
VARIATIONAL METHODS FOR THE SOLUTION OF 

PROBLEMS OF EQUILIBRIUM AND VIBRATIONS 

R. COURANT 

As Henri Poincaré once remarked, "solution of a mathematical 
problem" is a phrase of indefinite meaning. Pure mathematicians 
sometimes are satisfied with showing that the non-existence of a solu-
tion implies a logical contradiction, while engineers might consider a 
numerical result as the only reasonable goal. Such one sided views 
seem to reflect human limitations rather than objective values. In 
itself mathematics is an indivisible organism uniting theoretical 
contemplation and active application. 

This address will deal with a topic in which such a synthesis of 
theoretical and applied mathematics has become particularly con-
vincing. Since Gauss and W. Thompson, the equivalence between 
boundary value problems of partial differential equations on the 
one hand and problems of the calculus of variations on the other 
hand has been a central point in analysis. At first, the theoretical in-
terest in existence proofs dominated and only much later were prac-
tical applications envisaged by two physicists, Lord Rayleigh and 
Walther Ritz ; they independently conceived the idea of utilizing this 
equivalence for numerical calculation of the solutions, by substituting 
for the variational problems simpler approximating extremum prob-
lems in which but a finite number of parameters need be determined. 
Rayleigh, in his classical work—Theory of sound—and in other pub-
lications, was the first to use such a procedure. But only the spectacu-
lar success of Walther Ritz and its tragic circumstances caught the 
general interest. In two publications of 1908 and 1909 [39], Ritz, 
conscious of his imminent death from consumption, gave a masterly 
account of the theory, and at the same time applied his method to 
the calculation of the nodal lines of vibrating plates, a problem of 
classical physics that previously had not been satisfactorily treated. 

Thus methods emerged which could not fail to attract engineers 
and physicists; after all, the minimum principles of mechanics are 
more suggestive than the differential equations. Great successes in 
applications were soon followed by further progress in the under-
standing of the theoretical background, and such progress in turn 
must result in advantages for the applications. 
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The following address will try to convey an idea of this interplay 
between practical and theoretical points of view. Completeness can-
not be attempted; rather some selected topics with which the 
speaker has been personally concerned will be discussed. 

Usually the solution of a difficult problem in analysis proceeds 
according to a general scheme : The given problem P with the solution 
5 is replaced by a related problem Pn so simple that its solution Sn 

can be found with comparative ease. Then by improving the ap-
proximation Pn to P we may expect, or we may assume, or we may 
prove, that Sn tends to the desired solution S of P. The essential 
point in an individual case is to choose the sequence Pn in a suitable 
manner. 

Here we shall deal mainly with problems of equilibrium and vibra-
tions (boundary value and eigenvalue problems,1 respectively). They 
lead to linear self-adjoint differential equations for an unknown 
function u{x, y): 

(1) L(u) = ƒ, 

or 

(2) L(u) + \u = 0, 

in a two-dimensional domain of the x, ;y-plane, or rather to equivalent 
variational problems for the kinetic and potential energies of the 
system. 

I. T H E VARIATIONAL PROBLEMS 

We assume our domain B bounded by a piecewise smooth curve 
C, and we denote the arc length measured along C by s1 and differ-
entiation in the direction of the inward normal by d/dn or by a sub-
script n. 

1. Quadratic f unctionals. Our variational problems refer to quad-
ratic functional 

Q(v) = Q(v, v) 

defined by symmetric bilinear expressions such as 

(3) D(v, w) = I I (vxwx + VyWy)dxdyt 

(4) M(v, w) = I I [AZJAW + a{vxxwyy + vyywxx — 2vxywXy)]dxdy> 

1 Problems of critical loads (buckling) are likewise mathematically formulated as 

eigenvalue problems. 
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i943l PROBLEMS OF EQUILIBRIUM AND VIBRATIONS 3 

which occur in the study of membranes and plates, respectively. In 
(4) the symbol A denotes the Laplacian operator, and a a constant. 
Furthermore, we shall have to use other quadratic integrals defined 
by bilinear expressions such as 

(5) H(v, w) = I I vwdxdy, 

(6) K(v, w) = I vwds, 
J c 

(7) R(v, « 0 = 1 vxxwxxdx, 

where L is a line y = const, in B and C is the boundary of B. We then 
consider functionals such as 

Q(v, w) = aD(v, w) + bM(v, w) + cK(v, w) + dR(v, w), 

where a, 6, c, d are constants. Always the "admissible" junctions u> v, 

w, • • • are restricted by the condition tha t all the occurring inte-
grands be at least piece wise continuous. 

The stable equilibrium of a plate or membrane under an external 
pressure ƒ is characterized by a variational problem of the type 

(8) Q(v) + 2 H(v, ƒ) = minimum, 

for the deflection v, whereas vibrations of plates, and membranes cor-
respond to the problem of finding stationary values, i>2=X, of 

(9) Q(v)/H(v). 

The values v thus defined are the natural frequencies of the system. 
Q(v) corresponds to the potential energy of the system in the case of 
equilibrium, while for vibrations Q(v) and H(v) are the "reduced" 
potential and kinetic energies, respectively.2 Terms of the form K 

and R appearing in the expression Q represent additional energies 

concentrated along the boundary C of B or along a line L in B. For ex-
ample, in the case of reinforced plates we would have Q = M+dR if 
the reinforcement consists of a bar along the line L. 

