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VARIATIONAL PRINCIPLE FOR SPREADING SPEEDS

AND GENERALIZED PROPAGATING SPEEDS IN TIME

ALMOST PERIODIC AND SPACE PERIODIC KPP MODELS

WENXIAN SHEN

Abstract. Spatial spread and front propagation dynamics is one of the most
important dynamical issues in KPP models. Such dynamics of KPP models in
time independent or periodic media has been widely studied. Recently, the au-
thor of the current paper with Huang established some theoretical foundation
for the study of spatial spread and front propagation dynamics of KPP models
in time almost periodic and space periodic media. A notion of spreading speed
intervals for such models was introduced in the above-mentioned paper and
was shown to be the natural extension of the classical concept of the spread-
ing speeds for time independent or periodic KPP models and that it could be
used for more general time dependent KPP models. A notion of generalized
propagating speed intervals of front solutions and a notion of traveling wave
solutions to time almost periodic and space periodic KPP models were also

introduced, which are the generalizations of wave speeds and traveling wave
solutions in time independent or periodic KPP models.

The aim of the current paper is to gain some further qualitative and quan-
titative understanding of the spatial spread and front propagation dynamics
of KPP models in time almost periodic and space periodic media. By apply-
ing the principal Lyapunov exponent and the principal Floquet bundle theory
for time almost periodic parabolic equations, we provide various useful esti-
mates for spreading and generalized propagating speeds for such KPP models.
Under the so-called linear determinacy condition, we show that the spread-
ing speed interval in any given direction is a singleton (called the spreading
speed). Moreover, in such a case we establish a variational principle for the
spreading speed and prove that there is a front solution of speed c in a given
direction if and only if c is greater than or equal to the spreading speed in
that direction. Both the estimates and variational principle provide important
and efficient tools for the spreading speeds analysis as well as the spreading
speeds computation. Based on the variational principle, the influence of time
and space variation of the media on the spreading speeds is also discussed in
this paper. It is shown that the time and space variation cannot slow down
the spatial spread and that it indeed speeds up the spatial spread except in
certain degenerate cases, which provides deep insights into the understanding
of the influence of the inhomogeneity of the underline media on the spatial
spread in KPP models.
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1. Introduction

Reaction-diffusion equations arising from many biological, chemical, and engi-
neering problems have two or more different states. Among the most important
dynamical issues in such reaction-diffusion equations is the spatial spread and front
propagation dynamics such as how fast one of the states spreads, how one state
transfers to another state, etc., as time evolves. The current paper deals with the
spatial spread and front propagation dynamics for reaction-diffusion equations of
the form

(1.1)
∂u

∂t
= Δu+

N∑
i=1

ai(t, x)
∂u

∂xi
+ f(t, x, u), x ∈ R

N .

We assume that
(H1) f(t, x, u) is C2 in u; ai(t, x) (i = 1, 2, · · · , N), f(t, x, u), ∂f

∂u (t, x, u), and
∂2f
∂u2 (t, x, u) are uniformly almost periodic in t (see Definition A.2 in Appendix A),
periodic in xj with period pj > 0 (j = 1, 2, · · · , N), and are globally Hölder contin-
uous in t, x.

(H2) (1.1) possesses two states u±(t, x) satisfying the fact that u±(t, x) are
periodic in xj with period pj (j = 1, 2, · · · , N) and almost periodic in t with
M(u±) ⊂ M({ai}Ni=1, f) (see Definition A.2 in Appendix A for the definition of
M(·)), u−(t, x) < u+(t, x), and u = u−(t, x) is a linearly unstable solution and
u = u+(t, x) is a globally stable solution of (1.1) (with respect to space periodic
perturbations) (see Definition 3.1). Without loss of generality, we assume that
u−(t, x) ≡ 0 and hence f(t, x, 0) = 0 (for otherwise, we can consider v(t, x) =
u(t, x)− u−(t, x)).

A typical example of reaction-diffusion equations of the form (1.1) satisfying
(H1) and (H2) is the following equation:

(1.2)
∂u

∂t
=

∂2u

∂x2
+ u(1− u), x ∈ R,

which was introduced in the pioneering papers of Fisher [14] and Kolmogorov,
Petrowsky, Piscunov [31] for the evolutionary take-over of a habitat by a fitter
genotype, where u is the frequency of one of two forms of a gene. (1.2) possesses
two constant states u− = 0, u+ = 1, and u− is linearly unstable and u+ is globally
stable (with respect to constant perturbations). Fisher in [14] found traveling wave
solutions u(t, x) = φ(x− ct) connecting 1 and 0 (i.e. φ(−∞) = 1, φ(∞) = 0) of all
speeds c ≥ 2 and showed that there are no such traveling wave solutions of slower
speed. He conjectured that the take-over occurs at the asymptotic speed 2. This
conjecture was proved in [31] by Kolmogorov, Petrowsky, and Piscunov. That is,
they proved that for any nonnegative solution u(t, x) of (1.2), if at time t = 0, u
is 1 near −∞ and 0 near ∞, then limt→∞ u(t, ct) is 0 if c > 2 and 1 if c < 2. In
literature, the minimal wave speed c = 2 is called the spreading speed for (1.2). It
is of the following spatially spreading property: for any σ > 0, there is rσ > 0 such
that for any nonnegative solution u(t, x) of (1.2), if at time t = 0, u(0, x) ≥ σ for
|x| ≤ rσ and u(0, x) = 0 for |x| � 1, then

sup
|x|≤c′t

u(t, x) → 1, sup
|x|≥c′′t

u(t, x) → 0 as t → ∞

for any c′ < 2 and c′′ > 2.
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Observe that (H1) indicates that the environment or medium of the underline
system described by (1.1) changes periodically in the space variable and almost
periodically in the time variable. The smoothness condition in (H1) is mainly for

solutions of related equations to be classical and for f(t, x, u) ≥ (∂f∂u (t, x, 0) − δ)u

to hold for any δ > 0 and t ∈ R, x ∈ R
N , 0 < u 
 1. (H2) is referred to as a Fisher

or KPP type condition and is the condition which generates certain spatial spread
and front propagation dynamics in (1.1). In nature, the environments or media of
biological models are subject to various seasonal variations. It is then important to
investigate which kind of spatial spread and front propagation dynamics there is in
time periodic as well as more general time dependent such as time almost periodic
variants of the classical Fisher or KPP equation (1.2).

