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Variational method for finding periodic orbits in a general flow
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A variational principle for determining unstable periodic orbits of flows as well as unstable spatio-
temporally periodic solutions of extended systems is proposed and implemented. An initial loop
approximating a periodic solution is evolved in the space of loops toward a true periodic solution by
a minimization of local errors along the loop. The “Newton descent” partial differential equation
that governs this evolution is an infinitesimal step version of the damped Newton-Raphson iteration.
The feasibility of the method is demonstrated by its application to the Hénon-Heiles system, the
circular restricted three-body problem, and the Kuramoto-Sivashinsky system in a weakly turbulent
regime.
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I. INTRODUCTION

The periodic orbit theory of classical and quantum
chaos [1, 2] is one of the major advances in the study
of long-time behavior of chaotic dynamical systems. The
theory expresses all long time averages over chaotic dy-
namics in terms of cycle expansions [3], sums over pe-
riodic orbits (cycles) ordered hierarchically according to
the orbit length, stability, or action. If the symbolic dy-
namics is known, and the flow is hyperbolic, longer cycles
are shadowed by the shorter ones, and cycle expansions
converge exponentially or even super-exponentially with
the cycle length [4].

A variety of methods for determining all periodic orbits
up to a given length have been devised and successfully
implemented for low-dimensional systems [5, 6, 7, 8, 9].
For more complex dynamics, such as turbulent flows [10],
nonlinear waves [11], or quantum fields [12, 13] with high
(or infinite) dimensional phase spaces and complicated
dynamical behavior, many of the existing methods be-
come unfeasible in practice. In the most computationally
demanding calculation carried out so far, Kawahara and
Kida [14] have found two periodic solutions in a 15, 422-
dimensional discretization of a turbulent plane Couette
flow. The topology of high-dimensional flows is hard to
visualize, and even with a decent starting guess for the
shape and location of a periodic orbit, methods like the
Newton-Raphson method are likely to fail. In ref. [15]
we have argued that variational, cost-function minimiza-
tion methods offer a robust alternative. Here we derive,
implement and discuss in detail one such new variational
method for finding periodic orbits in general flows, and
specifically high-dimensional flows.

In essence, any numerical algorithm for finding peri-
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odic orbits is based on devising a new dynamical system
which possesses the desired orbit as an attracting fixed
point with a sizable basin of attraction. Beyond that,
there is much freedom in constructing such system.

For example, the multipoint shooting method elimi-
nates the long-time exponential instability of unstable or-
bits by splitting an orbit into a number of short segments,
each with a controllable expansion rate. The multiple
shooting combined with the Newton-Raphson method is
an efficient tool for locating periodic orbits of maps [16].
A search for periodic orbits of a continuous time flow can
be reduced to a multiple shooting search for periodic or-
bits of a set of maps by constructing a set of phase space
Poincaré sections such that an orbit leaving one section
reaches the next one in a qualitatively predictable man-
ner, without traversing other sections along the way. In
turbulent, high-dimensional flows such sequences of sec-
tions are hard to come by. One solution might be a large
set of Poincaré sections, with the intervening flight seg-
ments short and controllable.

Here we follow a different strategy, and discard
Poincaré sections altogether; we replace maps between
spatially fixed Poincaré sections, by maps induced by
discretizing the time evolution into small time steps. For
sufficiently small time steps such maps are small defor-
mations of identity. We distribute many points along a
smooth loop L, our initial guess of a cycle location and
its topological layout. If both the time steps and the loop
deformations are taken infinitesimal, a partial differential
equation governs the “Newton descent”, a fictitious time
flow of a trial loop L into a genuine cycle p, with expo-
nential convergence in the fictitious time variable. We
then use methods developed for solving PDEs to get the
solution. Stated succinctly, the idea of our method is to
make an informed rough guess of what the desired cycle
looks like globally, and then use a variational method to
drive the initial guess towards the exact solution. For ro-
bustness, we replace the guess of a single orbit point by a
guess of an entire orbit. For numerical safety we replace
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the Newton-Raphson iteration by the “Newton descent”,
a differential flow that minimizes a cost function com-
puted as deviation of the approximate flow from the true
flow along a smooth loop approximation to a cycle.

In sect. II we derive the partial differential equation
which governs the evolution of an initial guess loop to-
ward a cycle and the corresponding cost function. An
extension of the method to Hamiltonian systems and sys-
tems with higher time derivatives is presented in sect. III.
Simplifications due to symmetries and details of our nu-
merical implementation of the method are discussed in
sect. IV. In sect. V we test the method on the Hénon-
Heiles system, the restricted three body problem, and
a weakly turbulent Kuramoto-Sivashinsky system. We
summarize our results and discuss possible improvements
of the method in sect. VI.