2 By "reduced" energies we mean the following: If we assume the free system vi-
brating with a frequency w (not necessarily a natural frequency), then the deflection 
u may be represented in the form u~v cos wt, where v is a function of position only. 
The potential energy V may then be written in the form Q(v) cos2w/ and the kinetic 
energy T in the form co2H(v) sin2co/; the quantities Q and H are termed the reduced 
energies. 
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2. Rigid and natural boundary conditions. (See [1, 2, 9].) The 
Euler differential equations (1) or (2) of our variational problems 
must be supplemented by appropriate boundary conditions. If we 
focus our attention on the differential equations as such, it is not at 
all obvious what boundary conditions belong to a particular problem 
of mechanics. However, from the point of view of the calculus of 
variations a complete clarification of this delicate question is almost 
automatically obtained if the mathematical reasoning follows our 
mechanical intuition. In the first place we observe that in a varia-
tional problem (not so in a problem of differential equations) we 
need not in advance impose boundary conditions in order to single 
out a specific solution. If the functions admissible in the competition 
are not subjected to restrictions at the boundary, we speak of a 
"free problem." In these problems the first variation of the functional 
will contain terms referring to the boundary, and the vanishing of 
the first variation will imply not only Euler's differential equation 
for the domain B but also conditions on the boundary C, which we 
call "natural boundary conditions." Now the dominant fact is: appro
priate boundary conditions for differential equations are obtained as 
natural boundary conditions of corresponding variational problems. In 
the latter they may, but they need not be prescribed in advance. 

There is only the exceptional case, often termed the "simplest case 
of a variational problem" of fixed boundary values of u or derivatives 
of u or other expressions in u. Here the situation seems somewhat ob-
scured. (The clamped membrane with the boundary condition u = 0 
and the clamped plate with the boundary conditions u = ux=

:Uy = 0 
belong in this category.) Such fixed or rigid or artificial boundary con
ditions must be explicitly stipulated for the variational problem not 
only for the differential equation. However, we shall recognize them 
as limiting cases or degenerations of natural conditions. 

Physically, rigid conditions correspond to rigid constraints of the 
system at the boundary C while natural conditions express equilib-
rium of the system of C if along C partial or full freedom of motion 
is permitted. 

To understand the significance of natural boundary conditions the 
following observation is essential: The Euler differential equations 
depend only on the domain integrals or the energies spread over B. 
But the natural boundary conditions are essentially affected by the 
boundary integrals representing those contributions to the energies 
which are concentrated along the boundary C. These terms lead to a 
great variety of possible natural boundary conditions for the same 
differential equation. In a somewhat different way we may formulate 
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19431 PROBLEMS OF EQUILIBRIUM AND VIBRATIONS 5 

the fact: Natural boundary conditions, but not Euler's equations, are 
affected by divergence expressions in the domain integrals. 

2a. Examples. Plates, plane torsion for multiply-connected do

mains. As an example we consider a membrane with a free boundary. 
A pressure ƒ of average value zero may act on the membrane. In this 
case we have a variational problem for D(v) +2H(v, ƒ) ; if f denotes an 
arbitrary variation of v, the variational condition is 

D(V, r) + ff (r, ƒ) = o. 

Transforming D(v, f) by Green's formula into a domain integral 
plus a boundary integral, we find the natural boundary condition 

dv 

- = o, 
an 

expressing the fact that no force acts on the boundary C. For a plate, 
free at the boundary, Q(v) = M{v), and the natural boundary condi-
tions appear as the classical Kirchhoff conditions: 

2 2 

(1 + a)Av = a(vxxxn + 2vxyxnyn + vvvyn), 

— Av = a(vxxxnx8 + vxy[xnys + xsyn) + vvyynyù> 
dn 

where xn> yn and xa, y8 are, respectively, direction cosines of the inner 
normal and tangent vector along C. 

In M{v) the term a(vxxvyy—vly)
:=ad(vxVyy)/dx—ad(vxvXy)/dy is a 

divergence expression, very essential for Kirchhoff's natural boundary 
conditions but irrelevant for Euler's differential equation AAz; = 0 
and without consequence for the clamped plate. 

Similar remarks apply to natural "discontinuity conditions" that 
arise if energy is concentrated along lines L interior to J5, such as in 
the case of reinforced plates. For example, for a rectangular plate 
clamped at the boundary but reinforced by a bar along the line y = 0, 
the variational problem becomes 

Q(v) + 2H(v,f) + kR(v) = ƒ ƒ [(AÏ;)2 + 2a(vxxvvy - vly)]dxdy 

+ k I vxxdx + 2 I I vfdxdy = mm. 

with the condition that z ; = ^ = ^ = 0on C and v, vxt vy are continuous 
in B while the second derivatives of v are at least piecewise continu-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ous in B. If f is an arbitrary variation of v satisfying these conditions, 
we obtain as above not only the Euler equation AAz;+ƒ = (), but also 
the natural discontinuity condition 

1+ d
4 

[(Av + avxx)\ = v(x, 0), 
dx4 

where the symbol [g]t means the amount of discontinuity suffered 
by a function g in crossing the line y==0 from positive to negative 
values of y. Another example of a somewhat different character is the 
the problem of torsion of long columns with multiply connected cross sec

tions. The contour C of the cross section may include a domain B 

in the x, ^-plane from which are removed holes Bi, B^ BSl • • • with 
contours G, C2, C3, • • • and areas Ai, A^ Az, • • • . The multiply-
connected domain between C and Ci, C2, C3, • • • may be called B*. 

