FIC) with respect to a function η : M ×M → Rn, if for all x, y ∈ M

F(x)⊖g F(y) �c η(x, y)∇F(y). (3.6)

(4) fuzzy strictly incave (FSIC) with respect to a function η : M ×M → Rn, if for all x, y ∈ M

F(x)⊖g F(y) ≺c η(x, y)∇F(y), ∀x ≠ y. (3.7)

Theorem 3.3. The function F : M → En will be a fuzzy invex fuzzy-number-valued function with respect to

some function η if and only if each stationary point of F is a global minimum point.

Proof . Necessity. Let F be a fuzzy invex fuzzy-number-valued function with respect to some function η. If

x0 is a stationary point of F, then ∇F(x0) = 0. Since F is fuzzy invex, using (3.4), we have F(x) ⊖g F(x0) �c

η(x, y)∇F(x0) = 0, ∀x ∈ M. Thus, we obtain F(x0) �c F(x), ∀x ∈ M. Therefore, x0 is a globalminimumpoint.

Sufficiency. If y is a stationary point of F, i.e.,∇F = 0, and also a global minimum point of F, then for a

function η : M ×M → Rn, we have

F(x)⊖g F(y) �c 0 = η(x, y)∇F, ∀x ∈ M.

Therefore, F is a fuzzy invex fuzzy-number-valued function. �

Theorem 3.4. If a g-differentiable fuzzy mapping F : M → En is fuzzy invex on M with respect to η : M ×M →
Rn and η is a skew function. Then,∇F : M → (En)n is fuzzy invex monotone with respect to the same η.

Proof . By the fuzzy invexity of F, there exists η(x, y) ∈ Rn, such that

F(x)⊖g F(y) �c η(x, y)∇F(y), ∀x, y ∈ M.

By changing x for y,

F(y)⊖g F(x) �c η(y, x)∇F(x).

Adding the above two formulas, we obtain

0 �c η(x, y)∇F(y) + η(y, x)∇F(x).

Since η is a skew function, η(y, x) = −η(x, y), thus, we have

η(y, x)∇F(y)⊖g η(y, x)∇F(x) �c 0,

that is,

η(y, x)(∇F(y)⊖g ∇F(x)) �c 0.

Therefore,∇F is fuzzy invex monotone. �



636 | T. Xie and Z. Gong

Theorem 3.5. If a g-differentiable fuzzy mapping F : M → En is fuzzy strictly invex on M with respect to

η : M × M → Rn and η is a skew function. Then,∇F : M → (En)n is fuzzy strictly invex monotone with respect

to the same η.

Proof . By the fuzzy invexity of F, there exists η(x, y) ∈ Rn, such that

F(x)⊖g F(y) ≻c η(x, y)∇F(y), ∀x, y ∈ M.

By changing x for y,

F(y)⊖g F(x) ≻c η(y, x)∇F(x).

Adding the above two formulas, we obtain

η(x, y)∇F(y) + η(y, x)∇F(x) ≺c 0.

Since η is a skew function, η(y, x) = −η(x, y), thus, we have

η(y, x)∇F(y)⊖g η(y, x)∇F(x) ≻c 0,

that is,

η(y, x)(∇F(y)⊖g ∇F(x)) ≻c 0.

Therefore,∇F is fuzzy strictly invex monotone. �

4 Variational-like inequalities for fuzzy-vector-valued functions

The existing results on the variational inequality problems for fuzzy mappings and their applications were

based on Zadeh’s decomposition theorem and were formally characterized by the precise sets which are the

fuzzy mappings’ cut sets directly. In this section, the fuzzy variational-like inequality problems is incorpo-

rated into the framework of n-dimensional fuzzy number space and proposed by means of the new ordering

of two n-dimensional fuzzy-number-valued functions we proposed in [29]. In addition, we give the extension

principle of the fuzzy variational inequality problems.