A vast amount of research has been carried out regarding the spatial spread and
front propagation dynamics for various variants of (1.2). See, for example, [2], [3],
[4], [11], [12], [18], [30], [51], [53], [63], and the references therein for more general
time and space independent reaction diffusion equations of KPP type; see [5], [6],
[7], [15], [22], [35], [38], [44], [45], [48], [52], [75], and the references therein for space
and/or time periodic reaction diffusion equations of KPP type; see [10], [15], [19],
[39], [43], [46], [47], [71], [72], and the references therein for KPP models in random
media; see [34], [36], [65], [66], and the references therein for time discrete or time
periodic KPP models; see [8], [9], [17], [23], [68], [74], and the references therein
for spatially discrete KPP models; and see [34], [37], [62], [69], and the references
therein for KPP models with delays.

However, there has not yet been much study on the spatial spread and front
propagation dynamics for general time almost periodic KPP models. The author
of the current paper with Huang developed in [21] some theoretical foundation for
the investigation of the spatial spread and front propagation dynamics for general
time almost periodic KPP models. This paper is to further investigate the spatial
spread and front propagation dynamics for such KPP models.

Recall that when (1.1) is time periodic in t with period T , it has been proved that
for any ξ ∈ R

N with ‖ξ‖ = 1, there is a c∗(ξ) ∈ R such that for any c ≥ c∗(ξ), there
is a traveling wave solution connecting u+ and u− and propagating in the direction
of ξ with speed c, and there is no such traveling wave solution of slower speed. The
minimal wave speed c∗(ξ) is of some important spreading properties and is called
the spreading speed in the direction of ξ (see [5], [6], [7], [34], [44], [45], [66], and

the references therein). It has also been proved that if f(t, x, u) ≤ ∂f
∂u (t, x, 0)u for

t ∈ R, x ∈ R
N , and u ≥ 0 (which is called the linear determinacy condition in

literature), then

(1.3) c∗(ξ) = inf
μ>0

λ∗(μ, ξ; a0)

μ
,

where λ∗(μ, ξ; a0) is the principal eigenvalue (i.e. the eigenvalue with largest real
part) of the following periodic parabolic eigenvalue problem,

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂u
∂t +Δu+

∑N
i=1 a

μ,ξ
i (t, x) ∂u

∂xi
+ aμ,ξ0 (t, x)u = λu, x ∈ R

N ,

u(t, x1, · · · , xj−1, xj + pj , xj+1, · · · , xN )

= u(t, x1, · · · , xj−1, xj , xj+1, · · · , xN ), j = 1, 2, · · · , N,

u(t+ T, x) = u(t, x),
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aμ,ξi (t, x) = ai(t, x)−2μξi (i = 1, 2, · · · , N), aμ,ξ0 (t, x) = a0(t, x)−μ
∑N

i=1 ai(t, x)ξi+

μ2, and a0(t, x) = fu(t, x, 0) := ∂f
∂u (t, x, 0). In literature, the representation (1.3)

for c∗(ξ) is called the variational principle for c∗(ξ) (see [7], [44], [45], [66], and the
references therein for the establishment of the variational principle for certain time
independent or periodic KPP models).

As it is known, many approaches which can be successfully applied to periodic
problems fail to be useful for almost periodic problems. Also some concepts and
notions introduced for periodic problems cannot be adopted to almost periodic
problems directly and need to be adapted from various new points of view.

In [58], the author of the current paper introduced a notion of traveling waves
of (1.1) in the case N = 1, based on the observation that in general the wave front
depends on both the time and the space position and that the wave speed is also
time dependent. Roughly speaking, a traveling wave solution of (1.1) when N = 1
is a solution of form

u(t, x) = U(x− c(t), t, c(t)),

where U(x, t, y) is periodic in y and recurrent in t (see Definition A.3 in Appendix
A for recurrent functions) (U(·, t, y) can be viewed as a wave front at time t and
space position y). We will call [cinf , csup] its averaged speed interval, where cinf =

lim inft→∞
c(t)
t and csup = lim supt→∞

c(t)
t (see Definition 3.4 for details). It should

be pointed out that in the time almost periodic case, c′(t) may not be a constant
(see [55], [56]). This indicates some essential difference between periodic and almost
periodic problems. The reader is referred to [55], [56], [57], [59] for the study of
traveling wave solutions in space independent and time almost periodic problems.
We remark that a notion of traveling wave solutions in time independent and space
recurrent problems was introduced in [40] by Matano. The reader is refereed to [1],
[7], [22], [44], [66], [70], etc. for the notion of periodic traveling wave solutions.

In [21], the author of the current paper with Huang introduced the notion of a
spreading speed interval of (1.1) in the direction of a given unit vector ξ ∈ SN−1 :=
{ξ ∈ R

N |‖ξ‖ = 1} based on the natural features of the classical spreading speeds.
Denote u(t, x; s, y, u0) as the solution of the following space shifted equation of
(1.1):

(1.5)
∂u

∂t
= Δu+

N∑
i=1

ai(t, x+ y)
∂u

∂xi
+ f(t, x+ y, u), x ∈ R

N ,

with initial condition u(s, x; s, y, u0) = u0(x) for u0 ∈ X := Cb
unif(R

N ,R) (see
(3.1)), where y ∈ R

N . Put u(t, x; s, u0) := u(t, x; s, 0, u0). Let

u+
inf = inf

t∈R,x∈RN
u+(t, x)

(the reader is referred to section 2 for various other notation in the rest of this
section). The spreading speed interval [c∗inf(ξ), c

∗
sup(ξ)] of (1.1) in the direction

of ξ is roughly defined as follows (see Definition 3.2 for details): c∗inf(ξ) is the
supremum of all c ∈ R satisfying the fact that for any 0 ≤ u0 < u+

inf (u0 ∈ X)

with 0 < lim infx·ξ→−∞ u0(x) < u+
inf (see (3.8) for the notation limx·ξ→−∞) and

u0(x) = 0 for x · ξ � 1,

lim inf
x·ξ≤ct,t→∞

(u(t+ s, x; s, u0)− u+(t+ s, x)) = 0
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uniformly in s ∈ R (see (3.10) for the notation lim infx·ξ≤ct,t→∞) and c∗sup(ξ) is the

infimum of all c ∈ R satisfying the fact that for any 0 ≤ u0 < u+
inf (u0 ∈ X) with