FIG. 1 

Then the adequate variational formulation of the torsion problem in 
proper units is: To find a function <j> = u continuous in B + C, having 
piecewise continuous first derivatives in J5, having the boundary 
values zero on C and constant, but not prescribed values d in the 
holes Bi, such that for the whole domain B 

#(<*>) = ƒ ƒ [(*; + *;) + 2*]dxdy 

attains its least value d for 0 = w. The function u then will give the 
stresses in the cross section by differentiation. 
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Note that this problem requires not only to determine u in 5 * as 
a solution of Euler's equation 

Au = 1 

with the boundary conditions u = 0 on C and u = const. =Ci on C», 
but also to find the constants cit The freedom for these parameters 
in the functions <j> admissible in the variational problem must lead 
to natural conditions from which the Ci are to be characterized. 

Indeed, from the variational condition D(u, Ç)XffÇdxdy = 0 valid 
for arbitrary f that vanishes on C and has constant values in each B : 
we can only obtain Euler's equation, but likewise immediately the 
natural boundary conditions 

/

• du 
— ds + CiA i = 0 

d an 

which connect the unknown boundary constants with the known 
areas Ai. 

Incidentally, for the special choice f = « we obtain (in line with 
more general results) that the solution, representing a state of equi-
librium, satisfies the relation 

S = D(u) = — I I udxdy. 

The quantity S represents the "total stiffness" of the column with 
respect to torsion. 

In the appendix we shall see how this problem, which as an ordi-
nary boundary value problem of a partial differential equation would 
be rather formidable, can be attacked numerically with success from 
the point of view developed here. 

2b. Rigid constraints as limiting cases. If we have additional en-
ergy concentrated at the boundary and expressed, for example, by the 
term K(v)=fcv2ds, then not the Euler equation but the natural 
boundary conditions will be influenced by these terms. Thus, for the 
free membrane with 

Q{v) = D{v) + yK(v) 

we obtain the natural boundary condition 

dv 
(10) — - yv = 0. 

dn 

We observe that as the parameter y increases indefinitely, that is, as 
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the elastic restoring forces at the boundary approach a rigid con-
straint, the condition (10) tends to the boundary condition v = 0 of 
the clamped membrane. This is in harmony with the fact that for 
large positive 7 the boundary values of v2 though free, must in the 
average be small in order to keep the energy Q(v) in bounds. 

Quite generally rigid boundary conditions should be regarded as 
limiting cases of natural conditions in which a parameter tends to 
infinity. This corresponds to the physical fact that rigid constraints 
are only idealized limiting cases of very large restoring f or ces.z It may 
be mentioned that this interpretation of fixed boundary conditions is 
the key to a more penetrating analysis of the question what we may 
and what we may not prescribe at the boundary (see [ l]) . 

3. General conclusions. The mere formulation of our problem in 
terms of maxima and minima leads to further important applica-
tions. As an example we mention a famous principle first formulated 
by Lord Rayleigh [38]: If a vibrating system whose energies are ex-
pressed by quadratic integrals is changed into another system by an 
increase of masses or by a decrease of elastic forces, then all the 
natural frequencies of the syste.*$ can only change toward lower 
values. This fact was recognized by the speaker (see [9]) as a conse-
quence of the following theorem, which is easily proved: The nth 

natural frequency of any of our vibration problems is the highest 

value of the lowest frequency of all systems obtained from the given 
system by imposing n — 1 constraints; or the nth eigenvalue Xn is 
the largest value attained by the minimum d(wi, • • • , wn-\) of the 
quotient Q(v)/H(v) if v is subjected to n — 1 linear conditions of the 
form 

H(v, wt) = 0, i = 1, • • • , n — 1, 

the Wi being arbitrarily chosen functions. Here "minimum" refers to 
a fixed set oi n — 1 functions w%. 

This principle can render useful service for appraising the change 
in the natural frequencies resulting from changes in the given vibrat-
ing system. We recognize immediately that a stiffening of the system 
by the introduction of new elastic forces (which lead to an increase in 
potential energy) must produce higher natural frequencies through-
out. Likewise, imposing new rigid constraints will have the same 
effect. Even quantitative results can be obtained by a simple applica-

3 I t might be mentioned that A. Weinstein's method (see §3) is a somewhat differ-
ent way of presenting rigid boundaries as limiting cases of problems with fewer re-
strictions. 
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i943l PROBLEMS OF EQUILIBRIUM AND VIBRATIONS 9 

tion of this principle. The asymptotic behavior of the natural fre-
quencies j>w=Xn/2 for large n was found by A. Sommerfeld, H. Weyl, 
and the speaker. Fpr example, the nth eigenvalue of Az/+Xz; = 0 for a 
free or clamped boundary and domain of area A behaves asymp-
totically like Awn/A. (See [9].) 

Recently Alexander Weinstein has made an interesting applica-
tion of this maximum-minimum principle to clamped plates [4]. The 
eigenvalue problem for a "supported" plate (with a = 0) refers to the 
quadratic energy expressions Q(v) = J JB{àv)2dxdy, H(v) = ffBv2dxdy. 

