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Abstract: This study focuses on investigating the modified Benjamin-Bona-Mahony equation that is
used to model the long wave in nonlinear dispersive media of the optical illusion field. Two effective
techniques, the variational direct method and He’s frequency formulation method, are employed to
seek the travelling wave solutions. Using these two techniques, abundant exact solutions such as the
bright wave, bright-dark wave, bright-like wave, kinky-bright wave and periodic wave solutions, are
obtained. The 3-D contours and 2-D curves are drawn to present the dynamic physical behaviors of
the solutions by assigning the proper parameters. It shows that the proposed methods are effective
but simple and only need one or two steps to construct the exact solutions, which are expected to
provide some new insights to study the travelling wave solutions of the PDEs arising in physics.

Keywords: variational direct method; He’s frequency formulation; travelling wave solutions; semi-
inverse method

1. Introduction

In the field of physics, the mathematical analysis of many physical phenomena is
reduced to a special mathematical model [1–4]. This model is often a nonlinear evolution
equation [5–7]. The soliton theory plays a very important role in the field of nonlinear
science. Its application covers almost the entirety of natural science, among which the
problem of finding the exact solution of nonlinear evolution equation is of the most concern.
Therefore, the study of the exact solution of the nonlinear evolution equation has become
an important task [8–10]. At present, there are many ideal methods to find the exact solu-
tion of the partial differential equations (PDEs), such as the trial equation method [11,12],
sine-Gordon expansion method [13,14], generalized (G′/G)-expansion method [15,16], sim-
plified extended tanh-function method [17,18], extended rational sine-cosine and extended
rational sinh-cosh techniques [19,20], exp-function method [21–24], Sardar subequation
method [25–28] and so on [29–32]. In this work, we focus on the modified Benjamin-Bona-
Mahony equation (MBBME) that reads as follows [33]:

ψt + ψx + kψ2ψx + ψxxt = 0, (1)

where k is an arbitrary constant. Thus far, many famous scholars have made outstanding
contributions to solving Equation (1). In [34], the exp-function method is used to construct
some new soliton solutions. In [35], the modified simple equation is employed to study the
problem. In [36], the extended generalized Riccati equation mapping method is adopted to
find the exact solutions. Three different effective methods, the extended simplest equation
method, modified Kudryashov method and sech-tanh expansion method, are applied
in [37]. In [38], the first integral method is adopted to solve Equation (1). The bifurcation
method of dynamical systems is used to study Equation (1) in [39]. In [40], the generalized
perturbation reduction method is employed. The exp-expansion method is presented to
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find the abundant solutions of Equation (1) in [41]. Moreover, the modified Khater method
is utilized to find the solutions in [42]. In recent years, the variational direct method (VDM)
and He’s frequency formulation method (HFFM) have attracted extensive attention since
they can construct the travelling wave solutions (TWSs) only in one or two steps. Thus, in
this work, we will study the TWSs by applying these two methods. The rest of this paper is
arranged as follows. In Section 2, brief introductions to the algorithms of the two effective
methods are presented. In Section 3, the VDM and HFFM are employed to find the desired
TWSs. In Section 4, the physical explanations are given. Finally, the conclusions and future
recommendations are presented in Section 5.

2. The Two Methods

In this section, we will give a brief introduction to the algorithms of the VDM
and HFFM.

Consider the PDE with the form as follows:

F(u, ux, uxx, uxxx, . . . , ut, . . .) = 0. (2)

We introduce the following transformation:

u(x, t) = U(ξ), ξ = kx + rt, (3)

where k, r are arbitrary nonzero constants. Applying the transformation, the PDE can be
converted into the following ODE:

F
(
U, Uξ , Uξξ , Uξξξ , . . . , . . .

)
= 0. (4)

2.1. The VDM

Applying the semi-inverse method [43–48], the variational principle of Equation (4)
can be constructed as

J(U) =
∫

L
(
U, U′, U′′ , . . .

)
dξ (5)

We obtain the solutions of Equation (4) with the following different forms:

Formone : U(ξ) = H1sec h(ξ).

Formtwo : U(ξ) =
H2sinh(ξ)

[cosh(ξ)]
3
2

Formthree : U(ξ) =
H3

1 + cosh(ξ)
.

Formfour : U(ξ) = H4sec h2(ξ).

Substituting the above forms into Equation (5), respectively, and applying the Ritz-like
method [49] with the stationary conditions, we have

Resultsone :
dJ

dH1
= 0.

Resultstwo :
dJ

dH2
= 0.

Resultsthree :
dJ

dH3
= 0.

Resultsfour :
dJ

dH4
= 0.

On solving them, we can determine the expressions of H1, H2, H3 and H4.
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Note: It can be seen that the VDM is based on the stationary condition, so we can
obtain the optimal solution. Moreover, the VDM is very simple and can construct the
different solutions in two steps.

