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Abstract—With the increasing population of Industry 4.0,
industrial big data (IBD) has become a hotly discussed
topic in digital and intelligent industry field. The security
problem existing in the signal processing on large scale of
data stream is still a challenge issue in industrial internet of
things, especially when dealing with the high-dimensional
anomaly detection for intelligent industrial application. In
this article, to mitigate the inconsistency between dimen-
sionality reduction and feature retention in imbalanced IBD,
we propose a variational long short-term memory (VLSTM)
learning model for intelligent anomaly detection based on
reconstructed feature representation. An encoder–decoder
neural network associated with a variational reparameter-
ization scheme is designed to learn the low-dimensional
feature representation from high-dimensional raw data.
Three loss functions are defined and quantified to con-
strain the reconstructed hidden variable into a more ex-
plicit and meaningful form. A lightweight estimation net-
work is then fed with the refined feature representation to
identify anomalies in IBD. Experiments using a public IBD
dataset named UNSW-NB15 demonstrate that the proposed
VLSTM model can efficiently cope with imbalance and high-
dimensional issues, and significantly improve the accuracy
and reduce the false rate in anomaly detection for IBD ac-
cording to F1, area under curve (AUC), and false alarm rate
(FAR).
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I. INTRODUCTION

W
ITH the rapid development of Industry 4.0, more and

more industrial applications, empowered by intelligent

and real-time signal processing, are connected interactively, due

to the increasingly wide use of wireless network technology

with diversified smart devices in industrial Internet of Things

(IIoT). The increase of devices and applications in IIoT leads to

a large scare of real-time data with more complexity generated

across industrial cyber–physical systems, which can be called as

industrial big data (IBD). It becomes a critical issue to protect

the infrastructure and network security for core tasks in IIoT. As

an indispensable technology in IIoT security, network intrusion

detection system is usually deployed as a software mechanism

to monitor and detect intrusion events or anomalies across the

whole industrial network, which can be categorized into the

signature-based and anomaly based intrusion detection. Re-

cently, anomaly detection has drawn increasing attentions, due

to its ability in detecting novel attacks from high-dimensional

IBD across a variety of IIoT sensors [1].

To enhance the accuracy of anomaly detection when dealing

with IBD, machine learning and deep learning techniques have

been employed for both host and network based systems. How-

ever, it is still a troublesome task to carry out the reliable anomaly

detection result from large amounts of high-dimensional data

in IIoT. It would be even worse for conventional classification

methods to extract meaningful features from the imbalanced

input data, especially when positive samples become extremely

sparse in IBD environments. To mitigate the computation com-

plexity caused by high-dimensional issues, a two-stage imple-

mentation, including the dimension reduction and feature extrac-

tion [2], is usually used in the potential low-dimensional space.

Different kinds of auto encoding techniques have been explored

in intrusion detection and achieved great success in reencoding

high-dimensional features to lower dimension features [3]. Al-

though these methods could improve the accuracy of anomaly

detection to a certain extent, the false alarm rate (FAR) is still an

unsolved issue especially when facing the imbalanced dataset.

One limitation of conventional deep learning techniques in

handling low FAR issue is, it is difficult to deduce whether

the critical information related to the network intrusions can
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be preserved after dimension reduction, due to their restrained

unidirectional encoding structure. Auto encoder (AE) technol-

ogy [4] is investigated broadly to reconstruct the original input

data. Although it can achieve a relatively good tradeoff between

dimension reduction and feature retention from the original raw

data, AE scheme cannot ensure all the critical features can be

retained during the dimension reduction process. This is because

AE may be too aggressive when handling the imbalanced input

data. Challenges in handling anomaly detection for IBD can be

mainly summarized as: first, it is difficult to achieve a well-

balanced result that cannot only keep as many key features as

possible for anomaly detections, but also effectively compress

the raw data; second, it is hard to obtain prior knowledge regard-

ing the subsequent feature extraction task when performing the

previous dimension reduction task, situations will become even

worse in IBD scenarios. Therefore, it is essential to design an

adaptive strategy to overcome the aforementioned limitations in

the state-of-art approaches, and optimize the balance between

dimension reduction and feature extraction properly for anomaly

detection in IBD environments.

In this article, a novel anomaly detection model based on

variational long short-term memory (VLSTM) is designed to

deal with the imbalanced and high-dimensional issues in IBD.