It is then required to make the quotient Q/H stationary only under 
the boundary condition v = 0. From this variational problem, we 
obtain the Euler equation AAz; — Xz; = 0 and one natural boundary 
condition, Az; = 0; the solutions for this problem are in this case 
identical with those of the clamped membrane. Now Weinstein, by 
imposing successively a denumerable number of boundary condi-
tions of the form Jc{dv/dn)^>ids = ̂ , ^ = 1, 2, 3, • • • , where the <j>i 

form a complete system of functions on the boundary C, obtains the 
problem of the clamped plate as a limiting case. The approximating 
problems stipulate conditions less restrictive than the limiting prob-
lem of a clamped plate, consequently they lead to smaller values of 
the minima and hence of the maxi-minima, and therefore provide 
lower bounds for the natural frequencies of the clamped plate. It is 
remarkable that the approximating problems could be solved ex-
plicitly in terms of solutions of the membrane problem [20, 21, 22]. 

II . RAYLEIGH-RITZ METHOD 

We now discuss the question of attacking a variational problem 
numerically. In principle, there are many ways in which such a 
variational problem may suggest approximations by simpler prob-
lems. The Rayleigh-Ritz method is only one of them. 

1. The principle and theoretical aspects. Suppose we seek the mini-
mum d of an integral expression or any other variational expression 
7(0) (for example, our quadratic functionals of the preceding sec-
tion). We then start with a minimizing sequence 

( 1 1 ) 4>U <t>2y 08» * " ' > 4>n, * ' * , 

that is, a sequence of functions, admissible in our variational prob-
lem, for which 

(12) lim 7(0.) = d, 
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d being the lower bound of the functional 7(0). The existence of the 
lower bound d is obvious or may be easily proved in all relevant 
problems and the existence of the minimizing sequence (11) is then a 
logical consequence. 

However, the problem in applications is one, not of the existence, 
but of the practical construction of such a minimizing sequence. Ritz's 
method is nothing but a recipe for such a construction. A minimizing 
sequence immediately furnishes an approximation to d (sometimes 
this is all we wish to know, for example, if we are interested in the 
natural frequencies of a vibrating system). Moreover, it may be 
assumed and in many cases it can be proved that the minimizing 
sequence itself will furnish a good approximation for the function u 

which actually solves the problem. 
Ritz's construction proceeds as follows : We start with an arbitrarily 

chosen system of " coordinate f unctions" 

(13) «i, co2, • • • , con, • • • , 

which should satisfy the two conditions : 
(a) Any linear combination 

(14) <j>n — cioii + c2co2 + • • • + cno)n 

of them is admissible in the variational problem. 
(b) They should form a complete system of functions in the sense 

that any admissible function 0 and its relevant derivatives may be 
approximated with any degree of accuracy by a linear combination 
of coordinate functions and of their corresponding derivatives, re-
spectively. 

If we begin with such a system of coordinate functions, it is clear 
that for n sufficiently large and for a suitable choice of the coefficients 
Cu C2, • • • , cn of (14) we can find admissible functions <f>n for which 
7(0n) differs arbitrarily little from d. In other words, it is possible to 
find a minimizing sequence 0i, 02, • • • , 0n> • • • as a sequence of 
linear combinations of the coordinate functions. In order to obtain 
such a minimizing sequence we choose the d in the following manner. 
We consider any function 0 n defined by (14) and substitute it in our 
variational problem. 7(0n) then becomes a function F(ci, • • • , cn) 

of the n parameters d which we may now determine from the ordinary 
minimum problem of the calculus 

(15) 7(0») = F(clt • • • , cn) = min. 

In the problems considered here, 7(0) is a quadratic or bilinear func-
tional, and (IS) leads to a system of n linear equations for the 
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i943 PROBLEMS OF EQUILIBRIUM AND VIBRATIONS 11 

parameters,4 a system which may be solved by established methods. 
Thus the minimizing sequence, 0 n (n = l, 2, • • • ) is found. Recalling 
our general scheme we may identify the construction of the <f>n with 
the problem Pw . 

At this point one important remark may be made [ l ] . While the 
convergence of I(0n) to d is assured, it is by no means generally true 
that 0 n tends to u, the solution of the original minimum problem, or, 
even less so, that the derivatives of <j>n tend to the corresponding 
derivatives of u. However, a comparative investigation of different 
types of variational problems reveals that, generally speaking, the 
convergence of a minimizing sequence <£i, <£2, • • • , <t>m • • • and the 
sequences of the derivatives of the <f>n is improved if the order of the 

occurring derivatives becomes higher. On the other hand, there is a 
tendency toward worse convergence as the number of independent 

variables increases. For example, in the one-dimensional problem of an 
elastic string (Q(v) —JQV'HX), the convergence of the <j>n to u is as-
sured, the derivatives $ n ' , however, need not converge to u'. But for 
the corresponding problem of the bar (Q(v) =fov"2dx), not only does 
<j>n converge to u but also <j>n to u'. On the other hand, in the mem-
brane problem even the <f>n need not converge to u, while in the 
case of the plate the convergence of <t>n to u is assured. The first 
success attained by Ritz depended largely on his good fortune in 
attacking the seemingly more difficult problem of the plate rather 
than that of the membrane. 