II. THE NEWTON DESCENT METHOD IN

LOOP SPACE

A. A variational equation for the loop evolution

A periodic orbit is a solution (x, T), x ∈ R
d, T ∈ R of

the periodic orbit condition

fT(x) = x , T > 0 (1)

for a given flow or discrete time mapping x 7→ f t(x).
Our goal is to determine periodic orbits of flows defined
by first order ODEs

dx

dt
= v(x) , x ∈ M ⊂ R

d , (x, v) ∈ TM (2)

in many (even infinitely many) dimensions d. Here M is
the phase space (or state space) in which evolution takes
place, TM is the tangent bundle [17], and the vector field
v(x) is assumed to be smooth (sufficiently differentiable)
almost everywhere.

We make our initial guess at the shape and the location
of a cycle p by drawing a loop L, a smooth, differentiable
closed curve x̃(s) ∈ L ⊂ M, where s is a loop parameter.
As the loop is periodic, we find it convenient to restrict
s to [0, 2π], with the periodic condition x̃(s) = x̃(s+2π).
Assume that L is close to the true cycle p, pick N pairs
of nearby points along the loop and along the cycle

x̃n = x̃(sn) , 0 ≤ s1 < . . . < sN < 2π ,

xn = x(tn) , 0 ≤ t1 < . . . < tN < Tp , (3)

and denote by δx̃n the deviation of a point xn on the
periodic orbit p from the nearby point x̃n,

xn = x̃n + δx̃n .

The deviations δx̃ are assumed small, vanishing as L ap-
proaches p.

The orientation of the s-velocity vector tangent to the
loop L

ṽ(x̃) =
dx̃

ds

is intrinsic to the loop, but its magnitude depends on the
(still to be specified) parametrization s of the loop.

At each loop point x̃n ∈ L we thus have two vectors,
the loop tangent ṽn = ṽ(x̃n) and the flow velocity vn =
v(x̃n). Our goal is to deform L until the directions of ṽn

and vn coincide for all n = 1, . . . , N , N → ∞, that is
L = p. To match their magnitude, we introduce a local
time scaling factor

λ(sn) ≡ ∆tn/∆sn , (4)

where ∆sn = sn+1 − sn, n = 1, . . . , N − 1 , ∆sN = 2π −
(sN − s1), and likewise for ∆tn. The scaling factor λ(sn)
ensures that the loop increment ∆sn is proportional to
its counterpart ∆tn + δtn on the cycle when the loop L
is close to the cycle p, with δtn → 0 as L → p.

Let x(t) = f t(x) be the state of the system at time
t obtained by integrating (2), and J(x, t) = dx(t)/dx(0)
be the corresponding Jacobian matrix obtained by inte-
grating

dJ

dt
= AJ , Aij =

∂vi

∂xj

, with J(x, 0) = 1 . (5)

Since the point xn = x̃n + δx̃n is on the cycle,

f∆tn+δtn(x̃n + δx̃n) = x̃n+1 + δx̃n+1 . (6)

Linearization

f δt(x) ≈ x + v(x)δt , f t(x + δx) ≈ x(t) + J(x, t)δx ,

of (6) about the loop point x̃n and the time interval ∆tn
to the next cycle point leads to the multiple shooting
Newton-Raphson equation, for any step size ∆tn:

δx̃n+1 − J(x̃n, ∆tn)δx̃n − vn+1δtn = f∆tn(x̃n) − x̃n+1 .
(7)

Provided that the initial guess is sufficiently good, the
Newton-Raphson iteration of (7) generates a sequence of
loops L with a decreasing cost function [15]

F 2(x̃) ≡
N

(2π)2

N
∑

i=1

(f∆tn(x̃n) − x̃n+1)
2, x̃N+1 = x̃1 .

(8)
The prefactor N/(2π)2 makes the definition of F 2 consis-
tent with (13) in the N → ∞ limit. If the flow is locally
strongly unstable, the neighborhood in which the lin-
earization is valid could be so small that the full Newton
step would overshoot, rendering F 2 bigger rather than
smaller. In this case the step-reduced, damped Newton
method is needed. As proved in ref. [18], under conditions
satisfied here, F 2 decreases monotonically if appropriate
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FIG. 1: (a) An annulus L(τ ) swept by the Newton descent
flow dx̃/dτ , connecting smoothly the initial loop L(0) to the
periodic orbit p = L(∞). (b) In general the loop velocity field
ṽ(x̃) does not coincide with λv(x̃); for a periodic orbit p, it
does so at every x ∈ p.

step size is taken. If infinitesimal steps are taken, de-
crease of F 2 is ensured. We parametrize such continuous
deformations of the loop by a fictitious time τ .

