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Variational-perturbational treatment for the polarizabillties of conjugated 
chains. I. Theory and linear-polarizabillties results for polyenes 
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Technology, Cambridge, Massachusetts 02139 

(Received 24 July 1987; accepted 28 October 1987) 

We use a perturbative density matrix treatment to investigate the behavior of the static 
polarizabilities a of linear conjugated chains CNHN + 2' with respect to the chain length and to 
the presence of neutral and charged conjugation defects of soliton and polaron type. The 
molecules are described by the Pariser-Parr-Pople Hamiltonian; both closed and open shells 
are treated. It is shown that both the longitudinal component of a and the orientationally 
averaged linear polizability scale as different powers of N in each case. It is also shown how the 
present treatment can be considered as a generalization of standard variation-perturbation 
methods for the Hartree-Fock case. 

I. INTRODUCTION 

It has long been recognized 1 that the delocalized charac­
ter of the 1T electrons should have a remarkable effect on the 
optical properties of conjugated organic molecules. Conju­
gated chain molecules, e.g., are known to exhibit the so­
called polarizability exaltation effect, i.e., the longitudinal 
component of their polarizabilities do not follow a bond ad­
ditivity scheme, but rather increase nonlinearly with the size 
of the chain length. In the early 1970's, Hermann and Ducu­
ing performed a series of third harmonic generation studies 
on members of the polyene family2 and have shown that this 
effect is even more dramatic for the higher order terms of the 
polarization response; a free-electron model calculation, 
which reasonably reproduces the experimental data,3 pre­
dicts that the longitudinal components of the first and third 
order optical polarizabilities of these molecules should scale 
as the third and fifth powers of the chain length, respectively. 
Subsequent work with good-optical quality samples of solid­
state polymerized diacetylenes have shown that the optical 
nonlinear coefficients for conjugated polymers and crystals 
can be at least as large as those of traditional inorganic semi­
conductors.4 The discovery of exceptionally large nonlinear 
optical properties in organic and polymeric solids, plus the 
inherent flexibility of control of their crystalline structures 
by appropriate chemical and synthetic methods, has opened 
the promise of development of a novel class of organic-based 
optical devices. As a consequence, the experimental and 
theoretical investigation of the optical properties of organic 
molecules and crystals as a research area has blossomed in 
recent years.s-7 

As early as in 1952, Coulson has examined the response 
of conjugated molecules to a strong applied electric field. 8 

When an external uniform electric field of strength Facts 
upon a molecule ofpolarizability a, it produces a distortion 
of the electronic charge distribution. If F is large, i.e., com­
parable to the internal fields of the system, the induced di­
pole moment deviates from a simple linear dependence on 

a) On leave of absence from the Departamento de Fisica, Universidade Fed­
eral de Pernambuco, 50000 Recife PE Brazil. 

the field and can be written as 

,u = a • F + 11213 ·F2 + 1I6y • F3 + ... 
Based on qualitative arguments, Coulson suggested that for 
most molecules the measured total polarizability at high 
field strengths should be greater than the value at low field 
strengths. Since then, the term hyperpolarizability has been 
traditionally associated to the higher-order contributions of 
the polarization response: the coefficients 13 and yare 
known, respectively, as the first- and second-order hyperpo­
larizability tensors. 

In the present paper, we will be concerned solely with 
the static polarizability [i.e., a(O)]. From the theoretical 
point of view, studies of the polarizability oflarge molecules 
have been hampered by the computational difficulties of car­
rying out the usual perturbation expansions involving sum­
mations over the complete set of virtual states.9 For the Har­
tree-Fock model, for instance, the contribution of the 
excited states in the continuum to the polarizability cannot 
be disregarded. For conjugated systems, however, an impor­
tant simplification can be attained by assuming the separa­
bility between u and 1T electrons. The polarization contribu­
tion of the former is supposed to follow a bond additivity 
scheme, while the observed nonlinear effects are ascribed to 
the latter. Early perturbative calculations of the polarizabili­
ty of organic molecules based on a self-consistent 1T-electron 
Hamiltonian have been performed by Amos and Hall, 10 and 
Diercksen and McWeeny.11 Schweig has used a finite-field 
method to examine the linear and nonlinear polarizability 
responses of alternant and nonalternant hydrocarbons. 12 He 
has considered the 1T-electrons, described by a Pariser-Parr­
Pople Hamiltonian, to be immersed in a medium of dielectric 
constant equal to 2; for linear polyenes his results indicated 
that some of the components of the second-order hyperpo­
larizabilities should have a negative sign, in disagreement 
with Coulson's suggestion of only positive higher-order po­
larizabilities. 

