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Abstract—In this contribution, a multi-user receiver for M-
QAM MIMO-OFDM operating in time-varying and frequency-
selective channels is derived. The proposed architecture jointly
performs semi-blind estimation of the channel weights and noise
inverse variance, serial interference cancellation and decoding in
an iterative manner. The scheme relies on a variational message-
passing approach, which enables a joint design of all these
functionalities or blocks but the last one. Decoding is performed
using the sum-product algorithm. This is in contrast to nowadays
proposed approaches in which all these blocks are designed and
optimized individually. Simulation results show that the proposed
receiver outperforms in coded bit-error-rate a state-of-the-art
iterative receiver of same complexity, in which all blocks are
designed independently. Joint block design and, as a result, the
fact that the uncertainty in the channel estimation is accounted
for in the proposed receiver explain this better performance.

I. INTRODUCTION

During recent years, algorithms based on iterative informa-
tion processing or “turbo” techniques have become widespread
in wireless receiver design [1]–[3]. The success of these
algorithms can be explained by their remarkable properties:
high performance at tractable complexity and flexibility in
their design. An emblematic example is turbo-codes, which,
when associated with turbo-decoding, allow for transmission
close to capacity at tractable complexity [1].

In this paper, we focus on a specific application of iterative
information processing, namely to design efficient, feasible
algorithms for channel estimation (i.e. estimation of both
the channel transfer function and the channel inverse noise
variance), interference cancellation, and decoding in MIMO-
OFDM systems. Some related work is already available in
the literature. Worth noticing is the iterative algorithm for
detection and interference cancellation [4] applied to multiuser
CDMA. This algorithm is extended for various transmission
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Fig. 1. Baseband signal model of the considered MIMO-OFDM system.

schemes in [5]–[7] to include estimation of the channel re-
sponse into the iterative process. We coin this receiver the
LMMSE-based receiver, according to the dominant structure
implemented in its constituent blocks. An essential feature of
this receiver is that its constituent blocks are designed and
optimized individually. These blocks are connected afterwards
to form the iterative structure.

In this contribution, we apply variational Bayesian (VB)
inference [8] and one of its applications, namely the variational
Bayesian expectation maximization (VBEM) algorithm [9] to
perform channel weight and noise inverse variance estimation
as well as serial interference cancellation in an M-QAM
MIMO-OFDM system operating in time-variant frequency-
selective channels. Decoding is performed using the sum-
product (SP) algorithm [3]. The VBEM algorithm has already
been applied in [10] for GSM channel estimation and detec-
tion. In [11] it is combined with the sum-product algorithm
for the design of a multiuser CDMA receiver. Further related
work is found in [12]–[15]. In our paper, we apply the VBEM
scheme in [11] to MIMO-OFDM and reformulate it as a
variational message-passing (VMP) algorithm on factor graphs
[16].

The proposed VMP receiver and the LMMSE-based receiver
from [5]–[7] share similar features in their respective struc-
tures. Thus, we find it useful to also include a comparison of
the two schemes. A crucial difference is that the estimation
of the noise and residual interference power in the VMP
receiver accounts for the uncertainty in the channel coefficient
estimates, an effect not considered in the LMMSE-based
receiver. This, combined with the joint design of all receiver
blocks but decoding, yields a superior performance of the
VMP receiver, as our simulation results demonstrate.

The notational convention for the rest of the paper is as
follows: the superscripts (·)T and (·)H denote transposition
and Hermitian transposition respectively. The symbol · ∝ ·
denotes proportionality. The trace operator is designated as
tr(·). The expectation operation with respect to a function q(x)
is represented by 〈·〉q(x). The newest estimate of the mean or
covariance of a variable is denoted by ·̂. The operators diag(·)
and Diag(·) denote the vectorized diagonal of a matrix and the
diagonalized matrix of a vector respectively. For matrices A
and B, the Kronecker and Hadamard products are represented
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by A⊗B and A�B respectively (for the Hadamard product A
and B are assumed to have the same dimension). The identity
matrix of dimension K is designated as IK and 1G represents
the all-one matrix of dimension G × G. We employ 0K and
[1 . . . 1]K to designate respectively the all-zero column-vector
and the all-one row-vector of length K.

