
Geophys. J .  Int. (1995) 122,953-960 

Variational methods to calculate the hydrostatic structure of rotating 
planets 

S. Abad,’ A.F. Pacheco’ and J. Saiiudo2 
‘Departamento de Fisica Teorica, Facultad de Ciencias, Uniuersidad de Zarugoza, 50009 Zaragoza, Spain 
’Departamento de Fisica, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain 

Accepted 1995 March 15. Received 1995 March 13; in original form 1993 December 2 

S U M M A R Y  
Two variational strategies to calculate the internal flattening induced in the structure 
of slowly rotating hydrostatic planets are discussed. In the first procedure, the 
minimization of energy fixes the physical coefficients of a polynomial that describes 
the dependence of the flattening on depth. In the second, the planet is assumed to 
be divided into thin equidensity shells, and the condition of minimum energy leads 
to an algebraic method that can compete with the usual one based on Clairaut’s 
equation. These methods are applied to the Earth. The differences between them 
and other previous variational strategies are discussed. 
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1 INTRODUCTION 

The hydrostatic theory of slowly rotating self-gravitating 
bodies, and its application to the Earth, was developed by 
Clairaut and subsequently completed by other authors (see, 
for example, Jeffreys 1976). According to this theory, to the 
first order, the external flattening, f ( R )  = (a  - c) /a ,  is given 
by 

where rn is the ratio of the centrifugal to the gravitational 
acceleration at the equator, C is the moment of inertia about 
the axis of rotation, A4 is the planetary mass, R is the mean 
spherical radius of the planet, and a and c are the equatorial 
and polar radii, respectively. 

The value of the flattening at an arbitrary depth f ( r )  
( O s r s  R is the spherically averaged radius of the 
spheroidal equidensity differential shells of the rotating 
planet) fulfils Clairaut’s equation, i.e. 

and reaches, at the external surface, the value given by eq. 
(1.1). p ( r )  is the mass density, and p,(r) is its average 
within the sphere of radius r. Clairaut’s equation is obtained 
simply by imposing the condition of hydrostatic equilibrium 
on the planetary structure. 

As is well known, the condition of hydrostatic equilibrium 
can be derived from a variational principle (see, for 
example, Moritz 1990). From this perspective, one defines 

an energy functional, E, formed by the addition of the 
self-gravitating energy of the body to the centrifugal 
potential energy. No compressional energy term is included 
in E,  because the radial density profile used in this method, 
p ( r ) ,  corresponds to that of a planet which is actually 
rotating (i.e. already expanded) and not to what it would be 
in the absence of rotation. The variational objective can be 
stated as the search for the eccentricity, existing at any 
depth, that, for a fixed radial density profile p ( r ) ,  minimizes 
the energy functional, E. 

Having formulated the variational objective, one can 
devise different specific strategies to implement it, and 
compare their performances. In this paper we will develop 
two of these procedures. In the first, the squared eccentricity 
~ ~ ( r )  will be expressed as a polynomial, of various orders, in 
the r coordinate. In the limit, where E is assumed to be 
independent of r, one obtains a mean eccentricity for the 
whole planet. Increasing the order of the polynomial, i.e. 
E = Zo + E,r + Z2r2 + . . . , with Et constants, improves the 
accuracy obtained. In this formulation, the coefficients E, are 
the independent parameters that are to be varied in order to 
minimize E. In the second procedure, the planet will be 
conceptually divided into a number of thin shells, each with 
a constant density, and the eccentricities of the separating 
spheroidal surfaces between the equidensity shells will be 
the parameters that are varied to obtain a minimum energy. 
This strategy, which leads to a simple and elegant algebraic 
method, is quite efficient and can be refined to a second 
order of perturbation theory, or beyond, in a straightfor- 
ward manner. 