A systematic study ofthe electric polarizabilities of lin­
ear polyenes CNHN + 2 has been carried out by Hameka and 
collaborators. The first results,13 based on a simple Huckel 
calculation, indicated that for regular polyenes, the longitu-
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dinal components of the linear polarizability axx and of the 
second hyperpolarizability y xxxx should be roughly propor­
tional to the 2.8 and 5.3 powers of N, respectively. However, 
larger negative values were predicted for the xxyy compo­
nents and the resulting orientationally averaged hyperpolar­
izabilities y1T were increasingly negative. In subsequent pa­
pers,14.15 transition matrix elements involving singly and 
doubly excited Huckel molecular states were calculated us­
ing a Pariser-Parr-Pople (PPP) Hamiltonian. The main ef­
fect of the inclusion of the self-consistent terms was to reduce 
the values of the different components of y and, as a conse­
quence, large and positive values for the orientationally aver­
aged hyperpolarizabilities were predicted. An extended 
Huckel estimate ofthe contribution of the 0" electrons to the 
polarizability response confirmed that the PPP 'IT contribu­
tions should be dominant.14 However, the required compu­
tations for the fourth-order energy corrections were quite 
laborious and the N = 12 was the largest polyene consid­
ered. Also, homogeneous bond lengths along the polyenic 
chain were assumed in the calculation and hence the impor­
tant consequences of the alternation between single and dou­
ble bonds were not investigated. 

A convenient way to avoid the explicit calculation of 
transition matrix elements involving individual molecular 
states had been first advanced by McWeeny in 1962, by sug­
gesting a direct perturbative expansion in terms of the (one­
body) Hartree-Fock density matrix. IS The proposed meth­
od is equivalent to a "fully coupled" self-consistent 
perturbation treatment and formally can be carried out to 
any desired order to handle different types of perturbations 
of physical and chemical interest.ll.16.17 Nicolaides and col­
laborators have used the technique to compute, within a 
CNDO approximation, the linear and nonlinear polarizabi­
lities of several organic molecules1

1! with very good agree­
ment with available experimental results. However, the in­
clusion of all valence electrons has to be accompanied by a 
limitation on the size of the molecules to be examined, and 
the largest polyene molecules they have investigated were 
different octetraene (N = 8) isomers. 

In this series of papers we will use the perturbative ex­
pansion for the density matrix (PEDM) suggested by 
Mc Weeny 16 to examine the static linear and nonlinear polar­
izability responses of conjugated chains. In an earlier let­
ter, 19 we have introduced the method and presented prelimi­
nary results concerning the second hyperpolarizability of 
polyenic chains. In the current work, we develop the general 
theory of the method and calculate the linear polarizabilities 
of regular polyenic chains as well as those of chains with 
geometries resembling conformational defects, such as soli­
tons and polarons. In the next paper, we will discuss in more 
detail the results for the hyperpolarizabilities of polyenic 
chains and point out that, contrary to the usual assumptions, 
the first hyperpolarizability f3 of charged soliton-like chains 
can be significantly different from zero.20 In a later paper,21 
we plan to examine the polarization response of polydiacety­
lenes. 

Conformational effects on the optical response of conju­
gated chains have recently become a point of interest con­
cerning the dramatic change in the color of solutions of poly-

diacetylenes as a result of variations on dilution and 
temperature.22 Also, conflicting results for the sign of the 
second hyperpolarizability of polydiacetylenes determined 
by two different methods (third-harmonic generation tech­
niques applied to PDA solutions23 and intensity dependent 
nonlinear coupling experiments on PDA crystals24 ) could 
be reconciled if the conformational dependence ofthe polar­
izability response ofthe material is found to be strong. Given 
the large amount of experimental and theoretical knowledge 
accumulated in recent years about the effects of conforma­
tional changes on the electronic properties ofpolyacetylenic 
chains,25 it seems sensible to start this investigation by the 
analysis of those effects upon the polarizabilities ofpolyenes. 
As indicated by a recent ab initio calculation of the linear 
polarizabilities of polyacetylene and polydiacetylene related 
compounds,26 these properties are extremely sensitive to ge­
ometry changes along the chain. 

The present paper is divided as follows: in Sec. II, we 
develop the general theory for the calculation both of polari­
zabilities and of hyperpolarizabilities and show how the 
PEDM method can be considered as a generalization of stan­
dard variational-perturbational27 procedures; we begin Sec. 
III with a discussion about how the presence of conforma­
tional defects can affect the understanding of the electronic 
properties of conjugated chains, and present the Hamilto­
nian and geometries adopted in the calculation; in Sec. IV, 
we present the calculated values for the linear polarizabili­
ties of polyenes (both with regular structure and presenting 
defects) and discuss how the results compare to those of 
previous calculations; finally, in Sec. V, we conclude by mak­
ing the connection of the present work with subsequent cal­
culations of the hyperpolarizabilities of conjugated chains. 