We fix ∆sn and proceed by δτ each step of the itera-
tion, that is, multiply the right hand side of (7) by δτ .
According to (4), the change of ∆tn with respect to τ is
equal to δtn = ∂λ

∂τ
(sn, τ)δτ∆sn. As δx̃n = ∂

∂τ
x̃(sn, τ)δτ ,

dividing both sides of (7) by δτ yields

dx̃n+1

dτ
− J(x̃n, ∆tn)

dx̃n

dτ
− vn+1

∂λ

∂τ
(sn, τ)∆sn

= f∆tn(x̃n) − x̃n+1 . (9)

In the N → ∞ limit, the stepsizes ∆sn, ∆tn =
O(1/N) → 0, and we have

vn+1 ≈ vn , x̃n+1 ≈ x̃n + ṽn∆sn ,

J(x̃n, ∆tn) ≈ 1 + A(x̃n)∆tn , f∆tn(x̃n) ≈ x̃n + vn∆tn .

Substituting into (9) and using the scaling relation (4),
we obtain

∂2x̃

∂s∂τ
− λA

∂x̃

∂τ
− v

∂λ

∂τ
= λv − ṽ. (10)

This PDE, which describes the evolution of a loop L(τ)
toward a periodic orbit p, is the central result of this
paper. The family of loops so generated is parametrized

by x̃ = x̃(s, τ) ∈ L(τ), where s denotes the position
along the loop, and the fictitious time τ parametrizes
the deformation of the loop, see Fig. 1(a). We refer to
this infinitesimal step version of the damped Newton-
Raphson method as the “Newton descent”.

The important feature of this equation is that a de-
creasing cost functional exists. Rewriting (10) as

∂

∂τ
(ṽ − λv) = −(ṽ − λv) , (11)

we have

ṽ − λv = e−τ (ṽ − λv)|τ=0 , (12)

so the fictitious time τ flow decreases the cost functional

F 2[x̃] =
1

2π

∮

L(τ)

ds (ṽ(x̃) − λv(x̃))
2

(13)

monotonically as the loop evolves toward the cycle.
At each iteration step the differences of the loop tan-

gent velocities and the dynamical flow velocities are re-
duced by the Newton descent. As τ → ∞, the fictitious
time flow alignes the loop tangent ṽ with the dynami-
cal flow vector ṽ = λv, and the loop x̃(s, τ) ∈ L(τ), see
Fig. 1(b), converges to a genuine periodic orbit p = L(∞)
of the dynamical flow ẋ = v(x). Once the cycle p is
reached, by (4), λ(s,∞) = dt

ds
(x̃(s,∞)), and the cycle

period is given by

Tp =

∫ 2π

0

λ(x̃(s,∞))ds .

Of course, as at this stage we have already identified the
cycle, we may pick instead an initial point on p and cal-
culate the period by a direct integration of the dynamical
equations (2).

B. Marginal directions and accumulation of loop

points

Numerically, two perils lurk in a direct implementation
of the Newton descent (10).

First, when a cycle is reached, it remains a cycle under
a cyclic permutation of the representative points, so on
the cycle the operator

Ā =
∂

∂s
− λA

has a marginal eigenvector v(x̃(s)) with eigenvalue 0. If λ
is fixed, as the loop approaches the cycle, (10) approaches
its limit

Ā
∂x

∂τ
= 0 .

Therefore, on the cycle, the operator Ā−1 becomes sin-
gular and the numerical woes arise.
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The second potential peril hides in the freedom of
choosing the loop (re-)parametrization. Since s is re-
lated to the time t by the yet unspecified factor λ(s, τ),
uneven distributions of the sampling points over the loop
L could arise, with the numerical discretization points x̃n

clumping densely along some segments of L and leaving
big gaps elsewhere, thus degrading the numerical smooth-
ness of the loop.

We remedy these difficulties by imposing constraints
on (10). In our calculation for Kuramoto-Sivashinsky
system of sect. V, the first difficulty is dealt with by in-
troducing one Poincaré section, for example, by fixing
one coordinate of one of the sampling points, x̃1(s1, τ) =
const. This breaks the translational invariance along the
cycle. Other types of constraints might be better suited
to a specific problem at hand. For example, we can
demand that the average displacement of the sampling
points along the loop vanishes, thus avoiding a spiraling
descent towards the desired cycle.

We deal with the second potential difficulty by choos-
ing a particularly simple loop parametrization. So far,
the parametrization s is arbitrary and there is much
freedom in choosing the best one for our purposes. We
pick s− and τ−independent constant scaling λ(s, τ) = λ.
With uniform grid size ∆sn = ∆s and fixed λ, the loop
parameter s = t/λ is proportional to time t, and the dis-
cretization (10) distributes the sampling points along the
loop evenly in time. As the loop approaches a cycle, ∂x̃

∂τ

is numerically obtainable from (10), and on the cycle the
period is given by Tp = 2πλ.