The second method initially resembles those developed 
by Macke et al. (1964) and Voss (1965, 1966), who, also using 
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a thin-shell strategy, mimicked Clairaut’s equation in a 
discrete form. Our method does not use the Euler-Lagrange 
equation that derives from the variational principle applied 
to E ;  on the contrary, it approaches the minimization of E in 
a direct way. In addition, we do not have to deal with 
Lagrange multipliers as these authors did, because our 
minimization process avoids the existence of constraints. 

The organization of the paper is as follows. In Section 2, 
we will define the energy functional, E, applied in all cases. 
In Section 3,  we develop the first method, calculating E as a 
function of the coefficients of the above-mentioned 
polynomial, and proceeding to its minimization. In Section 
4, the thin-shell method is explained to a first order of 
approximation. In Section 5 we develop the second order of 
approximation, and check the size of the correction. In 
Section 6 we apply both methods to the Earth, using the 
density function given by the PREM model (Dziewonski & 
Anderson 1981), and state our conclusions. Finally, in two 
appendices, we detail some of the technical steps appearing 
in the calculation of the gravitational energy terms. 

The content of the two appendices may appear somewhat 
redundant, bearing in mind that when the width of the thin 
shells of Appendix B tends to zero, one is dealing with 
spheroidal surfaces, which are essentially the objects studied 
in Appendix A. However, we decided to arrange them in 
this way to afford the maximum convenience to the reader. 

2 E N E R G Y  FUNCTIONAL 

Let us first define the energy functional, E, which is the 
cornerstone of the method. It is given by 

E = E, + E,, (2.1) 

where E, is the self-gravitating energy, and E ,  is the 
centrifugal potential energy due to the rotation. Hence, 

and 

1 
r 2  E = - - w 2  1 p(x)(lxl sin dx ,  (2.3) 

where G is the gravitational constant, p ( x )  the local mass 
density, w is the angular velocity of uniform rotation, and x 
is a position vector defined throughout the body. As usual, 
1x1 denotes the length of x, and 8 and cp are its polar and 
azimuthal angles, respectively. 

We will assume that equidensity differential shells inside 
the rotating planet have a spheroidal form. The semi-axes of 
these shells are generically denoted by c ‘  (or ci) and a’  (or 
a j ) ;  these letters have primes (in the polynomial method) or 
a subscript (in the thin-shell method) in order to distinguish 
them from c and a,  which correspond to the external values. 
As usual, we define the eccentricity of a shell characterized 
by c‘ and a’  as ~ ’ ( c ’ )  = 1 - c ” / u ’ ~ .  For a given p ( r ) ,  F ~ ( c ’ )  

for 0 5 c’ c [or equivalently ~ ~ ( r ) ]  fixes the structure of the 
body. It is the calculation of E ~ ( c ’ )  that is our goal in this 
paper. 

As was stated in Section 1, if one formally imposes the 

condition of a minimum for E, the corresponding 
Euler-Lagrange differential equation will be satisfied by 
E2(r>, and this will result in Clairaut’s equation. Here, we 
will instead proceed to perform direct parametric 
minimizations. 

3 P O L Y N O M I A L  M E T H O D  

Working with the coordinates c’, 6, and cp, the volume 
element is dx = g dc ‘de  dq, with the Jacobian, g, given by 

where E ’ ( c ‘ )  = - . 
dc” de I c,,=c, 

Denoting by r’ the specific value of r corresponding to the 
shell ( a ‘ ,  c’), i.e. r’ = ( u ‘ ~ c ’ ) ~ ’ ~ ,  the relationship between r ’ ,  
c’ and E ( c ’ )  is 

C’ r’ = 
[l - &2(C‘ ) ] ’ ”  

(3.4 

For our purposes, we can now proceed to write E,  and E ,  
in a convenient form. Using eqs (2.2) and (3.1) we obtain 
(see Appendix A) 

C r z  

1-& 
E ,  = -4z2G{[ p ( c ’ )  7 dc’ [: p(c“) 

4c” sin-’& 
X + E ‘ C “ ~ ~ ]  dc” 

E2 
- [ p ( c J ) c r 4  dc‘ l p(c”)P&’ dc” 

p(c”)P&’ dc“ 

where the primes on the c coordinates are self-explanatory, 
depending on the integral to which they belong. Likewise, 