Theorem 4.1. (Decomposition theorem)[39] If u ∈ En, then

u =
⋃

λ∈[0,1]

(λ · [u]λ). (4.1)

Let f : M → En be a fuzzy-number-valued function, then ∀x ∈ M, [f (x)]α = fα(x) = f (x)(α) = f (x, α) = {x ∈
Rn : f (x) > α}, α ∈ [0, 1], denotes the α-cut set of f . According to Theorem 2.2, ∀x ∈ M, fα(x) ⊆ K

n
C ⊆ 2R

n

,

where 2R
n

is the family of all nonempty subsets of Rn.

Definition 4.2. Let M be a closed and convex set in Rm. Given a continuous mapping η : M ×M → Rn.

(1) The variational-like inequality problem for n-dimensional fuzzy mappings (fuzzy variational-like in-

equality problem for short), denoted by FVLIP(M, F, η), is to find x ∈ M such that

η(x, y)F(x) �c 0, ∀y ∈ M, (4.2)

where F : M → (En)n is a continuous fuzzy-vector-valued mapping.

(2) The variational inequality problem for n-dimensional fuzzy mappings (fuzzy variational inequality

problem for short), denoted by FVIP(M, F), is to find x ∈ M such that

(y − x)F(x) �c 0, ∀y ∈ M, (4.3)

where F : M → (En)n is a continuous fuzzy-vector-valued mapping.
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(3) The generalized variational-like inequality problem for n-dimensional fuzzy mappings (generalized

fuzzy variational-like inequality problem for short), denoted by GFVLIP(M, F, η), is to find x ∈ Mwith x* ∈ F(x)

such that

η(x, y)x* �c 0, ∀y ∈ M. (4.4)

where F : M → 2(E
n)n is a continuous set-valued fuzzy vector mapping, and 2(E

n)n is the family of all nonempty

subsets of (En)n.

(4) The generalized variational inequality problem for n-dimensional fuzzy mappings (generalized fuzzy

variational inequality problem for short), denoted by GFVIP(M, F), is to find x ∈ M with x* ∈ F(x) such that

(y − x)x* �c 0, ∀y ∈ M. (4.5)

where F : M → 2(E
n)n is a continuous set-valued fuzzy vector mapping, and 2(E

n)n is the family of all nonempty

subsets of (En)n.

Herewewould like to point out that (FVLIP) and (FVIP) includemanykinds of variational inequality problems

as their special cases. For example,

(i) If F : M → Rn is a continuous real-vector-valued mapping, and C = R+ = [0,∞), then (4.3) reduces to

the classical variational inequality problem: to finding x ∈ K such that

(y − x)F(x) ≥ 0, ∀y ∈ M, (4.6)

which was considered by Stampacchia [1].

(ii) If F : M → 2R
n

is a continuous set-valued real-vector mapping, then (4.5) reduces to the classical

generalized variational inequality problem: to finding x ∈ M with x* ∈ F(x) such that

(y − x)x* ≥ 0, ∀y ∈ M. (4.7)

This problem was considered and studied by Noor [24].

Suppose for any r ∈ [0, 1], there exists an Ar ⊆ Rn which satisfies the conditions (i)-(iii) in Theorem

2.2, then there exists a unique F ∈ En such that [F]r = Ar , r ∈ (0, 1], [F]0 =
⋃

r∈(0,1][F]
r ⊆ A0. We denote

A = {Ar : r ∈ [0, 1]}, then A ⊆ K
n
C ⊆ 2R

n

.

(iii) LetG : M → A bea set-valuedmapping.Nowwedefinea1-dimensional fuzzy-vector-valuedmapping

F by

F : M → F(A), x 7→ r · χA(x) ⊆ (En)1,

where χA(x) =

{
1, x ∈ A,

0, x ∈ ̸ A,
is the characteristic functionof the setA. Then (4.3) is equivalent to the variational

inequality for fuzzy mapping, which was considered and studied by Noor [17], i.e., is to find x ∈ M with

x* ∈ G(x) such that

(y − x)x* ≥ 0, ∀y ∈ M. (4.8)

(iv) LetG : M → A be a set-valuedmapping.Nowwedefine a1-dimensional fuzzy-vector-valuedmapping