0 < lim infx·ξ→−∞ u0(x) < u+
inf and u0(x) = 0 for x · ξ � 1,

lim sup
x·ξ≥ct,t→∞

u(t+ s, x; s, u0) = 0

uniformly in s ∈ R (see (3.11) for the notation lim supx·ξ≥ct,t→∞).
We call u0 ∈ X a front or u(t, x; s, y, u0) with u0 ∈ X a front solution in the

direction of ξ ∈ SN−1 if u0 ≥ 0, lim infx·ξ→−∞ u0(x) > 0, and lim supx·ξ→∞ u0(x) =
0 (see (3.9) for the notation lim supx·ξ→∞).

The authors of [21] also introduced a notion of generalized propagating speed
interval [cinf(u0, ξ), csup(u0, ξ)] of a front u0 or a front solution u(t, x; s, y, u0) in the
direction of ξ (see Definition 3.3). Roughly, cinf(u0, ξ) is the supremum of all c such
that

lim inf
x·ξ≤ct,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R and y ∈ R
N , and csup(u0, ξ) is the infimum of all c such that

lim sup
x·ξ≥ct,t→∞

u(t+ s, x; s, y, u0) = 0

uniformly in s ∈ R and y ∈ R
N . If cinf(u0, ξ) = csup(u0, ξ), c := cinf(u0, ξ) is

called the (generalized propagating) speed of the front solution u(t, x; s, y, u0) in the
direction of ξ.

It is shown in [21] that the spreading speed and generalized propagating speed
intervals satisfy the following fundamental properties:

• (Boundedness, Proposition 3.5) [c∗inf(ξ), c
∗
sup(ξ)] is a finite interval for any

ξ ∈ SN−1.
• (Recovery of the classical spreading speed, Proposition 3.5) If (1.1) is periodic

in t, then c∗inf(ξ) = c∗sup(ξ) = c∗(ξ) for any ξ ∈ SN−1.
• (Minimality, Proposition 3.5) c∗inf(ξ) ≤ cinf(u0, ξ) and c∗sup(ξ) ≤ csup(u0, ξ) for

any ξ ∈ SN−1 and any front u0 ≥ 0 in the direction of ξ.
• (Minimality, Proposition 3.5) If [cinf(ξ), csup(ξ)] is the averaged speed interval

of some traveling wave solution of (1.1) connecting u+ and u− and propagating in
the direction of ξ (see Definition 3.4 for a definition), then c∗inf(ξ) ≤ cinf(ξ) and
c∗sup(ξ) ≤ csup(ξ).

• (Spatial spread, Proposition 3.6) If c > sup‖ξ‖=1 c
∗
sup(ξ), then for any 0 ≤ u0 <

inft∈R,x∈RN u+(t, x) (u0 ∈ X) with u0(x) = 0 for ‖x‖ � 1,

lim sup
‖x‖≥ct,t→∞

u(t+ s, x; s, y, u0) = 0

uniformly in s ∈ R and y ∈ R
N (see (3.12) for the notation lim sup‖x‖≥ct,t→∞).

• (Spatial spread, Proposition 3.6) If 0 < c < min{c∗inf(ξ), c∗inf(−ξ)}, then for
any 0 ≤ u0 (u0 ∈ X) with inf |x·ξ|≤O(1) u0(x) > 0,

lim inf
|x·ξ|≤ct,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R and y ∈ R
N (see (3.13) for the notation lim inf |x·ξ|≤ct,t→∞).

It is seen from the above properties that the concept of spreading speed intervals
introduced in [21] is the natural extension of the spreading speeds for time inde-
pendent or periodic KPP models. It will be seen that the concept of generalized
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propagating speed intervals is the generalization of traveling wave speeds of time
independent or periodic KPP models.

The work [21] provides some theoretical foundation for the investigation of spatial
spread and front propagation dynamics in time almost periodic KPP models. It is
of great mathematical and biological importance to gain some further qualitative
and quantitative understanding of spreading and generalized propagating speeds
for such KPP models.

In this paper, we develop a variety of important properties of spreading and
generalized propagating speeds for time almost periodic and space periodic KPP
models. In particular, utilizing the principal Lyapunov exponent and principal Flo-
quet bundle theory for time almost periodic parabolic equations (see [24], [25], [26],
[27], [28], [41], [42], and the references therein for the study of principal Lyapunov
exponents and principal Floquet bundles for time almost periodic as well as general
time dependent parabolic equations), we provide various useful estimates for the
spreading and generalized propagating speeds. We establish a variational principle
for the spreading speeds and show the existence of a family of front solutions of
constant speeds under the so-called linear determinacy condition. We also study
the influence of time and space variations on the spreading speeds.

To be more precise, for a given globally Hölder continuous function a0(t, x) which
is uniformly almost periodic in t and periodic in xj with period pj (j = 1, 2, · · · , N),
let λ(μ, ξ; a0) be the principal Lyapunov exponent (see Definition 2.6) of

(1.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t = Δu+

∑N
i=1 a

μ,ξ
i (t, x) ∂u

∂xi
+ aμ,ξ0 (t, x)u, x ∈ R

N ,

u(t, x1, · · · , xj−1, xj + pj , xj+1, · · · , xN )

= u(t, x1, · · · , xj−1, xj , xj+1, · · · , xN ), j = 1, 2, · · · , N,

where, as in (1.4), aμ,ξi (t, x) = ai(t, x)−2μξi (i = 1, 2, · · · , N), aμ,ξ0 (t, x) = a0(t, x)−
μ
∑N

i=1 ai(t, x)ξi+μ2. Observe that the principal Lyapunov exponent of (1.6) is the
analog of the principal eigenvalues of elliptic and periodic parabolic problems (see
section 2 for basic properties of principal Lyapunov exponents of almost periodic
parabolic equations). Put

(1.7) cl(ξ; a0) := inf
μ>0

λ(μ, ξ; a0)

μ

and

(1.8) cl(ξ) := cl(ξ; a0) if a0(t, x) = fu(t, x, 0) :=
∂f

∂u
(t, x, 0),

where ξ ∈ SN−1. We call cl(ξ; a0) and cl(ξ) the spreading speed of the linear
equation (1.6) and the linear spreading speed of (1.1) in the direction of ξ ∈ SN−1,
respectively.