2.2. The HFFM

Consider Equation (4) with the form as follows:

U′′ + N(U) = 0, (6)

where U′′ = d2U
dξ2 , N(U) is a function about U. Here, we can assume the periodic solution

of Equation (6) as
U = Λ cos(vξ). (7)

Based on the HFFM [50–53], the amplitude frequency relationship can be determined
in one step as

v =

√
dN
dU

∣∣∣∣∣
U= Λ

2

. (8)

Note: It can be easily found that this method is very simple and can construct the
periodic solution in one step.

3. Applications

To find the TWSs, we can adopt the wave variable γ = x− ct for Equation (1) and
obtain an ODE as follows:

− cψ′ + ψ′ + kψ2ψ′ − cψ′′′ = 0, (9)

where ψ′ = dψ
dγ , ψ′′ = d2ψ

dγ2 . Integrating Equation (9) once and setting the integration constant
to zero yields

− cψ + ψ +
1
3

kψ3 − cψ′′ = 0, (10)

which is
cψ′′ + (c− 1)ψ− 1

3
kψ3 = 0. (11)

3.1. The VDM

On the basis of the VDM, we first set up the variational principle of Equation (11)
as follows:

J(ψ) =
∫ ∞

0

{
−1

2
c
(
ψ′
)2

+
1
2
(c− 1)ψ2 − 1

12
kψ4
}

dγ. (12)

The bright wave solution
We assume that Equation (11) has the solution as follows:

ψ1(γ) = A1sech(γ). (13)

Taking this into Equation (12) yields

J(A1) =
∫ ∞

0

{
− 1

2 c(ψ′)2 + 1
2 (c− 1)ψ2 − 1

12 kψ4
}

dγ

=
∫ ∞

0

{
− 1

2 c[−A1sech(γ)tanh(γ)]2 + 1
2 (c− 1)[A1sech(γ)]2 − 1

12 k[A1sech(γ)]4
}

dγ.

= − 1
18 A2

1
(
9 + A2

1k− 6c
) (14)
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We compute its stationary condition as

dJ(A1)

dA1
= 0, (15)

which gives

− 1
9

A1

(
9 + 2A2

1k− 6c
)
= 0. (16)

On solving Equation (16), there is

A1 = ±
√

6c− 9
2k

. (17)

Thus, we have

ψ±1 (x, t) = ±
√

6c− 9
2k

sech(x− ct). (18)

The bright-dark wave solution
We can also assume the solution of Equation (11) as follows:

ψ2(γ) =
A2sinh(γ)

[cosh(γ)]
3
2

. (19)

Inserting Equation (19) into Equation (12) gives

J(A2) =
∫ ∞

0

{
− 1

2 c(ψ′)2 + 1
2 (c− 1)ψ2 − 1

12 kψ4
}

dγ

=
∫ ∞

0

{
− 1

2 c
[

A2

[cosh(γ)]
1
2
− 3A2sinh2(γ)

2[cosh(γ)]
5
2

]2
+ 1

2 (c− 1)
[

A2sinh(γ)

[cosh(γ)]
3
2

]2
− 1

12 k
[

A2sinh(γ)

[cosh(γ)]
3
2

]4
}

dγ.

= − A2
2[15(16−5c)π+32A2

2k]
1920

(20)

whose stationary condition is

dJ(A2)

dA2
= 0, (21)

which yields

−
A3

2k
15

+
A2(−16 + 5c)π

64
= 0. (22)

On solving it, we obtain

A2 = ±1
8

√
15π(5c− 16)

k
. (23)

Then, we have the solution of Equation (1) as follows:

ψ±2 (x, t) = ±1
8

√
15π(5c− 16)

k
sinh(x− ct)

[cosh(x− ct)]
3
2

. (24)

The bright-like wave solution
The solution of Equation (11) can be supposed as follows:

ψ3(γ) =
A3

1 + cosh(γ)
. (25)

Inserting it into Equation (12), we have
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J(A3) =
∫ ∞

0

{
− 1

2 c(ψ′)2 + 1
2 (c− 1)ψ2 − 1

12 kψ4
}

dγ

=
∫ ∞

0

{
− 1

2 c
[
− A3sinh(γ)

[1+cosh(γ)]2

]2
+ 1

2 (c− 1)
[

A3
1+cosh(γ)

]2
− 1

12 k
[

A3
1+cosh(γ)

]4
}

dγ.

= − A2
3(35+A2

3k−28c)
210

(26)

We take its stationary condition as

dJ(A3)

dA3
= 0. (27)

We have

−
A3
(
35 + 2A2

3k− 28c
)

105
= 0. (28)

Form Equation (28), there is

A3 = ±
√

7(4c− 5)
2k

. (29)

Thus, the third solution of Equation (1) is found as follows:

ψ±3 (γ) = ±
√

7(4c− 5)
2k

1
1 + cosh(x− ct)

. (30)

The kinky-bright wave solution
We can also assume the solution of Equation (11) as follows:

ψ4(γ) = A4sech2(γ). (31)

Substituting Equation (31) into Equation (32) leads to

J(A4) =
∫ ∞

0

{
− 1

2 c(ψ′)2 + 1
2 (c− 1)ψ2 − 1

12 ψ4
}

dγ

=
∫ ∞

0

{
− 1

2 c
[
−2A4sech2(γ)tanh(γ)

]2
+ 1

2 (c− 1)
[

A4sech2(γ)
]2
− 1

12 k
[

A4sech2(γ)
]4
}

dγ.

