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Abstract. This work presents a few variational multiscale models for charge transport in complex
physical, chemical, and biological systems and engineering devices, such as fuel cells, solar
cells, battery cells, nanofluidics, transistors, and ion channels. An essential ingredient of the
present models, introduced in an earlier paper [Bull. Math. Biol., 72 (2010), pp. 1562–1622],
is the use of the differential geometry theory of surfaces as a natural means to geometri-
cally separate the macroscopic domain from the microscopic domain, while dynamically
coupling discrete and continuum descriptions. Our main strategy is to construct the total
energy functional of a charge transport system to encompass the polar and nonpolar free
energies of solvation and chemical potential related energy. By using the Euler–Lagrange
variation, coupled Laplace–Beltrami and Poisson–Nernst–Planck (LB-PNP) equations are
derived. The solution of the LB-PNP equations leads to the minimization of the total free
energy and explicit profiles of electrostatic potential and densities of charge species. To fur-
ther reduce the computational complexity, the Boltzmann distribution obtained from the
Poisson–Boltzmann (PB) equation is utilized to represent the densities of certain charge
species so as to avoid the computationally expensive solution of some Nernst–Planck (NP)
equations. Consequently, the coupled Laplace–Beltrami and Poisson–Boltzmann–Nernst–
Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous sys-
tems. A major emphasis of the present formulation is the consistency between equilibrium
Laplace–Beltrami and PB (LB-PB) theory and nonequilibrium LB-PNP theory at equilib-
rium. Another major emphasis is the capability of the reduced LB-PBNP model to fully
recover the prediction of the LB-PNP model at nonequilibrium settings. To account for the
fluid impact on the charge transport, we derive coupled Laplace–Beltrami, Poisson–Nernst–
Planck, and Navier–Stokes equations from the variational principle for chemo-electro-fluid
systems. A number of computational algorithms are developed to implement the proposed
new variational multiscale models in an efficient manner. A set of ten protein molecules and
a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify
the capability of the algorithms. Extensive numerical experiments are designed to validate
the proposed variational multiscale models. A good quantitative agreement between our
model prediction and the experimental measurement of current-voltage curves is observed
for the Gramicidin A channel transport. This paper also provides a brief review of the field.
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VARIATIONAL MULTISCALE MODELS FOR CHARGE TRANSPORT 701

1. Introduction. Charge transport is one of the most important processes in na-
ture and in man-made devices. Due to the continuous miniaturization of mechanical,
optical, and electronic devices, molecular mechanism holds the key to the understand-
ing of charge transport in a vast variety of complex nano-bio devices, such as deoxyri-
bonucleic acid (DNA) nanowires, molecular junctions, solar cells, fuel cells, battery
cells, molecular switches, nanotubes, field effect transistors, nanofibers, thin films, ion
channels, ATPases, neuron synapses, etc. Apart from some oxidation and/or reduc-
tion in simple chemicals, which are described by ab initio quantum theories, most
charge transport processes are associated with complex molecular structures or so-
phisticated devices in heterogeneous settings. As such, the molecular mechanism of
the charge transport often involves an excessively large number of degrees of freedom
and gives rise to enormous challenges to theoretical modeling and computation [181].

One typical system is the metal oxide semiconductor field effect transistor (MOS-
FET), or complementary metal oxide semiconductor (CMOS), which is the funda-
mental building block of large scale integrated circuits used in almost all electronic
equipments. Nanoscale transistors, which are commonly used nowadays, still operate
by the classical principle, while severe quantum effects, i.e., channel tunneling and gate
leakage, have to be suppressed using appropriate electrostatic potentials and designs
[54, 134]. Quantum structures, including nano-mechanical resonators, quantum dots,
quantum wires, single electron transistors, and similar low-dimensional structures,
have been contemplated and/or prototyped [102, 70]. They utilize the fundamental
properties of nature, such as quantum coherence, i.e., the possibility for a quantum
system to occupy several states simultaneously, and quantum correlation or entangle-
ment, which do not have direct analogues in classical physics. The charge transport
and performance of quantum devices are subjects of intensive research [27].

Another example is the transport behavior of charge and water in the proton
exchange membranes (PEMs) of fuel cells, which remains a subject of much interest
in both theoretical and experimental studies [178]. The role of PEMs in the selective
permeation of protons and effective blocking of anions is essential to fuel cell perfor-
mance. The molecular morphology of PEM polymers, including Nafion, most likely
consists of negatively charged pores of nanometer diameter. Meticulous water man-
agement is crucial for avoiding both dehydration and flooding of the fuel cell so as
to sustain its continuous function [74, 86]. The understanding of the PEM fuel cell’s
working principle and the improvement of the fuel cell’s performance are strategically
important to alternative and environmentally friendly energy sources [137]. However,
the underlying complex material structures, large spatial dimensions, chemical reac-
tions, and charge and mass transport in the fuel cells pose severe challenges to their
theoretical understanding.

Similar to fuel cells, battery cells have been intensively studied and will continue
to be an important topic in chemistry, physics, engineering, and material sciences
for years to come [160]. A battery cell unit typically consists of positive and neg-
ative electrode phases, separated by a functional polymer electrolyte, which selec-
tively permeates certain ions. Battery charge/discharge cycling often induces volu-
metric change or deformation, which may lead to delamination at particle-binder and
particle-current collector interfaces and the loss of electrical connectivity [151]. These
problems contribute to battery capacity fading and mechanical failure. A main task
in battery cell design and modeling is to improve battery performance by reducing
charge/discharge cyclic deformation. The Nernst–Planck (NP) equation is often used
in the field to model battery electrokinetics [174, 132]. Moreover, chemical, ther-
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(a) (b)

Fig. 1 Illustration of an ion channel and its multiscale simplification. (a) Atomic view of the
Gramicidin A (GA) channel in the membrane and aqueous environment. (b) A cross-section
of the multiscale representation of the system.

modynamic, mechanical, and electrostatic properties of realistic microstructures are
important aspects as well.

The other interesting subject concerns nanofluidics, which is a new interdisci-
plinary field that makes use of precise control and manipulation of fluids at sub-
micrometer and nanometer scales to study the behavior of molecular and biological
systems. Fluids confined at the nanometer scale exhibit physical behaviors which
are not observed at larger scales, because the characteristic length scale of the fluid
coincides with the length scale of the biomolecule and the scale of the Debye length.
Micro-/nanofluidic devices can be used to obtain a variety of interesting basic measure-
ments, including molecular diffusion coefficients [105], pH values [183, 122], chemical
binding affinities [105], and enzyme reaction kinetics [60, 88]. Nano-bio-fluidic tech-
niques have been instrumented for polymerase chain reaction (PCR) amplifications
[19], macromolecule accumulator [185, 40], electrokinetics [14], biomaterial separa-
tion [110], membrane protein crystallization [120], and DNA computing processors
for gene expression analysis [191]. Recently, the state of the art in nanofluidic dy-
namic arrays has involved high-throughput single nucleotide polymorphism genotyp-
ing [175]. Nanofluidic devices have also been widely used for electronic circuits [187],
local charge inversion [91], and photonic crystal circuits [67]. At the submillimeter
scale, microfluidic and digital microfluidic devices have been widely used for elec-
trowetting, electrode array, dielectrophoresis, DNA pyrosequencing, DNA miniatur-
ized sequencing, immunoassay, cell manipulation, cell separation, and cell patterning.
Currently, development in microfluidics and nanofluidics is essentially empirical [159].
Since nanofluidic device prototyping and fabrication are technically challenging and
financially costly, the lack of theoretical prediction and quantitative understanding
hinders the further development of the field.

Finally, ion channels are transmembrane proteins that facilitate selected ion per-
meation and maintain proper cellular ion compositions [55]. The phospholipid bilayer
provides a low dielectric hydrophobic barrier to the passage of charged ions, while
strongly polar or even charged amino acids of ion channel proteins offer an ion con-
ducting pathway across the hydrophobic interior of the membrane bilayer [97, 107].
Figure 1(a) presents a graphic representation of an ion channel. Ion channels play
critical roles in many physiological functions, such as the conversion of chemical, phys-

D
o

w
n
lo

ad
ed

 0
6
/2

5
/1

5
 t

o
 1

4
1
.1

6
5
.2

2
6
.4

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL MULTISCALE MODELS FOR CHARGE TRANSPORT 703

ical, mechanical, photonic, and thermal stimuli into electric signals so that they can
pass through nerves and be analyzed by a brain [69]. Additionally, they maintain an
intercellular material and charge balance, regulate signal transduction, and control
cardiac excitability. Therefore, ion channels are crucial to cell survival and function,
and are key components in many biological processes. Physically, ion channels are
mostly gated by ligands or voltages—the opening or closing of ligand-gated ion chan-
nels is controlled by the binding of ligands to the channel protein, while the state
of voltage-gated ion channels depends on the electric field gradient across a plasma
membrane. Ion channels can be regarded as nature-made nano-bio transistors. The
health impact of ion channels has been well recognized—ion channels are common
targets in rational drug design [69].

A common feature of the aforementioned nano-transistor, fuel cell, battery cell,
nanofluidic, and ion channel systems is the involvement of charge transport. The main
purpose of our theoretical modeling of charge transport is to predict device charac-
teristics and performance. This amounts to the understanding of transport features,
including the rate of charge movement, current-voltage (I-V) characteristics, output
power, efficiency, etc. One of the most popular transport models is the Boltzmann
equation, or the Boltzmann–Vlasov equation, which describes the kinetics of a typical
particle, such as an electron, phonon, or photon, in terms of a distribution function,
Wigner distribution [101], or density operator [2], due to the free motion, binary col-
lision, and/or external field effects [90, 21, 38]. The quantum Boltzmann equation,
known as the Waldmann–Snider equation [173, 156], can provide quantum corrections
to the classical transport expression. The Waldmann–Snider equation can be formally
derived from the BBGKY hierarchy with an elegant binary collision closure [156]. Pair
particle correlations in the framework of quantum Boltzmann kinetic theory have been
considered [158, 157]. Stochastic approaches, such as the Monte Carlo algorithm, have
also been widely used for charge transport in semiconductor device simulations [99].
Other methods, such as the Fokker–Planck equation and the Master equation [98, 71],
describe the time evolution of the probability function. A commonly used transport
model for nano-electronic devices is the nonequilibrium Green’s function (NEGF) for-
malism [51, 114, 50, 163] originally developed by Schwinger [148] and Kadanoff and
Baym [104]. This approach is often used to solve the Poisson–Schrödinger equations
for charge transport in nano-electronic devices [121, 165, 4, 9]. Recently, coupled
Poisson and Kohn–Sham equations have been derived from the variational principle
to describe electron transport in MOSFETs via the density functional theory (DFT)
formalism [27]. The reader is referred to [27] for a review-style introduction to current
issues in the charge transport of nano-electronic devices.

Typically, fuel cell, solar cell, battery cell, nanofluidic, and ion channel systems
have a large number of degrees of freedom, and thus exclude the possibility of single
scale ab initio quantum mechanical descriptions, such as those used in the modeling
of electron transfer in small molecules. Theoretical models in the field are mostly
phenomenological and continuum in nature. They describe the hydrodynamic motion
and change of velocity and mass in fuel cell and nanofluidic systems, which might be
coupled to electric and/or electrostatic forces. In 1965, Rice and Whitehead proposed
coupled Navier–Stokes and Poisson–Boltzmann (PB) equations for the continuum
modeling of the transport of electrolyte solutions in long nanometer-diameter capil-
laries [138]. Navier–Stokes equations can be derived from the Boltzmann equation
[158, 157], providing a description of density, velocity, and energy. Together with the
PB equation, the Navier–Stokes equations are capable of coupling fluid motion with
electric/electrostatic forces.
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In the early 1990s, Eisenberg and his coworkers [64, 30, 7, 154, 63, 65] pioneered
the theory of the Poisson–Nernst–Planck (PNP) equations for ion transport in mem-
brane channels. Although they coined the name “Poisson–Nernst–Planck,” which is
currently very popular in many fields, a similar approach called drift-diffusion equa-
tions had previously been used in the electronic devices community for years. As a
mean field theory, the PNP model treats the ion flow as the averaged ion concentration
driven by the electrostatic potential force and ion concentration gradient. In general,
PNP theory goes beyond the Debye–Hückel limiting law and the Guoy–Chapman
theory. Unlike its use in electronic devices, fuel cells, battery cells, and nanofluidic
systems, the PNP model in ion channel modeling incorporates the atomistic (perma-
nent) charge description of channel proteins into the Poisson equation, and thus it
hybrids the macroscopic continuum description of ionic channel flows with the mi-
croscopic discrete representation of protein electrostatic charge sources; see Figure 1.
Over the years, Coalson and his coworkers have intensively calibrated and validated
the PNP and modified PNP models for realistic ion channel systems, which have sig-
nificantly advanced PNP theory [82, 44, 112, 123]. The PNP model is able to offer very
good predictions of I-V curves for many channel proteins [112, 23, 194]. Because of
the continuum representation of ions, the finite size effect and nonelectrostatic inter-
actions of ion species are not considered in the original PNP theory. To address these
drawbacks, many modified PNP models, including the approaches of the potential of
mean forces, have been proposed in the literature [109, 48, 153, 123, 96, 103, 119]. It
turns out that the potential force of the PNP model can be easily modified, while the
essential structure of the equations remains unchanged. The advantages and limita-
tions of all the above-mentioned ion channel models have been intensively discussed in
the literature [117, 118, 113, 43, 142, 44, 147, 64, 3, 8, 65, 168, 36, 44, 61, 124, 37, 41].
In addition to its success in biophysics, the PNP model is also widely used nowadays
in semiconductors [100] and electrochemistry [144, 16].

Recently, researchers have employed coupled PNP and the Navier–Stokes equa-
tions for nanofluidic simulations [30, 100, 42, 170, 198, 171, 47, 196, 32, 177, 181].
These models are able to provide a more detailed description of the ionic distribution
in nanopore channels. Chang and Yang compared the performance of the PB model
and the PNP model for the streaming current in silica nanofluidic channels [24]. Adal-
steinsson et al. combined the Brownian dynamics of ions in the nanopore channel with
the continuum PNP model for regions away from the nanopore channel [1]. Note that
in ion channel models, Brownian dynamics typically describes individual ions of finite
size in fluid regions, while treating the channel protein as a dielectric continuum [43].
Another important modeling aspect is the liquid-solid interface contact angle and
interface morphology under an external electric field. The Lippmann–Young equa-
tion is utilized for the estimation of liquid-solid interface contact angles and droplet
morphology in electrowetting-on-dielectric actuators [159]. Above-mentioned mod-
els might work quite well in a particular circumstance, but none of them provides
comprehensive predictions for general nanofluidic and fuel cell settings, because one
or more important components are missing. For example, it is not uncommon for
nanofluidic processes to induce structural modifications and even chemical reactions
[108, 167], which are not described in the above-mentioned models. Mechanical or
structural stability of PEM polymers is crucial to the fuel cell performance and is
often maintained via water management in the literature [74, 86]. Therefore, it is
imperative to develop innovative models that are able to account for configurational
changes induced by charge and mass transport processes.
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It is very likely that maintaining a fluid flow balance between intracellular and
extracellular spaces is one of the most important roles of ion channels in physiol-
ogy. A comprehensive model, which constitutes coupled PB, Navier–Stokes, NP, and
Laplace–Beltrami (LB) equations, was proposed for the dynamics and transport of
ion channels as well as fuel cell and nanofluidic systems [181]. However, currently,
the main interest in the experimental measurement of ion channels is still focused on
the current-voltage (I-V) curves to understand their electrophysiological properties.
Consequently, fluid modeling via the Navier–Stokes equation is often neglected by the
ion channel community. Compared to fuel cell and nanofluidic modeling, ion channel
modeling places more emphasis on the microscopic structure and structural modifica-
tion of channel proteins and their impact on ion permeation. One of the most detailed
ion channel models is constructed in the light of molecular dynamics [126, 142] or ex-
plicit solvent molecular dynamics. Molecular dynamics approaches typically make
use of classical force fields to describe molecular motions and are able to deal with
an entire ion channel, including ions, counterions, solvent, lipids, and proteins. To
efficiently describe transport properties, Brownian dynamics, based on the stochastic
equations of motion of ion particles driven by some generalized potential functions,
can effectively reduce the number of degrees of freedom, run up to the real time scale
of ion permeation across channel membranes, and determine ion conductance [43]. A
quite similar model is the Monte Carlo approach [95], which computes the probability
of the movement of a selected set of ion species using random samplings.