Even though this paper focuses on searches for pe-
riodic orbits, the Newton descent is a general method.
With appropriate modifications of boundary conditions
and scaling of time, (10) can be adapted to determination
of homoclinic or heteroclinic orbits between equilibrium
points or periodic orbits of a flow, or more general bound-
ary value problems. Applied to 2-point boundary value
problems, Newton descent is similar to the quasilineariza-
tion [19] but has the advantage that the free parameter
λ(s, τ) is available for adjusting scales in the problem
and that searches can be restricted to phase space sub-
manifolds of interest. A simple example of a restriction
to a submanifold are searches for cycles of a given en-
ergy, constrained to the H(q, p) = E energy shell in the
phase space of a Hamiltonian system. Furthermore, as
we shall show now, the symplectic structure of Hamil-
ton’s equations greatly reduces the dimensionality of the
submanifold that we need to consider.

III. EXTENSIONS OF NEWTON DESCENT

In classical mechanics particle trajectories are also so-
lutions of a variational principle, the Hamilton’s varia-
tional principle. For example, one can determine a pe-
riodic orbit of a billiard by wrapping around a rubber
band of a roughly correct topology, and then moving
the points along the billiard walls until the length (that

is, the action) of the rubber band is extremal (maximal
or minimal under infinitesimal changes of the boundary
points). Note that the extremization of action requires
only D configuration coordinate variations, not the full
2D-dimensional phase space variations.

Can we exploit this property of the Newtonian me-
chanics to reduce the dimenionality of our variational
calculations? The answer is yes, and easiest to under-
stand in terms of the Hamilton’s variational principle
which states that classical trajectories are extrema of the
Hamilton’s principal function (or, for fixed energy E, the
action S = R + Et)

R(q1, t1; q0, t0) =

∫ t1

t0

dtL(q(t), q̇(t), t) ,

where L(q, q̇, t) is the Lagrangian. Given a loop L(τ) we
can compute not only the tangent “velocity” vector ṽ,
but also the local loop curvature or “acceleration” vector

ã =
∂2x̃

∂s2
,

and indeed, as many s derivatives as needed. Matching
the dynamical acceleration a(x̃) (assumed to be functions
of x̃ and v(x̃)) with the loop “acceleration” ã(x̃) results
in a new cost function and the corresponding PDE (11)
for the evolution of the loop

∂

∂τ
(ã − λ2a) = −(ã − λ2a) .

We use λ2 instead of λ in order to keep the notation
consistent with (4), that is t = λ s. Expressed in terms
of the loop variables x̃(s), the above equation becomes

∂3x̃

∂2s∂τ
− λ

∂a

∂v

∂2x̃

∂s∂τ
− λ2 ∂a

∂x̃

∂x̃

∂τ
+

(

∂a

∂v

∂x̃

∂s
− 2λa

)

∂λ

∂τ

= λ2a − ã , (14)

where v = ∂x̃
λ∂s

. Although (14) looks more complicated
than (10), in numerical fictitious time integrations, we
are rewarded by having to keep only half of the phase
space variables.

More generally, if a differential equation has the form:

x(m) = f(x, x(1), · · · , x(m−1)) , (15)

where x(k) = dkx
dtk , k = 1, · · · , m and x ∈ R

d, the same
technique can be used to match the highest derivatives
λmx(m) and x̃(m),

∂

∂τ
(x̃(m) − λmx(m)) = −(x̃(m) − λmx(m)) ,

with x̃(m) = ∂m

∂sm x̃(s) calculated directly from x̃(s) on the
loop by differentiation. In loop variables x̃(s) we have,

∂m+1x̃

∂sm∂τ
− λm

m
∑

k=0

∂f

∂x(k)
·

∂

∂τ

∂kx̃

λk∂sk
− mλm−1x̃(m) ∂λ

∂τ

= λmx(m) − x̃(m) , (16)
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where x = x(0) and x̃(k) = ∂kx̃
λk∂ks

, k = 1, · · · , m − 1
are assumed. Conventionally, (15) is converted to a sys-
tem of md first order differential equations, whose dis-
cretized derivative (see (17) below) are banded matrices
with band width of 5md. Using (16), we only need d
equations for the same accuracy and the corresponding
band width is (m + 4)d. The computing load has been
greatly reduced, the more so the larger m is. Neverthe-
less, choice of a good initial loop guess and visualization
of the dynamics are always aided by a plot of the orbit
in the full md-dimensional phase space, where loops can-
not self-intersect and topological features of the flow is
exhibited more clearly.