These facts which are intimately related to more profound ques-
tions in the general theory of the variational calculus have sug-
gested the following method of obtaining better convergence in the 
Rayleigh-Ritz method. Instead of considering the simple variational 
problem for the corresponding boundary value problem, we modify 
the former problem without changing the solution of the latter. This 
is accomplished by adding to the original variational expression 
terms of higher order which vanish for the actual solution u. For 

4 This suggests the following interpretation and generalization of the procedure 
whereby reference to a minimum problem need no longer be made: we replace our 
differential equation Z(«)=0 by the condition that L(u) should be orthogonal to n 
functions of a previously selected complete system of functions. If, then, n tends to 
infinity, the totality of all these relations will be substituted for the differential equa-
tion, and for any fixed n, u may be chosen, for example, as a linear combination (14): 
w —0n. In this general pattern that goes back to Galerkin, there is more freedom left 
for the choice of the approximations to the solution «. However, in the Rayleigh-Ritz 
method proper, generally speaking the question of convergence is more easily in-
vestigated. (The generalized view interpretation is implicitly mentioned in Ritz' 
papers and was later developed by several authors. See for example [18, 19].) 
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example, we may formulate the equilibrium problem for a mem-
brane under the external pressure ƒ as follows : 

I(v) = I I (v* + vv + vf)dxdy + I I &(Az> — ƒ) dxd;y = min., 

where & is an arbitrary positive constant or function. Such additional 
terms make I(v) more sensitive to variations of v without changing 
the solution. In other words, minimizing sequences attached to such 
a "sensitized" functional will by force behave better as regards con-
vergence [7]. 

The practical value of the method of sensitizing the integral by 
the addition of terms of higher order has not yet been sufficiently 
explored. Certainly the sensitizing terms will lead to a more compli-
cated system of equations for the d. This means that a compromise 
must be made for a suitable choice of the arbitrary positive function 
k so that good convergence is assured while the necessary labor is 
kept within bounds. 

2. Practical viewpoints. Theoretically the Rayleigh-Ritz method 
consists merely in the construction of the minimizing sequence. How-
ever, the difficulty that challenges the inventive skill of the applied 
mathematician is to find suitable coordinate functions and to esti-
mate the accuracy of the result. From a practical point of view al-
most any success depends on the selection of coordinate functions. 
If these functions are chosen without proper regard for the indi-
viduality of the problem the task of computation will become hope-
less. A choice should be made so that the system of linear equations 
for the Ci obtained from (15) will have a preponderance of terms along 
the diagonal of their matrix, and that the number of terms to be taken 
into account be kept small. Since only a few of the coordinate func-
tions will enter into the calculation, the theoretical completeness of 
the <f>n is irrelevant. I t is important that the initial function be al-
ready a fair approximation, and furthermore that the functions 0i, 
02, • • • should be sufficiently different5 so that increasing the number 
of terms will lead to an actual improvement of the approximation. 
Importance should also be attached to the need for making the 
numerical evaluation of the coefficients of our linear equations 
practicable. 

In many cases the use of polynomials for coordinate functions is 
most advantageous. Si Luan Wei has shown in his thesis that results 

5 Such a "difference" can be measured. See Courant-Hilbert, Methoden der mathe-
mateschen Physik, vol. I, p. 52. 
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for plates can be obtained by polynomials more readily and more 
accurately than by the coordinate functions originally used by Ritz 
[40]. 

Recently physicists have chosen coordinate functions according to 
the following pattern. One starts with a choice of the function o?i, 
which is expected to be a fair approximation to the actual solution. 
Then C02 is defined by co2=.L(coi). Finally one chooses o>3=L(co2) 
= LL(o>i), co4 = L(co3) —LLL(o)i)t and so on. This choice makes the 
calculation of the matrix elements of our linear equations for the Ci 

comparatively simple. Since the operator L introduces higher deriva-
tives which may lead to cumbersome complications at boundaries, 
it is understandable that such a choice of the œn seems feasible pri-
marily for infinite domains where no boundary is given and where the 
natural boundary conditions are equivalent to the finiteness of the 
variational integrals. 

3. Boundary conditions. For rigid boundary conditions the ap-
proximation by the Rayleigh-Ritz method is comparatively good. 
Few admissible coordinate functions would in most cases suffice to 
yield a result near the desired solution. This pleasant feature, how-
ever, is offset by the restriction imposed by the rigid boundary condi-
tions which in general precludes the choice of simple coordinate 
functions. 

For free boundaries and natural boundary conditions the choice of 
coordinate functions is eased considerably since no boundary condi-
tions need be stipulated in advance. As a general rule we might well 
use, for the <j>ny polynomials with undetermined coefficients. For this 
great advantage, however, we must pay a price, namely, the necessity 
for using many more terms to secure reasonable accuracy. Therefore 
it is sometimes preferable if we can satisfy in advance, at least ap-
proximately, the natural boundary conditions, by a proper choice of 
functions. Still, the advantage gained by making the <j>n polynomials 
might be decisive. 

In this connection it seems to be of importance that rigid boundaries 

can be considered as a limiting case of free boundaries, as indicated pre-
viously in §1, 2. As an example we may consider the following problem 
for a membrane: 

D(v) + 2H(v, f) + yKiv) = ƒ ƒ (vl + v*y + 2vf)dxdy 

+ 7 I v2ds — min. 
Je 
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If 7 is very large, then the free boundary problem relating to this 
expression is almost identical to the corresponding problem for a 
clamped membrane. By letting 7 tend to infinity we "freeze" the 
boundary. This suggests an at tempt to solve the equilibrium prob-
lem of the clamped plate by choosing a large numerical value for 7 
and then treating the problem as one for a free membrane. However, 
to obtain reasonable accuracy for the free problem, the larger the 
quantity 7 the more terms will be necessary. Hence the practical 
application of the method again requires a compromise—7 must be 
chosen large enough to approximate rigidity but small enough to 
keep the necessary labor within reasonable bounds. From a theoretical 
as well as from a practical point of view it would seem worth while 
to study the preferable choices of these artificial parameters. 