In PNP theory as well as implicit solvent representations, a solvent-solute interface
is needed for differentiating different regions with appropriate physical features, i.e.,
dielectric functions and diffusion constants, and for separating appropriate computa-
tional domains. Currently, the van der Waals surface, the solvent excluded surface
[139], and the solvent accessible surface are often utilized as solvent-protein inter-
faces. In combination with implicit solvent theories, these surface models have been
applied to biological modeling, computation, and analysis, such as protein-protein
interactions [49], protein folding [161], and DNA binding and bending [59], to name
only a few. However, from the physical perspective, these surface representations are
simply ad hoc divisions of solute and solvent regions, and they do not satisfy the
physical requirement of free energy minimization. Another problem associated with
these surface representations is the admission of nonsmooth interfaces, i.e., cusps, and
self-intersecting surfaces, which could lead to computational instabilities in molecular
simulations [46, 66, 81, 145]. To remove geometric defects, we introduced one of the
first partial differential equation (PDE) based approaches to construct biomolecular
surfaces via curvature driven geometric flows in 2005 [182]. In 2006, we proposed one
of the first variational formulations of molecular surfaces, and the resulting molecular
surface, called the minimal molecular surface, is constructed by the mean curvature
flow [12, 13]. Recently, we proposed a general framework for the construction of
biomolecular surfaces by generalized geometric flows in which the surface evolution
is determined by balancing curvature effects and potential effects [11]. The mathe-
matical structure of potential driven geometric flow was prototyped by Wei in 1999
[180] and is akin to the level set method devised by Osher and Sethian [130]. This
approach enables incorporating microscopic interactions, such as van der Waals po-
tentials, into the curvature motion. Similar smooth interfaces are used to impose
boundary conditions on complex boundaries [184].

Recently, Wei has introduced a differential geometry based multiscale paradigm
[181] for large chemical and biological systems, such as fuel cells, nanofluidics, ion
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channels, molecular motors, and viruses, which, in conjunction with their aqueous
environments, pose a challenge to both theoretical description and prediction. There-
fore, it is crucial to perform dimensionality reduction and manifold contraction by
multiscale approaches. The essential ingredient of this multiscale paradigm is to uti-
lize the differential geometry theory of surfaces and geometric measure theory as a
natural means to separate the macroscopic domain from the microscopic domain, and,
meanwhile, to couple the continuum mechanical description of the aqueous environ-
ment with the discrete atomistic description of the macromolecule. The main tactic
of the multiscale formalism is to construct multiscale free energy functionals or mul-
tiscale action functionals as a unified framework to derive the governing equations
for the dynamics of different scales and different descriptions. Differential geometry
based multiscale models are constructed for three types of aqueous macromolecular
complexes: complexes that are near equilibrium, complexes that are far from equilib-
rium, and complexes that are excessively large. Coupled PB and LB equations are
derived for systems near equilibrium. For the micro-macro description of electroki-
netics, electrohydrodynamics, electrophoresis, fuel cells, and ion channels, generalized
PNP equations are coupled to generalized Navier–Stokes equations for fluid dynamics,
Newton’s equation for MD, and the LB equation for the micro-macro interface. Fi-
nally, for excessively large aqueous macromolecular complexes, differential geometry
based multiscale fluid-electro-elastic models are introduced to replace the expensive
molecular dynamics description with an alternative elasticity formulation, which fur-
ther reduces the dimensionality of the problem.

Over the past two years, we have carried out an intensive investigation into how to
practically implement and further analyze differential geometry based multiscale mod-
els [33, 34, 35, 26, 28]. In a series of efforts, both the Eulerian formulation [33] and the
Lagrangian formulation [34] of differential geometry based solvation models have been
studied. In our Lagrangian formalism, interface elements are directly evolved accord-
ing to governing equations which prescribe a set of rules. In our Eulerian formalism,
the interface is represented in a hypersurface function which is evolved according to
the derived governing equations [33]. A Lagrangian representation can be obtained
from the projection of the hypersurface function by using an isosurface extraction
procedure. The Eulerian formulation is mathematically simple and computationally
robust, while the Lagrangian formalism is straightforward for force prescription [11]
and is computationally efficient, but usually encounters difficulties in handling the ge-
ometric break-up and/or surface merging. We have demonstrated the equivalence of
these two formulations for the solvation analysis [34]. A good agreement between our
theoretical prediction and experimental measurement has been observed for solvation
energies of tens of compounds [33, 34]. Independent confirmation of our differen-
tial geometry based solvation model has been reported in the literature [192]. For
comprehensive background on the solvation analysis, the reader is referred to two
review-style introductions [33, 34]. Most recently, a quantum mechanical formulation
has been introduced to extend our earlier two-scale solvation models to genuine mul-
tiscale formulations [35]. The use of density functional theory enables us to compute
the charge distribution from the Kohn–Sham equation, and thus has significantly
improved the predictive power of our earlier solvation models.

In another effort, we have developed differential geometry based multiscale models
for proton transport, which plays an important role in biological energy transduction,
reproduction of influenza A viruses, and sensory systems [26, 28]. However, unlike
other ion channel processes, proton permeation across membrane proteins involves sig-
nificant quantum effects and needs to be treated by quantum mechanical formulations

D
o

w
n
lo

ad
ed

 0
6
/2

5
/1

5
 t

o
 1

4
1
.1

6
5
.2

2
6
.4

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL MULTISCALE MODELS FOR CHARGE TRANSPORT 707

[128, 135]. We have proposed a multiscale/multiphysics model for the understand-
ing of the molecular mechanism of proton transport in transmembrane proteins via
continuum, atomic, and quantum descriptions, assisted by the differential geometry
representation of membrane channel surfaces. To reduce the number of degrees of
freedom, we have constructed a new density functional theory based on Boltzmann
statistics to describe proton dynamics quantum mechanically, while implicitly treating
numerous solvent molecules as a dielectric continuum. A new density functional for-
malism is introduced to represent protein density according to Boltzmann statistics,
in contrast to the Fermi–Dirac statistics used in traditional density functional theory
for electronic states. Such a change in statistics is necessary because the Hamiltonian
operator of the proton transport admits the absolute continuous spectrum, while the
Hamiltonian operator of traditional density functional theory has a discrete spectrum.
The densities of all the other ions in the solvent are treated using Boltzmann distribu-
tions in a dynamic manner, an approach that has been validated in our earlier work
[195]. An atomistic representation is given to protein molecular structures and their
charge locations. The nonelectrostatic interactions among all the ions, and between
ions and proteins, are denoted as generalized correlations and explored in detail [28].
The differential geometry based multiscale framework is utilized to put proton kinetic
energy, proton potential energy, the free energy of all other ions, and the polar and
nonpolar energies of the whole system on an equal footing. A comparison between
experimental data and theoretical predictions validates our model.

The objective of the present work is to explore new differential geometry based
multiscale formulations for heterogeneous chemical and biological systems that are
far from equilibrium. In our earlier differential geometry based multiscale models,
the chemical potential and the associated free energy are not accounted for in the
total energy functional [181]. Consequently, the NP equation is introduced from the
mass conservation of each individual chemical species with an appropriate argument
for the “diffusion flow” of a species defined with respect to the barycentric motion
of the homogeneous flow. As a result, the evolution and formation of the solvent-
solute interface are independent of the entropy of mixing. In the present work, we
construct alternative differential geometry based multiscale models for chemical and
biological systems that are far from equilibrium, by incorporating chemical potential
related energy into the total free energy functional. We also investigate the effective
reduction of the number of degrees of freedom by introducing the quasi-equilibrium
Boltzmann distribution to selected charge species, which avoids the time-consuming
solution of many three-dimensional (3D) NP equations.

The rest of this paper is organized as follows. Section 2 is devoted to the theory
and formulation of our theoretical models. We first review our differential geome-
try based solvation models, which establishes the required notation and introduces
some necessary modifications to our earlier formulations [181, 33, 34]. The modi-
fied solvation model also serves as a benchmark for nonequilibrium models when the
system returns to equilibrium. Based on this preparation, the chemical potential for-
mulation of our variational multiscale models is presented in detail. In particular,
the relations among different models are investigated. To highlight the perspective
of fluid dynamics driven charge transport, we present a differential geometry based
chemo-electro-fluid model. This model is relevant to nanofluidic and fuel cell sys-
tems. In section 3, a number of associated computational algorithms are presented
and discussed. Some of these algorithms have been developed in our earlier work over
many years to solve the PB equation [190, 189, 193, 200, 199, 25] and the classical
PNP equations [194]. Validation and application of the proposed new models are

D
o

w
n
lo

ad
ed

 0
6
/2

5
/1

5
 t

o
 1

4
1
.1

6
5
.2

2
6
.4

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

708 GUO-WEI WEI, QIONG ZHENG, ZHAN CHEN, AND KELIN XIA

carried out in section 4 using a set of ten proteins. We place the main emphasis on
the demonstration of the consistency between the equilibrium solvation model and
new nonequilibrium charge transport models. In fact, such a consistency provides a
validation for new nonequilibrium models. We further apply our new models to the
ion transport of the Gramicidin A channel protein. By a quantitative comparison,
our model prediction of the I-V curves is found to be in a good accordance with
experimental data in the literature. This paper ends with concluding remarks.

2. Variational Multiscale Models. In this section, we discuss a family of varia-
tional multiscale models for the analysis of charge transport. Our formulation makes
use of differential geometry based multiscale models [181]. The essence of our mod-
els is that the macroscopic description of the solvent is coupled to the microscopic
description of the solute via the solvent-solute interface, which, together with other
physical properties, is determined by the variational principle. As charge transport is
associated with mass transport, chemical potential comes to play a major role in our
energy based formulation. Three different descriptions of charged species in the sol-
vent, i.e., local equilibrium, local quasi-equilibrium, and nonequilibrium descriptions,
give rise to three distinct models. It is crucial to analyze the consistency among these
models. In particular, the nonequilibrium models must reproduce the equilibrium
model at equilibrium. Therefore, such consistency provides a theoretical validation
for nonequilibrium models.

In this section, we start from a minor modification of the differential geometry
based solvation model. Based on this foundation, we develop corresponding differen-
tial geometry based models for charge transport. The consistency between different
models at equilibrium is established, which is a unique feature of the present work.

2.1. Differential Geometry Based Solvation Model. Solvation is an elementary
process in nature, particularly in biological systems since 65% to 90% of cell mass is
water. All other more sophisticated processes, such as charge and mass transport,
signal transduction, transcription, and translation, occur in an aqueous environment
under physiological conditions. Consequently, the understanding of solvation is an
elementary prerequisite for the quantitative description and analysis of the above-
mentioned processes as well as many other physical systems, such as nanofluidics, fuel
cells, batteries, etc. To establish the notation, provide the background, and illustrate
our multiscale modeling procedure, we briefly review our differential geometry based
solvation model [181, 33]. In fact, we present a slightly modified solvation model in
the present work. Changes are made to the solvent-solute interaction potentials and
the Boltzmann distribution, which are necessary for the development of these new
models.

2.1.1. Total Energy Functional for Solvation. Phenomenologically, a solvation
process can be described as the creation of a solute cavity in the solvent, the hydrogen
bond breaking and formation at the solvent-solute interface, the surface reconstruction
of the solute molecule, and the entropy effect due to solvent-solute mixing. Micro-
scopically, the solvation process involves a variety of solvent-solute interactions, such
as the electrostatic, dipolar, induced dipolar, and van der Waals interactions between
the solvent and the solute. A solvation process is typically described by solvation
free energies, which can be measured by experimental means. The experimental data
provide a validation for solvation models. Typically, a solvation model provides a
description of the solvation free energy, from which many other physical properties
can be evaluated as well. It is a standard procedure to split the solvation free energy
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into two components: polar and nonpolar contributions. The polar part is accounted
for by the PB theory [115, 73, 150, 52], the polarizable continuum theory [164, 127],
or the generalized Born approximation [58, 10]. Among them, the PB theory is the
most popular and can be formally derived from basic theories [17, 129, 92]. One
commonly used nonpolar solvation model is the scaled particle theory (SPT), which
includes the surface free energy and the mechanical work of creating a cavity of the
solute size in the solvent [162, 133]. However, it is well known that classical solvation
models neglect the additional solvent-solute interaction and polar-nonpolar coupling
[172, 62, 33]. An improved nonpolar solvation free energy is given as

Gnonpolar = γArea + pVol +

∫

Ωs

Udr, r ∈ R
3,(1)

where the first two terms come from the SPT model and the third term describes the
solvent-solute interactions. Here “Area” and “Vol” are, respectively, the solute surface
area and the volume of the solute, γ is the surface tension, p is the hydrodynamic
pressure, and U denotes the solvent-solute nonelectrostatic interactions, such as the
van der Waals interaction. The integration is over the solvent domain Ωs.

We assume that the aqueous environment has multiple species. Under the as-
sumption of pairwise solvent-solute interactions, U can be obtained by summing all
the interactions of each solute atom near the interface with the solvent species,

U =
∑

α

ραUα(2)

=
∑

α

ρα(r)
∑

j

Uαj(r),(3)

where ρα(r) is the density of the αth solvent component, which may be either charged
or uncharged, and Uαj is an interaction potential between the jth atom of the solute
and the αth component of the solvent. For a single component solvent that is free
of salt, ρα(r) is the density of an uncharged solvent [33, 34]. The solvent-solute
nonelectrostatic interactions can be approximated by the Lennard–Jones potential.
In our recent work [33, 34], the Weeks–Chandler–Andersen (WCA) decomposition of
the Lennard–Jones potential based on the original WCA theory [179] is utilized to
split the Lennard–Jones potential into attractive and repulsive parts:

Uatt,WCA
αj (r) =

{
− ǫαj , 0 < |r− rj | < σj + σα,

V LJ
αj , |r− rj | ≥ σj + σα,

(4)

U rep,WCA
αj (r) =

{
V LJ
αj + ǫαj , 0 < |r− rj | < σj + σα,

0, |r− rj | ≥ σj + σα,
(5)

where ǫαj is the well-depth parameter, σj and σα are the radii of the jth solute
atom and the αth solvent component, r denotes a point in the physical space, and
rj represents the location of the jth atom in the protein. The WCA potential was
found to provide a good account of the attractive dispersion interaction in our earlier
work [33, 34]. In fact, there are many other unaccounted for interactions between the
solvent and solute at their interface, including the dielectric effect of the polarizable
solvent (water and complex ions). In the present work, we denote by U all possible
solvent-solute interactions, as shown in (2). Therefore, U contains part of the so-called
size effects as well [96, 28].
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Fig. 2 Illustration of surface function S and solvent characteristic function 1− S in a 1D setting.