F by

F : M → F(A), x 7→ r · χA(x) ⊆ (En)1,

where χA(x) =

{
1, x ∈ A,

0, x ∈ ̸ A,
is the characteristic function of the set A. Then (4.2) is equivalent to the

variational-like inequality for fuzzy mapping,which was considered and studied by Rufián-Lizana [44], i.e.,

is to find x ∈ M with x* ∈ G(x) such that

η(x, y)x* ≥ 0, ∀y ∈ M. (4.9)
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Let a : Rn → [0, 1] be a function, we have fa(x) = {x ∈ Rn : f (x) > a(x)}. ∀x ∈ Rn, suppose for any

a(x) ∈ [0, 1], there exists an Aa(x) ⊆ Rn which satisfies the conditions (i)-(iii) in Theorem 2.2, then there

exists a unique F ∈ En such that [F]a(x) = Aa(x), a(x) ∈ (0, 1], and [F]0 =
⋃

a(x)∈(0,1][F]
a(x) ⊆ A0. We denote

A = {Aa(x) : a(x) ∈ [0, 1]}, then A ⊆ K
n
C ⊆ 2R

n

.

(v) Let G : M → A be a set-valuedmapping. Nowwe define a 1-dimensional fuzzy-vector-valuedmapping

F by

F : M → F(A), x 7→ a(x) · χA(x) ⊆ (En)1,

where χA(x) =

{
1, x ∈ A,

0, x ∈ ̸ A,
is the characteristic functionof the setA. Then (4.2) is equivalent to the variational

inequality for fuzzy mapping: is to find x ∈ M with x* ∈ Fa(x)(x) such that

(y − x)x* �c 0, ∀y ∈ M. (4.10)

This problemwas studied by Huang [16], where the cut a(x) depends on x. It is slightly different from that

of Noor [17], where the cut is a constant. The advantages are that the cuts have more freedom than those of

Noor, and the model includes that of Noor as a special case in the viewpoint of mathematics.

Remark 4.3. Let M be a convex cone in Rm and F : M → (En)n. The fuzzy variational-like inequality problem

is called complementarity-like problem, denoted by NCLP(F). The NCLP(F) is an important special case of

FVILP(M, F, η). That is, the NCLP(F) is to find x* ∈ M such that

F(x*) ∈ F*, η(x*)F(x*) = 0, (4.11)

where F* denotes the fuzzy dual cone of F, i.e.,

F*(y) =
(

inf
x∈D:xy<0

(1 − u1(x)), inf
x∈M:xy<0

(1 − u2(x)), · · · , inf
x∈M:xy<0

(1 − un(x))
)
, y ∈ M.

Remark 4.4. If F : M → (L(En))n, the fuzzy variational-like inequality problem is called the fuzzy box

constrained variational-like inequality problem, denoted by FBVLIP(M, F, η).

Example 4.5. If F : M → (L(En))n be fuzzy n-cell vector-valued function, then (FBVLIP) is to find x ∈ M such

that

η(x, y)F(x) �c 0, ∀y ∈ M, (4.12)

which is equivalent to

τ(η(x, y)F(x)) ∈ τ(0) + C, ∀y ∈ M, (4.13)

where C = Rn+ = {(x1, x2, · · · , xn) ∈ Rn : x1 > 0, x2 > 0, · · · , xn > 0} ⊆ Rn. Suppose that

F = (F1, F2, · · · , Fn), η = (η1, η2, · · · , ηn), then (FVIP) is to find x ∈ M such that

τ(η(x, y)F(x)) = τ(

n∑

i=1

ηiFi(x)) =

n∑

i=1

ηiτ(Fi(x)) ≥ 0, (4.14)

where τ(Fi(x)) = (
∫ 1
0
r(F−i1(x)(r) + F

+
i1(x)(r))dr,

∫ 1
0
r(F−i2(x)(r) + F

+
i2(x)(r))dr, · · · ,

∫ 1
0
r(F−in(x)(r) + F

+
in(x)(r))dr),

i = 1, 2, · · · n.