Specifically, an encoder–decoder neural network associated with

a variational reparameterization scheme is designed to learn the

low-dimensional feature representation while avoiding the loss

of key information. The hidden variable is constructed using

variational Bayes and refined based on three loss functions. A

lightweight estimation network is then built to provide classifi-

cations based on the refined feature representation for anomaly

detection. Major contributions of this article are concluded as

follows.

1) A framework of VLSTM is newly designed, in which

a compression network with a variational reparameter-

ization, and an estimation network are constructed for

low-dimensional feature representation.

2) Three loss functions are defined and seamlessly integrated

together to constrain the reconstructed hidden variable,

which can efficiently retain the critical features during

the dimension reduction process.

3) An intelligent learning algorithm is developed for

anomaly detection based on the VLSTM model, which

can be applied to handle the imbalanced and high-

dimensional issues for IBD.

The rest of this article is organized as follows. Section II

presents an overview of related works. In Section III, the basic

framework of the proposed VLSTM is addressed. In Section IV,

we discuss the detailed implementation of intelligent anomaly

detection via the VLSTM model. Section V demonstrates the

experiment and evaluation results based on an open dataset.

Finally Section VI concludes this article.

II. RELATED WORK

In this section, several related issues, including studies on

intrusion detection system, and machine learning methods used

in anomaly detection, are reviewed respectively.

A. Issues on Intrusion Detection System

Network intrusion detection has been investigated extensively

for cyber security in wireless network [5], 6], IoT [7], [8], cloud

[9], and blockchain systems [10]. Traditional firewall system and

intrusion detection are incompatible with the new Industry 4.0

environment, which may be reflected in the volume, accuracy,

diversity, dynamics, low-frequency attacks, and adaptability

issues [11].

Anthi et al. [12] concluded the rule/event/signature-based

intrusion detection systems in IoT networks. Midi et al. [13]

proposed a knowledge-driven intrusion detection system called

Kalis, which leveraged the collected knowledge to dynamically

configure the monitored network in a rule-based intrusion detec-

tion system. Pongle and Chavan [14] proposed a hybrid network

intrusion detection system, which aimed at detecting routing at-

tacks in event-based intrusion detection systems. Contrastively,

the signature-based intrusion detection system has drawn more

attentions during the current years. Stephen and Arockiam [15]

designed a routing protocol with low power and lossy network,

based on which a centralized hybrid approach was explored

to detect Sybil attacks in IoT. However, they only tested the

sinkhole, spoofed information, and selective forwarding attacks.

B. Machine Learning in Anomaly Detection

Generally, the signature-based and anomaly based detections

are viewed as the two major problems investigated in intrusion

detection systems [16]. Although anomaly detection has at-

tracted increasing attentions in both research and industrial areas

due to its capability in detecting unknown attacks, high dimen-

sions of the raw data, and high value of FAR are still the major

problems [17]. Different kinds of machine learning algorithms

and their combinations were applied to resolve these issues. For

example, Doshi et al. [18] employed several machine learning

methods to detect distributed denial of service (DoS) attacks in

IoT networks. They utilized network behaviors for the feature

selection, and achieved a high accuracy of distributed DoS de-

tection. Zuo et al. [19] built a learning-based anomaly detection

framework, which combined a logging-tracing model and a

temporal-spatial model to detect the network traffic intrusion.

Recently, deep learning techniques have achieved remarkable

results and become one kind of successful approaches in in-

trusion detection system. Zhao et al. [20] surveyed a series of

deep learning approaches to security monitoring. They com-

pared a couple of conventional machine learning techniques

with four typical deep learning schemes. The review result

demonstrated the usability of deep learning methods for cyber

security protection. Particularly, Ma et al. [21] implemented

deep neural networks into the KDD99 dataset to detect intrusion

behaviors. Brun et al. [22] developed a dense random neural

network to detect cyberattacks. Potluri and Diedrich [23] pro-

posed a deep neural network with three hidden layers, based

on which they found that the classification results obtained by

fewer intrusive classes were better than those with more classes.

Tian et al. [24] implemented a web attack detection system

based on distributed edge devices, in which multiple concurrent
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Fig. 1. Generic framework of VLSTM.

learning models were used to improve the system stability and

performance.

III. MODELING OF VLSTM

In this section, following the formal definition of anomaly

detection problem in IBD, we introduce the basic structure of

the proposed VLSTM model with detailed modules.