The Lennard–Jones potential is singular and can cause computational difficulties
[33]. Recently, Zhao proposed a way to improve the integration stability in a realistic
setting for proteins [192]. However, further mathematical algorithms are needed for
this class of problems.

Furthermore, the surface area in (1) can be evaluated via a two-dimensional (2D)
integral [13, 11]. However, it is convenient for us to set up the total free functional
as a 3D integral in R

3. To this end, we make use of the concept of mean surface area
[181] and the coarea formula [68]

Area =

∫ 1

0

∫

S−1(c)
⋂

Ω

dσdc =

∫

Ω

|∇S(r)|dr, r ∈ R
3,(6)

where 0 ≤ S ≤ 1 is a characteristic function of the solute domain and is usually
called a surface function. It embeds the 2D surface manifold in the 3D Euclidean
space. Similarly, 1 − S is a characteristic function of the solvent domain. Here, Ω
represents the whole computational domain. The validity of the mean surface area
has been examined in our recent work [33]. By means of the hypersurface function S,
the volume in (1) can be easily defined as

Vol =

∫

Ωm

dr =

∫

Ω

S(r)dr,(7)

where Ωm is the macromolecular (i.e., solute) domain. Note that Ωs∩Ωm is not empty
because the surface function S is a smooth function, which leads to the overlapping
between Ωs and Ωm. The last term in (1) can be rewritten as

∫

Ωs

Udr =

∫

Ω

(1 − S(r))Udr.(8)

Figure 2 provides a one-dimensional (1D) illustration of the profiles of solute
characteristic function S and solvent characteristic function 1−S. The solute molecule
is located from −0.8 to 0.8Å on the x-axis. Obviously, there is an overlapping between
the solvent domain and the solute domain. As shown below, the surface function S
is determined by the LB equation.

In this work, we make use of the PB theory for the polar solvation free energy.
The variation formulation of the PB theory was originally proposed by Sharp and
Honig [149] in 1990 and was extended to the force derivation by Gilson et al. [80].
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By means of the surface function S, the polar solvation free energy can be ex-
pressed as [181]

Gpolar =

∫ {
S
[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1 − S)

[
−
ǫs
2
|∇Φ|2 − kBT

∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)]}

dr,

(9)

where Φ is the electrostatic potential, ǫs and ǫm are the dielectric constants of the
solvent and solute, respectively, and ρm represents the fixed charge density of the
solute. Specifically, one has ρm =

∑
j Qjδ(r − rj), with Qj denoting the partial

charge of the jth atom in the solute. Here kB is the Boltzmann constant, T is the
temperature, ρα0 denotes the reference bulk concentration of the αth solvent species,
and qα denotes the charge valence of the αth solvent species, which is zero for an
uncharged solvent component.

In (9), we assume the Boltzmann distribution of the form

ρα = ρα0e
− qαΦ+Uα−µα0

kBT ,(10)

with µα0 being a relative reference chemical potential which reflects the difference in
the equilibrium concentrations of different solvent species, i.e., ρα �= ρβ, given that
ρα0 = ρβ0. In section 2.2, it is seen that the Boltzmann distribution (10) occurs
naturally.

Note that the thermodynamic equilibrium is a state of full balance over the whole
domain, which might not be achieved all the time at nanoscale, due to the recognition
of microscopic interactions. The concept of local equilibrium, which is commonly
used in the Boltzmann kinetic theory [158, 157], is appropriate. Therefore, we refer
to equilibrium as being local in this work.

Combining all the energy contributions mentioned above, the total free energy
functional for the solvation system can be described as

GPB
total[S,Φ] =

∫ {
γ|∇S|+ pS + S

[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1− S)

[
−
ǫs
2
|∇Φ|2 − kBT

∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)]}

dr.

(11)

The total free energy functional (11) appears to differ widely from that in our earlier
work [181, 33]. First, the Boltzmann distribution in (10) is used. Additionally, solvent-
solute interactions (1 − S)U are omitted. To understand these modifications, let us
assume kBT ≫ qαΦ+ Uα − µα0 to obtain an expansion

−(1− S)kBT
∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)
∼ (1− S)

∑

α

ρα0 (qαΦ+ Uα − µα0) .(12)

Therefore, it is seen that the solvent-solute interactions have already been accounted
for in the new Boltzmann distribution. In this sense, the formulation (11) is consistent
with that in our earlier work [181, 33]. In fact, two more comments are in order.
First, the division between polar and nonpolar parts is quite ad hoc. Particularly, the
solvent-solute interactions can be included either in the nonpolar part or in the polar
part. Additionally, by modifying the energy term in the Boltzmann distribution, one
can easily take into consideration more interactions, such as dipole [76], multipole
[146, 106], steric effects [20], multiple dielectric constants [140], and van der Waals
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interactions in a generalized PB equation. Such a generalized PB equation might be
able to show as appropriate correlation corrections to the equilibrium density as those
computed by more expensive integral equation theories [79, 141].

2.1.2. Governing Equations for Solvation. The total solvation free energy in
(11) is expressed as a functional of the surface function S and the electrostatic poten-
tial Φ. Our goal is to minimize the total solvation free energy functional with respect
to S and Φ. By applying the variational principle, we have

δGPB
total

δS
⇒−∇ ·

(
γ
∇S

|∇S|

)
+ p−

ǫm
2
|∇Φ|2 +Φ ρm

+
ǫs
2
|∇Φ|2 + kBT

∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)
= 0.

(13)

Based on the discussion in earlier work [13, 181, 33, 34], the solution of (13) can
be obtained by solving the following generalized LB equation after the introduction
of an artificial time:

∂S

∂t
= |∇S|

[
∇ ·

(
γ
∇S

|∇S|

)
+ V1

]
,(14)

where the potential driven term is given by

V1 = −p+
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 − kBT

∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)
.(15)

The generalized LB equation (14) gives rise to the surface definition of the solvent-
solute interface.

Taking the variation with respect to Φ, we have

δGPB
total

δΦ
⇒ ∇ · ([(1 − S)ǫs + Sǫm]∇Φ) + Sρm

+ (1 − S)
∑

α

qαρα0e
− qαΦ+Uα−µα0

kBT = 0.
(16)

From (16), one obtains the generalized PB equation

−∇ · (ǫ(S)∇Φ) = Sρm + (1− S)
∑

α

qαρα0e
− qαΦ+Uα−µα0

kBT ,(17)

where ǫ(S) = (1 − S)ǫs + Sǫm is the generalized permittivity function. As shown in
our earlier work [181, 33], ǫ(S) is a smooth dielectric function gradually varying from

ǫm to ǫs. The extra term e
− Uα

kBT in (17) is due to solvent (including ions) and solute
interactions near the interface. Note that Uα is a relatively weak short range potential

and has its largest impact near the solvent-solute interface. Therefore, e
− Uα

kBT provides
a nonelectrostatic correction to the charge density near the interface.

Equations (14) and (17) describe the surface evolution and the electrostatic po-
tential, respectively. These coupled equations are called the Laplace–Beltrami and
Poisson–Boltzmann (LB-PB) equations. They form a coupled system for the dif-
ferential geometry based solvation model in the Eulerian representation. An essen-
tially equivalent Lagrangian representation of the differential geometry based solva-
tion model was derived in [34]. It has been shown [33, 34] that these solvation models
provide very good predictions of solvation energies compared to experimental data.

The solvation model describes the system at equilibrium as the charge concentra-
tion is approximated by the Boltzmann distribution. However, for charge transport
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phenomena, charges typically undergo a dynamical process driven by the generalized
electrochemical potential. As such, a nonequilibrium description for the charge con-
centration is required. In the rest of this section, we present variational multiscale
models to describe charge transport in chemical and biological systems.

2.2. Differential Geometry Based PNP Model. In the above system, the gener-
alized PB and LB equations are obtained from the variational principle. For chemical
and biological systems far from equilibrium, it is necessary to incorporate a kinetic
equation to describe the dynamics of charged particles. Typically, the NP equation
plays such a role. In our earlier work [181], the generalized NP equation was derived
from mass conservation. As such, the total free energy functional does not include the
chemical energy density and the solvent-solute interface is not affected by the chemical
potential. In the present work, we seek an alternative formulation of charge trans-
port, in which the total free energy functional encompasses the chemical potential
contribution as well.

A variational approach to the PB free energies that includes the concentration
effect and chemical potential was considered by Fogolari and Briggs [72].

2.2.1. Total Energy Functional for a System with Charged Species. For sim-
plicity, we assume that the flow stream velocity vanishes (|v| = 0). Additionally, we
omit the chemical reactions in our present discussion. Chemical potential consists of
a homogeneous reference term and the entropy of mixing, and can be derived from
the free energy functional [72].

Chemical potential related free energy can be expressed as

Gchem =

∫ ∑

α

{(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0

− kBT (ρα − ρα0)

}
dr,(18)

where µ0
α is a reference chemical potential of the αth species at which the associated

ion concentration is ρ0α given Φ = Uα = µα0 = 0. Here kBTραln
ρα

ρα0
is the entropy

of mixing, and −kBT (ρα − ρα0) can be regarded as a relative osmotic term [125].
The chemical potential of species α can be obtained by the following variation

with respect to ρα:

(19)
δGchem

δρα
⇒ µchem

α = µ0
α − µα0 + kBT ln

ρα
ρα0

.

Note that, at equilibrium, µchem
α �= 0 and ρα �= ρα0 because of possible external

electrical potentials, solvent-solute interactions, and charged species. Even if the
external electrical potential is absent and the system is at equilibrium, the charged
solute may induce the concentration response of ionic species in the solvent so that
ρα �= ρα0.

Considering the aforementioned chemical potential related energy term, together
with the polar and and nonpolar contributions discussed in the previous section, the
total free energy for the system can be described as

GPNP
total[S,Φ, {ρα}] =

∫
{γ|∇S|+ pS + (1− S)U

+ S
[
−
ǫm
2
|∇Φ|2 +Φ ρm

]
+ (1− S)

[
−
ǫs
2
|∇Φ|2 +Φ

∑

α

ραqα

]

+ (1 − S)
∑

α

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0

− kBT (ρα − ρα0) + λαρα

]}
dr,

(20)
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where the first row is the nonpolar solvation free energy functional, the second row is
the polar solvation free energy functional, and the third row is the chemical potential
related energy functional. Here λα is a Lagrange multiplier, which is required to
ensure appropriate physical properties at equilibrium [72].

Note that we have employed the original nonpolar solvation free energy functional
(1) in the present total free energy function formulation (20).

2.2.2. Generalized Correlations: Size Effect and Channel Confinement. Wa-
ter is naturally abundant in nature. In an aqueous solution, charged particles do not
exist by themselves, but constantly interact with solute, water molecules, and other
ions. Some of these interactions are electrostatic in nature and have been accounted
for in the above formulation. However, there are other interactions, including van der
Waals interactions, dispersion interactions, ion-water dipolar interactions, ion-water
cluster formation or dissociation, ion spin effects, ion-protein interaction, etc. These
additional interactions are termed as generalized correlations in our recent work [28].
They give rise to many important effects in the behavior of charged particles. One
obvious and intensively studied effect is the size effect [96, 28]. The size effect typ-
ically offers a small correction to the ion distribution when the ion concentration is
relatively small, but gets more important as the concentration increases. The effects
of finite ion sizes in terms of volume exclusion were discussed by Bazant et al. [14]
and many others [116, 84, 169]. The size effect in variational multiscale solvation
models has been accounted for with the WCA potential for realistic proteins [33, 34].
A treatment of pair particle interactions, including so-called size effects, in Boltz-
mann kinetic theory was formulated in 1996 by Snider, Wei, and Muga [158, 157],
who demonstrated the impact of these interactions on the transport equations of den-
sity, velocity, and energy and on transport coefficients. Another important effect of
generalized correlation is an energy barrier to the ion transport due to the change in
the solvation environment from the bulk solution to a relatively narrow channel pore
[28]. It is commonly believed that the difference in this type of energy barrier for
sodium and potassium leads to the selectivity of sodium and potassium channels. In
the present work, we adopt the formulation of generalized corrections introduced in
our earlier work [28]. This amounts to modifying (2) and (3) as

U =
∑

α

ραUα,

Uα =
∑

j

Uαj(r) +
∑

β

Uαβ(r),(21)

where the solvent-solute interaction potential Uαj(r) was described in section 2.1.1
and the subscript β runs over all solvent components, including ions and water. In
general, we denote by Uα any possible nonelectrostatic interactions in the system.

If the solvent-solvent interaction is represented by the van der Waals potential,
one has an explicit expression for Uαβ(r):

(22) Uαβ(r) = ǭαβ

∫
ρβ(r

′)

[(
σα + σβ

|r− r′|

)12

− 2

(
σα + σβ

|r− r′|

)6
]
dr′.

Note that there should be a factor of 1/2 in (22) when β = α. However, such a
factor is eliminated after the variation. As pointed out in our earlier work [28], the
Lennard–Jones formula in our formulation is significantly different from the conven-
tional Lennard–Jones potential, which traditionally represents short-range interac-
tions between two explicit particles, whereas in the present model it characterizes
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solvent-solvent interactions in the continuum-continuum representation, as both wa-
ter and all ion species admit the continuum description. The repulsive 12-power term
in the Lennard–Jones potential prevents any two particles from occupying the same
space. It was shown in our earlier work that because the integration in (22) is re-
stricted to a smaller volume in a narrow channel pore, the generalized correlation gives
rise to an additional energy barrier. Physically, the channel confinement decreases the
configurational entropy and increases the solvent-solvent interaction potential energy.

It is interesting to note that the inclusion of generalized correlation, i.e., adding
an additional solvent-solvent interaction term Uαβ(r) to the total interaction potential
Uα(r), does not change the derivation and the form of other expressions presented
in the preceding section. It is expected that further modifications could be easily
introduced to the present formulation.

2.2.3. Governing Equations. The total free energy functional (20) is a function
of the surface function S, electrostatic potential Φ, and the ion concentration ρα. By
applying the variational principle, we obtain governing equations for the system.

Generalized NP Equation. First, we consider the variation with respect to the
ion concentration ρα,

(23)
δGPNP

total

δρα
⇒ µgen

α = µ0
α−µα0+kBT ln

ρα
ρα0

+qαΦ+Uα+λα = µchem
α +qαΦ+Uα+λα,

where µgen
α is the relative generalized potential of species α. Note that it is µgen

α ,
rather than µchem

α , that vanishes at equilibrium. As such, one has

(24) λα = −µ0
α and ρα = ρα0e

− qαΦ+Uα−µα0
kBT .

From (24), the relative generalized potential µgen
α can be expressed as

(25) µgen
α = kBT ln

ρα
ρα0

+ qαΦ + Uα − µα0.