IV. IMPLEMENTATION OF NEWTON

DESCENT

As the loop points satisfy a periodic boundary con-
dition, it is natural to employ truncated discrete Fast
Fourier Transforms (FFT) in numerical integrations of
(10). Since we are interested only in the final, stationary
cycle p, the accuracy of the fictitious time integration is
not crucial; all we have to ensure is the smoothness of the
loop throughout the integration. The Euler integration
with fairly large time steps δτ suffices. The computation-
ally most onerous step in implementation of the Newton
descent is the inversion of large matrix Ā in (10). When
the dimension of the dynamical phase space of (2) is high,
the inversion of Ā needed to get ∂x̃

∂τ
takes most of the inte-

gration time, making the evolution extremely slow. This
problem is partially solved if the finite difference meth-
ods are used. The large matrix Ā then becomes sparse
and the inversion can be done far more quickly.

A. Numerical implementation

In a discretization of a loop, numerical stability re-
quires accurate discretization of loop derivatives such as

ṽn ≡
∂x̃

∂s

∣

∣

∣

∣

x̃=x̃(sn)

≈ (D̂x̃)n .

In our numerical work we use the four-point approxima-
tion [20],

D̂ =
1

12h



















0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·

1 −8 0 8 −1
−1 1 −8 0 8
8 −1 1 −8 0



















(17)

where h = 2π/N . Here, each entry represents a [d×d]
matrix, 8 → 81, etc., with blank spaces are filled with
zeros. The two [2d×2d] matrices

M1 =

(1 −81
0 1 )

, M2 =

(

−1 0
81 −1)

,

located at the top-right and bottom-left corners take care
of the periodic boundary condition.

The discretized version of (10) with a fictitious time
Euler step δτ is

(

Â v̂
â 0

) (

δx̂
δλ

)

= δτ

(

λv̂ − ˆ̃v
0

)

, (18)

where

Â = D̂ + diag[A1, A2, · · · , AN ] ,

with An = A(x̃(sn)) defined in (5), and

v̂ = (v1, v2, · · · , vN ) , with vn = v(x̃(sn)) ,

ˆ̃v = (ṽ1, ṽ2, · · · , ṽN ) , with ṽn = ṽ(x̃(sn)) ,

are the two vector fields that we want to match every-
where along the loop. â is an Nd dimensional row vector
which imposes the constraint on the coordinate varia-
tions δx̂ = (δx̃1, δx̃2, · · · , δx̃N ). The discretized New-
ton descent (18) is an infinitesimal time step variant of
the multipoint (Poincaré section) shooting equation for
flows [16]. In order to solve for the deformation of the
loop coordinates and period, δx̂ and δλ, we need to in-
vert the [(N d + 1)×(N d + 1)] matrix on the left hand
side of (18).

In our numerical work, this matrix is inverted using
the banded LU decomposition on the embedded band-
diagonal matrix, and the Woodbury formula [21] on the
cyclic, border terms. The LU decomposition takes most
of the computational time and considerably slows down
the fictitious time integration. We speed up the inte-
gration by a new inversion scheme which relies on the
smoothness of the flow in the loop space. It goes as fol-
lows. Once we have the LU decomposition at one step,
we use it to approximately invert the matrix in the next
step, with accurate inversion achieved by the iterative
approximate inversions [21]. In our applications we find
that a single LU decomposition can be used for many δτ
evolution steps. The further we go, the more iterations at
each step are needed to implement the inversion. After
the number of such iterations exceeds some given fixed
maximum number, we perform another LU decomposi-
tion and proceed as before. The number of integration
steps following one decomposition is an indication of the
smoothness of the evolution, and we adjust accordingly
the integration step size δτ : the greater the number, the
bigger the step size. As the loop approaches a cycle, the
evolution becomes so smooth that the step size can be
brought all the way up to δτ = 1, the full undamped
Newton-Raphson iteration step. In practice, one can
start with a small but reasonable number of points, in
order to get a coarse solution of relatively low accuracy.
After achieving that, the refined guess loop can be con-
structed by interpolating more points, and proceed with
for a more accurate calculation in which δτ can be set as
large as the full Newton step δτ = 1, recovering the rapid
quadratic convergence of the Newton-Raphson method.
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It is essential that the smoothness of the loop is main-
tained throughout the calculation. We monitor the
smoothness by checking the Fourier spectrum of x̃(·, τ).
An unstable difference scheme for loop derivatives might
lead to unbounded sawtooth oscillations [22]. A heuristic
local linear stability analysis (described in [23]) indicates
that our scheme is stable, and that the high frequency
components do not generate instabilities.