A. Problem Definition

Given an input setD = {X(1), X(2), . . . , X(k)} representing

k labeled network traffic data in IBD, which consists of p normal

samples and q anomaly samples, p+ q = k. In particular,

we assume p ≫ q, to describe the anomaly detection scenario

with an imbalanced dataset. Y = {y(1), y(2), . . . , y(k)} is a

set of corresponding labels for D. The problem investigated in

this article is to identify the category (i.e., one specific type of

network attack, or just the normal traffic data) described as Y ′.

In addition, each sample X(i) is a n-dimensional feature vector,

and can be described as X(i) = 〈x
(i)
1 , x

(i)
2 , . . . , x

(i)
n 〉. It is noted

that X(i) is usually a high-dimensional feature vector from IBD

environments, thus one challenge is to represent the raw data

into a lower feature space but avoid the loss of key features.

To tackle the high-dimensional anomaly detection problem

with an imbalanced dataset, a VLSTM model, which basically

consists of a compression network and an estimation network,

is designed to pursue a well-balanced tradeoff between raw data

compression and critical features retention in IBD. A generic

framework of the proposed VLSTM model is shown in Fig. 1.

As shown in Fig. 1, the compression network is composed of

the core modules of the VLSTM model, including the LSTM

encoder module, variational reparameterization module, and

LSTM decoder module. On the other hand, the estimation net-

work is designed to obtain the classification results based on the

input network traffic data with the refined feature representation.

B. VLSTM Framework

Basically, the compression network is employed to mitigate

the complexity of high-dimensional input data, while retain

adequate information to ensure the detection accuracy. As shown

in Fig. 1, motivated by the conventional AE, the LSTM encoder

is designed to compress the dimensionality of input data which is

represented as a feature vector 〈x1, x2, x3〉. Given an input data

X , the general expression of output ω of the LSTM encoder can

be described as follows:

ω = h (X; θe) (1)

where θe indicates the set of parameters used in LSTM encoder,

h(∗) represents the LSTM encoding function. Specifically, ft,

it, ot, and st shown in Fig. 1 stand for the forget gate, input gate,

output gate, and memory cell for the state persistence in LSTM,

respectively.

Similar to AE, the unobservability of the obtained hidden

variables usually leads to the uncertainty of classification results

when directly using the output of LSTM encoder. Therefore, the

variational reparameterization module is designed to work with

the LSTM encoder to reconstruct an explicit hidden variable via

variational Bayes, so as to ensure the obtained hidden variable

can retain critical features of anomalies as much as possible

from the imbalanced dataset. In this module, the LSTM encoder

result ω is used as the input to generate a low-dimensional

hidden variable represented as Z. The general formulation can

be expressed as follows:

Z = v (ω; θv) (2)

where θv indicates the set of parameters used in variational

Bayes function v(∗).
Typically, the compression process may loss some critical in-

formation or bring in some noise data. To evaluate the compres-

sion loss, The LSTM decoder is responsible for transforming
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the hidden variable Z back to the reconstructed feature vector

〈x′
1, x

′
2, x

′
3〉. Both Z and 〈τ1, τ2, τ3〉 are the input to LSTM

decoder, which stand for the initial state and initial input for

the LSTM network, respectively. 〈τ1, τ2, τ3〉 is generated by a

random initialization and then continuously updated via training

process. Additionally,X ′ is defined to describe the reconstructed

feature vector of Z. It is noted that the dimension of X ′ should

be the same as that of X . The general expression of X ′ can be

formulated as follows:

X ′ = g (Z; θd) (3)

where θd indicates the set of parameters used in LSTM decoder,

g(∗) represents the LSTM decoding function.

The estimation network, which is constructed based on a fully

connected deep neural network, is designed to identify whether

the input data can be classified as the normal traffic data or one

specific type of network attack. The input of estimation network

is from the low-dimensional hidden variable Z calculated by

the compression network. y′ represents the output of estimated

network, which can be viewed as the final classification result

based on our proposed VLSTM model.

In general, the main functions of the VLSTM model can be

concluded as: first, obtain a low-dimensional output ω from the

high-dimensional raw input data via the LSTM encoder. Second,

construct a hidden variable Z using variational Bayes and refine

it from the LSTM decoder, variational reparameterization, and

classification results, to cope with the imbalanced data. Finally,

provide the network traffic classification via the estimation net-

work based on the more explicit and meaningful hidden variable

Z for anomaly detection.