A similar quantity was derived from a slightly different perspective in our earlier work
[195]. Note that the relative generalized potential consists of contributions from the
entropy of mixing, electrostatic potential, solvent-solute interaction, and the relative
reference chemical potential. The latter is position independent. By Fick’s first law,
the ion flux can be expressed as the gradient of the relative generalized potential

Jα = −Dαρα∇
µgen
α

kBT , with Dα being the diffusion coefficient of species α. Then the

mass conservation of species α in the absence of steam velocity gives ∂ρα

∂t = −∇ · Jα,
which is the generalized NP equation

∂ρα
∂t

= ∇ ·

[
Dα

(
∇ρα +

ρα
kBT

∇(qαΦ+ Uα)

)]
,(26)

where qαΦ+Uα can be identified as a form of the potential of the mean field. Equation
(26) reduces to the standard NP equation when the solvent-solute interactions vanish.

The steady state of (26) is then

∇ ·

[
Dα

(
∇ρα +

ρα
kBT

∇(qαΦ+ Uα)

)]
= 0.(27)
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Generalized Poisson Equation. The derivation of the generalized Poisson equa-
tion can be pursued in the same manner. We consider the variation of the total free
energy functional with respect to the electrostatic potential Φ,

δGPNP
total

δΦ
⇒ ∇ · ([(1− S)ǫs + Sǫm]∇Φ) + Sρm + (1− S)

∑

α

ραqα = 0.(28)

This gives rise to the desirable generalized Poisson equation

−∇ · (ǫ(S)∇Φ) = Sρm + (1− S)
∑

α

ραqα,(29)

where ǫ(S) = (1− S)ǫs + Sǫm is an interface-dependent dielectric profile. Obviously,
(29) involves the densities of ions ρα and the surface function S.

Generalized LB Equation. As discussed earlier, the surface function S can be
solved from the generalized LB equation. It should be noted that although all LB
equations in our formalisms share the same mean curvature operator obtained from
the surface energy term, each system has its own potential driven term which can be
derived from the Euler–Lagrange equation:

δGPNP
total

δS
⇒ −∇ ·

(
γ
∇S

|∇S|

)
+ p− U −

ǫm
2
|∇Φ|2 +Φ ρm

+
ǫs
2
|∇Φ|2 − Φ

∑

α

ραqα −
∑

α

[
−µα0ρα + kBTραln

ρα
ρα0

− kBT (ρα − ρα0)

]
= 0,

(30)

where we have made use of (24). As shown in our earlier work [11, 181], the solution of
(30) can be obtained by solving the following parabolic equation via the introduction
of an artificial time:

∂S

∂t
= |∇S|

[
∇ ·

(
γ
∇S

|∇S|

)
+ V2

]
,(31)

where

V2 = −p+ U +
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 +Φ

∑

α

ραqα(32)

+
∑

α

[
kBT

(
ραln

ρα
ρα0

− ρα + ρα0

)
− µα0ρα

]
.

Equations (26), (29), and (31) are coupled together to form a coupled system of
equations for describing the surface function S, charge concentrations ρα, and the
electrostatic potential Φ, where the steady states of S and ρα are given in (30) and
(27). This coupled system differs from the original PNP system in the sense that the
surface characteristics are coupled to charge concentrations and the electrostatics. We
call this system a Laplace–Beltrami Poisson–Nernst–Planck (LB-PNP) model.

2.2.4. Relation to the Solvation Model at the Equilibrium. In this section, the
relationship between the nonequilibrium LB-PNPmodel and the equilibrium solvation
model is investigated. If the charge flux is zero for the electrodiffusion system, the PNP
model is known to be equivalent to the PB model [142]. Note that at equilibrium,
the relative generalized potential vanishes everywhere and one has the equilibrium
constraints given in (24). Therefore, by utilizing the constraints in (24), the total free
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energy functional in (20) becomes

GPNP
total =

∫ {
γ|∇S|+ pS + (1− S)U + S

[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1 − S)

[
−
ǫs
2
|∇Φ|2 +Φ

∑

α

ραqα

]

+ (1 − S)
∑

α

[
kBT

(
ραln

ρα
ρα0

− ρα + ρα0

)
− µα0ρα

]}
dr

=

∫ {
γ|∇S|+ pS + S

[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1 − S)

[
−
ǫs
2
|∇Φ|2 − kBT

∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)]}

dr

= GPB
total.

(33)

It shows that under the equilibrium assumption, the total free energy functional for
the present charge transport model reduces to that of the solvation model given in
(11). We emphasize that this consistency between LB-PNP and LB-PB models is a
crucial aspect of the present nonequilibrium theory of charge transport.

Furthermore, for the surface driven functions of the generalized LB equation, it
is easy to show that, under the constraints of (24), one has

V2 = −p+ U +
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 +Φ

∑

α

ραqα

+
∑

α

[
kBT

(
ραln

ρα
ρα0

− ρα + ρα0

)
− µα0ρα

]

= −p+
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 − kBT

∑

α

(ρα − ρα0)

= −p+
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 − kBT

∑

α

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)

= V1.

(34)

However, in general, the total free energy functional of the LB-PNP model in (20)
differs from that of the LB-PB model in (11). Similarly, the surface driven term V2

in the charge transport model differs from V1 in the solvation model. Moreover, ρα
in the charge transport model needs to be solved by the NP equation (26).

2.3. Differential Geometry Based Poisson–Boltzmann–Nernst–Planck Model.

The LB-PNP model discussed above provides a good prediction of charge transport
phenomena for nonequilibrium systems. However, the computational cost increases
dramatically as the number of charge species in the system increases, because the
concentration of each charge species is governed by one NP equation. In a complex
system with multiple charge species, the LB-PNP model can be very expensive. In
our earlier work [195], we introduced a Poisson–Boltzmann Nernst–Planck (PBNP)
model in which the densities of target ions (ions of interest) are modeled by the NP
equation, while those of other ions are described using the Boltzmann distribution.
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We have shown that the PBNP model is able to faithfully reproduce predictions of
the PNP model for ion channel transport at nonequilibrium settings [195]. The valid-
ity and usefulness of the PBNP formulation were quickly confirmed by independent
researchers [111]. In the present work, we derive a set of coupled LB-PBNP equations
for multiple charge species at nonequilibrium.

2.3.1. Total Energy Functional for the PBNP Model. Assume that the total
number of ion species in the system is Nc and that we are interested in certain charge
species (or target charge species), while the rest of the species are not of interest,
although all species have similar impact on the system. Let us denote by ρα (α =
1, . . . , NNP) the densities of the target charge species, and by ρβ (β = NNP+1, . . . , Nc)
the densities of the remaining charge species in the system, where NNP is the total
number of charge species treated using the nonequilibrium NP equation and NBD =
Nc −NNP is the total number of the remaining charge species which are represented
by the equilibrium Boltzmann distribution. It was demonstrated in our earlier work
that since all species are fully coupled, the nonequilibrium transport of the charge
species can be effectively recovered, although their densities are represented by the
equilibrium Boltzmann distribution. Based on this consideration, the total free energy
functional can be expressed by

GPBNP
total [S,Φ, {ρα}] =

∫ ⎧⎨
⎩γ|∇S|+ pS + (1− S)

NNP∑

α=1

ραUα + S
[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1− S)

⎡
⎣− ǫs

2
|∇Φ|2 +Φ

NNP∑

α=1

ραqα −

Nc∑

β=NNP+1

kBTρβ0

(
e
− qβΦ+Uβ−µβ0

kBT − 1

)⎤
⎦

+ (1− S)

NNP∑

α=1

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0

− kBT (ρα − ρα0) + λαρα

]⎫⎬
⎭ dr,

(35)

where the first row is the nonpolar solvation free energy functional, followed by the
polar and chemical potential related energy functionals in the second and third rows.
Note that the charge source terms in the polar solvation free energy functional are
modified to reflect the above-mentioned different treatments of the charge species.
The Lagrange multiplier λα is designed to enforce appropriate physical properties at
equilibrium.

As shown in (2), the solvent-solute interaction potential U in (35) involves den-
sities for all solvent species as well. As discussed above, these densities are described
by the nonequilibrium NP equation or by the equilibrium Boltzmann distribution.

2.3.2. Governing Equations. In our differential geometry based multiscale for-
malism, it has become a standard procedure to derive governing equations from the
total energy functional. Here we present related governing equations for the system
of charge transport.

Generalized NP Equation. To calculate relative generalized potentials we take
the variation of (35) with respect to the ion concentration ρα,

(36)
δGPBNP

total

δρα
⇒ µgen

α = µ0
α − µα0 + kBT ln

ρα
ρα0

+ qαΦ+Uα +λα, α = 1, . . . , NNP,

where µgen
α is the relative generalized potential of species α. It must vanish at equi-

librium, which leads to the following constraints for the Lagrange multiplier and the
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equilibrium concentration:

λα = −µ0
α,

ρα = ρα0e
− qαΦ+Uα−µα0

kBT .
(37)

From (36) and (37), the relative generalized potential can be expressed as

(38) µgen
α = −µα0 + kBT ln

ρα
ρα0

+ qαΦ + Uα, α = 1, . . . , NNP.

Note that µα0 does not have a position dependence. Therefore, using the same pro-
cedure as that for deriving (26), we arrive at the generalized NP equation

∂ρα
∂t

= ∇ ·

[
Dα

(
∇ρα +

ρα
kBT

∇(qαΦ+ Uα)

)]
, α = 1, 2, . . . , NNP.(39)

The combination of (37) and (39) provides a full description of charge particles in the
system. In practical applications, one wishes to solve as few NP equations as possible,
while maintaining the given level of modeling accuracy.

Generalized PB Equation. By taking the variation of the total energy functional
with respect to the electrostatic potential Φ, one has the generalized PB equation

−∇ · (ǫ(S)∇Φ) = Sρm + (1− S)

⎛
⎝

NNP∑

α=1

qαρα +

Nc∑

β=NNP+1

qβρβ0e
− qβΦ+Uβ−µβ0

kBT

⎞
⎠ ,(40)

where ǫ(S) = (1− S)ǫs + Sǫm. The treatment of certain mobile charge species using
the Boltzmann distribution has significantly reduced the number of NP equations to
be solved. The combination of (39) and (40) is called the generalized PBNP equations.

Generalized LB Equation. Furthermore, we can obtain the equation for the
solvent-solute interface by the variation of (35) with respect to the surface character-
istic function S:

δGPBNP
total

δS
⇒ −∇ ·

(
γ
∇S

|∇S|

)
+ p−

NNP∑

α=1

ραUα −
ǫm
2
|∇Φ|2 +Φ ρm +

ǫs
2
|∇Φ|2 − Φ

NNP∑

α=1

ραqα

−

NNP∑

α=1

[
kBT

(
ραln

ρα
ρα0

− ρα + ρα0

)
− µα0ρα

]

+

Nc∑

β=NNP+1

kBTρβ0

(
e
− qβΦ+Uβ−µβ0

kBT − 1

)
= 0.

(41)

Similarly, the solution of (41) can be obtained by solving the generalized LB equation

∂S

∂t
= |∇S|

[
∇ ·

(
γ
∇S

|∇S|

)
+ V3

]
,(42)

where the potential driven term is given by

V3 = −p+

NNP∑

α=1

ραUα +
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 +Φ

NNP∑

α=1

ραqα(43)

+

NNP∑

α=1

[
kBT

(
ραln

ρα
ρα0

−ρα+ρα0

)
−µα0ρα

]
− kBT

Nc∑

β=NNP+1

ρβ0

(
e
− qβΦ+Uβ−µβ0

kBT −1

)
.
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The generalized LB equation (42), PB equation (40), and NP equation (39) are
combined to form the system of the present LB-PBNP model. The solution to these
equations gives rise to an optimized surface function S, electrostatic potential Φ, and
a set of charge densities {ρα}. The convergent solutions of S, Φ, and {ρα} provide
the minimal total energy GPBNP

total given in (35).

2.3.3. Relation to the LB-PB and LB-PNP Models. It is easy to show that, at
equilibrium, the constraints given in (37) reduce the LB-PBNP total energy GPBNP

total

given in (35) to the LB-PB total energy GPB
total given in (11):

GPBNP
total =

∫ ⎧⎨
⎩γ|∇S|+ pS + (1− S)

NNP∑

α=1

ραUα + S
[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1− S)

⎡

⎣− ǫs
2
|∇Φ|2 +Φ

NNP∑

α=1

ραqα −

Nc∑

β=NNP+1

kBTρβ0

(
e
− qβΦ+Uβ−µβ0

kBT − 1

)⎤

⎦

+ (1− S)

NNP∑

α=1

[
−µα0ρα + kBTραln

ρα
ρα0

− kBT (ρα − ρα0)

]⎫⎬

⎭ dr

=

∫ ⎧⎨
⎩γ|∇S|+ pS + S

[
−
ǫm
2
|∇Φ|2 +Φ ρm

]

+ (1− S)

⎡
⎣− ǫs

2
|∇Φ|2−kBT

NNP∑

α=1

(ρα−ρα0)−kBT

Nc∑

β=NNP+1

ρα0

(
e
− qαΦ+Uα−µα0

kBT −1
)
⎤
⎦

⎫
⎬
⎭ dr

= GPB
total.

(44)

Similarly, one can demonstrate that, under the constraints of (37), the surface driven
function V3 given in (43) reduces to the surface driven function V1 of the LB-PB
model:

V3 = −p+

NNP∑

α=1

ραUα +
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 +Φ

NNP∑

α=1

ραqα

+

NNP∑

α=1

[
kBT

(
ραln

ρα
ρα0

− ρα + ρα0

)
− µα0ρα

]

− kBT

Nc∑

β=NNP+1

ρβ0

(
e
− qβΦ+Uβ−µβ0

kBT − 1

)

= −p+
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2

− kBT

NNP∑

α=1

(ρα − ρα0)− kBT

Nc∑

β=NNP+1

ρβ0

(
e
− qβΦ+Uβ−µβ0

kBT − 1

)

= −p+
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 − kBT

Nc∑

α=1

ρα0

(
e
− qαΦ+Uα−µα0

kBT − 1
)

= V1.

(45)

D
o

w
n
lo

ad
ed

 0
6
/2

5
/1

5
 t

o
 1

4
1
.1

6
5
.2

2
6
.4

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL MULTISCALE MODELS FOR CHARGE TRANSPORT 721

However, it is not easy to show that the LB-PBNP total energy GPBNP
total is a

faithful representation of the LB-PNP total energy GPNP
total. In other words, it is not

clear whether the reduced LB-PBNP model is able to recover the full predictions of the
LB-PNP model. The representability of the LB-PNP model by the present simplified
LB-PBNP model is one of the major issues to be addressed by the numerical analysis
and experiments in following sections. The success of the present LB-PBNP model
depends on its ability to reproduce the full predictions of the computationally more
expensive LB-PNP model.

The LB-PNP and LB-PBNP models neglect possible fluid flows and chemical
reactions. In fact, in practical applications such as fuel cells and nanofluidic systems,
fluid motion and chemical reaction commonly occur. In the next section, we present
a differential geometry based chemo-electro-fluid model.