II. THEORY 

A. Perturbative expansion of the density matrix 

As it is well known, the Hartree-Fock (HF) equations 
for an isolated N-electron molecular system can be solved 
directly29 in terms of the single-particle density matrix Ro. If 
the unperturbed system is described by the Hamiltonian ho, 
the HF equations can be expressed as 

hoRo - Roho = 0, 

where the corresponding density matrix must satisfy the 
idempotency condition 

with tr Ro = N, in order to be associated to a single-determi­
nant wave function. In the density matrix approach no treat­
ment of individual one-electron states of the system is re­
quired, but rather the whole N-electron distribution is dealt 
with at once. This is particularly convenient when an exter­
nal perturbation V is applied upon the original system, for 
then a standard perturbation treatment would require that 
each new occupied state be formed as a combination of the 
originally occupied and unoccupied molecular orbitals. On 
the other hand, in the density matrix formalism, one is inter­
ested in determining the matrix R which satisfies the HF 
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condition 

(ho+ V)R -R(ho+ V) =0 (1) 

and obeys the relations R2 = Rand tr R = N. The fact that 
the new density matrix R can be constructed without resort­
ing to the determination of the new individual molecular 
orbitals provides the main computational advantage of the 
perturbative expansion for the density matrix technique. 

The original and the perturbed HF Hamiltonians can be 
separated in the one- and two-electron parts 

ho =/0 + Go(Ro), 

h=ho+ V=/+G(R), 

where their self-consistent character is reflected in the fact 
that the two-electron terms are functionals of the corre­
sponding density matrices. In the present problem, the per­
turbation results from the switching of the static external 
field F. That gives rise to an extra term in the one-electron 
part of the Hamiltonian 

/=/0 +eF· r 

and, as a consequence, the electronic distribution of the sys­
tem is distorted. This in turn leads to a correction in the two­
electron part of the Hamiltonian and the whole self-consis­
tency process must then be applied to guarantee that 
condition (1) is satisfied. The electronic energy can then be 
computed as 

E = 2 tr{[/ + 1/2G(R) ]R}, 

where the factor 1/2 accounts for the double counting of 
electronic interactions in the HF Hamiltonian.29 

After formally introducing the order parameter A, we 
can write 

R = Ro + AR (I) + A Z R (2) + ... 

and 

G = Go + AG(R (I» + A zG(R (Z» + ., .. 
The HF and idem potency conditions satisfied by the first­
and second-order corrections to the density matrices can 
now be expressed as 

RoR (I) + R (I)Ro = R (I) 

hoR (I) - R (l)ho + a(I)Ro - Roa(l) = 0 

RoR (2) + R (2)R o + R (l)R (I) = R (Z) 

hoR (Z) _ R (2)ho + a(l)R (I) 

- R (l)a(l) + a(2)Ro - Roa(Z) = 0, 

(2a) 

(2b) 

(3a) 

(3b) 

respectively, where we have defined a (i) =fi) + G(R(i». 
It is convenient to introduce the density matrix Uo asso­

ciated with the unperturbed unoccupied states ( Uo 
= 1 - Ro); since the perturbation preserve the total num­

ber of electrons, any operator A acting on the N-electron 
Hilbert space can be resolved as 

A = RoARo + RoAUo + UoARo+ UoAUo 

(4) 

where we have used the fact that Ro and Uo can be consid­
ered as projectors into the unperturbed orthogonal occupied 
and unoccupied spaces, respectively. If we then project Eq. 

(2a) into the two diagonal blocks, we see directly that 
RoR(1)Ro = (R(1»1I = 0 and UoR(1)Uo = (R(l)zz = 0, 
i.e., the first-order correction for the density matrix acts only 
to couple originally occupied states to the corresponding un­
occupied ones and vice versa. Hence, in first order, the off­
diagonal blocks convey all the modification in the electronic 
distribution brought about by the perturbation. They can be 
determined after obtaining the corresponding projections of 
Eq. (2b). It's convenient at this point to work in the basis in 
which ho (and therefore Ro ) is diagonal, for then the matrix 
elements of R ~ I) can be written as 

(R~I»ij =0, iERo,jERo, or iEUO' jE Uo, (5) 
-(I) 

-(1) aij (r;-rj) 
(R 0 )ij = , iERo,jEUo, or iEUo,jERo, 

(E; - Ej ) 

where the tilde indicates quantities in the new basis and rj 
and E; are the eigenvalues of Ro (or Uo ) and ho, respectively. 
Since a depends on R, Eq. (5) has to be solved in a self­
consistent way. 

Once R(1) is found, the diagonal blocks of R(2) can be 
directly determined since the projection of Eq. (3a) gives, 
both for i,jERo and i,jEUo, 

- (I) - (I) 
(R (Z»ij = _ L (R );k (R )kj. 

k (r; + rj - 1) 

To determine the off-diagonal blocks of R(2), one has to 
solve the new self-consistent equation which results from the 
projection of the commutation relation (3b) 

-(2) 
- (2) ( a ) ij (r; - rj ) (R )ij = __ '--_....0..-

(E; - Ej ) 

_ '} [(E(I) jk (R (I» kj - (R (I) jk (E(I) kj ] • 

~ (E; - E.) 
J (6) 

If necessary, higher-order corrections of R can be deter­
mined in a similar way. In the present case, the knowledge of 
the second-order correction R(2) will be sufficient for our 
purposes. 