= − 1
105 A2

4
(
35 + 4A2

4k− 7c
) (32)

Using its stationary condition,

dJ(A4)

dA4
= 0. (33)

In other words,

− 2
105

A4

(
35 + 8A2

4k− 7c
)
= 0. (34)

Solving the above equation gives

A4 = ±1
2

√
7(c− 5)

2k
. (35)

Then, we attain the fourth solution:

ψ±4 (x, t) = ±1
2

√
7(c− 5)

2k
sech2(x− ct). (36)
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3.2. The HFFM

To apply the HFFM, we first rewrite Equation (11) as

ψ′′ +
c− 1

c
ψ− k

3c
ψ3 = 0, (37)

which is
ψ′′ +<(ψ) = 0, (38)

where
<(ψ) = c− 1

c
ψ− k

3c
ψ3 (39)

The periodic wave solution
We assume that the periodic solution of Equation (37) has the following form:

ψ5(γ) = A5 cos(ωγ), ω > 0. (40)

In view of the HFFM, the amplitude–frequency relationship can be determined at
once as

ω =

√
d<
dψ

∣∣∣∣∣
ψ=

A5
2

, (41)

which leads to

ω =

√
c− 1

c
−

kA2
5

4c
> 0. (42)

Then, the periodic wave solution of Equation (1) is obtained as follows:

ψ5(x, t) = A5 cos

√ c− 1
c
−

kA2
5

4c
(x− ct)

. (43)

4. Results and Discussion

The main purpose of this section is to elaborate the physical interpretation of the
solutions by assigning proper parameters.

By using k = 1, c = 6, the behavior of ψ+
1 (x, t) is as presented in Figure 1, where

Figure 1a is the 3-D plot and Figure 1b is the 2-D curve for t = 0. Obviously, we can find that
the profile of ψ+

1 (x, t) is the bright wave, which represents the bright soliton propagating
along the x-axis.
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Assigning the same parameters, we illustrate the dynamic characteristics of ψ+
2 (x, t)

through the 3-D plot and 2-D curve in Figure 2. By observation, it can be seen that the
outline of ψ+

2 (x, t) is the bright-dark wave.

Axioms 2022, 11, x FOR PEER REVIEW 8 of 11 
 

Assigning the same parameters, we illustrate the dynamic characteristics of 
( )tx,2

+ψ  through the 3-D plot and 2-D curve in Figure 2. By observation, it can be seen 

that the outline of ( )tx,2
+ψ  is the bright-dark wave. 

  
(a) (b) 

Figure 2. The dynamic characteristics of ( )tx,2
+ψ  with 1=k , 6=c . (a) 3-D plot, (b) 2-D curve 

for 0=t . 

Figures 3 and 4 plot the behaviors of ( )tx,3
+ψ  and ( )tx,4

+ψ , respectively, with 
1=k , 6=c . It can be noticed that they are kinky-bright and bright-like waves, respec-

tively, which both have the characteristics of bright solitary waves. 

  
(a) (b) 

Figure 3. The dynamic characteristics of ( )tx,3
+ψ . with 1=k , 6=c . (a) 3-D plot, (b) 2-D curve 

for 0=t . 

  
(a) (b) 

Figure 2. The dynamic characteristics of ψ+
2 (x, t) with k = 1, c = 6. (a) 3-D plot, (b) 2-D curve for

t = 0.

Figures 3 and 4 plot the behaviors of ψ+
3 (x, t) and ψ+

4 (x, t), respectively, with k = 1,
c = 6. It can be noticed that they are kinky-bright and bright-like waves, respectively,
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5. Conclusions and Future Recommendations

This work describes a detailed study of the modified Benjamin–Bona–Mahony equa-
tion. Two effective techniques, namely the variational direct method and He’s frequency
formulation method, are adopted to find the travelling wave solutions, and different forms
of the solutions, such as the bright wave, bright-dark wave, bright-like wave, kinky-bright
wave and periodic wave solutions, are constructed. It shows that the proposed methods
are simple and straightforward, and they can obtain the travelling wave solutions through
one or two steps. The results in this paper have potential to open some new horizons in the
study of the variational theory and travelling wave solutions of the PDEs in physics.

In recent years, fractal and fractional calculus have attracted extensive attention in
various fields [54–62]. The question of how to use the proposed methods to solve fractional
PDEs will be our future research direction.
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