2.4. Differential Geometry Based Chemo-electro-fluid Model. At nanoscale,
fluid flows play a crucial role in the density distribution of charge species and elec-
trostatic properties of immersed macromolecules. In nanofluidic devices and fuel cell
systems, a description of fluid motion is mostly required. The interface description is
important in PEM fuel cells, where a hydrophobic polymer membrane is functional-
ized by acidic side chains. The polymer membrane behaves as an electrode separator
and allows certain types of ion species (e.g., protons) to pass through so as to convert
the chemical energy into electric power. However, fluid particles involve an excessively
large number of degrees of freedom and are better described by continuum models.
On the other hand, we wish to describe immersed molecules, such as proteins, DNAs,
and ion channels, using discrete atomistic models, because their charge locations are
important to the ion selectivity, gating effect, and transport. It is well known that
the relevant distance is determined by the Debye length λD = (ǫskBT/

∑
α ρα0q

2
α)

1/2.
In biological systems, the electrostatic potential impacts over a few orders of magni-
tude, from atomic to cellular scales, depending on the temperature and ion density.
Similar effects can be found in mechanical and chemical systems as well. As such,
a multiscale model is desirable for nanofluidic and fuel cell systems as introduced in
our earlier work [181]. In classical kinetic theory, the distribution of charge species
is often described by the equations of the conservation law. Therefore, we provided
a conservation law based derivation of the NP equation in our earlier work [181]. It
was shown that the “diffusion flow” of each individual species defined with respect to
the barycentric motion is crucial to the derivation of the NP equation. All other gov-
erning equations, including Navier–Stokes, LB, and Poisson equations, were derived
from the variational principle.

In the present work, we offer an alternative derivation of the coupled Navier–
Stokes, LB, Poisson, and NP equations. Specifically, we do not resort to the conserva-
tion law argument for the NP equation. Instead, all governing equations are derived
from the variational framework, which is able to put the microscopic and macroscopic
descriptions on an equal footing. An important advantage of this framework is that it
is easy to put different theories together and eliminate inconsistency in the governing
equations. An essential tactic of our multiscale variational framework is to make use
of fundamental laws of physics, while avoiding phenomenological descriptions.

2.4.1. The Action Functional for the Chemo-electro-fluid Model. In this work,
we develop differential geometry based approaches so that the surface formation is
coupled to the Navier–Stokes equation and the PNP equations. We slightly mod-
ify the formulation developed in section 2.2 with an appropriate fluid term. Let us
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consider the following total action functional:

GNS−PNP
total [S,Φ, {ρα}] =

∫ ∫ {
γ|∇S|+ pS + (1 − S)U

+ S
[
−
ǫm
2
|∇Φ|2 +Φ ρm

]
+ (1− S)

[
−
ǫs
2
|∇Φ|2 +Φ

∑

α

ραqα

]

+ (1 − S)
∑

α

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0

− kBT (ρα − ρα0) + λαρα

]

− (1 − S)

[
ρ
v
2

2
− p+

µf

8

∫ t(∂vi

∂rj
+

∂vj

∂ri

)2

dt′
]}

drdt,

(46)

where ρ =
∑

α ρα is the total solvent mass density, v is the flow stream velocity,
and µf is the viscosity of the fluid. The Einstein summation convention is used in
the viscosity term. The first few rows in (46) were discussed in earlier sections. The
last row in (46) describes the Lagrangian of an incompressible viscous flow with the
kinetic energy, potential energy, and viscous energy lost due to friction [181].

2.4.2. Governing Equations.

Generalized NP Equation. With a nonvanishing flow velocity, the derivation of
the generalized NP equation is slightly different from that in section 2.2.3. One first
computes the generalized potential via the variation of the total action functional (46)
with respect to the ion concentration ρα,

(47) µgen
α = µ0

α − µα0 + kBT ln
ρα
ρα0

+ qαΦ+ Uα + λα −
v
2

2
,

where µgen
α is the relative generalized potential of species α. We assume that µgen

α

vanishes at “dynamical equilibrium.” Consequently,

(48) λα = −µ0
α and ρα = ρα0e

− qαΦ+Uα−µα0−

v
2

2
kBT .

Of course, a more classical equilibrium state is described by (24). From (48), the
relative generalized potential µgen

α can be expressed as

(49) µgen
α = kBT ln

ρα
ρα0

+ qαΦ + Uα − µα0 −
v
2

2
,

With the above relative generalized potential, we obtain the generalized flux as

Jα = −Dαρα∇
µgen
α

kBT
.

With the consideration of chemical reactions and fluid flows, the generalized Fick’s
law reads [181]

∂ρα
∂t

+ v · ∇ρα = −∇ · Jα +
∑

j

ν̄αjJ
j ,(50)
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where ν̄αjJ
j is the density production of α species per unit volume in the jth chemical

reaction. Therefore, we have the generalized NP equation

∂ρα
∂t

+ v · ∇ρα = ∇ ·Dα

[
∇ρα +

ρα
kBT

∇

(
qαΦ + Uα −

v
2

2

)]
+
∑

j

ν̄αjJ
j .(51)

Here, qαΦ + Uα − v
2

2 is a generalized potential, which is similar to the “potential

of mean forces” for the system. Consequently, −∇
(
qαΦ + Uα − v

2

2

)
is a generalized

force. It is interesting to note that the local gradient of fluid flow kinetic energy also
contributes to the density flux. When |v| = 0 and there are no chemical reactions,
(51) reduces to (26), which further reduces to the standard NP equation if the solvent-
solute interactions vanish.

Generalized Navier–Stokes Equation. The variation of the total action func-
tional (46) also leads to the generalized Navier–Stokes equation, which governs the
flow stream velocity of incompressible flows [181],

(52) ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+

1

1− S
∇ · (1− S)T+ FE,

where T is the flow stress tensor [181]

(53) T =
µf

2

(
∂vi

∂rj
+

∂vj

∂ri

)
=

µf

2

[
∇v + (∇v)T

]
,

where symbol T denotes the transpose. In (52), FE is the total force given by

FE =
S

1− S
fnp,(54)

where the nonpolar force is

(55) fnp = −∇p−
1− S

S
∇U +

ρm
S

∇(SΦ).

It is interesting to note that compared with the classical Navier–Stokes equation
under an electric field [181], the generalized reaction field force fE = 1

1−S

∑
α qαρα∇(1−

S)Φ (i.e., the classical electric field (E) term −
∑

α qαραE for electro-osmotic flows)
is absent from the present force expression because the density of each species is
regarded as a variable in the variation. For the same reason, the generalized NP
equation (51) has gained an extra term associated with the fluid energy. Therefore,
by using the total energy functional formulation, one can eliminate the inconsistency
in the governing equations.

Generalized LB Equation. By using the same procedure as that in section 2.2.3,
we end up with the generalized LB equation

∂S

∂t
= |∇S|

[
∇ ·

(
γ
∇S

|∇S|

)
+ V4

]
,(56)
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where

V4 = −p+ U +
ǫm
2
|∇Φ|2 − Φ ρm −

ǫs
2
|∇Φ|2 +Φ

∑

α

ραqα(57)

+
∑

α

[
kBT

(
ραln

ρα
ρα0

− ρα + ρα0

)
− µα0ρα

]

−

[
ρ
v
2

2
− p+

µf

8

∫ t(∂vi

∂rj
+

∂vj

∂ri

)2

dt′
]
.

Compared with (32), the additional fluid energy term contributes to the solvent-solute
interface evolution.

Finally, the variation of the total action functional (46) with respect to Φ does
not lead to a new equation—the generalized Poisson equation (29) is obtained once
again.

The generalized NP equation (51), the Navier–Stokes equation (52), and the LB
equation [181] are now coupled to the generalized Poisson equation (29). These cou-
pled equations provide a description of a chemo-electro-fluid system of multiple charge
species far from equilibrium. They offer a reference to the charge transport models
formulated in earlier sections so as to enhance our understanding.

As discussed in our earlier work [181], the total charge current density Ic is given
by

Ic = ρqv + ic = v

∑

α

ραqα +
∑

α

qαJα,(58)

where ρqv is the charge convection current due to flow motion and ic is the charge
conduction current. The charge convection current vanishes for a charge neutral
system.

3. Computational Algorithms. The development of rigorous numerical tech-
niques and computational algorithms is enormously important for the study and un-
derstanding of realistic chemical, physical, biological, and engineering problems. This
section concerns the implementation of the proposed charge transport models for ion
channel transport in membrane proteins. Since ion channel measurements are usually
conducted without fluid motion, we focus our effort on two charge transport mod-
els given in sections 2.2 and 2.3. In these models, essentially three types of coupled
equations with appropriate initial/boundary conditions need to be solved in a self-
consistent manner. In this section, the algorithms for solving the coupled system
are discussed with reference to the generalized LB-PNP equations; the algorithms for
LB-PBNP follow similar procedures.

As discussed in our previous work [33, 34], either the Eulerian representation or
the Lagrangian representation can be used for the multiscale analysis. Here we briefly
discuss the computational algorithms for both formulations.

3.1. Eulerian Representation. The main feature of the Eulerian representation
is that a smooth solvent-solute interface is produced, which avoids many numerical
problems in dealing with the Poisson equation or the PB equation.

3.1.1. Generalized LB Equation. To solve (31) with V2 represented by (34), the
initial condition is defined as

S(r, 0) =

{
1, r ∈ Ω1,

0 otherwise,
(59)
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where Ω1 =
⋃

β=1,...,Na
O(rβ , rβ+rm); that is, if r lies in any of the sphere (O(rβ , rβ+

rm) : {r ∈ R
3, |r − rβ | ≤ rβ + rm}) defined by atomic coordinates, then the value

of S is 1; otherwise, S = 0. Here, rβ and rβ (β = 1, . . . , Na) are, respectively, the
coordinate and specific radius of βth atom in the molecule, with Na the total number
of atoms and rm the probe radius. The atomic specific radius can be chosen as the
atomic van der Waals radius.

To evaluate the LB equation, we set t′ = tγ and Vγ = V2

γ . To avoid the blowup
when the magnitude of ∇S is very close to zero, we modify the LB equation as

∂S

∂t′
=

√
δ̂ + |∇S|2

⎡

⎣∇ ·

⎛

⎝ ∇S√
δ̂ + |∇S|2

⎞

⎠+ Vγ

⎤

⎦ ,(60)

where δ̂ is a small positive number. Denote Ω2 =
⋃

β=1,...,Na
O(rβ , rβ) as the pro-

tection zone; then the surface function S is only updated in the domain Ω1

⋂
Ω2

as

∂S

∂t′
=

(S2
x+S2

y)Szz+(S2
x+S2

z)Syy+(S2
y+S2

z)Sxx−(2SxSySxy+2SxSzSxz+2SySzSyz)

δ̂+S2
x + S2

y + S2
z

+
√
δ̂ + S2

x + S2
y + S2

zVγ .(61)

Here (61) can be solved explicitly [35] when the time discretization is implemented
by the forward Euler scheme and the spatial discretization is done by the standard
central finite difference scheme. Alternatively, it can also be solved implicitly by
the semi-implicit scheme and alternating-direction implicit methods [11]. Implicit
schemes allow the use of a relatively large time step.

3.1.2. Generalized Poisson and NP Equations. The discretization of (27) and
(29) can follow the standard finite difference scheme. To discretize (29) along the x
direction at point (i, j, k), we use

(ǫΦx)x =
ǫi+ 1

2
Φi+1,j,k − (ǫi+ 1

2
+ ǫi− 1

2
)Φi,j,k + ǫi− 1

2
Φi−1,j,k

(∆x)2
,(62)

where ∆x is the mesh size in the x direction, ǫi = ǫ(Si,j,k). The delta functions on
the right-hand side can be distributed to the neighboring points around (i, j, k).

As Dα is the position-dependent diffusion coefficient of the α species, we define
Dα(S) = (1 − S)Dα. Using this definition, we observe that when S = 1, Dα(S) is 0,
which means that there is no diffusion in the protection zone; then the steady state
(27) can be written as

∇ ·

[
Dα(S)

(
∇ρα +

ρα
kBT

∇(qαΦ + Uα)

)]
= 0.(63)

To discretize (63) along the x direction at point (i, j, k), the following scheme can be
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utilized:

[Dα(S)(ραx + ηαρα(Φx − Uα/qα))]x

= Dαi+ 1
2
,j,k

[
ραi+1,j,k − ραi,j,k +

ηα
2

(ραi+1,j,k + ραi,j,k)

×

(
Φi+1,j,k − Φi,j,k +

Uαi+1,j,k − Uαi,j,k

qα

)]
1

(∆x)2

−Dαi− 1
2
,j,k

[
ραi,j,k − ραi−1,j,k +

ηα
2

(ραi,j,k + ραi−1,j,k)

×

(
Φi,j,k − Φi−1,j,k +

Uαi,j,k − Uαi−1,j,k

qα

)]
1

(∆x)2
,

(64)

where ηα = qα
kBT and Dαi,j,k = (1 − Si,j,k)D. Here one problem is how to implement

the boundary condition for (63). To enforce the nonflux boundary condition, we set
Jα = 0 on ∂Ω2. Therefore, every time (31) is updated to the steady state, ǫ(S) and
Dα(S) can be determined from the surface function S. Therefore, (29) and (27) can
be solved iteratively until the steady state is reached, which provides new Φ and ρα
for updating S.

In the Ith inner loop for computing Φ and ρα, the successive overrelaxation scheme
is utilized [33]:

ΦI+1 = ζ1Φ
I + (1− ζ1)Φ

I+1,

ρI+1
α = ζ2ρ

I
α + (1 − ζ2)ρ

I+1
α ,

(65)

where ζ1 and ζ2 are in the range between zero and one. This algorithm delivers a stable
scheme with appropriate choice of relaxation factors ζ1 and ζ2. Larger values will lead
to slower convergence, while smaller values may cause instability [33]. Alternatively,
the Gummel iteration [53] can also be used to handle this type of problem, as shown
in our earlier work [194].

3.2. Lagrangian Representation. Although the free energy functional is pre-
sented in the Eulerian formulation, an alternative free energy functional can be pro-
vided by using the Lagrangian representation. Based on such a free energy functional,
one can derive the governing equations in a way similar to that in [34]. We have
skipped its description here. The final governing equations are presented below, while
the reader is referred to [34] for more details on the derivation procedure.

3.2.1. Poisson Equation. In the Lagrangian representation, the total domain Ω̂
is divided into two domains Ω̂m and Ω̂s by a sharp interface Γ̂ such that Ω̂ = Ω̂m∪ Ω̂s

and Γ̂ = Ω̂m ∩ Ω̂s. Here the interface Γ̂ is determined by the hyperfunction S via an
isosurface extraction procedure

Γ̂ = {r|S(r) = c, 0 < c < 1, r ∈ R
3}.(66)

The matching cubes algorithm is used for the isovalue extraction. Typically, we set
c = 0.5, although other values may be used for a particular illustration. In (66), the
surface function S is still determined by the steady state of evolution equation (31).

The governing equation for the electrostatic potential Φ is given by

−∇ · (ǫ∇Φ) = ρm +
∑

α

ραqα,(67)
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where the sharp dielectric function is given by

ǫ =

{
ǫm, r ∈ Ω̂m,

ǫs, r ∈ Ω̂s.
(68)

For charge densities ρα, (27) is used. However, it is defined in the present domain
of Ω̂s.

The solution of (67) and (27) involves elliptic equations with discontinuous co-
efficients and singular sources in the biomolecular context. This numerical problem
is extremely challenging, but the algorithms developed in our recent work [194] can
be utilized. Many of the essential ideas for treating the irregular points in the dis-
cretization of the governing elliptic equations close to the interface were developed in
our earlier work [188, 189, 190, 186]. Notice that in this representation the zero-flux
boundary condition is enforced on Γ̂. A brief discussion of computational techniques
is presented below so that the reader can understand what is involved.