The different corrections in the electronic energy can be 
separated in successive orders as 

E(I) = 2 tr[/(I)Ro], 

E(Z) = 2 tr( 1/2/(I)R (I», 

E(3) = 2 tr[a(l)((R (2)11 + (R (Z»zz)], 

E(4) = 2 tr{ho[ - (R (2)R (Z» 11 + (R (2)R (2)d 

(7a) 

(7b) 

(7c) 

+ 112a(2)R (Z)} + 4 tr{ - (an) (R (Z» IZ (R (I)ZI 

(7d) 

where we have used the notation introduced in Eq. (4). As 
can be easily verified, the successive corrections in energy 
depend on increasingly higher powers of the external field 
stJ;"ength F. On the other hand, we can expand the change in 
energy as a power series in F: 

aE(F) = - 1/2 L aijF;fJ - 1/6 L /3ijk F;fJFk 
~j ~~k 

- 1/24 L r ijklF;fJFkFI + ... . (8) 
;,j,k,1 
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Hence, once the first-order correction to the density matrix 
is known, the polarizability a and the first hyperpolarizabi­
lity /3 can be calculated. To obtain the second hyperpolariza­
bility y, one has to determine the second-order correction 
R (2). Comparison of expressions (7) and (8) show that in 
the present method the calculated polarizabilities do not de­
pend on the field strength; in this way the numerical difficul­
ties commonly found in methods based on the direct compu­
tation 12,26 of the derivatives of Eq. (8) are altogether 
avoided. 

To solve for the different components of a,/3, and y, one 
has to repeat the calculation for different field directions. 
However, usually symmetry considerations allow the reduc­
tion of the number of independent components to be calcu­
lated for each specific molecule. 

An extension of the PEDM formalism to open-shell sys­
tems was carried by Mc Weeny and Diercksen.30 However, if 
an unrestricted Hartree-Fock (UHF) approximation is 
adopted, it is a simple matter to generalize the above formal­
ism to deal with the different spin distributions. We will fol­
low this procedure for the calculation of the polarizabilities 
of neutral solitons and charged polarons. 

B. Relation to usual variation-perturbation methods 

The complicated form of perturbation-theory expres­
sions for the polarizabilities and hyperpolarizabilities have 
precluded realistic calculations of these quantities for sys­
tems with a large number of electrons. As a consequence, 
several schemes which avoid the direct computation of ma­
trix elements involving perturbated states have been pro­
posed. Of these, the so-called F-operator technique original­
ly introduced by Dalgamo and Lewis,27 and later put on a 
more formal basis by Schwartz,28 deserves special attention. 
The method is based on the definition of an operator F obey­
ing a special commutation relation with the unperturbed 
Hamiltonian ho. A variational principle can be constructed 
for F and it can be shown that this operator is uniquely deter­
mined by the the unperturbed ground-state electronic den­
sity of the system. Once F is found (usually by solving an 
inhomogeneous differential equation),28 the higher-order 
corrections in the energy can be determined. Flytzanis and 
Ducuing have used the technique to compute the second­
order susceptibilities of inorganic semiconductors. 3 

1 

In this section, we will show that the PEDM method can 
be considered as the HF generalization of the standard vari­
ational perturbation technique, in which the perturbative 
corrections are computed not for individual electronic 
states, but instead to the whole electronic distribution. Also, 
the PEDM treatment offers a simple procedure to obtain 
corrections in sucessive orders both for the total electronic 
energy and electronic distribution, where only matrix mani­
pulations are involved. We will show explicitly that the oper­
ator F has a simple relation to the first-order density matrix 
correction R (I) and that the variational condition for F pro­
posed by Schwartz28 is connected to the stability require­
ment satisfied by the energy correction in second order. 

Let us suppose that a perturbation V acting upon an 
eigenstate 1.u(0» of the original Hamiltonian ho. We can 

write the corresponding first-order energy correction as 

E ~I) = (P(O) IV 1.u(0». 

In standard perturbation theory, the corrections for the 
wave function associated with this state as well as all subse­
quent energy corrections will require the calculation oftran­
sition matrix elements involving the excited states ofthe un­
perturbed system. On the other hand, in the F-operator 
technique, the second-order energy correction and the first­
order correction for the wave function for a given unper­
turbed eigenstate are entirely determined by the form of the 
applied perturbation V. This is accomplished by introducing 
the operator F which satisfies 

(9) 

and the adjoint condition, for then it is simple to show that 

and 

If F is assumed to be a function of the space coordinates, it 
can be in principle determined after solution of the differen­
tial equation defined by Eq. (9). Schwartz has introduced 
the variational condition for F as 

J = (P(O)I<I>(V_E~I) + (V-E~I»<I> 
- 1!2[<I>,[<I>,hol 1 1.u(0», ( 10) 

where J will be stationary with respect to variations of <1>, if <I> 
satisfies condition (9) and its adjoint. 