Among others, the following properties are proved in this paper.
• (Upper bound for spreading speeds in the partially spatially homogeneous

case, Theorem 4.1) Assume that ai(t, x) ≡ ai(t, 0) (i = 1, 2, · · · , N) and that there
is a globally Hölder continuous almost periodic function a0(·) such that f(t, x, u) ≤
a0(t)u for t ∈ R, x ∈ R

N , u ≥ 0. Then

c∗sup(ξ) ≤ cl(ξ; a0) for any ξ ∈ SN−1.

(See Theorem 5.1 for some general cases.)
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• (Lower bound for spreading speeds in the partially spatially homogeneous case,
Theorem 4.1) Assume that ai(t, x) ≡ ai(t, 0) (i = 1, 2, · · · , N) and that there is a
globally Hölder continuous almost periodic function a0(·) such that λ(0, ξ; a0) > 0
for ξ ∈ SN−1 (λ(0, ξ; a0) is independent of ξ ∈ SN−1) and that f(t, x, u) ≥ a0(t)u
for t ∈ R, x ∈ R

N , 0 ≤ u 
 1. Then

c∗inf(ξ) ≥ cl(ξ; a0) for any ξ ∈ SN−1.

In particular, if ai(t, x) ≡ ai(t, 0) (i = 1, 2, · · · , N) and fu(t, x, 0) ≡ fu(t, 0, 0), then

c∗inf(ξ) ≥ cl(ξ) for any ξ ∈ SN−1.

(See Theorem 5.1 for some general cases.)
• (Variational principle for spreading speeds in the partially spatially homo-

geneous case, Theorem 4.1) Assume that ai(t, x) ≡ ai(t, 0) (i = 1, 2, · · · , N),
f(t, u) ≤ fu(t, x, 0)u for t ∈ R, x ∈ R

N , and u ≥ 0, and fu(t, x, 0) ≡ fu(t, 0, 0).
Then

(1.9) c∗inf(ξ) = c∗sup(ξ) = cl(ξ) for any ξ ∈ SN−1.

(See Theorem 5.1 for some general cases.)
• (Front solutions of constant speeds in the partially spatially homogeneous

case, Theorem 4.2) Assume that ai(t, x) ≡ ai(t, 0) (i = 1, 2, · · · , N), f(t, x, u) ≤
fu(t, x, 0)u for t ∈ R, x ∈ R

N , and u ≥ 0, and fu(t, x, 0) ≡ fu(t, 0, 0). If ξ ∈ SN−1

and u0 ≥ 0 (u0 ∈ X) are such that limx·ξ→−∞ u0(x ·ξ) > 0 and C1e
−μx·ξ ≤ u0(x) ≤

C2e
−μx·ξ for x · ξ � 1 and some C1, C2 > 0 and 0 < μ < μ∗, where μ∗ is such that

λ(μ∗,ξ;a0)
μ∗ = cl(ξ; a0) with a0(t) = fu(t, 0, 0), then

cinf(u0, ξ) = usup(u0, ξ) =
λ(μ, ξ; a0)

μ
.

Hence for any c ≥ cl(ξ), there is a front solution of (1.1) in the direction of ξ with
speed c and there are no front solutions of slower speed in the direction of ξ. (See
Theorem 5.2 for some general cases.)

As in time independent and periodic cases, we call the condition f(t, x, u) ≤
fu(t, x, 0)u for t ∈ R, x ∈ R

N and u ≥ 0 the linear determinacy condition.
The properties stated above extend many classical spatial spread and front prop-

agation properties (e.g., the variational principle for the spreading speed, the ex-
istence of traveling wave solutions of speed greater than or equal to the spreading
speed, and the nonexistence of traveling wave solutions of slower speed) for time
independent or periodic KPP models to time almost periodic ones. However, it re-
mains open whether in general time almost periodic KPP models there are traveling
wave solutions with averaged speed greater than or equal to c∗inf(ξ) = c∗sup(ξ) in a

given direction of ξ ∈ SN−1, provided that c∗inf(ξ) = c∗sup(ξ). It also remains open

whether in general time almost KPP models, c∗inf(ξ) = c∗sup(ξ) for any ξ ∈ SN−1.
In addition to the properties stated above, we also prove the following properties

about the influence of space and time variation on the spreading speeds.
• (The influence of space and time variation on linear spreading speed, Theorem

6.1) If ai(t, x) ≡ ai(0, x) (i = 1, 2, · · · , N), then

cl(ξ; a0) ≥ cl(ξ; â0) for any ξ ∈ SN−1

and cl(ξ; a0) = cl(ξ; â0) for some ξ ∈ SN−1 if and only if a0(t, x) is of the form
a0(t, x) = a01(t) + a02(x) for some a01(·) and a02(·) and any t ∈ R, x ∈ R

N , where
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a0(t, x) = fu(t, x, 0) and â0(x) = limt−s→∞
1

t−s

∫ t

s
a0(τ, x)dτ (see Theorem A.1 in

Appendix A for the existence of this limit). (See Theorem 6.1 for more properties).
• (The influence of space and time variation on spreading speeds, Theorem 6.2)

Assume that ai(t, x) ≡ ai(0, x) (i = 1, 2, · · · , N) and that fu(t, x, 0) can be approx-
imated by time periodic functions. Then

c∗sup(ξ) ≥ c∗inf(ξ) ≥ cl(ξ; â0) for any ξ ∈ SN−1,

where a0(t, x) = fu(t, x, 0). Furthermore, if f(t, x, , u) ≤ fu(t, x, 0)u for t ∈ R,
x ∈ R

N , and u ≥ 0, then

c∗sup(ξ) = c∗inf(ξ) ≥ cl(ξ; â0) for any ξ ∈ SN−1,

and c∗inf(ξ) = cl(ξ; â0) for some ξ ∈ SN−1 if and only if a0(t, x) is of the form
a0(t, x) = a01(t) + a02(x) for some a01(·) and a02(·) and any t ∈ R, x ∈ R

N . (See
Theorem 6.2 for more properties.)