Theorem 4.6. LetM be a nonempty, compact and convex subset of Rm and let F be a continuousmapping from

X into (En)n. Then there exists a solution to the problem FVLIP(M, F, η), that is, there exists x0 ∈ M such that

η(y, x0)F(x0) �c 0, ∀y ∈ M. (4.15)
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Proof . If M is a point, the theorem is trivial. If M is not a point, then it can be supposed that M has interior

points for otherwise, without loss of generality, Rn is replaced by a suitable subspace of Rn containing M.

Since a translation of the space Rn dose not affect the assumption or assertion, it can be supposed that x = 0

is an interior point of M. We denote a half-space by ∂M = {x ∈ Rm : (x − p)n ≤ 0}, where p is a point in Rm

and n is an nonzero vector in Rm.

Let x0 ∈ ∂M. Then (4.15) holds if and only if there is a hyperplane π through x0, that is, π = {x ∈ Rm :

(x − p)n = 0}, supporting M such that if N ≠ 0 is a fuzzy vector which is fuzzy orthogonal to π and pointing

into the half-space not containing M, then F(x0) = −tN for some t ≥ 0.

Case1. ∂M is of class C1. Assume that (4.15) fails to hold for all x0 ∈ M. We shall show that

F(x) = 0 (4.16)

has a solution x0 ∈ M, which satisfies (4.15) trivially.

Let N(x0) be the outward, unit normal vector at x0 ∈ ∂M. Then

F(x0, t) = (1 − t)F(x0) + tN(x0), 0 ≤ t ≤ 1,

is a deformation of the vector field F(x0), x0 ∈ ∂M, into the vector field N(x0). The assumption that (4.15)

dose not hold for x0 ∈ ∂M implies that F(x0) ≠ 0 for x0 ∈ ∂M, 0 ≤ t ≤ 1. Hence the indices of the vector fields

F(x0), N(x0) with respect to x = 0 are identical.

There is a deformation D(x0, s) = (1 − s)N(x0) + sx0, 0 ≤ s ≤ 1, of N(x0) into x0 and D(x0, s) ≠ 0 since

x = 0 is an interior point ofM. Since the vector field x0, x0 ∈ ∂M, has index 1 with respect to x = 0, the index

of N(x0) and, hence, of F(x0) is 1. This proves that (4.16) has a solution in M.

Case2. ∂M is not of class C1. By a theorem of Minkowski (see [45], pp. 36-37), there exists a sequence of

compact convex sets M1 ⊆ M2 ⊆ · · · such that M is the closure of the union M1 ∪ M2 ∪ · · · and ∂Mm , m =

1, 2, · · · , is of class C1. By case 1, there exists xm ∈ M satisfying

η(y, xm)F(xm) �c 0, ∀y ∈ Mm .

After a selection of a subsequence, it can be supposed that x0 = lim xm exists. Then, by continuity of F,

it follows that

η(y, x0)F(x0) �c 0, ∀y ∈ Mm .

This implies (4.15) and completes the proof. �

Corollary 4.7. Let M be a nonempty, closed and fuzzy invex subset of Rm and let F : Rn → (En)n be continuous.

If there exists a nonempty bounded subset B of M such that for every x ∈ M \ B there is a y ∈ B with

η(x, y)F(x) ≥ 0,

then the problem FVLIP(M, F, η) has a solution.

5 Relationship between fuzzy variational-like inequality problems

and fuzzy optimization problems

In this section, we investigate the relationships between fuzzy variational-like inequality problems and fuzzy

optimization problems.

The Fuzzy Optimization Problem (FOP) is defined as

min f (t)

subject to t ∈ M,
(5.1)

where M is closed and convex set and in Rn and f : M → En is continuously g-differentiable.
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Theorem 5.1. Suppose that f : M → En is fuzzy invex with respect to some continuous map η : M × M → Rn.

If t* ∈ M is a solution to FVLIP(M, F, η), where F(t) = ∇f , then t* is a solution to the (FOP).