II. SIGNAL MODEL

We consider the LTE-like MIMO-OFDM system depicted in
Fig. 1 in which we have K transmitters, indexed by k, and G
receivers, indexed by g. In the kth transmitter, denoted by Txk,
the bit-stream bk is encoded, interleaved and modulated into
data symbols, which are then multiplexed with pilot symbols
to allow for channel estimation in the receiver. Pilot and data
symbols are arranged in an OFDM frame of L OFDM symbols
consisting of N subcarriers each. The OFDM frame of Txk

is represented by xk � [xk11 . . . xknl . . . xkNL]T ∈ Xk, where
l indexes the OFDM symbols and n indexes the subcarrier
number. The set Xk of legal M-ary sequences of Txk is
determined by the coding and modulation scheme and the
multiplexing scheme of data and pilot symbols.

The OFDM frames are transmitted across a time-variant
frequency-selective channel. The samples of the time-
frequency response of the sub-channel from transmit antenna
k to receive antenna g are concatenated in the channel weight
vector agk � [agk11 . . . agk1L . . . agknl . . . agkNL]T. Assuming
that inter-symbol and inter-subcarrier interferences are negli-
gible, the received signals at all G antenna ports are given in
vector notation by

y =
K∑

k=1

Akxk + w (1)

= Xa + w (2)

= Ax + w. (3)

The vector y is the concatenation of the output vectors of
all receive antennas, y � [yT

1 . . .yT
g . . .yT

G]T with yg �
[yg11 . . . ygnl . . . ygNL]T denoting the output of receive an-
tenna g. The channel matrix for transmitter k is defined
as Ak � Diag(ak)([1 . . . 1]TG ⊗ IN ). The noise vector w
is white and circularly symmetric complex Gaussian: w ∼
CN (0GNL, σ2

wIGNL), with σ2
w denoting the noise variance.

We define the precision parameter λ � σ−2
w . The matrix

X is defined as X � IG ⊗ (([1 . . . 1]K ⊗ IN )Diag(x))
and a � [aT

11 . . .aT
gk . . .aT

GK ]T. The matrix A � (IG ⊗
([1 . . . 1]K ⊗ IN ))Diag(a)(([1 . . . 1]TG ⊗ IK) ⊗ IN ) is the
MIMO channel matrix. The vector x � [xT

1 . . .xT
k . . .xT

K ]T

contains the concatenated OFDM codewords from all transmit
antennas. The receiver outputs an estimate b̂k of the bit-stream
for any k.

III. GRAPHICAL REPRESENTATION

In this section, we present a graphical representation of the
signal model introduced in the previous section. This graphical
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Fig. 2. Factor-graph [3] of the signal model in Section II. The parameter
K indicates that the corresponding block is repeated K times, one for each
transmitter. Notice that the left region is equivalent to the Bayesian network
representation from [17].

representation will be used to derive the message-passing
algorithm in Section IV. Let

Φ � {y,a, λ,x1, . . .xK ,b1, . . .bK} (4)

denote the set of all (observed and unobserved) variables in
(1). Based on the assumptions made in Section II, the joint
probability density function (pdf) of Φ factorizes as

pΦ(Φ) = py(y|a, λ,x1, . . .xK)pa(a)pλ(λ)∏
k

pxk
(xk|bk)pbk

(bk). (5)

The constraints imposed by coding, modulation and multi-
plexing of the deterministic pilot symbols are included in
the factor pxk

for transmitter k. A straightforward graphical
representation of this factorization is the Tanner factor-graph
[3] depicted in Fig. 2. Factors are represented as squares,
variables as circles. An edge between a variable node and
a factor node indicates that the variable is an argument of the
factor.

Based on this graphical representation of the signal model,
we employ iterative algorithms to estimate the joint pdf pΦ.
We split the graph into two regions as depicted in Fig. 2. In the
right-hand region, we apply the SP algorithm [3] to compute
the marginals pxk

and pbk
. In the left-hand region, we apply

the VMP algorithm [16] to estimate pa and pλ. The VMP
algorithm is used to reformulate the VB inference method
proposed in [11] in terms of messages.