IV. ANOMALY DETECTION BASED ON VLSTM

In this section, we discuss the reconstruction of hidden vari-

able with three loss functions, and develop a VLSTM-based al-

gorithm for intelligent anomaly detection in IBD environments.

A. Hidden Variable Reconstruction via Variational Bayes

The variational Bayes method in variational auto encoder [4]

is used to process the hidden variable Z since it can facili-

tate the reconstruction process based on unobservable variable.

Usually sampling methods are utilized to obtain approximation

solution for the marginal likelihood function ∫ p(ω)p(X|ω)dω
of AE. However, the computation cost is very expensive even

if a modern sampling method (e.g., Markov Monte Carlo) is

applied on a very small dataset. Therefore, a stochastic gradient

variational Bayes scheme is developed to solve this problem

by approximating the true posterior distribution p(ω|X) with

the approximation q(Z|X) and optimizing the lower bound of

the log-likelihood, in which we have Z ∼ q(Z|X) and ω ∼
p(ω|X).

Specifically, the log-likelihood of an input X(i) can be cal-

culated as the sum of the Kullback–Leibler (KL) divergence

term DKL based on p(ω|X(i)) and q(Z|X(i)), and the lower

bound of probability density of X(i), which can be expressed as

follows:

log p
(

X(i)
)

=DKL(q(Z|X(i))||p(ω|X(i)))+L
(

θ;X(i)
)

(4)

Since KL divergence is nonnegative, L(θ;X(i)) can be de-

duced as the lower bound of log-likelihood by Eq. (5).

L
(

θ;X(i)
)

= E
Z∼q(Z|X(i))

[

log pθ

(

X(i)|Z
)]

− DKL[q(Z|X(i)||p(ω|X(i)))] (5)

where EZ∼q(Z|X(i))[log pθ(X
(i)|Z)] is defined as the re-

construction term, which represents the approximation be-

tween the distribution of Z and the distribution of X(i).

DKL[q(Z|X(i)||p(ω|X(i)))] represents the approximation be-

tween q(Z|X(i)) and p(ω|X(i)).
The gradient ascent is utilized to maximized the lower bound

for L(θ;X(i)) according to the maximum likelihood function.

As for gradient calculations for all the parameters in Eq. (5),

the gradient of q(Z|X(i)) can be obtained directly, but the

gradient of p(ω|X(i)) cannot be directly computed. Therefore,

the variational reparameterization is utilized to reconstruct the

hidden variable Z. Specifically, a parameter ε ∼ N(0, 1), is

introduced to obtain the gradient of q(Z|X(i)), and Z can be

reparameterized by Z = µ+ ε× σ because Z is a univariate

Gaussian variable and Z ∼ N(µ, σ2). µ and σ are calculated

by two different nonlinear neurons, which represent the mean

vector and covariance vector of ω, respectively. Through this

reparameterization process, a more reasonable and explicit hid-

den variable Z can be learned comparing with the conventional

AE scheme.

B. Robust Constraint for Hidden Variable

During the optimization process, the learning model may

be affected by several factors, and even bring in unnecessary

variables in the adversarial competition. Therefore, three loss

functions are introduced to constrain the hidden variable Z

during the learning process, in order to ensure the distribution of

the reconstructed hidden variable is consistent with that of the

raw input data.

First, we design a reconstruction lossLrecon betweenX(i) and

X(i)′ , to measure how much the hidden variable Z can retain the

original input information, which is defined as follows:

L(i)
recon = −

n
∑

j=1

p
(

x
(i)
j

)

log q
(

x
(i)′

j

)

(6)

where x
(i)
j and x

(i)′

j are the jth feature (j ∈ [1, n]) of X(i) and

X(i)′ , respectively.