Note that ĉ∗(ξ) := cl(ξ; â0) := infμ>0
λ(μ,ξ;â0)

μ is the spreading speed of the

following averaged equation of (1.1):

∂u

∂t
= Δu+

N∑
i=1

ai(x)
∂u

∂xi
+ f̂(x, u),

where ai(x) = ai(0, x) (i = 1, 2, · · · , N) and f̂(x, u) = limt−s→∞
1

t−s

∫ t

s
f(τ, x, u)dτ

(see Theorem A.1 in Appendix A for the existence of this limit), provided that

f̂(x, u) is of KPP type and f̂(x, u) ≤ â0u for x ∈ R
N and u ≥ 0. Hence the

space and time variation of the nonlinearity in KPP models cannot slow down the
spatial spread. It indeed speeds up the spatial spread except in the degenerate case
where fu(t, x, 0) is of form fu(t, x, 0) = a01(t) + a02(x), which is new even for time
periodic KPP models. It should be pointed out that in [7] the influence of the space
variation of the nonlinearity in some time independent KPP models is studied. It
should also be pointed out that in [45], [48], [52], [75] the influence of space and
time variation of some periodic shear flows on the spreading speed of KPP models
is studied.

The rest of the paper is organized as follows. In section 2 we develop some
principal Lyapunov exponents and principal Floquet bundle theory for time almost
periodic and space periodic linear parabolic equations, which is of great interest
in its own and is among the main tools for the proofs of the theorems in later
sections. In section 3 we introduce the notation and definitions, and we present
some fundamental results proved in [21] to be used in later sections. In section 4
we study spreading and generalized propagating speeds in the partially spatially
homogeneous case. Section 5 is devoted to the investigation of spreading and gen-
eralized propagating speeds in some general case. We explore the influence of space
and time variation on spreading speeds in section 6. The paper concludes with an
appendix on compact flows and almost periodic functions.

We finish the introduction with the following remark. The concepts and many
results established in this paper can be applied to the following more general time
dependent KPP models:

(1.10)
∂u

∂t
=

N∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

N∑
i=1

ai(t, x)
∂u

∂xi
+ f(t, x, u), x ∈ R

N ,
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where aij = aji satisfies the ellipticity condition; i.e., there is α0 > 0 such that

(1.11)
N∑

i,j=1

aij(t, x)ξiξj ≥ α0|ξ|2 for all (t, x) ∈ R
N+1, ξ ∈ R

N ,

and f is of KPP type in proper sense.

2. Spectral theory for linear almost periodic parabolic equations

with periodic boundary conditions

In this section, we develop the needed principal spectral theory for time almost
periodic parabolic equations with periodic boundary conditions. Such a theory is
an extension of the principal eigenvalue theory for elliptic and periodic parabolic
problems. It is of great interest on its own and can be established by the arguments
similar to those used in [24], [25], [26], [27], [28], [41], [42], [49] for the establishment
of principal spectral theory for almost periodic parabolic equations complemented
with Dirichlet or Neumann boundary conditions. We will therefore only mention
the references for the proofs of those results which can be proved by the arguments
in the references.

This section is independent of other sections. The theories developed in this
section are among the main tools for the proofs of the theorems in other sections.

We first consider a family of linear parabolic equations of the form

(2.1) ut = Δu+

N∑
i=1

bi(t, x)
∂u

∂xi
+ b0(t, x), x ∈ R

N ,

complemented with the periodic boundary condition

u(t, x1, · · · , xj−1, xj + pj , xj+1, · · · , xN )

= u(t, x1, · · · , xj−1, xj , xj+1, · · · , xN ), j = 1, 2, · · · , N,
(2.2)

where pj > 0 (j = 1, 2, · · · , N), b := (bi, b0) := ({bi}Ni=1, b0) ∈ Y , and Y is a subset
of C(R × R

N ,RN+1). To emphasis the dependence of (2.1) on b, we may write it
as (2.1)b.

We make the following standard assumption on Y .
(H-Y) For any b = (bi, b0) ∈ Y , bi(t, x) (i = 1, 2, · · · , N) and b0(t, x) are uni-

formly almost periodic in t and periodic in xj with period pj > 0 (j = 1, 2, · · · , N)
and are globally Hölder continuous in t, x. Moreover, Y is translation invariant in
t (i.e. for any b ∈ Y and t ∈ R, σtb := b · t := b(t+ ·, ·) ∈ Y ) and is connected and
compact under uniform convergence topology.

In the following, we assume that Y satisfies (H-Y) and Y is equipped with the
uniform convergence topology. Then (Y, (σt)t∈R) is a compact flow. We say Y
is unique ergodic if (Y, (σt)t∈R) is unique ergodic (i.e. (Y, (σt)t∈R) has a unique
invariant measure; see Definition A.1 for the definition of unique ergodicity of a
compact flow). For a given Banach space X, ‖ · ‖X denotes the norm in X.

Let

XL = {u ∈ C(RN ,R) |u is periodic in xj with period pj

for j = 1, 2, · · · , N}
(2.3)
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be equipped with uniform convergence topology. Let L(XL, XL) be the space of
bounded linear operators from XL to XL. Let

X+
L = {u ∈ XL|u(x) ≥ 0, x ∈ R

N}
and

Int(X+
L ) := X++

L = {u ∈ X+
L |u(x) > 0, x ∈ R

N}.
For u1, u2 ∈ XL, we write

u1 ≤ u2 (u1 ≥ u2) if u2 − u1 ∈ X+
L (u1 − u2 ∈ X+

L )

and

u1 
 u2 (u1 � u2) if u2 − u1 ∈ X++
L (u1 − u2 ∈ X++

L ).

Let

X1
per(R

N ) = {u ∈ XL|
∂u

∂xi
∈ XL, i = 1, 2, · · · , N}.

It follows from [20] that −Δ is a sectorial operator on XL; denote it by −Δ|XL
.