To explore the relationship between this approach and 
the PEDM method, let us multiply Eq. (9) at the right by 
(p (0) I and sum over all occupied states of the Hamiltonian 
ho: 
occ L {Fhol.u(O) (P(Oll - hoF 1.u(Ol) (P(O)I} 
I' 

O~ occ 

= L V 1.u(O» (P(oli - L E ~I) 1.u(0) (p(Olj. (11) 
I' I' 

Ifwe realize that the unperturbed density operator is defined 
in terms ofthe unperturbed states 1.u(0» as29 

occ 

Ro = L 1.u(Ol) (P(O)I, 
I' 

Eq. (11) can be written as 
occ 

FhoRo - hoFRo = VRo - L E ~I) 1.u(0» (.u(0)1· 
I' 

After subtraction of the above equation from its adjoint, we 
obtain finally 

FhoRo - RohoF - hoFRo + RoFho = VRo - RoV. (12) 

This equation can be considered as an equivalent definition 
of the operator F. Note that in the present form F can be 
determined entirely by matrix manipulation; to find the ex­
plicit form of F, we resolve Eq. (12) in its four component 
blocks and subsequently transform to the basis in which ho 
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and Ro are diagonal. It is easy to verify then that 

Fij = 0, i,jERo, or i,jEUo, 

F
- Vij (r; - rj ) • R . U. 

ij = , lE o,jE 0' or iEUo,jERo' (13) 
(Ei - Ej ) 

In the Hartree-Fock approximation, the role of the pertur­
bation V is played by the first-order correction a (1) in the 
Hamiltonian. Thus, a comparison of Eqs. (5) and (13) 
shows that at the HF level, Dalgarno's operator F can be 
identified to the first-order correction for the density matrix 
R(I). 

Once this identification is made, the analogy between 
the two methods can be carried a step further. Ifwe write the 
variational condition (10) in the basis where He is diagonal 
and take into account the fact that the diagonal elements ofF 
are zero in this basis, we obtain 

IJi = I [(R(I»ij(L\(I)ji + (L\(1)ij(R(I)j;) 
; i,j 

-I (R(1)ij(Ei -Ej)(R(I»ji 
i,j 

= I (R (I)ij (L\(I)ji = Tr(R (I)a(l) = E(2). 

i.j 

We see therefore that in a Hartree-Fock treatment the vari­
ational condition for the corresponding F operator leads nat­
urally to the expression of the energy correction in second 
order satisfied by any perturbed Hamiltonian, which has the 
appropriate commutation relation with the complete density 
matrix. 

Hence, the PEDM method provides a simple and gen­
eral method to obtain the successive corrections for the ener­
gy and electronic distribution of a system (described by a 
self-consistent Hamiltonian) submitted to an external per­
turbation, where only matrix manipulations are involved 
and that can be carried exactly to any desired order. In the 
next section, we are going to utilize this technique for the 
treatment of the polarizability response of conjugated chains 
described by a PPP Hamiltonian. 

III. MODEL CALCULATION 

A. Defects in conjugated chains 

In spite of its very simple semiempirical nature, the Su­
Schrieffer-Heeger32 model was of extreme success in ex­
plaining the peculiar electronic and transport properties of 
polyacetylene (PA) in terms ofthe presence of conjugation 
defects along the chain. In this soliton model, the defects 
(which are assumed to exist in low concentration in pristine 
P A samples as an unavoidable result of the polymerization 
process) are associated to conformational changes in the 
polymer. In the trans isomer of PA, one of these defects 
would connect two isoenergetic chains since the system is 
degenerate with respect to the order in which single and dou­
ble bonds alternate. On the other hand, the motional barrier 
for the displacement of the center of the defect to neighbor­
ing sites is estimated to be small. As a consequence, at room 
temperature the defects (solitons) should be extremely mo­
bile along the chain. By reasons of symmetry, the model 

predicts that the energy level of the soliton should lie exactly 
halfway between the highest occupied and the lowest unoc­
cupied energy level of the regular polymer. 

When introduced, the soliton picture was in general 
agreement to the bulk of known experimental results for the 
electronic and transport properties of polyacetylene. How­
ever, the later discovery that other conjugated polymers 
with no degenerate ground states have transport properties 
similar to those of P A 2S has required an extension of the 
soliton model to accomodate the existence of polarons.33.34 

Briefly, a polaron is a conformational defect oflocal charac­
ter (in the sense in which only sites in the neighborood of the 
defect are affected by its presence) that can be thought to 
result from the interaction between a charged and a neutral 
soliton.35 Contrary to solitons, polarons would introduce 
two energy levels in the gap and can exist as singly or doubly 
charged defects (a neutral polaron being unstable with re­
spect to soliton-soliton annihilation). 

The exact position of the energy levels localized in the 
gap became a point of interest in recent years as more precise 
optical measurements on conjugated polymers became 
available. 36 To account for the exact position ofthese levels, 
more sophisticated treatments which include electron-elec­
tron repulsion terms in a self-consistent manner are desir­
able. However, usual self-consistent electronic calculation 
methods for extended systems cannot handle the presence of 
translational defects37 and therefore finite chain model cal­
culations appear as a desirable route in the short term. In 
these treatments, a balance must always be attained between 
the degree of sophistication of the adopted model and the 
maximum size of the systems to be studied. 