The motivation for splitting the Tanner graph in this way
and applying two different message-passing methods is as
follows. The SP algorithm is a well-established algorithm for
computing the marginal probability mass functions pxk

and
pbk

in known channel conditions. Direct computation of the
channel marginals pa and pλ by means of the SP algorithm
is, however, computationally infeasible. In this case, one has
to rely on techniques for approximating these marginals, e.g.
particle filters or the EM algorithm [18]. Here, we propose
another avenue and compute these marginals with the VMP
algorithm. We define the set of unknown variables in the VMP
region as ΦVMP � {a, λ,x1, . . .xK} ⊆ Φ.
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Variational Message-Passing (VMP)

We consider an arbitrary factor-graph. The message from
factor node f to a variable node φ in the set Nf of
neighbouring nodes of f is

mf→φ � exp〈ln f〉mφ′→f∀φ′∈Nf\φ. (6)

The message from variable node φ to any factor node f
in the set Nφ of factor nodes neighbouring φ is

mφ→f �
∏

f ′∈Nφ

mf ′→φ. (7)

The estimated auxiliary function of φ is

bφ ∝ mφ→f . (8)

IV. VARIATIONAL MESSAGE-PASSING

In this section, we apply the VMP algorithm [11], [17] to
the left-hand region in the factor-graph in Fig. 2, see [16] and
references therein for variational inference on factor-graphs.
The message-passing rules are summarized in (6)-(8). Their
derivations are sketched in App. A.

The VMP algorithm approximates the joint pdf
pΦVMP,y(ΦVMP,y) = py(y|a, λ,x1, . . .xK)pa(a)pλ(λ)∏

k pxk
(xk) with an auxiliary function bΦVMP(ΦVMP) in

such a way that the KL divergence from bΦVMP(ΦVMP)
to pΦVMP,y(ΦVMP,y) is minimized [17]. We constrain
the auxiliary function to factorize according to
bΦVMP(ΦVMP) = ba(a)bλ(λ)bx1(x1) . . . bxK

(xK).
The VMP algorithm implements sequential message

updates to update the factors in bΦVMP(ΦVMP). Updating
ba(a), bλ(λ), and bxk

(xk) corresponds to estimating the
channel weights, estimating the precision parameter, i.e. the
channel inverse noise variance, and interference cancellation,
respectively.

A. Estimation of the Channel Weights

In this subsection, we derive the messages to and from the
variable node a. These messages are used to update ba by
means of (8). The message to node a from py is obtained
from (6):

mpy→a = exp
(〈ln py(y|a, λ,x)〉mλ→py

∏
k mxk→py

)
. (16)

Solving the expectation yields

mpy→a ∝ pCN (λ̂VMPĈpy→aX̂Hy, Ĉpy→a). (17)

Here, pCN (µ,C) is a multivariate complex Gaussian pdf with
mean vector µ and covariance matrix C, and Ĉpy→a �
(λ̂VMPX̂HX̂ + λ̂VMP(IG ⊗ Ĉx))−1. The matrix Ĉx is the
block-diagonal concatenation of the estimates Ĉxk

of the
covariance matrices of xk, k = 1 . . . K. Both Ĉxk

and the
estimate λ̂VMP of the precision parameter are defined later in
this section. We impose the prior pa to belong to the family
of conjugate pdfs of a for py. This choice guarantees that the
auxiliary pdf ba is also in this family. From (16) the conjugate

family of pdfs of a for py is the Gaussian family. Thus, from
(6)

mpa→a = pCN (0GKNL,Ca), (18)

where Ca is the prior channel covariance matrix. Inserting
(17) and (18) in (7) yields

ma→py ∝ pCN (â, Ĉa) = ba (19)

with â = λ̂VMPĈaX̂Hy and Ĉa = (C−1
a + Ĉ−1

py→a)
−1. As

the Gaussian pdf is fully defined by these two moments – its
natural statistics – it is enough to pass them to py.

B. Estimation of the Precision Parameter

In this subsection, we define the messages to and from
variable node λ. The auxiliary function bλ is then updated
by plugging these messages in (8). The message from py to
λ reads from (6)

mpy→λ = exp
(〈ln py(y|a, λ,x)〉ma→py

∏
k mxk→py

)
. (20)

Evaluating the expectation under the assumption that the
messages ma→py and mxk→py , k = 1 . . . K, are Gaussian
densities [11] yields

mpy→λ ∝ pCW1

(
Ŵ−1, GNL + 1

)
. (21)

In this expression, pCWF
(M−1, d) is a complex Wishart pdf

defined by three parameters: the dimension F , the degree
of freedom d, and a matrix M of dimension F × F [19].
Here, F = 1, d = GNL + 1, and M is a scalar given as
Ŵ � tr((y− Âx̂)(y− Âx̂)H + X̂ĈaX̂H +

∑
k ÂkĈxk

ÂH
k +∑

k(1G⊗Ĉxk
)�Diag(diag(Ĉak

))). The estimate Ĉak
of the

auto-covariance matrix of ak can be obtained from Ĉa. The
estimate Ĉxk

of the covariance matrix of xk is defined later
in this section.