B. Initialization and convergence

As in any other method, a qualitative understanding of
the dynamics is a prerequisite to successful cycle searches.
We start by numerical integration with the dynamical
system (2). Numerical experiments reveal regions where
a trajectory spends most of its life, giving us the first
hunch as to how to initialize a loop. We take the FFT
of some nearly recurred orbit segment and keep only the
lowest frequency components. The inverse Fourier trans-
form back to the phase space yields a smooth loop that we
use as our initial guess. Since any generic orbit segment is
not closed and might exhibit large gaps, the Gibbs phe-
nomenon can take the initial loop so constructed quite
far away from the region of interest. We deal with this
problem by manually deforming the orbit segment into
a closed loop before performing the FFT. Searching for
longer cycles with multiple circuits requires more delicate
initial conditions. The hope is that a few short cycles can
help us establish an approximate symbolic dynamics, and
guess for longer cycles can be constructed by cutting and
glueing the short, known ones. For low dimensional sys-
tems, such methods yield quite good systematic initial
guesses for longer cycles [24].

An alternative way to initialize the search is by utiliz-
ing adiabatic deformations of dynamics, or the homotopy
evolution [25]. If the dynamical system (2) depends on a
parameter µ, short cycles might survive as µ varies pass-
ing through a family of dynamical systems, giving in the
process birth to new cycles through sequences of bifur-
cations. Most short unstable cycles vary little for small
changes of µ. So, a cycle existing for parameter value µ1

can be chosen as the initial trial loop for a nearby cycle
surviving a small change µ1 → µ2. In practice, one or
two iterations often suffice to find the new cycle.

A good choice of the initial loop significantly expe-
dites the computation, but there are more reasons why
good initial loops are crucial. First of all, if we break the
translational invariance by imposing a constraint such as
x̃1(s1, τ) = c, we have to make sure that both the ini-
tial loop and the desired cycle intersects this Poincaré
plane. Hence, the initial loop cannot be wildly different
from the desired cycle. Second, in view of (12), the loop
always evolves towards a local minimum of the cost func-
tional (13), with discretization points moving along the
ṽ−λv fixed direction, determined by the initial condition.
If the local minimum corresponds to a zero of the cost
functional, we obtain a true cycle of the dynamical flow

(2). However, if the value of cost functional is not equal
to zero at the minimum while the gradient is zero, (18)

yields a singular matrix Â. In such cases the search has
to be abandoned and restarted with a new initial loop
guess. In the periodic orbit searches of sect. V starting
with blind initial guesses (guesses unaided by a symbolic
dynamics partition), such local minima were encountered
in about 30% of cases.

C. Symmetry considerations

The system under consideration often possesses certain
symmetries. If this is the case, the symmetry should be
both be feared for possible marginal eigen-directions, and
be embraced as a guide to possible simplifications of the
numerical calculation.

If the dynamical system equations (2) are invariant
under a discrete symmetry, the concept of fundamental
domain [5, 26] can be utilized to reduce the length of the
initial loop when searching for a cycle of a given symme-
try. In this case, we need discretize only an irreducible
segment of the loop, decreasing significantly the dimen-
sionality of the loop representation. Other parts of the
loop are replicated by symmetry operations, with the full
loop tiled by copies of the fundamental domain segment.
The boundary conditions are not periodic any longer, but
all that we need to do is modify the cyclic terms. Instead
of using M1 and M2 in (17), we use M1Q and M2Q

−1,
where Q is the relevant symmetry operation that maps
the fundamental segment to the neighbor that precedes
it. In this way, a fraction of the points represent the cycle
with the same accuracy, speeding up the search consid-
erably.

If a continuous symmetry is present, it may compli-
cate the situation at first glance but becomes something
that we can take advantage of after careful checking. For
example, for a Hamiltonian system unstable cycles may
form continuous families [27, 28], with one or more mem-
bers of a family belonging to a given constant energy sur-
face. In order to cope with the marginal eigendirection
associated with such continous family, we search for a
cycle on a particular energy surface by replacing the last
row of equation (18) by an energy shell constraint [16].
We put one point of the loop, say x̃2, on the constant
energy surface H(x̃) = E, and impose the constraint
▽H(x̃2) · δx̃2 = 0, so as to keep x̃2 on the surface for
all τ . The integration of (10) then automatically brings
all other loop points to the same energy surface. Alter-
natively, we can look for a cycle of given fixed period T
by fixing λ and dropping the constraint in the bottom
line of (18). These two approaches are conjugate to each
other, both needed in applications. In most cases, they
are equivalent. One exception is the harmonic oscillator
for which the oscillations have identical period but dif-
ferent energy. Note that in both cases the translational
invariance is restored, as we have discarded the Poincaré
section condition of sect. II B. As explained in [6], this



7

causes no trouble in numerical calculations.

V. APPLICATIONS

We have checked that the iteration of (18) yields
quickly and robustly the short unstable cycles for stan-
dard models of low-dimensional dissipative flows such as
the Rössler system [29]. A more daunting challenge are
searches for cycles in Hamiltonian flows, and searches for
spatio-temporally periodic solutions of PDEs. In all nu-
merical examples that follow, the convergence condition
is F 2 < 10−5.