Proof . By the fuzzy invexity of f , we have

f (t)⊖g f (t
*) �c η(t, t

*)∇f (t*), ∀t ∈ M.

Since t* ∈ M is a solution to FVLIP(M, F, η), we have

η(t, t*)F(t*) �c 0, ∀t ∈ M.

Now, setting F(t*) = ∇f (t*), we obtain

f (t)⊖g f (t
*) �c 0, ∀t ∈ M,

that is,

f (t) �c f (t
*), ∀t ∈ M.

Thus, we have

f (t*) = min
t∈M

f (t).

Therefore, t* is a solution to the (FOP). �

Theorem 5.2. Let K ⊆ Rn be an invex set with respect to η, x* ∈ K, and F : K → En be a g-differentiable

incave fuzzy mapping (FIC) with respect to η. If x* is a strictly local optimal solution to (FOP), then (x*,∇F(x*))

is a solution to (FVLIP).

Proof . Let x* be a strictly local optimal solution to (FOP). By contradiction, suppose that there exists an x ∈ K

such that

η(x, x*)∇F(x*) �c 0.

Since F is a g-differentiable incave fuzzy mapping,

F(x)⊖g F(x
*) �c ∇η(x, x*)F(x*).

Thus, we have

F(x) �c F(x
*).

This contradicts the fact that x* is a strictly local optimal solution of (FOP). �

Theorem 5.3. Let K ⊆ Rn be an open invex set with respect to η, x* ∈ K, and F : K → En be a g-differentiable

strictly incave fuzzy mapping (FSIC) with respect to η. If x* is an optimal solution of (FOP), then (x*,∇F(x*) is

a solution to (FVLIP).

Proof . Let x* be an optimal solution to (FOP). By contradiction, suppose that there exists an x ∈ K such that

η(x, x*)∇F(x*) �c 0.

Since F is a g-differentiable strictly incave fuzzy mapping,

F(x)⊖g F(x
*) ≺c ∇η(x, x*)F(x*).

Therefore,

F(x) ≺c F(x
*).

This contradicts the fact that x* is an optimal solution to (FOP). �
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6 Fuzzy multiobjective optimization

In this section, we investigate the optimality conditions for the multiobjective optimization problems.

The Fuzzy Multiobjective Optimization Problem (FMOP1) is defined as

min F(x) = (f1(x), f2(x), · · · , fp(x))

subject to G(x) ≤ 0,

H(x) = 0,

x ∈ M,

(6.1)

where M ⊆ Rm is closed and convex set, the objective function F(x) : M → (L(En))p is a fuzzy-vector-

valued function, G(x) : M → (L(En))l and H(x) : M → (L(En))t in constraint conditions are fuzzy-

vector-valued functions, denoted by G(x) = (g1(x), g2(x), · · · , gl(x)), H(x) = (h1(x), h2(x), · · · , ht(x)), where

fi(x), gk(x), hs(x) : M → En , i = 1, 2, · · · , p, k = 1, 2, · · · , l, s = 1, 2, · · · , t.

X = {x ∈ M : G(x) ≤ 0, H(x) = 0} is said to be the feasible set of (FMOP1). Let x0 ∈ X, if there does not

exist x ∈ M such that F(x) ≤ F(x0), then x0 is said to be an optimal solution to (FMOP1).

Let C = Rn+ = {(x1, x2, · · · , xn) ∈ Rn : x1 > 0, x2 > 0, · · · , xn > 0} ⊆ Rn. Then we have

G(x) ≤ 0 ⇐⇒ τ(gk(x)) ≤ 0 (0 ∈ Rn), k = 1, 2, · · · , l. (6.2)

where τ(gk(x)) = (
∫ 1
0
r(g−k1(x)(r)+g

+
k1(x)(r))dr,

∫ 1
0
r(g−k2(x)(r)+g

+
k2(x)(r))dr, · · · ,

∫ 1
0
r(g−kn(x)(r)+g

+
kn(x)(r))dr),

k = 1, 2, · · · l, thus, we obtain

G(x) ≤ 0 ⇐⇒
1∫

0

r(g−kj(x)(r) + g
+
kj(x)(r))dr ≤ 0 (0 ∈ R), k = 1, 2, · · · , l, j = 1, 2, · · · , n. (6.3)