4. Estimates. A weak point in the Rayleigh-Ritz procedure is that 
it does not contain a principle for estimating the accuracy of the 
approximation. This is not the place to give an account of the 
numerous efforts made to fill this gap at least theoretically. For prob-
lems of equilibrium, estimates for the minimum d can be obtained by 
a method suggested by Castigliano's principle in the theory of elas-
ticity. The mathematical idea is to represent the minimum value d 

of the given problem as a maximum value of another variational 
problem (see [28]). The margins obtained are quite narrow. But the 
practical value of this accuracy does not appear great since the value 
of d in problems of equilibrium is of little interest,6 whereas we are 
concerned with the deflection u and its derivatives. In the case of 
vibrations, where the minimum values, as squares of the frequencies, 
are of considerable importance, methods for the estimation of ac-
curacy are in general less satisfactory [29]. 

5. Objections to the Rayleigh-Ritz method. The vagueness as to 
the accuracy of the approximation obtained is only one of the objec-
tions to the Rayleigh-Ritz method that may be raised. More annoy-
ing is that a suitable selection of the coordinate functions is often 
very difficult and that laborious computations are sometimes neces-
sary. For these reasons, alternative methods must be studied. 

III. METHOD OF FINITE DIFFERENCES, GENERAL RANDOM 

STATISTICAL METHODS 

As far as practical experience goes the most important of these 

6 See, however, E. Trefftz, Math. Ann. vol. 108 (1933), p. 595 where the deflection 
at a point xof yo is represented as such a minimum d of a modified functional. 
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methods is that of finite differences. In this well known procedure we 
replace differential quotients by difference quotients and integral 
expressions by finite sums defined over a set of net-points in the 
plane, for example, a quadratic net in the domain B formed by the in-
tersection of the lines x = yhfy= JJLJI (7 = 1,2, • • -, iV;/x = l ,2 , • • •, M). 

The simplified problem Pn of difference equations can very often be 
solved with relative ease. Then if we permit the mesh, h = l/n, of the 
net to tend to zero with increasing n, not only does Pn tend to P , but 
the solutions Sn of the difference equations approach the solution S of 
the original problem exceedingly well. Furthermore, we have the 
remarkable fact tha t all relevant difference quotients of first and 
higher order converge to the corresponding derivatives pertaining to 
the original problem. 

On these grounds the method of finite difference as a general pro-
cedure is often preferable to the Rayleigh-Ritz method. The latter 
might lend itself more readily to the solution of specific problems 
where suitable analytic expressions are available for coordinate func-
tions. However, in other cases experience points to the superiority 
of the method of finite differences. One of the underlying reasons is 
tha t finite differences are attached directly to the values of the func-
tion itself without an interceding medium such as the more or less 
arbitrary coordinate functions. 

If the variational problems contain derivatives not higher than the 
first order the method of finite difference can be subordinated to the 
Rayleigh-Ritz method by considering in the competition only func-
tions <j> which are linear in the meshes of a sub-division of our net 
into triangles formed by diagonals of the squares of the net. For such 
polyhedral functions the integrals become sums expressed by the 
finite number of values of <f> in the net-points and the minimum condi-
tions become our difference equations. Such an interpretation sug-
gests a wide generalization which provides great flexibility and seems 
to have considerable practical value. Instead of starting with a 
quadratic or rectangular net we may consider from the outset any 
polyhedral surfaces with edges over an arbitrarily chosen (preferably 
triangular) net. Our integrals again become finite sums, and the mini-
mum condition will be equations for the values of <j> in the net-points. 
While these equations seem less simple than the original difference 
equations, we gain the enormous advantage of better adaptability to 
the data of the problem and thus we can often obtain good results 
with very little numerical calculation. (See appendix.) 

This procedure of finite differences was analyzed from a mathemat-
ical point of view—and in particular the convergence for the quad-
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ratic mesh width A—>0 was proved—first by Philipps in unpublished 
papers, then by Philipps and Wiener [14], and at the same time by 
Lusternik and by Courant [S], and later by Courant, Friedrichs, and 
Lewy [8]. 

As was already observed by Philipps and Wiener, equations of 
finite differences can be interpreted by processes of probability—the 
so-called random walk. This connection has led Courant, R. Luene-
burg [16], and Petrovsky [ l7] to a more general attack upon our 
problems, as follows: Instead of simply replacing our integral expres-
sions by finite sums defined over a net, we may replace them in vari-
ous ways by other simple functionals and thus obtain a greater variety 
of possible approximate problems Pn. Consider, for example, the non-
negative function K(x, y; %, rj) which is assumed to be symmetric, 
to be defined and piecewise continuous in the entire plane and to 
satisfy fftZK(x, y; £, rj) d^drj = l. We then focus our attention on 
integrals of the following form 

(16) r(co) = ƒ ƒ ƒ ƒ K(x, y; *• *)[«(*, y) - «(*, v)]2dxdyd^ 

taken over the entire plane, and investigate the problem P n , 

(16a) T(œ) = min., 

for which the admissible functions are prescribed in the domain B, 

complementary to B, that is, in the portion of the plane outside of B. 