+ g [ p ( c ’ ) - d c ‘ j .  C1s&Er  

(1 - &2)3  
(3.4) 

Now we transform these integrals into others which 
exhibit the spherically averaged density profile, p ( r ) .  This 
is achieved by inserting eq. (3.2) into eqs (3.3) and (3.4). 
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After expanding in powers of E’ and truncating to  the 
smallest power, we obtain 

R 2 R  i-45 [) p(r’)rf4r2 dr’ [, P ( Y ” ) F E ’  dr“ 

2 R  +E p ( r ‘ ) r ’ ’ w ‘  d r ’ ]  + O ( E ~ ) .  (3.5) 

It is important to realize that the factor w2 appearing in 
the E,  terms increases by one the order in the perturbative 
sense. This is the reason why the terms in E,  and terms in 
E, differ by one order of the truncation process. This fact 
will also be taken into account in Sections 4 and 5. 

Etr“, and aim to find out the 
value of the coefficients E ,  that make E a minimum. 
Substituting the polynomial into eq. (3.5) and calculating the 
radial integrals, we obtain E as a n  algebraic function in the 
unknowns, E , .  If P = 1 or  2, the conditions of minimum E 
can be worked out explicitly, and algebraically solved. For 
P>2, however, we have used numerical routines for 
minimizing functions that depend on  several parameters. In 
Section 6, we will compare these results for the case of the 
Earth, but we mention here that, for P =  1 and €or 
homogeneous bodies, we obtain f =5rn/4, i.e. the same 
result as for the Maclaurin spheroid in the slow-rotation 
regime. 

We assume that ~ ( r ’ )  = 

This relation is the parallel of eq. (3.2) in the previous 
section. 

A convenient energy notation for this case is as follows: 
the potential energy of the shell i, due to its own gravity, 
will be denoted by S ( i ) ;  the gravitational potential energy 
existing between the shells i and j ( i  < j )  will be denoted by 
U(i ,  j ) ;  finally, the centrifugal potential energy of the shell i, 
due to  rotation, will be denoted by R(i).  Thus, the energy 
functional is defined as 

N N 

E = 2 [ S ( i )  + R( i ) ]  + U ( i ,  j ) .  
r = l  ‘ . / = I  

I < /  

When S ( i ) ,  R ( i )  and U(i ,  j )  are calculated, one finds 

sin-’&, c: 
(1 - ~ f ) ~ ’ “  ___- 

F, 15 

sin-’&, c;5- 
E , - ,  15 

- ( I  - Ef-l)-3/2 

(4.3b) 

(4.3c) 

4 THIN-SHELL METHOD 
where 

In this section we present an alternative parametric strategy 
for implementing the variational principle. We will assume 
the mass distribution of the planet under consideration to be 
an onion-like structure with successive constant-density 
shells. It is important to emphasize that there is no loss of 
generality in making this assumption: a continuously varying 
density profile can always be approximated by a stratified 
model, by assuming that the shells are  infinitesimally thin. 
These shells are numbered from the centre outwards: 
i = 1,2,. . . N .  Thus an increase in N implies a greater 
accuracy of the method. The  external radii of the spherically 
averaged shells, having a given density pi, will be denoted 
by R,, and the eccentricity of the intershell surfaces by E:. 

As pointed out before, in these spheroids the polar 
(equatorial) radii will be denoted by c,(a,), and, as 
~f = 1 - cf/af, we have 

C, = (1 - ~f) l”R, .  (4.1) 

(4.4b) 

To obtain eqs (4.3a-c), one performs appropriate 
subtractions between the energies of constant-density solid 
spheroids. Technical details can be found in Appendix B. 

Now, using eq. (4.1), we express c, in terms of R, and E, .  