Then, to measure the classification loss between y and y′ from

the estimation network, the cross entropy of y(i) and y(i)
′

is

defined as L
(i)
µ , which can be expressed as follows:

L(i)
µ = − p

(

y(i)
)

log q
(

y(i)
′
)

(7)

In addition, we investigate the divergence loss between Z

and X(i). The I(X(i), Z) is designed to described the mutual

information of X(i) and Z. The larger value of I(X(i), Z) will
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indicate more complete feature information retained in Z. The

detailed formulation is described as follows:

I
(

X(i), Z
)

= E
p(X(i),Z)

[

log p
(

X(i), Z
)

− log p
(

X(i)
)

p (Z)
]

= E
p(X(i),Z) [DKL[ p(Z|X(i))||p (Z)]] (8)

It is observed that I(X(i), Z) is estimated by DKL. However,

as discussed in Eq. (5),DKL needs to be minimized when pursu-

ing the maximum ofL(θ;X(i)), which will decrease I(X(i), Z)
accordingly. Thus, the core issue is to find an equilibrium be-

tween DKL and I(X(i), Z), because DKL affects I(X(i), Z) in

an adversarial manner.

Actually, the reconstructed term and KL divergence term

in Eq. (5) are not independent to each other. Following [25],

the lower bound of the maximum I(X(i), Z) can be achieved

by minimizing the reconstruction term. Based on these, the

reconstruction term is used to adjust the equilibrium between

DKL and I(X(i), Z), which can finally facilitate the learning

of more explicit and meaningful hidden variable in the VLSTM

model.

Accordingly, we define L
(i)
kl to denote the divergence loss

between Z and X(i), which can be represented in an adversarial

competition way as follows:

L
(i)
kl = −L

(

θ;X(i)
)

(9)

C. VLSTM Enhanced Anomaly Detection Algorithm

To handle the imbalanced and high-dimensional data, the

reconstruction loss L
(i)
recon, classification loss L

(i)
µ , and diver-

gence lossL
(i)
kl , are utilized together to constrainZ, and mitigate

the influence of unnecessary variables during the optimization.

The overall loss function L
(i)
vlstm for an input data X(i) can be

elaborated as follows:

L
(i)
vlstm = L(i)

recon + L
(i)
kl + L(i)

µ (10)

More precisely, L
(i)
µ is used to ensure Z to keep the essential

features during the optimization process. L
(i)
recon is employed

to provide Z with more meaningful features from X(i). L
(i)
kl is

designed to retain more complete feature information for Z in

an adversarial competition way.

The workflow of the VLSTM enhanced anomaly detection can

be addressed as follows: first, normalize the feature vectors from

samples, and construct the input sets D and Y. Second, reduce

the dimension of input feature vectors using the LSTM encoder,

and generate the hidden variable Z which will be continuously

updated during the learning process. Third, reconstructX ′ using

the LSTM decoder, which should have the same dimension

with input X . Finally, input the refined hidden variable Z

into the estimation network to obtain the classification result

for anomaly detection. The concrete algorithm is illustrated in

Algorithm 1.

As described in the algorithm, the VLSTM modelM is trained

through T iterations. In each iteration, a batch of network traffic

TABLE I
UNSW-NB15 FEATURE DESCRIPTION

Algorithm 1: Anomaly Detection Algorithm Based on VL-

STM.

Input: A set of input data D = {X(1), X(2), . . . , X(k)}
and the corresponding label

Y = {y(1), y(2), . . . , y(k)}
Output: A trained anomaly detection model M

1: Initialize the model M

2: Initialize the iteration count T , batch size N , threshold

δ

3: for q = 1 to T do

4: for each batch {X(i)}Ni = 1 do

5: Transfer X(i) into ω via the LSTM Encoder by Eq.

(1)

6: Obtain hidden variable Z by Eq. (2)

7: Input Z into the LSTM decoder to get the

reconstructed X(i)′

8: Predict y(i)
′
based on Z via the estimation

network

9: Update M to minimize L
(i)
vlstm by Eq. (10)

10: end for

11: if Lvlstm < δ : break

12: end for

13: return M

data withN samples are fed to the model to learn the parameters

for the model. For each input sample X(i), the pseudocode

between Line 4 and 9 illustrates the whole workflow mentioned

above. The training process will terminate when the maximum

iteration is reached or the loss L
(i)
vlstm is less than a given

threshold δ. After that, the trained modelM is ready for anomaly

detection tasks.

V. EXPERIMENT AND ANALYSIS

In this section, experiments are designed and conducted to

evaluate the VLSTM model with other similar works, to demon-

strate the usefulness of our proposed method.