Similarly, we have

H(x) = 0 ⇐⇒
1∫

0

r(h−sj(x)(r) + h
+
sj(x)(r))dr = 0 (0 ∈ R), s = 1, 2, · · · , t, j = 1, 2, · · · , n. (6.4)

We denote Gk′ (x) =
∫ 1
0
r(g−kj(x)(r) + g+kj(x)(r))dr, Hs′ (x) =

∫ 1
0
r(h−sj(x)(r) + h+sj(x)(r))dr, k

′ = 1, 2, · · · , l ×

n, s′ = 1, 2, · · · , t × n, then the fuzzy multiobjective optimization problem (FMOP1) can be transformed into

the following fuzzy multiobjective optimization problem (FMOP2)

min F(x) = (f1(x), f2(x), · · · , fp(x))

subject to Gk′ (x) ≤ 0,

Hs′ (x) = 0,

x ∈ M,

(6.5)

where Gk′ , Hs′ : M → R.

Obviously, the feasible set of (FMOP2) is equivalent to the feasible set of (FMOP1).

In the following, suppose that the feasible set of (FMOP2) X = {x ∈ intM : Gk′ (x) ≤ 0, Hs′ (x) = 0, k′ =

1, 2, · · · , l × n, s′ = 1, 2, · · · , t × n} ⊆ K
n
C, the real-valued functions Gk′ (x), k

′ = 1, 2, · · · , l × n, are convex

on M, continuous and differentiable at x0 ∈ X.

Definition 6.1. Let F : M → (L(En))p, denoted by F(x) = (f1(x), f2(x), · · · , fp(x)). If for any x1, x2 ∈ intM and

λ ∈ [0, 1], the inequalities

f −ij (λx1 + (1 − λ)x2) ≤ λf
−
ij (x1, r) + (1 − λ)f

−
ij (x2, r), i = 1, 2, · · · , p, j = 1, 2, · · · , n, (6.6)

and

f +ij (λx1 + (1 − λ)x2) ≤ λf
+
ij (x1, r) + (1 − λ)f

+
ij (x2, r), i = 1, 2, · · · , p, j = 1, 2, · · · , n, (6.7)

uniformly hold for all r ∈ [0, 1], then F(x) is said to be endpoint-wise fuzzy convex.
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Definition 6.2. Let F : M → (L(En))p, denoted by F(x) = (f1(x), f2(x), · · · , fp(x)). Then we say F is endpoint-

wise differentiable at x0, that is, if there exists u
−
kij , u

+
kij ∈ R, k = 1, 2, · · · , p, i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

such that

lim
h→0

f −ki(x
0
1, · · · , x

0
j + h, · · · , x

0
m , r) − f

−
ki(x

0
1, · · · , x

0
j , · · · , x

0
m , r)

h
= u−kij , k = 1, 2, · · · , p,

and

lim
h→0

f +ki(x
0
1, · · · , x

0
j + h, · · · , x

0
m , r) − f

+
ki(x

0
1, · · · , x

0
j , · · · , x

0
m , r)

h
= u+kij , k = 1, 2, · · · , p,

uniformly for r ∈ [0, 1], then we say F has jth partial endpoint-wise differentiable at x0, and we denote
∂F−i (x0 ,r)

∂x0j
= u−ij ,

∂F+i (x0 ,r)

∂x0j
= u+ij. If all the partial endpoint-wise derivatives at x0 exist, then we say F is endpoint-

wise differentiable at x0.