In the limit of small E,, we will retain only the leading 
contribution to E, i.e. up to  quadratic terms in F?. Using the 
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dimensionless variables Si = p i / p ,  and yi = R i / R ,  we easily 
find 

S(i) = n2GR'p:[s1(i) + ~ ~ ~ ( i ) ~ f - ~  

+ s ~ ~ ~ ( ~ ) E ; - ~ E ~  + sIV(i)~P] + o(E'), (4.5a) 

(4.5b) 

8 
S I1 ( ' ) -  1 - --y'  225 , - I  8 2  I )  (4.5c) 

16 
225 

SIII(i) =-y;-16:, (4.5d) 

16 8 
S (i)= - y ; - - y ;7y"  

IV (675 135 
(4.5e) 

and 

R( i )  = nw2R'pl[rI(i)  + rll(i)&f-l + rl l l ( i )~;]  + O(E'), 

rl(i) = - - ( y ;  - y:- l)tii, 

(4.6a) 

(4.6b) 
4 
15 

4 
rIl(i) =-y' 6 (4 .6~)  

45 I - '  l' 

4 
rIII(i) = - - y s6 .  

45 " 

Likewise, we obtain 

(4.6d) 

where we now explicitly observe the quadratic truncation in 
the energy terms. 

Consequently, the N independent conditions of extremum 
of the energy, 

(i + i) 
(i = 1,2,. . . , N )  

(4.9) 

can easily be expressed in a matrix form: 

N c Mk.,E:= KVkr 
P = l  

where 

ul l (4+ 1, k + 1) + uIII(C+ 1, k )  

+ ~ i v ( 4  k + 1) + ~ v ( f ,  k )  ( e s  k - 2) 

( f = k - 1 )  
uII(4 + 1, k + 1) + ulv(4, k + 1) I + uv(4, k )  + S l l I ( k )  

M k .  P = 

and 

K in eq. (4.12) sets the scale of deformation for the 
successive shells of the body, and the E? are directly 
calculated in terms of the numerical coefficients Mk,, and 

In this method, the ideal case-a planet composed of two 
major constant-density shells-is easily derived, and here we 
will merely give the results: 

KVk.  

15 
E: = K - 4 [5y: + 56,( 1 - y ; ) ] D - ' ,  (4.13a) 

15 
4 

E $  = K - [(Z + 3y;) + 36,(1 - y ? ) ] D - ' ,  (4.13b) 

D = (10~:) + 6,(4'+ 5y: - 9y:) + 6$(6 - 15y: + 9~:). (4.13~) 

These equations provide a simple estimate for a planet 
formed by a well-contrasted mantle and core. 

5 THIN-SHELL METHOD: S E C O N D - O R D E R  
CORRECTION 

The results of Section 4 were obtained by truncating the 
terms of E to the smallest order in perturbation theory. 
Obviously, this can be improved by retaining the additional 
terms of these expansions. Thus, here we will retain up to 
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(5 .  lc) 

(5.2a) 

(5.2b) 

(5 .2~)  

(5.2d) 

(5.3a) 

(5.3b) 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

(5.4e) 

(5.4f) 

The N new conditions of minimization obtained in the 
process of differentiation with respect to ~f can be expressed 

in an analogous form to those of Section 4, by defining a set 
of quantities Q,, in the form 

(5.5) 

The Q, terms are one order of magnitude lower than the 
previous independent terms KV,, and hence the correction 
they introduce to the previously calculated ~f is small. Thus, 
w6 can evaluate Q, terms using the first-order solution, and 
they will appear as the independent terms of the new system 
of N linear equations, 

N 

(5.7) 

Mk,(  being the same array of coefficients as used in the 
system of equations, to minimal order, in Section 4. The 
thus are the corrections to the eccentricities. 

In the particular case of a Maclaurin spheroid, the values 
of the coefficients introduced here are MI = 321675; 
u1 = 4/45; &: = 5m/2; Q ,  = -992&:/14175 + 16~&:/135; and 
K =4m/3. As a result, this second-order correction to the 
flattening is = -25m2/28. This coincides with what one 
would obtain from the exact development up to that order. 