For example, if K=f(r), where r2 = (x — Q2 + (y — rj)2 a n d / ( r ) è O , 
while f(r)*=0 for r>h, it is easily verified that, as the parameter h 

tends to zero, we have T(<*))—>D(co) so that Pn tends to the boundary 
value problem for Au = 0. I t can be shown generally that the nucleus 
K may be chosen dependent on a parameter h so that T(a>) tends to a 
given quadratic functional which yields as Euler equation any pre-
scribed homogeneous elliptic differential equation. 

Now the variational condition for the problem (16a) is no longer 
a differential equation but a Fredholm integral equation, which is 
more easily treated: 

(17) u(x, y) = J J K(x, y; £, iy)«(£, y)d£dr) + g(x, y), 

where 

g(x> y) = J [^{x, y\ £, r?M£, rj)dtdr) 
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is known because u is prescribed in B. The solution un of (17) for 
K = Kn converges to the solution u of the problem P . Moreover, and 
this is the important point for practical applications, it can be proved 
that the integral equation (17) is solvable by the Neumann method of 
iteration under very wide conditions for the nucleus K. Thus we may 
develop a new method for attacking boundary value problems which, 
however, so far has not been tested in practical applications. 

I t may be remarked that , generally speaking, the iteration process 
will converge more slowly if the approximation of Pn to P becomes 
better. Hence again a compromise for practical purposes is indicated. 

In passing, we mention the intimate connection of this method with 

statistics. Let us suppose a substance to be distributed with a density 
u(x, y) over the plane. We now imagine that the substance is redis-
tributed in distinct steps in such a manner that a unit mass concen-
trated at the point P(x, y) will be spread over the plane with a 
density K(x, y; £, rj) at the point Q(%, 77). The integral equation (17) 
then characterizes a state of statistical equilibrium, if the density 
u(xj y) is prescribed in the complementary domain B of B. Of course, 
if we interpret the integrals as Stieltjes' integrals, we may include in 
our formulation even problems of finite differences and random walk 
problems of the classical type. For us here, the main objective is to 
point out a method that enables us in principle to find approximately 
solutions of boundary value problems. 

IV. METHOD OF GRADIENTS 

Still another alternative to the Rayleigh-Ritz procedure should be 
mentioned. This is the method of gradients, which goes back to a 
paper published by Hadamard in 1907 [12]. Highly suggestive as is 
Hadamard's at tempt, difficulties of convergence were encountered. 
However, recent developments in the theory of conformai mapping 
and in Plateau's problem throw new light on Hadamard's idea, so 
that it seems justified now to expect from it not only purely mathe-
matical existence proofs but also a basis for numerical treatment in 
suitable cases [13, 10, 11]. 

The principle of the method may be understood from the elemen-
tary geometric concept of a vector gradient. Let u=f(xi, • • - , # „ ) 
be a non-negative function of the n variables Xi, or as we might say 
of the position vector X = (xi, ••• ,#»»), and let us seek to determine 
a vector X = X0 for which u is at least stationary. We then proceed 
as follows: on the surface u=f(x) we move a point (xi, • • • , xn, u) 

so that Xi(t) and u(t) become functions of a time-parameter t. Then 
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the velocity of ascent or descent along the line X = X(t)> u = u(t) on 
the surface is 

— = ù = J2 XifXi = X g r a d ƒ. 
at l==i 

We now choose the line along the line along which the motion pro-
ceeds so that the descent is as steep as possible (lines of steepest 

descent). This means to make u negative and as large "as possible" in 
absolute value, for example, by choosing 

(18) X = - g r a d / , 

so that 

ù = - (grad/)2 . 

Hence the position vector X moves according to the system of ordi-
nary differential equations (18) along the lines of steepest descent 
with respect to the function ƒ. Under very general assumptions, it is 
clear that X, starting from an arbitrary initial position, will, for /—> QO , 
approach a position for which g rad , /=0 , and therefore for which ƒ is 
stationary and possibly a minimum. However, instead of using the 
continuous procedure given by the differential equation (18), we 
may proceed stepwise, correcting a set of approximations x to the 
solutions of the equations grad ƒ = 0 by corrections proportional to 
the respective components of —grad ƒ. 

This elementary idea can be generalized to variational problems. 
If we wish to determine a function u(x, y) defined in B and having 
prescribed boundary values such that u is the solution of a variational 
problem 

(19) I(v) = I I F(x> y, v, vxi vy)dxdy = min., 

then we interpret the desired function u as the limit for /—><x> of a 
function v(x, y, /) , whose values may be chosen arbitrarily for / = 0 
and for all t thereafter are determined in such a way that the expres-
sion I(v), considered as a function I(t) of /, decreases as rapidly as 
possible toward its minimal value. Of course the boundary values of 
v(x, y, t) are the same as those for u(x> y), so that vt must vanish at 
the boundary. If we choose v = v(x1 y, t), we find 

(20) î(t) = - f f VtL(v)dxdyy 
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where L(v) is the Euler expression corresponding to (20). To con-
sider a concrete example, we suppose that 

(21) I(v) = ƒ ƒ (v\ + vl)dxdy, 

so that our minimum problem amounts to determining the equi-
librium of a membrane with given boundary deflections g (s). Then 
L(v) = — 2At>. Incidentally (20) displays an analogy between the Euler 
expression and the gradient of a function f(x\y • • • , xn) of n inde-
pendent variables. The variation or "velocity" of I(v) is expressed as 
an "inner product" of the velocity of the "independent function" v 

with the Euler expression L(v), the gradient of a functional in f unc

tion space. 