Theorem 6.3. Let the objective function F : M → (L(En))p, denoted by F(x) = (f1(x), f2(x), · · · , fp(x)), be

endpoint-wise fuzzy convex, let F be continuous and endpoint-wise differentiable at x0 = {x01, x02, · · · , x0m} ∈
intM. If for any r ∈ [0, 1], there exist ω(r) = {ω1(r), ω2(r), · · · , ωp(r)} ∈ Rp+, α(r) =

{α1(r), α2(r), · · · , αl×n(r)} ∈ R(l×n)+ and β(r) = {β1(r), β2(r), · · · , βt×n(r)} ∈ Rt×n such that

(1)
p∑
i=1

ωi(r)
∂f −ij (x,r)

∂xj′

∣∣
x0
+

p∑
i=1

ωi(r)
∂f +ij (x,r)

∂xj′

∣∣
x0
+

l×n∑
k′=1

αk′ (r)
∂Gk′ (x)
∂xj′

∣∣
x0
+

t×n∑
s′=1

βs′ (r)
∂Hs′ (x)
∂xj′

∣∣
x0
= 0, j′ = 1, 2, · · · ,m,

(2) αk′ (r)Gk′ (x0) = 0, k′ = 1, 2, · · · l × n,

then x0 is an optimal solution to (FMOP2).

Note that ω(r), α(r), β(r) are called Lagrange multiplier vectors containing parameters, the condition (1) and

(2) are called the Karush-Kuhn-Tucker (KKT for short) conditions for (FMOP2).

Proof . ∀r ∈ [0, 1], we denote f (x, r) = {f 1(x, r), f 2(x, r), · · · , f p(x, r)}, and

f ij(x, r) = f −i (x, r) + f
+
ij (x, r), i = 1, 2, · · · , p, j = 1, 2, · · · , n.

Since F is endpoint-wise fuzzy convex onM, and continuous and endpoint-wise differentiable at x0, then

the real-valued function f −ij (x, r) and f
+
ij (x, r), i = 1, 2, · · · , p, j = 1, 2, · · · , n, is convex onM, and continuous

and differentiable at x0. Therefore, for all r ∈ [0, 1], f ij(x, r) is convex, and continuous and differentiable at

x0, furthermore, we have

∂f ij(x, r)

∂xj′

∣∣
x0
=
∂f −ij (x, r)

∂xj′

∣∣
x0
+
∂f +ij (x, r)

∂xj′

∣∣
x0
, i = 1, 2, · · · , p, j = 1, 2, · · · , n, j′ = 1, 2, · · · ,m.

Since ∀r ∈ [0, 1], the KKT conditions are equivalent to

(1)
p∑
i=1

ωi(r)
∂f ij(x,r)

∂xj′

∣∣
x0
+

l×n∑
k′=1

αk′ (r)
∂Gk′ (x)
∂xj′

∣∣
x0
+

t×n∑
s′=1

βs′ (r)
∂Hs′ (x)
∂xj′

∣∣
x0
= 0,

(2) αk′ (r)Gk′ (x0) = 0, k′ = 1, 2, · · · l × n,

thus, x0 is an optimal solution to the multiobjective optimization problem under this constraint conditions

(1) and (2), where the mutiobjective function f (x, r) = {f 1(x, r), f 2(x, r), · · · , f p(x, r)}, that is ∀x ∈ intM, we

have f (x0, r) ≤ f (x, r), that is,

f ij(x0, r) ≤ f ij(x, r), i = 1, 2, · · · , p, j = 1, 2, · · · , n, (6.8)

By reductio ad absurdum, suppose that x0 is not an optimal solution of (FMOP2), then there exists x′ ∈ intM

such that F(x′) < F(x0).