We select pλ to be a conjugate pdf of λ, which is a complex
Wishart pdf of dimension one [20, Sec. IVb]. From (6)

mpλ→λ = pCW1

(
M−1

pr , dpr

)
(22)

with given parameters Mpr and dpr. By inserting (21) and
(22) into the message-passing rule (7), we obtain the complex
Wishart pdf

mλ→py ∝ pCW1

(
(Ŵ + Mpr)−1, dpr + GNL

)
= bλ. (23)

It is enough to pass the first moment λ̂VMP =
(dpr + GNL) (Ŵ + Mpr)−1 [20, Eq. (22)] of this pdf, since
the other message updates only depend on this value. As we
have no prior information on λ, we select pλ to be uniform
over the range of λ. For this improper prior, we have Mpr = 0
and dpr = 0 [20].

C. MIMO Decoding

To update bxk
, we compute the messages to and from the

variable node xk. From (6), the message from node py to
variable node xk is

mpy→xk
=

exp
(〈ln py(y|a, λ,x)〉ma→pymλ→py

∏
k′ �=k mx

k′→py

)
. (24)
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Channel Estimation

VMP receiver:

â =
(
C−1

a + λ̂VMPX̂HX̂ + λ̂VMP(IG ⊗ Ĉx)
)−1

λ̂VMPX̂Hy (9)

LMMSE-based receiver:

â =
(
C−1

a + X̂HΛ̂
chan
LMMSEX̂

)−1
X̂HΛ̂

chan
LMMSEy (10)

MIMO Detection/Interference Cancellation

VMP receiver:

x̂k =

(
λ̂VMPÂH

kÂk + λ̂VMP

∑
g′

∑
g

Diag(diag(Ĉakgakg′ ))

)−1

λ̂VMPÂH
k

(
y −

∑
k′ �=k

Âk′ x̂k′

)
(11)

LMMSE-based receiver:

x̂k =
(
C−1

xk
+ ÂH

kΛ̂
det
LMMSEÂk

)−1
ÂH

kΛ̂
det
LMMSE

(
y −

∑
k′ �=k

Âk′ x̂k′

)
(12)

Estimation of the Precision Matrix

VMP receiver: Λ̂VMP = λ̂VMPIGNL with

λ̂VMP =

(
tr
(
(y−Âx̂)(y−Âx̂)H+X̂ĈaX̂H+

∑
k ÂkĈxk

ÂH
k+

∑
k(1G⊗Ĉxk

)�Diag(diag(Ĉak
))

)
GNL

)−1

(13)

LMMSE-based receiver: σ2
a is the average power of the channel

Λ̂
chan
LMMSE =

((
tr
((

y−Âx̂
)(

y−Âx̂
)H)

GNL

)
IGNL + σ2

aIG ⊗
∑

k

Ĉxk

)−1

(14)

Λ̂
det
LMMSE =

((
tr
((

y−Âx̂
)(

y−Âx̂
)H)

GNL

)
IGNL +

∑
k′ �=k

Âk′Ĉxk′ Â
H
k′

)−1

(15)

Fig. 3. Channel estimation, MIMO detection/interference cancellation and the precision matrix estimation in the VMP and LMMSE-based receiver.

Solving the expectation, yields

mpy→xk
∝ pCN (x̂k, Ĉxk

) (25)

with mean vector x̂k = λ̂VMPĈxk
ÂH

k

(
y − ∑

k′ �=k Âk′ x̂k′
)

and covariance matrix Ĉxk
= (λ̂VMPÂH

k Âk + λ̂VMP∑
g′

∑
g diag(Ĉakgakg′ ))−1. The estimate Ĉakgakg′ of the

cross-covariance matrix of the channel vectors akg and akg′

can be obtained from Ĉa.
Demodulation and decoding are performed in the right

region of the graph in Fig. 2 using the SP algorithm. The
estimated mean of a symbol xknl in xk is computed to be
x̂knl =