Let Xα
L be the fractional power space of −Δ on XL (0 ≤ α ≤ 1). Note that X0

L =
XL and X1

L = D(−Δ|XL
). Let 0 < α0 < 1 be such that Xα0

L is compactly imbedded
into C1

per(R
N ). Then by [20], for any b ∈ Y and u0 ∈ Xα0

L there is a unique solution
u(t, ·;u0, b) ∈ Xα0

L of (2.1) and (2.2) with initial condition u(0, ·;u0, b) = u0(·). Put
U(t, b)u0 := u(t, ·;u0, b) for u0 ∈ Xα0

L . Following from the results in [20] and
classical theory for parabolic equations, we have

Theorem 2.1. (1) (Joint continuity). The map [[0,∞)×Xα0

L ×Y � (t, u0, b) 
→
U(t, b)u0 ∈ Xα0

L ] is continuous.
(2) (Norm continuity). For any t ≥ 0, the map [Y �b 
→ U(t, b) ∈ L(Xα0

L , Xα0

L )]
is continuous.

(3) (Strong monotonicity). For any t > 0 and b ∈ Y , U(t, b) is strongly
monotone in the sense that if u1, u2 ∈ Xα0

L and u1 ≤ u2, u1 �= u2, then
U(t, b)u1 
 U(t, b)u2 for any t > 0 and b ∈ Y .

(4) (Compactness). For any t > 0, U(t, ·) is compact in the sense that for any
bounded set E ⊂ Xα0

L , {U(t, b)u0|b ∈ Y, u0 ∈ E} is a relatively compact
subset of Xα0

L .

By Theorem 2.1, (2.1) and (2.2) generate a skew-product semiflow on Xα0

L × Y :

Πt : X
α0

L × Y → Xα0

L × Y, t ≥ 0,

Πt(u0, b) = (U(t, b)u0, b · t).

The following theorem follows from [50] (see also [41], [42], [60]).

Theorem 2.2 (Exponential separation). There are subspaces Xα0,1
L (b), Xα0,2

L (b) of

Xα0

L such that Xα0,1
L (b), Xα0,2

L (b) are continuous in b ∈ Y , and satisfy the following
properties:

(1) Xα0

L = Xα0,1
L (b)⊕Xα0,2

L (b) for any b ∈ Y .

(2) Xα0,1
L (b) = Span{φ̃(b)}, φ̃(b) ∈ Int(Xα0

L ∩X+
L ) and is continuous in b, and

‖φ̃(b)‖Xα0
L

= 1 for any b ∈ Y .

(3) Xα0,2
L (b) ∩ Int(Xα0

L ∩X+
L ) = ∅ for any b ∈ Y .

(4) U(t, b)Xα0,1
L (b) = Xα0,1

L (σtb) and U(t, b)Xα0,2
L (b) ⊂ Xα0,2

L (σtb) for any b ∈
Y and t > 0.
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(5) There are M,γ > 0 such that

‖U(t, b)φ̃(b)‖Xα0
L

‖U(t, b)w‖Xα0
L

≤ Me−γt

for any t > 0, b ∈ Y , and w ∈ Xα0,2
L (b) with ‖w‖Xα0

L
= 1.

By classical theory for parabolic equations and the continuity of φ̃(b) in b ∈ Y
with respect to the ‖ · ‖α0

-norm, there are constants C1, C2 > 0 such that

1

C1
‖φ̃(b)‖Xα0

L
≤ ‖φ̃(b)‖L2(D) ≤ C1‖φ̃(b)‖Xα0

L

and
1

C2
‖φ̃(b)‖Xα0

L
≤ ‖φ̃(b)‖XL

≤ C2‖φ̃(b)‖Xα0
L

for any b ∈ Y .
Let

(2.4) φ(b) = φ̃(b)/‖φ̃(b)‖L2(D).

Let D = [0, p1] × [0, p2] × · · · × [0, pN ] and 〈·, ·〉 be the inner product in L2(D).
Let

κ(b) = 〈Δφ(b) +

N∑
i=1

bi(t, x)
∂φ(b)

∂xi
+ b0φ(b), φ(b)〉.

Theorem 2.3. κ(b) is continuous in b ∈ Y .

Proof. This follows from Theorem 2.2 and the following fact:

(2.5) κ(b) = −〈∇φ(b),∇φ(b)〉+ 〈
N∑
i=1

bi(t, x)
∂φ(b)

∂xi
+ b0φ(b), φ(b)〉.

�

Let

η(t, b) = ‖U(t, b)φ(b)‖L2(D).

Then we have

ηt(t, b) = κ(σtb) η(t, b);

therefore

η(t, b) = e
∫ t
0
κ(στ b)dτ .

Let

v(t, x; b) =
U(t, b)φ(b)

‖U(t, b)φ(b)‖L2

≡ φ(σtb)(x).

We have that v(t, x; b) satisfies

(2.6) vt = Δv +

N∑
i=1

bi(t, x)
∂v

∂xi
+ b0(t, x)v − κ(σtb)v, x ∈ R

N .

Theorem 2.4. If Y is unique ergodic, then

lim
t−s→∞

1

t− s
ln ‖U(t− s, σsb)‖α0

= lim
t−s→∞

1

t− s

∫ t

s

κ(στb)dτ

for all b ∈ Y , and the limit is independent of b.
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Proof. It follows from Theorems 2.2 and 2.3, and the results in [29]. �
Definition 2.5. Assume that Y is unique ergodic. λ(Y ) is called the principal
Lyapunov exponent of (2.1) and (2.2), where

λ(Y ) = lim
t−s→∞

1

t− s
ln ‖U(t− s, σsb)‖α0

for any b ∈ Y .

We now consider a single linear parabolic equation

(2.7) ut = Δu+
n∑

i=1

ai(t, x)
∂u

∂xi
+ a0(t, x)u, x ∈ R

N ,

complemented with the periodic boundary condition (2.2), where ai(t, x) (i =
1, 2, · · · , N) and a0(t, x) are uniformly almost periodic in t and periodic in xj with
period pj (j = 1, 2, · · · , N), and are globally Hölder continuous in t, x.