3.2.2. Dirichlet to Neumann Mapping. In order to remove the Dirac delta func-
tions describing partial charge sources in ρm from the Poisson equation, the Green’s
function can be utilized [201, 78] and Φ can be decomposed into its regular part Φ̃(r)

and singular part Φ(r). Specifically, Φ = Φ̃ + Φ, where Φ(r) is defined only in Ω̂m

[39, 78]. We define Φ(r) = Φ∗(r) + Φ0(r), where Φ∗(r) is the analytical Green’s
function given by

(69) Φ∗(r) =
1

4π

Na∑

j=1

Qj

ǫm | r− rj |
.

To compensate for the values induced by the Green’s function Φ∗ on the interface
Γ̂, Φ0(r) is introduced and satisfies the following Laplace equation with a Dirichlet
boundary condition:

(70)

{
∇2Φ0(r) = 0, r ∈ Ω̂m,

Φ0(r) = −Φ∗(r), r ∈ Γ̂.

This decomposition of Φ gives rise to a Poisson equation for Φ̃(r) without the
singular source term, i.e., delta functions:

(71)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (ǫ∇Φ̃(r)) =
∑

α

qαρα, r ∈ Ω̂,

[Φ̃(r)] = 0, r ∈ Γ̂,

[ǫΦ̃n(r)] = ǫm∇(Φ∗(r) + Φ0(r)) · n, r ∈ Γ̂,

where n is the interface normal direction. Due to the introduction of the new Neu-
mann interface condition in (71), this method is also called Dirichlet-to-Neumann
mapping (DNM). Note that after the decomposition, Φ depends on the geometry of
the computational domain and fixed protein charge information, and it is independent
of the concentration. Therefore, Φ needs to be solved only once. In contrast, since Φ̃
is coupled to the ion concentrations, Φ̃ has to be solved at each iteration step. The
DNM enhances the stability, improves the accuracy, and enables the use of larger
mesh sizes.
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3.2.3. Matched Interface and Boundary Method. To solve (71) rigorously, the
discretization of (71) requires the enforcement of interface jump conditions while tak-
ing care of discontinuous coefficients (68) to ensure certain order accuracy for complex
biomolecular surfaces. In this work, we utilize the matched interface and boundary
(MIB) method [188, 190, 189, 193, 200, 199, 25, 186] for the discretization of (71).
Three generations of MIB based PB solvers, MIBPB-I [197], MIBPB-II [188], and
MIBPB-III [78], have been developed. MIBPB-I is the first PB solver that explicitly
enforced the interface conditions in the biomolecular context. However, it encounters
an accuracy reduction in the presence of molecular surface singularities [145]. MIBPB-
II addressed this problem by utilizing an advanced MIB technique developed by Yu
and Wei [189] to achieve second-order accuracy for the molecular surfaces of proteins.
However, MIBPB-II is limited to small mesh sizes, namely, sizes smaller than half of
the smallest van der Waals radius in a protein structure, because of the interference
of the interface and singular charges in the MIBPB-II scheme. This problem was
addressed in our MIBPB-III [78] using the DNM approach discussed above. To our
knowledge, MIBPB-III is the only current numerical method that delivers second-
order accuracy in solving the PB equation with discontinuous coefficients, singular
sources, and primitive geometric singularities in the biomolecular context [78, 25].

In the MIB method, we define a regular point as a point whose nearest neighboring
points involved in the discretization are in the same domain, that is, the point itself
is away from the interface. An irregular point is defined as a point at least one of
whose nearest neighboring points lies on the other side of the interface, that is, the
point itself is close to the interface. The main idea of the MIB method is that to
maintain the desired order of accuracy, the finite difference schemes for regular points
and irregular points are different. For the discretization along the x direction at a
regular point (i− 1, j, k), we use the standard finite difference scheme

(ǫΦ̃x)x =
ǫi− 1

2
Φ̃i,j,k − (ǫi− 1

2
+ ǫi− 3

2
)Φ̃i−1,j,k + ǫi− 3

2
Φ̃i−2,j,k

(∆x)2
at (i − 1, j, k),(72)

where ∆x is the mesh size in the x direction. However, for the irregular point (i, j, k),
assuming that point (i+ 1, j, k) lies on a different subdomain and the solution might
not be smooth across the interface, a fictitious value is utilized for the discretization:

(ǫΦ̃x)x =
ǫi+ 1

2
fi+1,j,k − (ǫi+ 1

2
+ ǫi− 1

2
)Φ̃i,j,k + ǫi− 1

2
Φ̃i−1,j,k

(∆x)2
at (i, j, k),(73)

where fi+1,j,k is the fictitious value defined at point (i + 1, j, k) and the value is
interpolated using the interface jump conditions given in (71). This is nontrivial for
complex biomolecules since the discretization of the jump conditions is defined on the
interface, and in most cases the interface points are off-grid. The discretizations from
both sides of the interface are required for the enforcement of the jump conditions,
which needs many auxiliary points. For details of the technique see the related work
on the MIB method [190, 189, 193, 200, 199]. Essentially, the MIB method makes
use of simple Cartesian grids, standard finite difference schemes, lower-order physical
jump conditions, and the idea of fictitious values defined on irregular points close to
the interface. While the physical jump conditions are enforced at each intersecting
point of the interface and the mesh lines, the MIB method takes care of the interface
condition in a systematic way. As a result, whenever possible, the MIB method
reduces a multidimensional interface problem into 1D problems. So far, to the best of

D
o

w
n
lo

ad
ed

 0
6
/2

5
/1

5
 t

o
 1

4
1
.1

6
5
.2

2
6
.4

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL MULTISCALE MODELS FOR CHARGE TRANSPORT 729

our knowledge, it is the only known method that has been shown to achieve second-
order accuracy in solving the PB equation with realistic molecular surfaces of proteins
and associated singular charges [25].

3.3. Iterative Procedure and Algebraic Equation Solver. The iteration loop
for the linear implementation starts from an initial guess of Φ0 and ρ0α; then ρ1α is
obtained by solving

(74) ∇ ·

[
Dα

(
∇ρ1α +

qαρ
1
α

kBT
∇(Φ0 + Uα/qα)

)]
= 0.

Then Φ1 can be obtained by

(75) −∇·
(
ǫ∇Φ1

)
=
∑

α

qαρ
1
α.

Here the superscripts of Φ and ρα indicate the iteration step. The solution of the
linear algebraic system is credited to a preconditioner algorithm [25] from the SLATEC
library (http://people.sc.fsu.edu/˜jburkardt/f−src/slatec/slatec.html). The following
implementation procedure is used in the present work for proteins or ion channels.
Step 1: Initial atomic position and partial charge generation. The initial atomic posi-

tions of a protein are taken from the Protein Data Bank (PDB) (www.pdb.org),
and the partial charge prescription is obtained from the software PDB2PQR
[57, 56], which provides rj and Qj values in the formulation.

Step 2: Given an initial guess of Φ and ρα, the surface function S is obtained by the
initial value problem (31). After the surface function S is determined, an
isosurface is extracted for the interface Γ.

Step 3: Based on the interface Γ, the normal direction n is computed by ∇S
|∇S| on the

isosurface; the coupled equations (29) and (27) are solved iteratively by the
above-mentioned schemes.

Step 4: Go to Steps 2 and 3 to update S, Φ, and ρα until convergence is reached
based on a given tolerance. Notice that in the lth outer loop for updating S,
we use Sl+1 = λ3S

l + (1− λ3)S
l+1. In each outer loop, the total free energy

functional is evaluated to check the convergence criteria.

4. Validation and Application. Rigorous validation of mathematical models via
advanced computational techniques in realistic settings is perhaps one of the most
challenging and time-consuming aspects of theoretical studies. In fact, without quan-
titative validations with experimental data in realistic settings, it is extremely easy
for mathematical models to admit unphysical components. Therefore, rigorous vali-
dation should become a standard procedure to calibrate mathematical and theoretical
models in the field.

This section studies the validity of the proposed variational multiscale models,
investigates their feasibility for realistic proteins and ion channels, and tests the accu-
racy, stability, and robustness of our computational algorithms. First, we describe the
computational setup for proteins and ion channels. Additionally, we carry out numer-
ical experiments on proteins to examine the consistency of the proposed multiscale
models. Finally, we perform numerical simulations on a realistic ion channel.

It is noted that the solvent-solvent interaction Uαβ(r), i.e., the generalized corre-
lation, is omitted in our present numerical experiments. However, such effects were
explored numerically in our earlier work [28].
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4.1. Computational Setups of Proteins and Ion Channels. In thie section we
discuss the computational setup for proteins and ion channels. The essential procedure
is similar to that used in our earlier work [33, 188, 78, 194].

4.1.1. Preparation for the Protein Study. A set of ten protein molecules is em-
ployed in the present work. The initial atomic positions of proteins are taken from
the Protein Data Bank (PDB) (www.pdb.org), and the partial charge prescription is
obtained by the software PDB2PQR [57, 56]. Here, PDB2PQR is a Python software
package that automates many of the common tasks of preparing structures for contin-
uum electrostatic calculations, providing a platform-independent utility for converting
protein files in the PDB format to the so-called PQR format. The following proce-
dures are involved in the conversion: adding a limited number of missing heavy atoms
to biomolecular structures, placing missing hydrogens, optimizing the protein for fa-
vorable hydrogen bonding, and assigning charge and radius parameters from a variety
of force fields. The details can be found at www.poissonboltzmann.org/pdb2pqr/. In
our models, the function S is obtained by solving the parabolic evolution equation,
and the surface is obtained by extracting the isovalue of 0.5. A uniform mesh with
the mesh size of 0.5 Å is utilized for the computation. After the surface is obtained,
all the mesh points are identified either in the solvent domain or in the solute domain.
For the whole computation, the stopping criteria is that the energy difference between
two iterations in the outer loop is less than 0.01 kcal/mol. The parameters developed
in our previous work for the nonpolar solvation model [33] are considered as reference
in the present work. In the protein test cases, the following parameters are utilized:
ρs/γ = 2, σs = 0.65 Å, and p/γ = 0.5, where ρs is the solvent density. Since we only
consider very low ion densities in the present work, we neglect interactions between
the protein and solvent ions in the nonpolar model. The value of γ may be chosen
based on different sizes of the molecule. In this computation, γ is scaled to be 1/3 for
the surface generation to incorporate the time evolution scale, while in the final total
energy computation, γ = 0.0065 kcal/(mol Å2).

4.1.2. Preparation for the Ion Channel Study. The ions are charged particles
solvated in a solvent environment, including both bulk solvent and channel pore sol-
vent. In ion channels, many microscopic interactions take place during ion transport
processes, as ion channel proteins interact with ions and the solvent on an atomic
scale. Essentially, the ion channel protein and lipid bilayer are immersed in a solvent
environment [194, 195]. In the present study, we consider the Gramicidin A (GA)
channel (PDB ID: 1mag; see Figure 1), which is a benchmark ion channel for testing
various theoretical models. As shown in Figure 1, the computational domain of the
GA channel constitutes four different regions, i.e., the channel region, the bulk re-
gion, the protein region, and a membrane lipid bilayer. The channel and bulk regions
are set to Ωs and the protein and membrane regions are set to Ωm. The structural
preparation of GA is made according to the following procedure. First, the initial
atomic positions of the GA channel protein are obtained from the PDB. The partial
charge for each atom in the protein is obtained using the PDB2PQR software, and is
accounted for in Φ∗. The channel protein is combined with an implicit slab represen-
tation of the membrane lipid bilayers to form the molecular domain Ωm. We set the
GA channel pore along the z direction, which is the same as that in the literature [23].
The corresponding diffusion coefficient profile and unit conversion detail are described
in our previous work [194].

The value S is obtained by solving the LB equation, and the surface can be
extracted by choosing an isovalue between 0 and 1. In the following computation, the
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surface is obtained by extracting an isovalue of 0.7 so that the protein channel pore
diameter is similar to that used in our earlier computation [194]. A uniform mesh
with mesh size of 0.5 Å is utilized for the present study. After the surface is obtained,
mesh points are identified as being either in the solvent domain or in the solute
domain, and then mesh points in the pore region can be located accordingly. For the
whole computation, the stopping criterion is that the energy difference between two
iterations in the outer loop is less than 0.01 kcal/mol. In our calculations, we set
γ = 1/15 kcal/(mol Å2), ρs/γ = 2, σs = 0.65 Å, and p/γ = 0.5.

4.2. Protein Study. Using a set of ten proteins, we test the proposed LB-PNP
and LB-PBNP models. Comparison is made between the traditional PB model and
our earlier LB-PB model. The latter has been intensively validated using both accu-
rate theoretical predictions and experimental data of solvation energies [35].

4.2.1. Free Energies at Equilibrium. In this subsection, the electrostatic sol-
vation energies of proteins with salt effect are studied using three models. The first
model is the PB equation with the solvent excluded surface generated using the MSMS
package [145]. The second model is the LB-PB equations proposed in our earlier work
[33]. The final model is the LB-PNP system introduced in the present paper.

For the LB-PNP model, the numerical procedure discussed in the previous sec-
tion is utilized. The surface function, electrostatic potential, and ion densities are
obtained by solving the coupled equations. As discussed in our earlier work [34], the
electrostatic potential can be computed in different units. By applying Gaussian units
and defining the dimensionless potential as u(r) = ecΦ

kBT , (29) can be written as

−∇ · (ǫ(S)∇u) =
4πec
kBT

Sρm +
4πec
kBT

(1− S)

Nc∑

α

ραqα,(76)

and the boundary condition is given by [93]

u(r) =
4πe2c
kBT

Na∑

j

Qj
e−κ|r−rj |

ǫs | r− rj |
(77)

on ∂Ω; here κ = κ√
ǫs

and κ2 = 8.486902807 Å−2 Is, where Is is the ionic strength

measured in molar (molars per liter) [93]. For the concentration ρα (α = 1, 2), the
uniform Dirichlet boundary condition of ρ0 = 0.1molar is imposed on ∂Ωs. For the
surface function S, a zero boundary condition is imposed.

The reduced electrostatic free energy is computed after solving the Poisson equa-
tion or the PB equation,

∆Gele =
1

2

∑

j

QjΦrf (rj),(78)

where Φrf is the reaction field potential which is defined as Φrf = Φ−Φvac = Φ0 + Φ̃,
with Φvac being the electrostatic potential in a vacuum. Note that ∆Gele is not the
total free energy of the system.

The PDB IDs of 10 proteins are listed in Table 1. We set the bulk salt (KCl)
concentration to be n0 = 0.1molar (i.e., the bulk ion concentrations of cations and
anions are 0.1 molar, respectively). Electrostatic solvation free energies are computed
using the PB, LB-PNP, and LB-PB models. Results are listed in Table 1, where the
first column shows the PDB IDs obtained from the PDB. The second column lists the
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Table 1 Comparison of electrostatic energies (in kcal/mol) computed with three models for 10 pro-
tein molecules.