∑
x∈M xP (xknl = x|x̂k), where P (xknl = x|x̂k) =∑

xk∈Xk,xknl=x mpy→xk
(xk) with M denoting the set of

constellation points of the selected M-QAM modulation. For
convolutional codes, these marginals can be obtained with the
BCJR algorithm. Likewise, the estimated variance of xknl is
σ̂2

xknl
=

∑
x∈M x2P (xknl = x|x̂k) − x̂2

knl. Any two distinct
symbols are assumed to be uncorrelated. As a result, the
estimate of the covariance matrix of xk after decoding reads
Ĉxk

= Diag(σ̂2
xk11

, . . . σ̂2
xkNL

).
We approximate the message from xk to py by a Gaussian

pdf. Notice that the Gaussian family is the conjugate family of
xk for py. With this approximation and from (25) we obtain

mxk→py ∝ pCN (x̂k, Ĉxk
) = bxk

. (26)

We only pass the natural statistics x̂k, Ĉxk
to py. From (8),

the message (26) represents the estimated posterior pdf of xk.

V. COMPARISON WITH THE LMMSE-BASED RECEIVER

In this section, we compare the VMP receiver derived in the
previous section to a state-of-the-art iterative receiver proposed
in [5], further developed for detection in multiuser CDMA
[6], and applied to MIMO-OFDM systems in [7]. We refer
to this receiver as the LMMSE-based receiver. Due to lack
of space, the derivation of the LMMSE-based receiver is not
included in this work, but the expressions of the different
component blocks are summarized in Fig. 3 together with the
corresponding expressions obtained for the VMP receiver.

The conceptual difference between the two schemes is
that in the LMMSE-based receiver the different constituent
blocks are designed independently, while in the VMP receiver
the blocks corresponding to factors in the VMP region are
designed jointly, by minimizing a global cost function, i.e. a
KL divergence, in this region.

By inspecting the expressions in Fig. 3 we observe that
the LMMSE-based receiver and the VMP receiver share some
structural properties. For instance, from (9) and (10) it is clear
that both algorithms use an LMMSE-like channel estimator,
which mainly depends on the channel prior covariance, es-
timates of the transmitted symbols and an estimate of the
precision matrix, namely λ̂VMPI in the VMP receiver and

Λ̂
chan

LMMSE in the LMMSE-based receiver. Similarly, the detec-
tion part of both receivers consists of interference cancellation
followed by LMMSE filtering of the residual interference.
However, we can highlight two critical differences between
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TABLE I
PARAMETER SETTINGS FOR THE SIMULATIONS

Cyclic prefix length 4.7 μs
Symbol duration 66.7 μs

Subcarrier spacing 15 kHz
Pilot overhead 4.8% pilots
Pilot pattern Regular spacing/diamond, QPSK

Modulation alphabet 16-QAM
Number of information bits 660
Number of subcarriers N 75

Number of OFDM symbols L 7
Number of transmitters K 2

Number of receivers G 2
Channel interleaver block
Convolutional code (155, 117, 127)8

the two algorithms: firstly, only one scalar estimate of the
precision parameter is needed in the VMP receiver, while
the LMMSE-based receiver calculates two different precision

matrices, one for channel estimation (Λ̂
chan

LMMSE) and one for

detection (Λ̂
det

LMMSE); secondly, the LMMSE-based receiver
does not deal with the uncertainty in the channel weight
estimates and considers them as the true values in the detection
part, while the VMP receiver accounts for channel estimation
errors via the term Ĉa in (11) and (13).

VI. SIMULATION RESULTS

To verify the performance of the VMP receiver, we perform
Monte-Carlo simulations for an LTE-like 2×2 system with the
settings reported in Table I. We consider a pilot scheme where
all transmitters transmit pilots in the same time-frequency
resources. Realizations of the channel time-frequency response
are generated using the extended typical urban (ETU) channel
model from the 3GPP LTE standard [21], with Rayleigh-fading
channel taps, and assuming no correlation over transmit or re-
ceive antennas. Note that the channel is wide-sense-stationary
and uncorrelated-scattering (WSSUS) [22]. We compute the
prior covariance matrix Ca from the channel time-frequency
correlation function.

We test the OFDM-MIMO system with the two receivers
described in Fig. 3. Both receivers use the same initialization,
consisting of MMSE pilot-based channel estimation and joint
soft-decision maximum likelihood (ML) detection, followed
by soft-in soft-out sequential decoding. In both receivers an it-
eration consists of estimation of the channel weights, followed
by sequential detection and decoding of all K transmitted
frames, and ending with estimation of the precision parameter
or matrices.