B. Hamiltonian 

In the present calculation, we have adopted the PPP 
Hamiltonian38.39 because it represents an excellent compro­
mise between efficiency and realism in the description of the 
electronic structure of polyenes. We had set the initial goal of 
analyzing: (i) the changes of the polarizabilities and first 
and second hyperpolarizabilities of regular (i.e., with no 
conjugation defects) conjugated chains CNHN + 2 with the 
increase of the number of 1T electrons up to the limit of N 
- 20, (ii) the effects of different conformational defects (so­
litons and polarons); and (iii) the changes due to the differ­
ent charge states of these defects. Although some CNDO 
results for the hyperpolarizabilities of small polyenes are 
available for some time,18 and ab initio polarizabilities have 
been calculated for polyenic chains comprising up to 20 car­
bon atoms,26 to our knowledge no systematic studies of geo­
metric effects on the hyperpolarizabilities of large conjugat­
ed chains have been performed. 

Ifno spin polarization effect is considered, for conjugat­
ed chains the PPP Hamiltonian can be written in a site repre­
sentation as 

h !!P = Uf.Lf.LRf.Lf.L + I (2Rvv - 1) Uf.LV' 
V#f.L 

h !~P = /3 f.LV - Rf.LV Uf.LV' 

where the one-center Coulomb integrals for the carbon atom 
are taken to be zero. We have adopted the standard parame-
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trization suggested in Ref. 39 with Ohno's expression 

U,...., = 14.397 eV (1.635 + ";'y)-1/2 

for the intersite Coulomb interactions, with the distance 
between sites rp.y given in A. In the site (or Wannier) basis, 
the matrix elements of the coupling terms to the external 
field F can be written as/ij = eF' rOij' 

For computation reasons, only the ground-state HF 
electronic distribution was considered and no basis set opti­
mization or reparametrization was attempted. Our results 
should therefore be considered in what they reveal about 
trends or patterns for the variation of the polarizability re­
sponse with increasing chain sizes and different structures. 
In the case of open shell molecules (as solitons and charged 
polarons), it is easy to generalize the above Hamiltonian to 
perform an UHF calculation. 

c. Geometries for regular polyenes, SOlitons, and 
polarons 

Conformational defects such as solitons and polarons 
are associated to changes in the degree of alternancy between 
single and double bonds along the conjugated chains and 
result from the existence of localized spin or charge density 
on certain carbon atoms. As a good approximation, we can 
assume all different chains considered here to be planar; we 
have chosen the molecules to lie in the xy plane, with the 
chains oriented along the x axis. 

For all cases considered, we have taken the bond angles 
equal to 120·. For regular polyenes, lengths of 1.35 and 1.46 
A were assumed for the double and single bonds, respective­
ly, and no attempt was made of simulating end-chain effects. 
On the other hand, for the case of defects, geometric relaxa­
tion effects are known to be responsible for the pinning of the 
extra charge or spin density near the center of the mole­
cule.38 In the case of solitons, the alternation between single 
and double bonds is inverted at the middle of the chain. For 
polarons, we have assumed that each carbon atom at the 
center of the soliton-like defects is connected through single 
bonds to both of its neighbors. The geometry adopted for the 
different structures is schematized in Fig. 1. For solitons and 
polarons the positions of the carbon atoms can be indicated 
by 

rn = (xo + nro + Un )cos 30·7 + ( - 1)nrol2 sin 301, 

where the parameters ro and Uo have the values of 1.405 and 
0.0275 A, respectively; for solitons Xo = 0, Un = ( - 1) n + I 

Uo tanh(nlv), and O<n< (N - 1 )/2, while for polarons Xo 
= - ro/2, Un = ( - 1) nuo [ - 1 + 2 sech(0.658 48n) l, 

and 1 <n <N 12. The most stable solitons should occur at odd 
N chains, since then the terminal bonds will have a double 
character. We have used this criterion to determine the pa­
rameter v, by requiring that the lengths of the terminal 
bonds be as close as possible to that of a true double bond 
(1.35 A). The optimum values of v were 1.7080, 1.9756, 
2.3096, 2.6425, and 2.9667 for the N = 5, 9, 13, 17, and 21 
chains, respectively. For polarons, the minimum meaningful 
value of N is 4 and subsequent chains will have to increase by 
that many carbon atoms to preserve the correct symmetry of 
the defect. The positions of the carbon atoms on the left-

y 

i) 

P 
C-4 C-z ·Co Cz C4 

ii) / ~/~I'\,#', #', . x 
C-3 C_I CI C3 

iii) 

FIG. 1. Schematic geometry adopted for (i) regular polyene; (ii) soliton-; 
and (iii) polaron-like chains. 

hand side of each chain are easily found by symmetry. 
With the above choices of geometry, one can easily ver­

ify that regular polyenes and polaron chains belong to the 
same symmetry group (C 2h ), while the soliton chains be­
long to the C2v group. As a consequence, while axx , axy , and 
a have to be determined in the first case, only the axial yy 

components of the linear polarizabilities are different from 
zero for the soliton chains. 