A. Hénon-Heiles system and restricted three-body

problem

First, we test the Hamiltonian version of the Newton
descent derived in Sect. III by applying the method to
two Hamiltonian systems, both with two degrees of free-
dom. In both cases, our initial loop guesses are rather
arbitrary combinations of trigonometric functions. Nev-
ertheless, the observed convergence is fast.

The Hénon-Heiles system [30] is a standard model in
celestial mechanics, described by the Hamiltonian

H =
1

2
(p2

x + p2
y + x2 + y2) + x2y −

y3

3
. (19)

It has a time reversal symmetry and a three-fold dis-
crete spatial symmetry. Figure 2 shows a typical appli-
cation of (14), with the Newton descent search restricted
to the configuration space. The initial loop, Fig. 2(a),
is a rather coarse initial guess. We fix arbitrarily the
scaling λ = 2.1, that is, we search for a cycle p of the
fixed period Tp = 13.1947, with no constraint on the en-
ergy. Figure 2(b) shows the cycle found by the Newton
descent, with energy E = 0.1794, and the full discrete
symmetry of the Hamiltonian. This cycle persists adia-
batically for a small range of values of λ; with λ changed
much, the Newton descent takes the same initial loop into
other cycles. Figure 2(c) verifies that the cost functional
F 2 decreases exponentially with slope -2 throughout the
τ = [0, 10] integration interval, as predicted by (12). The
points get more and more sparse as τ increases, because
our numerical implementation adaptively chooses bigger
and bigger step sizes δτ .

In the Hénon-Heiles case, the accelerations ax, ay de-
pend only on the configuration variables x, y. More gen-
erally, the accelerations could also depend on ẋ, ẏ. Con-
sider as an example the equations of motion for the re-
stricted three-body problem [31],

ẍ = 2ẏ + x − (1 − µ)
x + µ

r3
1

− µ
x − 1 + µ

r3
2

,

ÿ = −2ẋ + y − (1 − µ)
y

r3
1

− µ
y

r3
2

, (20)
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FIG. 2: The Hénon-Heiles system in a chaotic region: (a)
An initial loop L(0), and (b) the unstable periodic orbit p
of period T = 13.1947 reached by the Newton descent (14).
(c) The exponential decrease of the cost function, ln(F 2) ≈

−2.0502 τ + 6.0214.

where r1 =
√

(x + µ)2 + y2, r2 =
√

(x − 1 + µ)2 + y2.
These equations describe the motion of a test particle in
a rotating frame under the influence of the gravitational
force of two heavy bodies with masses 1 and µ ≪ 1 fixed
at (−µ, 0) and (1 − µ, 0) in the (x, y) coordinate frame.
The stationary solutions of (20) are called the Lagrange
points, corresponding to a circular motion of the test
particle in phase with the rotation of the heavy bodies.
The periodic solutions in the rotating frame correspond
to periodic or quasi-periodic motion of the test particle
in the inertial frame. Figure 3 shows an initial loop and
the cycle to which it converges, in the rotating frame.
Although the cycle looks simple, the Newton descent re-
quires advancing in small δτ steps in order for the initial
loop to converge to it.

In order to successfully apply the Hamiltonian version
of the Newton descent (14), we have to ensure that the
test particle keeps a finite distance from the origin. If
a cycle passes very close to one of the heavy bodies,
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FIG. 3: (a) An initial loop L(0), and (b) the unstable periodic
orbit p of period Tp = 2.7365 reached by the Newton descent
(14), the restricted three body problem (20) in the chaotic
regime, µ = 0.04.

the acceleration can become so large that our scheme
of uniformly distributing the loop points in time might
fail to represent the loop faithfully. Another distribu-
tion scheme is required in this case, for example, making
the density of points proportional to the magnitude of
acceleration.

B. Periodic orbits of Kuramoto-Sivashinsky system

The Kuramoto-Sivashinsky equation arises as an am-
plitude equation for interfacial instability in a variety of
contexts [32, 33]. In 1-dimensional space, it reads

ut = (u2)x − uxx − νuxxxx, (21)

where ν is a “super-viscosity” parameter which controls
the rate of dissipation and (u2)x is the nonlinear con-
vection term. As ν decreases, the system undergoes a
series of bifurcations, leading to increasingly turbulent,
spatio-temporally chaotic dynamics.