PDB ID PB LB-PNP LB-PB

1ajj −1142.69 −1121.24 −1121.45
1bbl −989.35 −984.12 −984.20
1bor −854.93 −839.80 −839.87
1cbn −303.90 −295.15 −295.16
1frd −2867.84 −2832.13 −2832.73
1r69 −1089.81 −1068.40 −1068.55
1sh1 −756.61 −732.49 −732.54
1hpt −812.56 −787.23 −787.24
1mbg −1354.62 −1343.01 −1343.29
1neq −1733.12 −1710.26 −1710.45

Fig. 3 Consistency of electrostatic free energies of 10 proteins among the PB, LB-PB, and LB-PNP
predictions (protein IDs are listed in Table 1).

electrostatic energies computed using the MIBPB package [25], which is based on the
MSMS surface. The third column provides the electrostatic energies computed based
on the LB-PNP model, and the last column lists the electrostatic energies computed
from the LB-PB model. Figure 3 gives a graphic representation of our comparison.
The diagonal line is the reference, or PB vs. PB. Obviously, there is an extraordinary
consistency between the LB-PB and LB-PNP predictions. Therefore, the equilibrium
solution of the NP equation indeed reproduces the Boltzmann distribution of the
ion concentration. This consistency provides a confirmation of our nonequilibrium
formulation. This result is in a good accordance with our earlier findings [195].

Figure 3 also reveals that the results of the present variational interface based
LB-PB and LB-PNP models are in a good agreement with those obtained from the
traditional PB model equipped with solvent excluded surfaces generated by the MSMS
software. As shown in Table 1, the energy differences from these two types of models
are within 3% for all proteins examined in this study.

4.2.2. Variational Surface and Surface Electrostatic Potentials. Another im-
portant product of the present differential geometry based multiscale models is the
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(a) (b)

Fig. 4 Surface representations for protein 1ajj. (a) Molecular surface generated by the MSMS
package with probe radius 1.4 and density 10. (b) Variational surface extracted from the
isovalue of S = 0.5 based on the LB-PNP model.

(a) (b)

Fig. 5 Comparison of surface electrostatic potentials computed at ρ0 = 0.1 molar for protein 1ajj.
(a) Surface electrostatic potential profile obtained from the LB-PNP model. (b) Surface
electrostatic potential profile obtained from the LB-PB model.

variational solvent-solute interface. As discussed in the introduction, the interface
definition underpins a wide range of biomolecular applications. After solving the cou-
pled equations, the surface is extracted at the isovalue of S = 0.5. As an illustrative
example, the variational surface of protein 1ajj is shown in Figure 4(b), while the
molecular surface generated by the MSMS package [145] is shown in Figure 4(a). Our
visualization is aided by the VMD software.

Obviously, there is a similarity between these two types of surfaces. Technically,
the molecular surface is subject to geometric singularities, i.e., nonsmooth interfaces,
which may devastate numerical simulations. However, our variational interface is free
of geometric singularities [13, 11].

The other utility of the present multiscale model is the surface electrostatic poten-
tial, which is crucial to the protein-protein and protein-ligand interactions, as well as
rational drug design. In the present work, we are interested in the consistency between
surface electrostatic potentials obtained from the LB-PNP and LB-PB models in the
absence of external force or voltage. Figure 5 provides a comparison of surface electro-
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Fig. 6 Convergence history of total free energy (kcal/mol), electrostatic energy (kcal/mol), and
scaled volume (Å3) at ρ0 = 0.1 molar for protein 1ajj.

static potentials computed from both models at the isovalue of S = 0.5. The surface
electrostatic potentials are projected on surfaces and illustrated with appropriate col-
ors. Figure 5(a) shows the result obtained from the LB-PNP model and Figure 5(b)
depicts the profile from the LB-PB model. Clearly, a good consistency between the
two models can be observed. On the one hand, this consistency validates the theo-
retical formulations of our models; on the other hand, it confirms the computational
codes as the results are obtained by solving different sets of coupled equations.

4.2.3. Convergence of the Total Free Energy. Another important issue regard-
ing the present variational paradigm is the minimization of the total free energy func-
tional. If the formulation is correct, the total free energy should be gradually reduced
in the course of the numerical solution of the coupled equations until a steady state
is reached. The computational detail of the evaluation of the nonpolar free energy
was described and validated in our earlier work [33]. Figure 6 plots the total free
energy, the electrostatic free energy, and the volume of protein 1ajj obtained from the
LB-PNP model in the absence of the external voltage. Obviously, all three quanti-
ties decrease as the number of outer iterations increases. In particular, at each given
time, the difference between the total free energy and the electrostatic free energy is
relatively small. Therefore, the nonpolar energy contribution to the total free energy
is much smaller than the electrostatic free energy contribution. Moreover, the volume
converges slightly faster than the energies do. We have tested that the LB-PB model
shows essentially the same convergence characteristic.

Here, we would like to point out that an unreasonable formulation of the total
energy functional may lead to abnormal behaviors in the total energy integration
history. Monotonic decay to a steady value is the normal behavior. However, increases
and/or discontinuous drops in the total energy integration history are unacceptable
behaviors and may be caused by unphysical terms in the total energy functional.

4.3. Ion Channel Study. In this subsection, we study the proposed differential
geometry based models for the ion transport problem using a realistic ion channel,
the GA channel. Figure 1 provides an illustration of the GA channel and its com-
putational setup. It is important to verify the consistency between the proposed
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(a) (b)

Fig. 7 Surface representations of the GA channel protein structure. (a) MSMS surface with probe
radius 1.4 and density 10. (b) Surface extracted from the LB equation with S = 0.7.

equilibrium LB-PB model and the nonequilibrium LB-PNP model at equilibrium,
and the ability of the quasi-equilibrium LP-PBNP model to recover the predictions
of the nonequilibrium LB-PNP model at nonequilibrium. After this verification, we
explore the GA channel electrostatic potential characteristic and ion density profiles
under a variety of typical experimental conditions. Finally, we compare our model
predictions with experimental data.

First, the GA channel parameters of the present differential geometry based mod-
els are calibrated using solvation free energies. After the calibration, we study the
channel morphology using two approaches, the conventional MSMS and the present
LB equation. Figure 7 depicts two surface representations of the GA channel. Clearly,
the surface generated by the LB equation is much smoother, while that generated by
the MSMS software usually has geometric singularities [194]. Apart from the surface
regularity, the channel pore radius is another important feature. It appears that LB
surface pore radius is slightly smaller. This is reasonable because in the Eulerian
representation generated by the LB equation, the channel pore domain overlaps the
protein domain. A smaller pore radius also reflects the fact that there is a bound-
ary effect, which means many physical properties at the solvent-solute interface differ
from those away from the pore boundary.

4.3.1. Convergence of the Ion Concentration. Although the convergence of
the iteration is judged by the energy, it is also important to examine the behavior of
the ion concentration during the iteration process. Figure 8 depicts the concentra-
tion profiles along the cross-section of the GA channel at different numbers of outer
iterations. Initially, the cation concentration is relatively high and the anion concen-
tration is relatively low because the fixed charges in the channel protein dominate the
electrostatic potential. Figure 9 shows the convergence history and trend of the peak
concentration value along the cross-section of the GA channel. Clearly, cation con-
centration decreases and anion concentration increases during the iterations, due to
the fact that ions themselves also contribute to the electrostatic potential, in addition
to many other effects. Note that the scale for the anion profile is different from that
for the cation profile.
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(a) (b)

Fig. 8 Concentration profiles along the cross-section of the GA channel at different numbers of
iterations with ρ0 = 2.0 molar, Φ0 = 0 mV. Two vertical dashed lines indicate the channel
region. (a) Cation. (b) Anion.

Fig. 9 Convergence history of the peak concentration value along the cross-section of the GA channel
with ρ0 = 2.0 molar, Φ0 = 0 mV. (a) Maximal concentration values for cations. (b) Minimal
concentration values for anions.

4.3.2. Consistency between the Equilibrium LB-PB Model and the Nonequi-

librium LB-PNP Model. As discussed in section 2, the nonequilibrium LB-PNP
model reproduces the equilibrium LB-PB model when the flux is zero. Here, compu-
tations are carried out with a bulk concentration of ρα0 = 0.1 molar, where α = K+

and Cl−, and without external voltage, i.e., Φ0 = 0mV. The computational results
for two different sets of governing equations are solved, and the cross-sections of con-
centration and potential profiles are plotted in Figure 10. As shown in Figure 10(a),
the electrostatic potential is negative in the channel region, which indicates that the
GA selects positive ions. The concentrations of both cations and anions are plotted in
Figure 10(b) and labeled with green and yellow dots, respectively. In this figure and
many others, two vertical dashed lines indicate the channel region. Apparently, the
cation density peaks at the electrostatic valleys, as expected. However, the density of
anions is suppressed in the channel region by the electrostatic potential and is about
zero. Obviously, there is an excellent consistency between these two models at equi-
librium. This consistency validates our multiscale formulations and computational
algorithms.
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(a) (b)

Fig. 10 Comparison of cross-sections of electrostatic potential and concentration profiles with Φ0 =
0mV and ρ0 = 0.1 molar for the GA channel. The concentrations of cations and anions
are labeled with green and yellow dots, respectively. Two vertical dashed lines indicate the
channel region. (a) Electrostatic potential profiles. (b) Concentration profiles.

(a) (b)

Fig. 11 Comparison of surface electrostatic potential profiles with Φ0 = 0mV and ρ0 = 0.1 molar
for the GA channel. (a) Surface electrostatic potential profile of the LB-PB model. (b)
Surface electrostatic potential profile of the LB-PNP model.

Figure 11 presents a comparison of surface electrostatic potentials of two models.
The red color indicates the negative potential, while the blue color stands for a positive
potential. As expected, the GA channel possesses predominantly negative electrostatic
potentials in the channel mouth region and the pore region. The GA channel repulses
anions not only inside the channel pore, but also outside the channel pore region.
As shown in Figures 11 and 12, the two differential geometry based models provide
essentially the same surface electrostatic potential profiles.

4.3.3. Consistency between the Quasi-equilibrium LB-PBNP Model and the

Nonequilibrium LB-PNP Model. So far, we have shown the consistency between the
proposed differential geometry based models and the classic PB model in terms of the
solvation free energy at equilibrium. We have also demonstrated the consistency be-
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(a) (b)

Fig. 12 Comparison of surface electrostatic potential cross-sections with Φ0 = 0 mV and ρ0 = 0.1
molar for the GA channel. (a) Surface electrostatic potential profile of the LB-PB model.
(b) Surface electrostatic potential profile of the LB-PNP model.

(a) (b)

Fig. 13 Comparison of cross-sections of electrostatic potential and concentration profiles with Φ0 =
100mV, ρ0 = 0.5 molar. The concentrations of cations and anions are labeled with green
and yellow dots, respectively. (a) Electrostatic potential profiles. (b) Concentration profiles.

tween our LB-PB and LB-PNP models in terms of electrostatic potential and density
at equilibrium. However, what remains unknown is the ability of the proposed quasi-
equilibrium LB-PBNP model to recover the full predictions of the nonequilibrium
LB-PNP model at nonequilibrium settings. This ability is important for the reduc-
tion of model complexity, because densities of certain ion species are represented by
the Boltzmann distribution, instead of being computed by computationally expensive
NP equations.

Figure 13 provides the comparison of the cross-sections of electrostatic potential
and concentration profiles obtained from the LB-PNP and LB-PBNP models. The
external voltage is set to Φ0 = 100mV and the salt (KCl) concentration is ρ0 = 0.5
molar. Here we represent the Cl− density ρCl−(r) using the Boltzmann distribution,
while we solve the NP equation for K+ density ρK+(r). Clearly, the electrostatic
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(a) (b)

Fig. 14 Comparison of the top views of surface electrostatic potentials with Φ0 = 100mV and ρ0 =
0.1 molar. (a) Surface electrostatic potential profile of the LB-PBNP model. (b) Surface
electrostatic potential profile of the LB-PNP model.

(a) (b)

Fig. 15 Comparison of the cross-sections of surface electrostatic potentials with Φ0 = 100mV and
ρ0 = 0.1 molar for the GA channel. (a) Surface electrostatic potential profile of the LB-
PBNP model. (b) Surface electrostatic potential profile of the LB-PNP model.

potential computed by the reduced LB-PBNP model is able to near perfectly recover
that of the full LB-PNP model. For the density profile, the reduced LB-PBNP model
does an excellent job in the channel region, which is the region of main interest.
Note that in the bulk regions, it may appear that there is a discrepancy between two
models. In fact, the two models have an excellent agreement in the bulk regions too.

In Figures 14 and 15, we also plot the comparison of surface electrostatic poten-
tials obtained from the LB-PNP and LB-PBNP models. The top views of surface
electrostatic potential profiles are demonstrated in Figure 14. It is interesting to
compare these profiles with those given in Figure 11, which are attained without any
external voltage. Clearly, the applied external voltage has significantly changed the
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(a) (b)

Fig. 16 Electrostatic potential and concentration profiles with Φ0 = 150mV for the GA channel.
(a) Electrostatic potential profiles. (b) Concentration profiles.

landscape of electrostatic potentials at the top channel mouth region shown in Fig-
ure 14. However, one can still notice the negative surface potential profile inside the
channel pore, which ensures the original GA channel selectivity. To further confirm
this property, we illustrate the cross-section profiles of the surface electrostatic po-
tentials in Figure 15. Indeed, the inner part of the channel pore remains negatively
charged, giving rise to the GA selectivity of cations.

It is also interesting to compare Figures 12(b) and 15(b). The cross-sections of
electrostatic potentials are clearly affected by the change in external voltages. How-
ever, under the applied voltage, the channel pore region remains negative in terms of
electrostatic potentials.

Finally, we emphasize that surface electrostatic potentials obtained from the LB-
PNP and LB-PBNP models are visually identical, which implies that the proposed
LB-PBNP model can be as useful as, but is computationally less expensive than, the
LB-PNP model for realistic ion channel simulations.

4.3.4. Electrostatic Potentials and Densities under Different Experimental

Settings. Having validated the consistency of the proposed variational multiscale
models for ion channel transport, we are interested in the behavior of the GA channel
at different external voltages and bulk salt concentrations. To this end, we investigate
ion concentration profiles and electrostatic potential distributions at different bound-
ary conditions. In the first set of numerical experiments, we fix the external voltage
at V0 = 150mV and study the system at five different bulk concentrations, namely,
ρ0 = 0.1 molar, ρ0 = 0.2 molar, ρ0 = 0.5 molar, ρ0 = 1.0 molar, and ρ0 = 2.0 molar.
Our results are plotted in Figure 16. It is observed that a higher bulk salt concen-
tration elevates the electrostatic potential profile and increases the concentrations of
both ions in the channel pore region. It is interesting to note that the local concentra-
tions in the channel pore can be as high as 10 molar, due to the local protein charge
environment. In general, there are more cation accumulations at the right-hand side
of the channel because of the relatively low electrostatic potentials there.

In the second set of numerical experiments, we let external voltage vary from
0mV to 200mV in 50mV increments, while fixing the bulk concentration at ρ0 = 0.1
molar. Figure 17 displays the electrostatic potential and concentration profiles for
five different applied voltage values. It can be seen that on the left-hand side (close
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(a) (b)

Fig. 17 Electrostatic potential and concentration profiles with ρ0 = 0.1 molar for the GA channel.
(a) Electrostatic potential profiles. (b) Concentration profiles.

to higher potential), the changes in the potential values are larger than those on the
right-hand side (close to lower potential), which corresponds to more dramatic changes
in the concentration profiles on the left. Additionally, note that concentrations of
cations K+ and anions Cl− are essentially the same in the bulk regions. However, in
the channel region, the concentrations of K+ are high, but those of Cl− are nearly 0,
which is consistent with the general property that the GA is a positive monovalent
ion channel.