We now assure ourselves of a steady descent or decrease of I(t) 

by choosing vt in accordance with the differential equation 

(22) vt = - kL(v), 

where k is a positive arbitrary function of x, y. (21) then becomes 

I(t) = - C C k[L(v)]2dxdy, 

and again we can infer that , for /—> <x>, v(x, y, t) will tend to the solu-
tion u(x, y) of the corresponding boundary value problem L(u) = 0. 

For the case of the membrane the differential equation (22) be-
comes 

(23) vt = Av, 

the equation of heat transfer. In our interpretation this equation de-
scribes a rapid approach to a stationary state along the "lines of 
steepest descent." While for the equations (23) or (22) the con-
vergence of v for /—>oo can be proved, serious difficulty arises if we 
want to replace our continuous process by a process of stepwise cor-
rections as would be required for numerical applications. Each step 
means a correction proportional to Av, thus introducing higher and 
higher derivatives of the initial function v. Another great difficulty 
is presented by rigid boundary values.7 

Yet there do exist classes of problems where such difficulties can 
be overcome if the method is extended properly. First of all we may 

7 Incidentally, if we apply this procedure to a problem for a finite net, it converges 
very well and is, as a matter of fact, nothing but a natural method of solving a system 
of linear equations by a method of iteration. 
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observe that it is not necessary to select the steepest descent along the 
gradient; it suffices to secure a safe descent at a suitably fast rate. 
Furthermore, if we consider problems for which the boundary value 
problem of the differential equation presents no difficulties for the 
domain B, but for which a degree of freedom in the boundary values 
is left, then the problem reduces to one for finding these boundary 
values, and now all our difficulties disappear. A typical example is 
the problem of the conformai mapping of a circle B onto a simply-
connected domain G, and it may be that the method of gradients 
opens a path for the attack of the problem of conformai mapping for 
multiply-connected domains and other problems as well. 

This address has emphasized more theoretical aspects. However, 
some of the general principles described may be helpful in enlarging 
our equipment for practical purposes. 

APPENDIX 8 

NUMERICAL TREATMENT OF THE PLANE TORSION PROBLEM 

FOR MULTIPLY-CONNECTED DOMAINS 

The computation of the stiffness 5 defined in §1, 2a furnishes an 
example of independent interest which permits to compare the prac-
tical merits of some of the methods described in this address. Numer-
ical calculations were carried out for the cross sections of the follow-
ing diagrams, a square from which a smaller square is cut out; and 
a square, from which four squares are cut out. In the first case our 
quadratic frame was supposed to be bounded by the lines x = ± 1 , 
y = ± 1 and x = ± 3/4, y = ± 3/4. To apply the Rayleigh-Ritz method 
for the domain as a whole would already be cumbersome because of 
the boundary conditions for admissible functions </>. However, this 
difficulty disappears if we exploit the symmetry of the domain and 
the resulting symmetry of the solution; thus we may confine our-
selves to considering only one-eighth of the domain B*, namely the 
quadrangle ABCD. For this polygon any function of the type 

<t> = a(l - x)[l + (x - 3/4)P] 

where P(x, y) is a polynomial, is admissible, and its substitution in 
the integral leads to simple linear equations for the cofficients. Thus 
for the simplest a t tempt 

</> = a(l — x) 

which leaves only one constant a to be determined, we find with a 

8 Addition not contained in the original address. 
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negligible amount of numerical labor 5 = 
fined at tempt with the function 

.339 and c= - . 1 1 . A re-

4> = a ( l - *)[1 + a(x- 3/4)y] 

yielded S = .340 and c= —.109 with little more labor. 
These results were checked with those obtained by our generalized 

method of finite differences where arbitrary triangular nets are 
permitted. The diagrams are self-explanatory. Unknown are the 

(c) (d) 

FIG. 2 FIG. 3 

net-point-values uit (c = u0). In the net-triangles our functions were 
chosen as linear, so that the variational problem results in linear 
equations for the w». The results, easily obtainable, were: case (a) 
with two unknowns: S = .344, w 0 = - . l l ; case (b) with three un-
knowns: 5 = .352, wo=—. l l ; case (c) with five unknowns 5 = .353, 
UQ= —.11; case (d) with nine unknowns, corresponding to the ordi-
nary difference method 5 = .353, u0= —.11. 

These results show in themselves and by comparison that the 
generalized method of triangular nets seems to have advantages. It 
was applied with similar success to the case of a square with four 
holes, and it is obviously adaptable to any type of domain, much 
more so than the Rayleigh-Ritz procedure in which the construc-
tion of admissible functions would usually offer decisive obstacles. 

In a separate publication it will be shown how the method can be 
extended also to problems of plates and to other problems involving 
higher derivatives. 

Of course, one must not expect good local results from a method 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 R. COURANT [January 

using so few elements. However, it might be expected that a smooth 
interpolation of the net functions obtained will yield functions which 
themselves with their derivatives are fairly good approximations to 
the actual quantities. 
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