If we impose the periodic boundary condition u(t, x +
2π) = u(t, x) and choose to study only the odd solutions
u(−x, t) = −u(x, t), u(x, t) can be expanded in a discrete
spatial Fourier series [24],

u(x, t) = i

∞
∑

k=−∞

ak(t)eikx, (22)

where a−k = −ak ∈ R . In terms of the Fourier com-
ponents, PDE (21) becomes an infinite ladder of ODEs,

ȧk = (k2 − νk4)ak − k

∞
∑

m=−∞

amak−m . (23)

In numerical simulations we work with the Galerkin trun-
cations of the Fourier series since in the neighborhood of
the strange attractor the magnitude of ak decreases very
fast with k, high frequency modes playing a negligible
role in the asymptotic dynamics. In this way Galerkin
truncations reduce the dynamics to a finite but large
number of ODEs. We work with d = 32 dimensions in
our numerical calculations. In ref. [24], multipoint shoot-
ing has been successfully applied to obtain periodic orbits
close to the onset of spatiotemporal chaos (ν = 0.03). In
this regime, our method is so stable that big time steps
δτ can be employed even at the initial guesses, leading to
extremely fast convergence. We attribute this robustness
to the simplicity of the structure of the attractor at high
viscosity values.

The challenge comes with decreasing ν, with the dy-
namics turning more and more turbulent. Already at
ν = 0.015, the system is moderately turbulent and the
phase space portraits of the dynamics reveal a complex
labyrinth of “eddies” of different scales and orientations.
While the highly unstable nature of orbits and intricate
structure of the invariant set hinder applications of con-
ventional cycle-search routines, in this setting our vari-
ational method shines through. We design rather arbi-
trary initial loops from numerical trajectory segments,
and the calculation proceeds as before, except that now
a small δτ has to be used initially to ensure numerical
stability. Topologically different loops are very likely to
result in different cycles, while some initial loop guesses
my lead to local nonzero minima of the cost functional
F 2. As explained in Sect. IV, in such cases the method
diverges, and the search is restarted with a new inital
loop guess.

Two initial loop guesses are displayed in Fig. 4, along
with the two periodic orbits detected by the Newton de-
scent. In discretization of the initial loops, each point has
to be specified in all d dimensions; here the coordinates
{a1, a2} are picked so that topological similarity between
initial and final loops is visually easy to identify. Other
projections from d = 32 dimensions to subsets of 2 coor-
dinates appear to make the identification harder, if not
impossible. In both calculations, we molded segments
of typical trajectories into smooth closed loops by the
Fourier filtering method of Sect. IV. As the desired orbit
becomes longer and more complex, more sampling points
are needed to represent the loop. We use N = 512 points
to represent the loop in the (a)-(b) case and N = 1024
points in the (c)-(d) case. The space-time evolution of
u(x, t) for these two unstable spatio-temporally periodic
solutions is displayed in Fig. 5. As u(x, t) is antisymmet-
ric on [−π, π], it suffices to display the solutions on the
x ∈ [0, π] interval.
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FIG. 4: The Kuramoto-Sivashinsky system in a spatio-
temporally turbulent regime (viscosity parameter ν = 0.015,
d = 32 Fourier modes truncation). (a) An initial guess L1,
and (b) the periodic orbit p1 of period T1 = 0.744892 reached
by the Newton descent. (c) Another initial guess L2, and (d)
the resulting periodic orbit p2 of period T2 = 1.184668.

VI. DISCUSSION

In order to cope with the difficulty of finding periodic
orbits in high-dimensional chaotic flows, we have devised
the Newton descent method, an infinitesimal step variant
of the damped Newton-Raphson method. Our main re-
sult is the PDE (10) which solves the variational problem

(a) x

t

0  1  2  3  

1  

0.6

0.2

   

(b) x

t

0  1  2  3  

1  

0.6

0.2

   

FIG. 5: Level plot of the space-time evolution u(x, t) for
the two spatiotemporally periodic solutions of Fig. 4: (a) the
evolution of p1, with start of a repeat after the cycle period
T1 = 0.744892, and (b) one full period T2 = 1.184668 in the
evolution of p2.

of minimizing the cost functional (13). This equation de-
scribes the fictitious time τ flow in the space of loops
which decreases the cost functional at uniform exponen-
tial rate (see (12)). Variants of the method are presented
for special classes of systems, such as Hamiltonian sys-
tems. An efficient integration scheme for the PDE is de-
vised and tested on the Kuramoto-Sivashinsky system,
the Hénon-Heiles system and the restricted three-body
problem.

Our method uses information from a large number of
points in phase space, with the global topology of the
desired cycle protected by insistence on smoothness and
a uniform discretization of the loop. The method is quite
robust in practice.

The numerical results presented here are only a proof
of principle. We do not know to what periodic orbit the
flow (10) will evolve for a given dynamical system and a
given initial loop. Empirically, the flow goes toward the
“nearest” periodic orbit, with the largest topological re-
semblance. Each particular application will still require
much work in order to elucidate and enumerate relevant
topological structures. The hope is that the short spatio-
temporally periodic solutions revealed by the Newton
descent searches will serve as the basic building blocks
for systematic investigations of chaotic and perhaps even
“turbulent” dynamics.
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