It is particularly interesting to note that the ion concentrations in the channel
region can be about 70 times higher than their bulk concentrations. Similar findings
have been reported in the literature [194]. Electrostatic potential certainly plays a
major role in this phenomenon at nanoscale. Microscopic structure, charge, and po-
larization contribute to the variability and complexity of biomolecular electrokinetics.

4.3.5. Consistency between Theoretical Prediction and Experimental Mea-

surement. In electrophysiology, I-V curves of ion channels are frequently measured.
In this situation, the voltage refers to the voltage across a membrane, and the current
is the flow of charged ions across a protein pore. The current is determined by the
conductances of the channel protein. The experimental I-V curves of the GA channel
for KCl were reported by Cole et al. [45]. The right panel of their Figure 8 is used as
the reference data for the present study.

To compute the electric current across the membrane protein pore, we employ
the expression [194]

(79) I =

Nc∑

α=1

qα

∫

Lx,Ly

Dα

[
∂ρα
∂z

+
ρα
kBT

(
qα

∂Φ

∂z
+

∂Uα

∂z

)]
dxdy.

For the bulk diffusion coefficients of K+ and Cl−, the experimental data are used.
As in our earlier work [194], the diffusion coefficients in the bulk region are set to
their experimental values: DK+ = 1.96 × 10−5cm2/s and DCl− = 2.03 × 10−5cm2/s
for K+ and Cl−, respectively. However, the diffusion coefficients in the channel pore
are not known in general, to our knowledge. Usually, smaller diffusion coefficients
are used in the channel region due to the restricted diffusion in most ion channels.
Here we assume that the diffusion coefficient inside the channel is a constant, and we
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Fig. 18 A comparison of simulated I-V curves and experimental data from [45] for the GA channel.

use the same current value as that used in the experiment, i.e., at Φ0 = 200mV, to
obtain the range of diffusion coefficients. We find that a diffusion coefficient which is
25 times smaller than the bulk coefficient shows a reasonable match. The comparison
between the present predictions using the LB-PBNP model and experimental data
[45] is shown in Figure 18. Although there are some minor deviations between our
model predictions and experimental values, overall, there is a very good agreement
between two sets of data, considering the fact that experimental measurements are
also subject to certain errors.

We notice that the prediction of the present LB-PBNP model or the LB-PNP
model is much closer to the experimental measurement than the result of the PNP
model studied in our earlier work [194]. A possible reason is that the present models
take care of nonpolar solvation effects, including solvent-solute interactions. The close
agreement with experimental measurement further validates the proposed variational
multiscale models for ion channel transport.

5. Concluding Remarks. Charge transport phenomena are omnipresent in na-
ture and man-made devices, and become fascinating when charge transport is reg-
ulated by multiple components or occurs in a heterogeneous environment. Elec-
trokinetics is a fast growing field which is devoted to the study of complex charge
transport phenomena. The complexity of electrokinetic systems increases dramati-
cally at nanoscale, where macroscopic meets microscopic. Typical examples include
fuel/solar cells, battery cells, nanofluidic systems, and ion channels. Theoretical mod-
eling and computation of these complex systems pose a formidable challenge due to
the excessively large number of degrees of freedom. It is commonly believed that
dimensionality reduction via multiscale modeling should provide viable approaches.
The question is how to pursue the multiscale modeling, given the intriguing nature of
the aforementioned nano-bio systems.

Recently, Wei introduced a new multiscale paradigm for the modeling and com-
putation of aqueous chemical and biological systems [181]. The novelty of this multi-
scale paradigm is the use of the differential geometry theory of surfaces as a natural
means to geometrically divide the total domain into macroscopic and microscopic do-
mains, while dynamically coupling discrete and continuum descriptions. Typically,
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the biomolecular domain is equipped with discrete atomistic descriptions, while the
solvent domain is represented by macroscopic continuum mechanics. A main strat-
egy to couple macro-micro descriptions in our differential geometry based multiscale
models is the total free energy (or action) functional. By the variation of the total
free energy functional with respect to the variables of interest, we systematically de-
rive the generalized Poisson–Boltzmann (PB) equations for electrostatic interactions,
Navier- Stokes equations for the fluid dynamics, Newton’s equation for the molec-
ular dynamics (MD), and the Laplace–Beltrami (LB) equation for the hypersurface
dynamics. These equations are coupled with the Nernst–Planck (NP) equation to de-
scribe the charge transport in chemical and biological systems. For excessively large
macromolecular complexes, such as viruses, protein complexes, and molecular mo-
tors, differential geometry based multiscale fluid-electro-elastic models are proposed
to replace the expensive MD description with an alternative elasticity formulation
[181]. More recently, differential geometry based solvation models have been carefully
analyzed and validated by an intensive comparison with experimental data [33]. The
Lagrangian representation of our new solvation models has also been developed [34].
However, in our original formulation [181], the NP equation was not derived from
the variation of the total free energy functional. Instead, it was obtained from mass
conservation analysis. As a consequence, the chemical potential energy plays no role
in the surface formation and evolution.

In the present work, we provide an alternative formulation of differential geometry
based multiscale models for charge transport. One main new feature of the present
variational multiscale formulation is the inclusion of the chemical potential related
energy in the total energy functional. Consequently, the entropy of mixing is able
to drive the solvent-solute interface and influence the surface morphology. By the
variation of the new total free energy functional, we derive coupled Laplace–Beltrami
and Poisson–Nernst–Planck (LB-PNP) equations for the modeling of charge transport.

Another main new feature of the proposed variational multiscale formulation is
the consistency between the equilibrium Laplace–Beltrami and Poisson–Boltzmann
(LB-PB) model and the nonequilibrium LB-PNP model. The present LB-PNP model
is designed to reproduce the LB-PB model at equilibrium. It is believed that this
consistency is a crucial criterion for validating new nonequilibrium theories. In the
present formulation, we show that when the charge distribution reaches its equilibrium
profile, the LB-PNP system can be well described by the LB-PB model.

The other main new feature of the proposed variational multiscale models is the
reduced representation of charge species at nonequilibrium. In our recent work [195],
we have shown that for multispecies ion channel transport, the computationally ex-
pensive PNP model can be replaced by an inexpensive Poisson–Boltzmann–Nernst–
Planck (PBNP) model. In the PBNP model, we describe the density of charge species
of interest by the NP equation, while representing the density of other ion species by
the quasi-equilibrium Boltzmann distribution obtained from the Poisson–Boltzmann
(PB) equation, which avoids the expensive solution of NP equations. The validity
of our PBNP model has been confirmed with Monte Carlo simulations by indepen-
dent researchers [111]. In the present work, we have incorporated this approach into
our variational multiscale models. It is easy to demonstrate that the resulting LB-
PBNP model recovers the LB-PB model at equilibrium. However, our goal is for the
LB-PBNP model to fully reproduce the prediction of the LB-PNP model at nonequi-
librium settings, and thus to dramatically reduce computational cost for multispecies
chemical and biological systems.
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Finally, we present a differential geometry based chemo-electro-fluid model for
charge transport in nanofluids, fuel cells, and other systems where the fluid motion
contributes to the charge transport. It is found that both the generalized NP equation
and the generalized Navier–Stokes equation have new features that are not accounted
for in the classical governing equations for electro-osmotic flows.

To implement the above-mentioned variational multiscale models, we have de-
signed a number of computational algorithms. Both the Eulerian formulation [33]
and the Lagrangian formulation [34] of our new models are considered in the present
work. In the Lagrangian formulation, the second-order PNP solver developed in our
earlier work [194] plays a significant role. The Dirichlet to Neumann mapping and
matched interface and boundary (MIB) methods are also employed in the present
work to deal with sharp interfaces. A successive overrelaxation-like algorithm is used
to ensure the convergence in solving the coupled equations.

To validate the above-mentioned new variational multiscale models, we have con-
sidered two types of realistic numerical tests. In the first type of numerical tests,
we explore the free energies of ten protein molecules computed with equilibrium PB,
equilibrium LB–PB, and nonequilibrium LB-PNP models. The consistency among
the predictions of these models has been observed. We further examine the sur-
face morphology and surface electrostatic potential profiles generated by a number of
models: solvent excluded surface based PB, LB-PB, and LB-PNP approaches. The
results obtained from PB and LB-PB models agree within 3% deviations. Excellent
consistency between LB-PB and LB-PNP model predictions is found. The present
differential geometry based surface models are able to overcome the well-known de-
fects of many other traditional surface models, namely, geometric singularities and
unphysical features (i.e., no energy minimization). Finally, we demonstrate the decay
of the total free energy with respect to the time integration or the iteration of coupled
equations, which indicates the reasonable design of the total free energy functional.

To further validate the proposed variational multiscale models for ion channel
transport, we have employed a standard test case, the Gramicidin A (GA) channel,
in our numerical experiments. We first illustrate the consistency between the equilib-
rium LB-PB model and the nonequilibrium LB-PNP model in terms of electrostatic
potentials and ion concentration profiles along the channel pore direction and surface
electrostatic potentials of the GA channel. Additionally, we demonstrate the ability
of the quasi-equilibrium LB-PBNP model to faithfully reproduce the predictions of
the nonequilibrium LB-PNP model. Such an ability enables us to reduce compu-
tational cost for multispecies systems. Moreover, we explore electrostatic potentials
and density profiles under different experimental settings for the GA channel. A num-
ber of external voltages and bulk concentrations are considered in our investigation.
Finally, we show that the proposed variational multiscale models provide excellent
predictions of current-voltage (I-V) curves. In electrophysiology, I-V curves are major
experimental measurements. They are frequently used to validate theoretical models
in biophysics. The agreement between the present theoretical predictions and exper-
imental measurement further validates the proposed variational multiscale models.

Although the present multiscale models originate from geometric flow theory, dif-
ferential geometry theory of surfaces, and geometric measure theory, they are akin in
spirit to earlier variational models in implicit solvent theories [149, 80] and the phase
field models proposed by Cahn and Hilliard in 1958. In fact, our hypersurface function
is quite similar to the phase field function, of which a similar treatment of smooth
boundaries dates back to 1893 by van der Waals (see [143] for a translation and critical
discussion). However, it is well known that phase field models in materials science or

D
o

w
n
lo

ad
ed

 0
6
/2

5
/1

5
 t

o
 1

4
1
.1

6
5
.2

2
6
.4

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL MULTISCALE MODELS FOR CHARGE TRANSPORT 745

Landau–Ginzburg models in physics are phenomenological approaches, whereas the
present variational multiscale models are based on the fundamental laws of physics
with realistic physical descriptions, which is essential because the model prediction
has to be quantitatively, rather than qualitatively, compared with experimental mea-
surement. For example, in standard phase field models, interfacial tension density is
represented asK|∇S|2, with K being a parameter, while in our approach we deal with
the physically measurable surface energy as defined in (1). The mathematical realiza-
tion using the geometric measure theory given in (6) leads to surface energy density
γ|∇S|, which gives rise to the mean curvature term after the variation. Nevertheless,
diffuse interface methods and energy variational approaches offer a powerful qualita-
tive description for complex physical and chemical systems, including electrochemical
systems [87], electrodeposition [152, 136], and electro-osmotic fluid flows [83]. For
example, phase field models have found their success in describing ion intercalation
phenomena in batteries [89, 155, 22]. It is interesting to note that in phase field
models, volume-exclusion correlations can be treated with nonlocal kernels, e.g., as
the “weighted density approximation” [5]. However, it is not clear whether a similar
nonlocal approach is appropriate for the biomolecular systems due to the constraint
of physical interactions.

This paper presents only an introduction to variational multiscale models for
charge transport in complex systems. Many important aspects are either not consid-
ered or not numerically implemented in the present work. First, the flow transport
and its coupling to the charge transport are of crucial importance to the mass and
charge balance of living cells and to the water management of fuel cells. In fact, fluid
dynamics is an essential ingredient in nanofluidic systems. Therefore, an obvious task
is to implement fluid dynamics numerically and validate new governing equations
against experimental data in future work.

Additionally, in the present work, ion channels are treated as rigid and chan-
nel structural response to the ion permeation is not accounted for. The theoretical
framework for such a development was given in our earlier work [181]. Numerical im-
plementation of multiscale MD or implicit MD was developed in our recent work [77].
It is interesting to incorporate such an MD to allow local modifications of channel
protein structures.

Moreover, although nonelectrostatic interactions among various species, includ-
ing part of the so-called size effects in the continuum description of ion densities, are
considered in the present models, our numerical simulation does not include the nu-
merical test of finite size effects. This type of interaction has been numerically studied
in terms of “generalized correlations” in our other variational multiscale formulation,
namely, the quantum dynamics in the continuum model [26]. It would be desirable
to explore the impact of finite size effects in the present models as well. Typically,
correlations produced by the size of particles lead to atomic scale corrections to the
density distributions of liquids [75]. More expensive integral equation theories, such as
the hypernetted chain equation, the Carnahan–Starling equation, the Percus–Yevick
equation, and the density functional theory (DFT) of liquids, are employed to deliver
corrections at equilibrium [166, 75, 18, 79, 141]. However, it takes much additional
effort to construct effective integral equation approaches for the description of charge
transport in large scale complex chemical and biological systems.

Further, the correction of ion correlation to electrostatic potential due to nonlin-
ear polarizations is needed for a dense multivalent ion fluid [85, 6]. An interesting
variational “Landau–Ginzburg” model for electrostatic correlations leads to a higher-
order Poisson equation [15]. Recently, we have proposed a nonlinear Poisson equation
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to account for hyperpolarization effects in heterogeneous media [94]. These effects
can be considered in our variational multiscale models too.

Furthermore, it is useful to consider quantum effects in the solvation process,
which will lead to an extra scale in the present formulation of change transport. A
similar multiscale variational model for solvation analysis has been studied using the
electronic DFT [131] in our recent work [35]. Indeed, the consideration of quantum
effects significantly improves the prediction of solvation free energies [35]. Other
related approaches include polarizable continuum models (PCM) [164, 127] and PB
based quantum solvation models [31, 176].

Yet another interesting issue is the quantum effect in charge transport processes,
concerning light charge carriers such as electrons and protons. When the thermal de
Broglie wavelength is of the same scale as the channel length and/or Debye length, the
quantum effect becomes important. Variation multiscale models have been proposed
in our recent work to account for quantum effects in nano-electronic devices [27] and
proton channels [25, 29]. The incorporation of quantum effects in the present charge
transport models can be easily formulated.

Finally, the other important issue associated with charge transport is the proto-
nation, ligand binding, Stern layer, and/or chemical reactions. This issue becomes
increasingly important for fuel cells and many ion channels, such as potassium and
proton channels [55]. The present work gives a simplified account of this issue in
section 2.4. More sophisticated considerations of chemical reactions are needed to ad-
dress localized reaction, reaction induced charge transport, charge transport induced
reaction, and strongly coupled reaction and transport.

Giving the importance of charge transport to physical, chemical, and biologi-
cal systems, as well as nanotechnology and device engineering, we expect increased
interest and rapid progress in terms of theoretical modeling, numerical algorithms,
mathematical analysis, and realistic applications to appear in the near future.

Acknowledgments. GWW thanks Rob Coalson, Tom DeCoursey, Bob Eisen-
berg, Joe Jerome, and Chun Liu for insightful discussions. The authors thank anony-
mous reviewers for useful suggestions.
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