Let C = Rn+ ⊆ Rn, according to Definition 2.7, we have

1∫

0

r(f −ij (x
′)(r) + f +i1(x

′)(r))dr <

1∫

0

r(f −ij (x0)(r) + f
+
i1(x0)(r))dr, i = 1, 2, · · · , p, j = 1, 2, · · · , n,



Variational-like inequalities for n-dimensional fuzzy-vector-valued functions... | 643

that is,
1∫

0

rf ij(x
′, r)dr <

1∫

0

rf ij(x0, r)dr, i = 1, 2, · · · , p, j = 1, 2, · · · , n,

which is in contradiction to (6.8). Therefore, x0 is an optimal solution to (FMOP2). �

Theorem 6.4 Let the objective function F : M → (L(En))p be denoted by

F(x) = (f1(x)u1, f2(x)u2, · · · , fp(x)up), where fi : [a, b] → R, ui ∈ L(En), i = 1, 2, · · · p, and ui �c 0. Let F be

endpoint-wise fuzzy convex, continuous and endpoint-wise differentiable at x0 = {x01, x02, · · · , x0m} ∈ intM.

If there exist ω = {ω1, ω2, · · · , ωp} ∈ Rp+, α(r) = {α1(r), α2(r), · · · , αl×n(r)} ∈ R(l×n)+ and β(r) =

{β1(r), β2(r), · · · , βt×n(r)} ∈ Rt×n such that

(1)
p∑

ωi=1

ωi∇fi(x0) +
l×n∑
k′=1

αk′ (r)
∂Gk′ (x)
∂xj′

∣∣
x0
+

t×n∑
s′=1

βs′ (r)
∂Hs′ (x)
∂xj′

∣∣
x0
= 0, j′ = 1, 2, · · · ,m,

(2) αk′ (r)Gk′ (x0) = 0, k′ = 1, 2, · · · l × n,

then x0 is an optimal solution to (FMOP2).

Note that ω, α, β are called Lagrange multiplier vectors.

Proof . By Definition 2.18, ∀x0 ∈ M, we have∇F(x0) = (∇(f1(x0)u1),∇(f2(x0)u2), · · · ,∇(fp(x0)up)), and

∇(fi(x0)ui) = (ui
∂fi
∂x01

, ui
∂fi
∂x02

, · · · , ui
∂fi
∂x0m

), i = 1, 2, · · · , p. (6.9)

Since F is endpoint-wise fuzzy convex M, and continuous and endpoint-wise differentiable at x0, then

fi(x), i = 1, 2, · · · , p, is convex onM, continuous and differential at x0 ∈ intM, that is, the real-vector-valued

function f = (f1(x), f2(x), · · · , fp(x)) is convex on M, continuous and differential at x0 ∈ intM. Consider the

following multiobjective optimization problem

min f (x) = (f1(x), f2(x), · · · , fp(x))

subject to Gk′ (x) ≤ 0,

Hs′ (x) = 0,

x ∈ M.

(6.10)

Obviously, the conditions (1) and (2) are the KKT conditions for this problem. Therefore, x0 is an optimal

solution to this problem, that is, ∀x ∈ intM, we have f (x0) ≤ f (x), that is,

fi(x0) ≤ fi(x), i = 1, 2, · · · , p. (6.11)

By reductio ad absurdum, suppose that x0 is not an optimal solution to (FMOP2), then there exists x′ ∈ intM

such that F(x′) < F(x0), that is, fi(x
′)u ≺c fi(x0)u, i = 1, , 2, · · · , p.

Let C = Rn+ ⊆ Rn, according to Definition 2.7, we have

τ(fi(x
′)u) ∈ τ(fi(x0)u) + C,

thus, we obtain fi(x
′)τ(u) ∈ fi(x0)τ(u) + C and fi(x

′)τ(u) ≠ fi(x0)τ(u). Since ui �c 0, we have fi(x
′) < fi(x0),

which is in contradiction to (6.11). Therefore, x0 is an optimal solution to (FMOP2). �

7 Conclusions

We define the fuzzy variational-like inequality problems by using the new ordering of two n-dimensional

fuzzy-number-valued functions, and the existence and the basic properties of the fuzzy variational inequality

problems are also investigated.We examine the relationship between the variational-like inequality problems

and fuzzy optimization problems. Additionally, we discuss the optimality conditions for fuzzy multiobjective

optimization. The next step for the continuation of the research direction proposed here is to investigate ill-

posedness and regularization methods of the fuzzy variational-like inequality problems, and the duality for
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the fuzzy multiobjective optimization problems.
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