For any μ ∈ R and ξ ∈ SN−1, also consider

(2.8) ut = Δu+

N∑
i=1

aμ,ξi

∂u

∂xi
+ aμ,ξ0 (t, x)u, x ∈ R

N ,

complemented with the periodic boundary condition (2.2), where aμ,ξi = ai −
2μξi, i = 1, 2, · · · , N and aμ,ξ0 = a0 − μ

∑N
i=1 aiξi + μ2. Note that if μ = 0,

then aμ,ξi = ai and aμ,ξ0 = a0 for any ξ ∈ SN−1.
Let a := (ai, a0) := ({ai}Ni=1, a0) and

Y (a) = cl{a · s|s ∈ R},
where a · s(t, x) := σsa(t, x) := a(t+ s, x) and the closure is taken under the open
compact topology. Then (H-Y) is satisfied with Y = Y (a). Hence for any u0 ∈ Xα0

L

and any s ∈ R, (2.7) and (2.2) have a unique classical solution u(t, x; s, u0, a) with
initial condition u(s, x; s, u0, a) = u0(x).

Similarly, let
Y (aμ,ξ) = cl{aμ,ξ · s|s ∈ R},

where aμ,ξ = (aμ,ξi , aμ,ξ0 ) := ({aμ,ξi }Ni=1, a
μ,ξ
0 ), aμ,ξ · s := σsa

μ,ξ := aμ,ξ(·+ s, ·), and
the closure is taken under open compact topology. Then Y (aμ,ξ) satisfies (H-Y)
with Y being replaced by Y (aμ,ξ). Hence (2.8) and (2.2) have a unique classical
solution u(t, x; s, u0, a

μ,ξ) with u(s, x; s, u0, a
μ,ξ) = u0(x) for any u0 ∈ Xα0

L .
Note that Y (a0,ξ)(= Y (a)) and Y (aμ,ξ) are unique ergodic and minimal for any

μ ∈ R and ξ ∈ SN−1 (see Remark A.1 (2)). Theorems 2.2 through 2.4 can then be
applied to Y = Y (aμ,ξ). Put

λ(μ, ξ; a) := λ(aμ,ξ) := λ(Y (aμ,ξ))

and
φμ,ξ(t, ·; a) := φ(σta

μ,ξ)(·).
Definition 2.6. We call λ(μ, ξ; a) the principal Lyapunov exponent of (2.8) and
(2.2).

Observe that λ(μ, ξ; a) and φμ,ξ(t, ·; a) are analogs of principal eigenvalues and
principal eigenfunctions of elliptic and periodic parabolic problems, respectively. In
literature, {span

(
φ(σta

μ,ξ)
)
}t∈R is call the principal Floquet bundle of (2.8) associ-

ated to the principal Lyapunov exponent.
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Theorem 2.7. (1) λ(μ, ξ; a) is continuous in μ ∈ R, ξ ∈ SN−1, and a with
respect to uniform convergence topology.

(2) Fix a. There is β > 0 such that

λ(μ, ξ; a) ≥ βμ2

for any ξ ∈ SN−1 and μ � 1.
(3) Fix a and assume that λ(0, ξ; a) > 0 (note that λ(0, ξ; a) is independent of

ξ ∈ SN−1). There are μ−
0 > 0 and μ+

0 > 0 with μ−
0 < μ+

0 , and β0 > 0 such
that

inf
μ>0

λ(μ, ξ; a)

μ
= inf

μ−
0 ≤μ≤μ+

0

λ(μ, ξ; a)

μ
≤ β0μ

+
0

for any ξ ∈ SN−1.

Proof. (1) By Theorem 2.4,

λ(μ, ξ; a) = lim
t−s→∞

1

t− s

∫ t

s

κ(στa
μ,ξ)dτ.

It then follows from Theorem 2.3 that λ(μ, ξ; a) is continuous in μ ∈ R, ξ ∈ SN−1,
and a with respect to uniform convergence topology.

(2) Note that

aμ,ξ0 = a0 − μ
N∑
i=1

biξi + μ2.

Hence there is β > 0 such that

aμ,ξ0 (t, x) ≥ βμ2

for all t ∈ R, x ∈ R
N , ξ ∈ SN−1, and μ � 1. Then by comparison principal for

parabolic equations,

U(t, aμ,ξ)uid ≥ eβμ
2t

for μ � 1 and t > 0, where uid ≡ 1. It then follows that

λ(μ, ξ; a) ≥ βμ2

for μ � 1 and ξ ∈ SN−1.
(3) By (1) and the assumption λ(0, ξ; a) > 0, we have

λ(μ, ξ; a)

μ
→ ∞

as μ → 0+. This together with (2) implies that there are μ−
0 > 0, μ+

0 with μ−
0 < μ+

0 ,
and β0 > 0 such that

inf
μ>0

λ(μ, ξ; a)

μ
= inf

μ−
0 ≤μ≤μ+

0

λ(μ, ξ; a)

μ
≤ β0μ

+
0 .

�

Observe that for any u0 ∈ C(RN ,R) with

|u0(x)| ≤ Ceα
∑N

i=1 |xi|
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for some α,C > 0, (2.7) also has a unique solution u(t, x; s, u0, a) with u(s, x;
s, u0, a) = u0(x) (see [16]). Regarding solutions of (2.7) without the periodic
boundary condition, we have

Theorem 2.8. For any given ξ ∈ SN−1 and μ > 0,

u(t, x) = e
−μ

(
x·ξ−

∫ t
s κ(στaμ,ξ)dτ

μ

)
φ(σta

μ,ξ)(x)

is a solution of (2.7).

When ai and a0 are periodic in t with period T , let λ∗(μ, ξ; a) be the principal
eigenvalue of the periodic parabolic eigenvalue problem (1.4) and φ∗(t, x;μ, ξ, a) be
an associated positive principal eigenfunction. Then

Theorem 2.9. For any given ξ ∈ SN−1, μ > 0,

u(t, x) = e
−μ

(
x·ξ−λ∗(μ,ξ;a)t

μ

)
φ∗(t, x;μ, ξ, a)

is a solution of (2.7).

Note that φ(σta
μ,ξ) = φ∗(t,·;μ,ξ,a)

‖φ∗(t,·;μ,ξ,a)‖L2(D)
.

The rest of this section is to discuss the influence of the time and/or space
variation of a = (ai, a0) on the principal Lyapunov exponent λ(μ, ξ; a) of (2.8) and
(2.2).