We have assumed the same geometries for the neutral 
and charged species. As first suggested by Flytzanis,40 time 
intervals of the order of ps should be involved in the chain 
relaxation of a chain after electronic excitation. Immediately 
after excitation, the corresponding electron states will find 
themselves in the "foreign lattice" of the unexcited mole­
cule. Recently,41 directly photogenerated charged-soliton 
pairs and neutral- to charged-soliton conversion have been 
unequivocally identified in polyacetylene. While the former 
decay on the subpicosecond scale, the lifetime of the charged 
solitons are estimated to be greater than 20 ps. Although 
relaxation effects should lead to small geometry differences 
between neutral and charged solitons, and between single 
and double charged polarons, we do not expect a drastic 
change in the pattern of variation of the polarizabilities. 
Hence, considering that the PPP Hamiltonian is not particu­
larly reliable for the prediction of geometries, we have not 
tried to mimic the eventual geometry differences between 
different charge states of a given molecule. For complete­
ness, we have included results for the polarizabilities of neu­
tral polarons even if in this particular charge state these de­
fects are not expected to be stable. 

IV. LINEAR POLARIZABILITIES 

A. Results 

While one can expect the largest contribution for the 
polarizability response of oriented films and crystals to come 
from the component along the chain axis (a xx in our case) in 
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FIG. 2. Linear polarizabilities for neutral conjugated chains: (a) longitudi­
nal component axx for (i) regular polyenes (0), (ii) solitons (Ll.), and (iii) 
polarons (0); (b) orientationally averaged polarizability a"for (i) regular 
polyenes (0), (ii) solitons (Ll.), and (iii) polarons (0). 

principle all individual components of the polarizability ma­
trix can be experimentally determined. For molecules in so­
lution or in the gas phase, on the other hand, the measured 
polarizability a is a rotational average18

,42 of the xx, ZZ, and 
yy components 

a = j(axx + a zz + ayy )' 

Hence, in general for a nonoriented medium, the second­
order energy correction term has to be calculated for three 
different field directions [cf. Eq. (8) ]. For the C2v group, 
however, thexy component of the polarizability vanishes by 
symmetry and therefore for the soliton chains only two inde­
pendent calculations are required. 

To obtain the second-order energy correction given by 
Eq. (7b), the self-consistent condition (6) has to be satis­
fied. Even for the largest chains, we have imposed the idem­
potency of the complete density matrix and its commutation 
relation to the Hamiltonian to be satisfied to at least 10-5

• 

The results for longitudinal component axx for neutral 
chains with geometries corresponding to regular polyenes 
and soliton and polaron defects are presented in Fig. 2(a), 
while the corresponding values for the averaged linear polar­
izability afT are shown in Fig. 2(b). For all of these mole­
cules, the components of a are positive. As a general rule, the 
relative contribution of the xx component increases with the 
length of the chain considered. Considering the N = 20 neu-
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FIG. 3. Linear polarizabilities for charged defects: (a) longitudinal compo­
nentaxx for (i) charged solitons (0), (ii) singlechargedpolarons (Ll.), and 
(iii) bipolarons (0); (b) orientationally averaged polarizability a" for (i) 
charged solitons (0 ), (ii) single charged polarons (Ll.), and (iii) bipolar­
ons (0). 

tral molecules, the ratio axxlaxy is of the order of2 for the 
C2h chains (regular polyenes and polarons), while axx is one 
order of magnitude larger than ayy • 

The corresponding results for a xx and afT for charged 
solitons, charged polarons, and doubly charged polarons 
(bipolarons) are presented in Fig. 3. Here, the relative con­
tribution of the xx component to the average polarizability 
increases with the size of the chain in an even more remark­
able manner. Surprisingly, we have found that axy has nega­
tive values for bipolaron chains. 

TABLE I. a and b parameters derived from linear least-square fitting aN" 
for calculated values (in a.u.) of the longitudinal component (axx ) and 
orientational average (a") of the linear polarizability of finite chains of reg­
ular polyenes (rp), neutral solitons (ns), neutral polarons (np), charged 
solitons (cs), singly charged polarons (cp), and bipolarons (bp). 

rp ns np cs cp bp 

axx a 4.63 4.81 6.53 3.41 1.85 1.94 
b 1.75 1.77 1.78 2.19 2.56 2.42 

a 2.07 1.91 2.62 1.33 0.80 0.73 
a" b 1.69 1.73 1.74 2.14 2.48 2.39 
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With the possible exception of regular polyenes (for 
which the onset of a "saturation" behavior can be considered 
to occur for N - 16), the plots of Figs. 2 and 3 do not indicate 
saturation of the calculated polarizabilities with the increase 
of the length of the chains. A linear least-square fitting of 
these values to the general form aN' expresses the higher 
sensitivity of the charged defects to the increasing of the 
chain length, as revealed in Table I. It should be noted, the 
effect of different geometries on the evolution of the linear 
polarizability with chain length; both free-electron3 and 
Huckel13 models predict a = 2.0 for regular polyenes. 