6 APPLICATION T O  THE EARTH, A N D  
CONCLUSIONS 

In this work, the density profile of the Earth has been taken 
from the PREM model (Dziewonski & Anderson 1981). The 
PREM model divides the Earth into eight major zones, with 
new, finer subdivisions. This density profile allows a very 
fast calculation of all the radial integrals appearing in the 
polynomial method, so that we can proceed to the 
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Table 1. The set of parameters and results of the polynomial method. 

50 0.080167 0.059115 0.063731 0.084111 0.075718 

~~~ I 0.022525 1 0.009923 I -.075383 - .009281 I 

f - ’ (R)  

2, 1 - I - I 0 . 0 0 8 0 3 1  10.122415 I - .051028 

310.702 299.573 299.228 299.447 299.540 

Z3  I - I - I - I - .049487 10.136152 

minimization of E. The numerical values of the physical 
coefficients calculated in this process are listed in Table 1, 
depending on the number of parameters, P. Note that in the 
first column the physical coefficients have been multiplied by 
suitable powers of R, in order t o  deal with dimensionless 
quantities. In this table the prediction of the method for the 
external flattening is shown, together with the energy 
increment with respect to the strictly spherical rotating 
situation. As expected, as P grows, A E  also grows. 

The results of this method are plotted in Fig. 1 and 
compared with those from Clairaut’s equation (1.2), in 
which the adopted boundary condition at  the surface is the 
actual value of the Earth’s flattening. The value chosen for 
m, which is necessary to  implement our method, is 
m = 3.449786 X lo-’, in agreement with Moritz (1990). 

- 
I 
Lc 

2 parameters 
3 parameters 

540 - - 4 parameters 
* * * - 5 parameters 

~ Clairaut 

. .__~~ 

460 

300 

220 ‘ I I I I 

r ( k q o  
Figure 1. Performance of the polynomial method, to various orders, 
when used to describe the flattening of the Earth. 

From Fig. 1 one can easily make three observations: (i) as 
the order of the polynomial grows, e’(r) moves closer to 
Clairaut’s solution; (ii) a good description at the external 
surface demands very few parameters; (iii) an accurate 
description of .c2 near the origin, however, is awkward 
because variations of E’ at  small r / R  values involve very tiny 
energy differences. As a result, the method is rather 
insensitive there. 

To implement the second method, we have considered the 
Earth as being divided into 80 shells of equal depth, 
calculating their mean density according to  the PREM 
model. The linear system of equations described in Sections 
4 and 5 have been solved, and the results (to the second 
order) are shown in Fig. 2, together with Clairaut’s results 
[for an accurate application of Clairaut’s equation to the 
Earth, see, for example, Denis & Ibrahim (198l)l. The two 
curves are practically coincident. The slight discrepancies 
can be attributed to  the fact that Clairaut’s solution has been 

420 
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320 
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280 3 
0 1500 3000 4500 6000 7500 

r (Km) 
Figure 2. Results of the thin-shell method when used to describe 
the flattening of the Earth. The crosses correspond to the 
variational method, and the continuous line has been obtained from 
Clairaut’s equation. 
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forced to fulfil the real external flattening of the Earth, while 
in our method the only input is the p ( r )  taken from PREM. 
In our second variational method, the inner parts are 
described with great accuracy. This is a clear advantage over 
the polynomial method. For the external figure, this second 
method gives, to the first order, f - ' ( R )  = 299.4, and, to the 
second order, f - ' ( R )  = 299.7. With respect to the energies, 
using the same notation as before, we obtain 
AE/GM2R-' = -0.61709 X lop6, which is a bigger 
difference than that obtained with the polynomial method. 
This is a good check that the thin-shell method is indeed 
more powerful. 
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APPENDIX A: CALCULATION OF E ,  IN 