A. Data Set

To investigate the effectiveness of the proposed VLSTM

model in IBD environments, an open dataset named UNSW-

NB15 is used for comparison evaluations. UNSW-NB15 is

generated by an Australian security laboratory using IXIA Per-

fectStrom tool, which combines the real normal network traffic
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TABLE II
ATTACK TYPE AND THE CORRESPONDING DATASET DESCRIPTION FOR UNSW-NB15

and man-made attack traffic in the modern network [26]. As

listed in Table I, totally 42 features are included in the dataset,

and are divided into four categories as: basic features, content

features, time features, and extra generated features. In partic-

ular, the one-hot encoding is utilized for numeralization and

normalization of some features (e.g., content feature). Finally,

the total feature dimensions reach to 196.

There are nine types of anomalies within the dataset, i.e.,

fuzzers, analysis, backdoor, DOS, exploit, generic, shellcode,

reconnaissance, and worm. This dataset with multiple attack

types enables us to evaluate the FAR for the proposed method

effectively. The detailed description and number of attacks are

shown in Table II.

Besides, data preprocessing is necessary to refine the raw data

before conducting anomaly detection evaluations. The concrete

data preprocessing in our experiment consists of the following

three steps.

1) Transform the symbol features into numerical represen-

tation. Taking the feature “state” for example, this feature

holds 11 alternatives for its value, and is represented by

digits 0 to 10, respectively.

2) Convert the type label to a numerical representation,

e.g., one represents the normal type, two represent the

backdoor type, three represent the analysis type, and etc.

3) Normalize the data processed based on the first two steps.

B. Experiment Design and Evaluation Metrics

To evaluate the effectiveness of the proposed method, classical

methods including Naïve Bayes (NB), random forest (RF),

AdaBoost, machine learning methods including LSTM, CNN-

LSTM, and a deep learning method named stacked sparse auto

encoder (SSAE) [27], are chosen as baseline methods for com-

parison. All the experiments were conducted in a server with

Ubuntu, GTX 1070, G39030 Duel Core, 16G RAM, and Python

3.6.

Metrics such as precision, recall, F1, FAR, and area under

curve (AUC), are used to demonstrate performances of methods

mentioned above for evaluations. In particular, Precision reflects

the model’s ability in distinguishing anomalies from the normal

ones. Recall reflects the ratio of the model in finding the existing

anomalies. F1 depicts the overall prediction performance based

on the balance between precision and recall. FAR indicates the

false alarm rate when detecting the network traffic anomalies.

Practically, the higher the FAR, the worse detection performance

will be. AUC represents a classifier’s ability in classifying

positive and negative examples. Especially, it makes reasonable

evaluations of classifiers in cases of imbalanced samples. In this

experiment, AUC and FAR are viewed as two important metrics

to evaluate the anomaly detection performance when dealing

with the imbalanced dataset in IBD environments.

C. Evaluation on Reparameterization Effectiveness

We first investigate the representation of hidden variableZ, to

evaluate the reparameterization effectiveness of the compression

network. Three variables: the generated hidden variable Z,

input raw feature vector X , and reconstructed vector X ′, are

compressed into a three-dimensional (3-D) vector, and further

visualized using principal components analysis (PCA). We com-

pare and observe the potential representations of the data in a

3-D view, which are illustrated in Fig. 2.

Obviously, as shown in Fig. 2(a) and (b), the distributions of

the input vector and reconstruction vector are almost consistent.

This result demonstrates that the reconstruction vector X ′ basi-

cally holds the identical information compared with the original

input vector. It also indicates that the hidden variable, which is

used to generate the reconstruction vector, retains the adequate

information for recovery.

To verify whether the hidden variable retains necessary fea-

tures to distinguish anomalies from the normal data, we visualize

the hidden variable based on PCA as shown in Fig. 2(c). It is

observed that results represented by the hidden variable, which

are illustrated as dots with different shapes and colors, are clearly

clustered into two parts, namely, the attacks and normal ones.

This clustering phenomenon obviously indicates that the anoma-

lies are successfully identified and distinguished from the normal

ones, which means those critical features in the original input

data are efficiently retained in the hidden variable. In addition,

the distinct distance between the two clusters, denoted as the
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Fig. 2. Reparameterization evaluation based on PCA. (a) Input vector. (b) Reconstructed vector. (c) Hidden variable.

Fig. 3. Loss curves for VLSTM training process. (a) Lvlstm(x, θ) loss curve. (b) Lkl loss curve. (c) Lrecon loss curve. (d) Lµ loss curve.

blue dots and red dots, illustrates this hidden variable may lead

to a relatively low FAR score in the latter estimation network.