B. Discussion 

As discussed before, a convenient way of calculating the 
polarizability response oflarge conjugated chains is to resort 
to simple semiempirical methods. However, the scarcity of 
the experimental data available makes difficult the testing 
and development of new parametrization schemes specific to 
the molecules considered. For instance, in his PPP calcula­
tion,12 Schweig has assumed the 1T electrons to be immersed 
in a medium of dielectric constant equal to 2; in our case, 
preliminary exploration of sets of parameters have shown us 
that for a given molecule, the resulting values of a, and spe­
cially y, are quite sensitive to the form adopted for the inter­
site Coulomb interactions U. In the lack of sufficient experi­
mental information for optimizing the choice of parameters, 
we felt that a better option was to adopt the standard PPP 
parametrization in our treatment and to look for trends of 
qualitative nature on the behavior of the polarizabilities of 
conjugated chains of different conformations. We decided in 
favor of Ohno's form for the Coulomb integrals instead of 
the alternative Mataga-Nishimoto expression,39 due to the 
fact that the latter usually led to higher energies for the 
closed-shell ground state and to unrealistic spin densities for 
the open-shell molecules. 

Unfortunately, to our knowledge there are no experi­
mental data available for the linear polarizability of the mol­
ecules considered. Previous theoretical results for the rota­
tional averaged polarizability a were available for the N = 4, 
6, and 8 regular polyenes (see Table II). Our calculated val­
ues of a are slightly smaller than the corresponding results of 
the perturbation treatment of the PPP Hamiltonian per­
formed by Zamani-Khamiri and Hamekal4 (although it 
should be noticed that the latter values include the u electron 
contribution estimated by the extended Huckel method) 

TABLE II. Orientationally averaged linear polarizabilities of some regular 
trans polyenes CNHN + 2' in a.u. 

CNDO-
N This work VPT-PPP' PT-Huckela SCF-PTb PEDMC 

4 20.9 32.08 59.06 61.91 69.73 
6 42.5 72.99 165.93 105.91 128.19 
8 70.2 131.92 355.66 203.81 

• Reference 14. 
b Reference 10. 
cReference 18. 
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FIG. 4. Evolution of the longitudinal unit-cell polarizability a",,/n with 

respect to chain length for different values of the alternation parameter as 
calculated in our method: (0; Ar = 0.11 A), and in Ref. 26 (0; Ar = 0.10 
A) and (t.; Ar = 0.05 A). 

and are of the order of half the corresponding CNDO re­
sultS. 18 On the other hand, the calculated values for the lon­
gitudinal component of the linear polarizability axx ofregu­
lar polyenes agree remarkably well with the ab initio results 
of Bodart et al.26 In Fig.4, we compare our results for the 
linearpolarizability per unit cell axx/n (where n = N /2) 
with those of Ref. 26 computed for different values of the 
alternation parameter Il.r (defined as the difference between 
the lengths of single and double bonds). For conjugated 
polymers, even in solution or gas phase, the linear polariza­
bility response should be dominated by the longitudinal con­
tribution.1t can then be argued from the results of Fig.4 that, 
for the same values of Il.r as those we have used, an ab initio 
calculation should lead to even smaller values of a1T". From 
Fig. 4, it can also be seen that both calculations predict the 
onset of the saturation behavior of the unit-cell polarizability 
for the alternant conjugated chain to occur at N -16. How­
ever, our results reveal that for the molecules with soliton or 
polaron structures saturation should occur only for larger 
chains. For these conjugated chains, calculated values are 
very well fitted through exponential relations as those ofTa­
ble I. 

V. CONCLUSION 

The results of the present calculation indicate that the 
static linear polarizabilities of conjugated chains are ex­
tremely sensitive to both conformational changes and the 
charge state of the molecule. As revealed by Table I, the 
presence of conjugational defects of soliton or polaron na­
ture could dominate the polarization response oflonger con­
jugated chains. 

Our preliminary exploration of the nonlinear response 
of conjugated chains have suggested that the sensitivity of 
the hyperpolarizabilities to charge and conformational 
changes are at least as noticeable as that of a. If the present 
suggestion turns out to be confirmed by further investiga­
tion, this effect will be of particular importance for the de­
signing of new materials suitable for the construction of opti­
cal devices. For instance, it can be expected that if the lateral 
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hydrogen atom connected to a given carbon atom is substi­
tuted by a highly electrophyllic side group, strong charge 
fluctuations could be induced along the conjugated chain; 
thus, by appropriate choice of substituent groups, one could 
in principle "fine tune" the polarization response of the 
original molecule. 
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