The bit-error-rate (BER) performance of both receivers
versus the signal-to-noise ratio (Eb/N0) is illustrated in Fig. 4.
For the sake of comparison, the initialization is also de-
picted (denoted by the ‘Linear Receiver’ tag). Both receivers
perform 10 iterations. The results show that both iterative
structures significantly improve the performance of the linear
receiver, especially for Eb/N0 larger than 0 dB. Moreover,
the VMP receiver outperforms the LMMSE-based receiver in
the considered signal-to-noise range. The gain is about 0.5
dB in the operation range of the MIMO-OFDM system. The
convergence behaviour of both iterative structures is described
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Fig. 5. Frame-error-rate across iterations.

in Fig. 5, which depicts the frame-error-rate versus the number
of iterations at the receiver for three different Eb/N0 values.
Both receivers converge after approximately 5 iterations for
all operation points. Again, the VMP receiver outperforms the
LMMSE-based receiver regardless of the number of iterations.

VII. CONCLUSION

We derive a novel iterative receiver structure for M-QAM
MIMO-OFDM operating in frequency-selective time-variant
channels. The scheme performs jointly semi-blind estimation
of the channel weights and of the noise inverse variance based
on both data and pilot symbols, serial interference cancellation,
and decoding. The scheme was already proposed for CDMA
in [11]. A variational message-passing (VMP) interpretation
of it is provided here.

The VMP receiver is compared with the LMMSE-based
iterative receiver derived in [5]–[7]. Both iterative architectures
are made of the same blocks and exhibit similar complexity.
However, in the VMP receiver all blocks but decoding are
jointly optimized according to a global cost function, the KL
divergence, while in the LMMSE-based receiver all blocks
are designed independently. Furthermore, the VMP framework
yields a structure that takes into account the inaccuracy of the
channel weight estimates. This inaccuracy is neglected in the
LMMSE-based receiver.

In order to assess the effect of these structural differences,
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we evaluate the performance of both receivers in an LTE-like
scenario. The simulation results show that the VMP receiver
outperforms the LMMSE-based receiver with a signal-to-noise
ratio gain of 0.5 dB at relevant BER values.

An issue not addressed in the paper is how to combine
efficiently the VMP algorithm – used for channel weight and
noise inverse variance estimation as well as serial interference
cancellation – and the sum-product algorithm – employed
for decoding – in the receiver. A solution has been recently
proposed in [23].
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APPENDIX A
THE VARIATIONAL MESSAGE-PASSING ALGORITHM

In VB inference [11] we consider as the cost function the
KL divergence DKL(bΦ‖fΦ) �

∫
dΦ bΦ log bΦ

fΦ
, where fΦ is

a pdf of a set of variables Φ and bΦ is an auxiliary function,
which approximates fΦ. We seek an auxiliary function that
minimizes the cost function.

We reformulate the VB inference problem to message-
passing on a factor-graph [16]. We assume that fΦ factorizes
according to fΦ =

∏
a fa(Nfa

), where Nfa
⊆ Φ is the set of

neighbouring variables of fa. We select an auxiliary function
bΦ, which factorizes according to bΦ =

∏
φ∈Φ bφ. As shown

in [11], the factor bφ of bΦ which minimizes DKL(bΦ‖fΦ)
with all other factors bφ′ , ∀φ′ ∈ Φ\φ fixed is

bφ ∝ exp〈
∑

fa∈Nφ

ln fa〉bφ′∀φ′∈Nfa\φ (27)

∝
∏

fa∈Nφ

exp〈ln fa〉bφ′∀φ′∈Nfa\φ, (28)

where Nφ is the set of neighbouring factors of φ. With the
definitions in (6) and (7) we can recast (28) as

bφ ∝
∏

f ′
a∈Nφ

mf ′
a→φ = mφ→fa

(29)

for any fa ∈ Nφ, and we have

bΦ =
∏
φ∈Φ

bφ ∝
∏
φ∈Φ

∏
f ′

a∈Nφ

mf ′
a→φ. (30)

Identity (28) can be used to design an iterative algorithm which
at each iteration updates a given factor bφ of bΦ while keeping
the other factors fixed. The iterative algorithm converges in the
sense of the KL divergence, since DKL(bΦ‖fΦ) is minimized
at each iteration. The identities in (29) provide a message-
passing interpretation of the updating steps.
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