In summary, these PCA results can verify the effectiveness of

our VLSTM model in optimizing the hidden variable via the

proposed compression network, especially when dealing with

the imbalanced and high-dimensional IBD.

D. Analysis on Anomaly Detection Performance

We choose Adam, which is an upgraded version of stochastic

gradient descent, as our optimizer. The learning rate is set to

0.005, and maximum iterations are set to 200 in this experiment.

To evaluate the training process of our proposed learning model,

the losses of Lrecon, Lkl, Lµ, and Lvlstm in each iteration are

compared and shown in Fig. 3, respectively.

As shown in Fig. 3, the overall loss in the proposed method

declines fast within the first ten iterations then becomes rela-

tively stable. This result indicates the adaptability of our learning

model in IBD environments.

We further compare our method with the six baseline methods

in terms of their capabilities in detecting sparse attacks from

IBD. In this scenario, FAR is a significant indicator to demon-

strate the performance of anomaly detection in real world. The

evaluation results are listed and compared in Table III.

As shown in Table III, we demonstrate results based on

the validation data and testing data, respectively. Basically, it

is found that the six baseline methods perform well on the

validation data but become relatively worse on the testing data,

which can be explained as an overfitting issue. Contrastively,

the VLSTM method outperforms these six methods with F1 at

0.907, FAR at 0.117, and AUC at 0.895, on the testing data. This

TABLE III
COMPARISONS ON ANOMALY DETECTION PERFORMANCE

indicates that the proposed VLSTM model can effectively tackle

the overfitting issue for IBD. The overall results illustrate that

our method can efficiently distinguish the true anomalies from

normal network traffic data, and significantly mitigate the false

anomaly detection rate comparing with the baseline methods.

E. Discussion

We summarize our observations and discuss reasons that why

the proposed model can achieve better results and outperform

other baseline methods as follows.

The proposed VLSTM model is mainly composed of a com-

pression network and an estimation network. The compression

network encodes the high-dimensional raw data into a low-

dimensional hidden variable. Benefited by this newly designed

neural network structure, it can successfully achieve a good

tradeoff between the mitigation of computation complexity and

retention of critical features for anomaly detection, as shown

in Fig. 2. The novel design of the loss functions, including a
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reconstruction loss function, a classification loss function, and

a divergence loss function, can effectively constrain the hidden

variable, and result in a reasonable gradient descent speed with

few iterations during the training process, as shown in Fig. 3.

Although the six conventional learning methods may perform

well on the validation data, the highest results of F1, FAR,

and AUC shown in Table III demonstrate the efficiency of our

VLSTM method in improving the accuracy of classification

tasks, and reducing the false rate of anomaly detections for the

imbalanced and high-dimensional data in IBD environments.

VI. CONCLUSION

In this article, a VLSTM learning model was designed to cope

with the imbalance and high-dimensional issues, which could be

applied for intelligent anomaly detection based on reconstructed

feature representation in IBD environments.

We introduced a generic framework to realize the VLSTM

model, which was mainly composed of a compression network

and an estimation network. The core structure of compression

network included the LSTM encoder module, variational repa-

rameterization module, and LSTM decoder module, which was

designed to mitigate the complexity of high-dimensional raw

data but without losing critical features. A reparameterization

scheme based on variational Bayes was proposed to reconstruct

a hidden variable for low-dimensional feature representation.

In particular, three loss functions, namely, the reconstruction

loss L
(i)
recon, classification loss L

(i)
µ , and divergence loss L

(i)
kl ,

were defined and seamlessly integrated together to constrain

the hidden variable into a more explicit and meaningful form.

The lightweight estimation network fed with the refined feature

representation was then constructed to provide the network

traffic classification. A learning algorithm was developed for

the intelligent anomaly detection. Experiments were conducted

using an open dataset named UNSW-NB15. Evaluation results

demonstrated that the proposed VLSTM model could signifi-

cantly enhance the feature extraction, reduce the false rate, and

improve the detection accuracy based on an efficient training

process, thus indicated the usefulness of our method in intelli-

gent anomaly detection for IBD.

In future studies, we realize that the imbalanced data are still a

challenge in anomaly detection tasks. We will investigate more

deep learning techniques to adjust our models. More evaluations

and experiments will be conducted to improve our algorithm to

deal with more complex IBD.
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