THE POLYNOMIAL METHOD 

We start with the gravitational potential created by a 
homogeneous solid spheroid, characterized by p, E and c, at 
a point x = (x,,  x2, x3) in its interior (Chandrasekhar 1969): 

$I = -nCp[A - A,(x :  + x:) - A3x: ] ,  (A11 

where 

A =  
2c2 sin-'& 

(1 - &2)1/2 E ' 

(1 - &2)'/2 1 - e2 
A ,  = sin-'& - - 

E3 E2 ' 

2 (1 -e2)1/2 
A , = ,  - 2 sin-'&. 

& e3 

From this expression, we can obtain the potential created 
by a differential homogeneous spheroidal shell as the 
difference between those created by a solid homogeneous 
spheroid characterized by c" + dc" and E + E'  de, and 
another similar spheroid characterized by c" and E. As the 
shell is infinitesimally thin, we can substitute the difference 

by the differentiation, 

(A31 
d+ = --nGp - d A  - d A ,  __ (x: + x:) - dA3 - x 3 ]  2 dc", 

[dc" dc" dc" 

and hence 

where 

Once the potential created by an external differential shell 
is known we calculate, by integration, the contributions of 
all the external shells: 

The spheroidal surface that contains the point under focus 
will be characterized by c', which is the lower limit of 
integration. The upper limit is c. We refer to the eccentricity 
at the point at which the potential is being calculated as 
~'(c') ;  otherwise it is e2(c"). 

From the previous considerations, we have 

r21r r7r ,-c 

where the Jacobian, the eccentricity and its derivative are all 
functions of c'. After substituting and performing the 
angular integrations, we obtain eq. (3.3). 

APPENDIX B: CALCULATION OF E ,  IN 
THE THIN-SHELL METHOD 

The gravitational potential energy of a heterogeneous body 
stratified in homogeneous homeoidal shells is the sum of the 
S ( i )  and the U(i ,  j ) ,  using the notation described in Section 
4. Let us start with U ( i ,  j ) .  

Once again, we start with the value of the gravitational 
potential created by a homogeneous spheroid of polar 
semi-axis c, density p and eccentricity e2, at a point 
x(xI, x2, x3) located in its interior (see eqs A1 and A2). 

From these formulae we can compute the potential 
created by a shell j at a point in its interior. The potential 
will be the difference between the potentials created by two 
homogeneous spheroids whose external surfaces constitute 
the borders of our shell. Denoting these by cJ, and cJ - ' ,  
E , - , ,  and writing pI for the density of the shell, we have 

+ I ( x l j  x2, xj) = --nCp,[AA2(j) 

- ul(j)(4 +4) - U3(j)xZ,I, (B1) 
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where 

A A J j )  = - 2 M l ( j ) .  

Having calculated this potential, we can now compute the 
gravitational energy of an inner shell i caused by the field 
created by an exterior shell j .  Let us denote this by 
U,<j(i - j ) .  With the convention that V ( 0 .  . . a )  is the 
volume contained by the external border of shell a and that 
V ( b )  is the volume of the individual shell 6 ,  

Using the function d j ( x )  previously calculated and the 
volume element 

c2 sin 0 dc d0 d q  
( 1  - 2 sin20)"2 ' 

dx = 

these integrals can be computed, and from them the energy 
U,<,(i -1) extracted. 

By symmetry, this energy coincides with that of the 
external shell j under the field of the internal shell i. We thus 
find eq. (4 .3~) .  

To calculate S( i ) ,  we start with the gravitational potential 
energy of a homogeneous solid spheroid, characterized by 
p,, c,, and e, (Chandrasekhar 1969): 

16 c: sin-'&, 
S,,,,,(i) - - K 2 G p j  

15 (1 - Ej)'" e, 

In this spheroid one can always assume the existence of an 
intermediate spheroidal surface, characterized by c , -  and 
E , ~ , ,  which divides the body into two parts: the internal part 
will be another solid homogeneous spheroid, and the 
external one will be a shell of the type considered here. The 
total energy of the spheroid is then 

and from this one can deduce S ( i ) ,  because the other terms 
are known. Now, with the appropriate substitution of index 
labels, we obtain eq. (4.3a). 
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