By Theorem A.1, the following limits exist:

âi(x) := lim
t−s→∞

1

t− s

∫ t

s

ai(τ, x)dτ, i = 1, 2, · · · , N,

â0(x) := lim
t−s→∞

1

t− s

∫ t

s

a0(τ, x)dτ,

âμ,ξi (x) := lim
t−s→∞

1

t− s

∫ t

s

aμ,ξi (τ, x)dτ (= âi(x)− 2μξi), i = 1, 2, · · · , N,

and

âμ,ξ0 (x) := lim
t−s→∞

1

t− s

∫ t

s

aμ,ξ0 (τ, x)dτ (= â0(x)− μ
N∑
i=1

âi(x)ξ + μ2).

Let λ̂(μ, ξ; a) be the principal eigenvalue of the following time averaged equation
of (2.8),

(2.9) ut = Δu+
N∑
i=1

âμ,ξi (x)
∂u

∂xi
+ âμ,ξ0 (x)u, x ∈ R

N ,

together with the boundary condition (2.2) and â = (âi, â0).
Let

ǎi(t) :=
1

|D|

∫
D

ai(t, x)dx, i = 1, 2, · · · , N,

ǎ0(t) :=
1

|D|

∫
D

a0(t, x)dx,

ǎμ,ξi (t) :=
1

|D|

∫
D

aμ,ξi (t, x)dx(= ǎi(t)− 2μξ), i = 1, 2, · · · , N,
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and

ǎμ,ξ0 (t) :=
1

|D|

∫
D

aμ,ξ0 (t, x)dx(= ǎ0(t)− μ
N∑
i=1

ǎi(t)ξ + μ2),

where |D| is the Lebesgue measure of D. Let λ̌(μ, ξ; a) be the principal eigenvalue
of the following space averaged equation of (2.8),

(2.10) ut = Δu+
N∑
i=1

ǎμ,ξi (t)
∂u

∂xi
+ ǎμ,ξ0 (t)u, x ∈ R

N ,

together with the boundary condition (2.2) and ǎ = (ǎi, ǎ0).
Let

āi :=

∫
D
âi(x)dx

|D| , i = 1, 2, · · · , N,

ā0 :=

∫
D
â0(x)dx

|D| ,

āμ,ξi :=

∫
D
âμ,ξi (x)dx

|D| (= āi − 2μξi), i = 1, 2, · · · , N,

and

āμ,ξ0 :=

∫
D
âμ,ξ0 (x)dx

|D| (= ā0 − μ

N∑
i=1

āiξ + μ2).

Let λ̄(μ, ξ; a) be the principal eigenvalue of the following time-space averaged equa-
tion of (2.8),

(2.11) ut = Δu+
N∑
i=1

āμ,ξi

∂u

∂xi
+ āμ,ξ0 u, x ∈ R

N ,

together with the boundary condition (2.2) and ā = (āi, ā0).

Theorem 2.10. (1) If ai(t, x) ≡ ai(t) and a0(t, x) ≡ a0(t), then

λ(μ, ξ; a) = λ̂(μ, ξ; a) = λ(μ, ξ; â) = â0 − μ

N∑
i=1

âiξi + μ2

for any μ ∈ R and ξ ∈ SN−1.
(2) If ai(t, x) ≡ ai(x), then

λ(μ, ξ; a) ≥ λ̂(μ, ξ; a)

for any μ ∈ R and ξ ∈ SN−1, and λ(μ, ξ; a) = λ̂(μ, ξ; a) for some μ ∈ R and
ξ ∈ SN−1 if and only if a0(t, x) is of the form a0(t, x) = a01(t) + a02(x).

(3) If ai(t, x) ≡ ai and a0(t, x) ≡ a0(x), then

λ(μ, ξ; a) ≥ λ̌(μ, ξ; a) = ǎμ,ξ0

for any μ ∈ R and ξ ∈ SN−1, and λ(μ, ξ; a) = λ̌(μ, ξ; a) for some μ ∈ R

and ξ ∈ SN−1 if and only if a0(x) ≡ a0.
(4) If ai(t, x) ≡ ai, then

λ(μ, ξ; a) ≥ λ̂(μ, ξ; a) ≥ λ̄(μ, ξ; a) = āμ,ξ0

for any μ ∈ R and ξ ∈ SN−1, and λ(μ, ξ; a) = λ̂(μ, ξ; a) = λ̄(μ, ξ; a) for
some μ ∈ R and ξ ∈ SN−1 if and only if a0(t, x) ≡ a0(t).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5140 WENXIAN SHEN

Proof. (1) If ai(t, x) = ai(t) and a0(t, x) = a0(t), then φ(aμ,ξ) ≡ 1 and

λ(μ, ξ; a) = lim
t→∞

1

t

∫ t

0

(a0(s)− μ

N∑
i=1

ai(s)ξi + μ2)ds

and

λ̂(μ, ξ; a) = âμ,ξ0 .

Therefore λ(μ, ξ; a) = λ̂(μ, ξ; a) = âμ,ξ0 for any μ ∈ R and ξ ∈ SN−1.
(2) It follows from the arguments in [41].
(3) Note that

Δφμ,ξ(x; a)

φμ,ξ(·; a) +

∑N
i=1 a

μ,ξ
i ∂φμ,ξ(x; a)/∂xi

φμ,ξ(x; a)
+ aμ,ξ0 (x) = λ(μ, ξ; a),

where φμ,ξ(x; a) = φ(aμ,ξ)(x). This implies that

λ(μ, ξ; a) = ǎμ,ξ0 +
1

|D|

∫
D

Δφμ,ξ(x; a)

φμ,ξ(x; a)
dx

= ǎμ,k0 +
1

|D|

∫
D

∑N
i=1(∂φ

μ,ξ(x; a)/∂xi)
2

(φμ,ξ(x; a))2
dx

≥ ǎμ,ξ0 = λ̌(μ, ξ; a)

for any μ ∈ R and ξ ∈ SN−1. Moreover, λ(μ, ξ; a) = λ̌(μ, ξ; a) for some μ ∈ R and

ξ ∈ SN−1 if and only if aμ,ξ0 (x) ≡ aμ,ξ0 , which is equivalent to a0(x) ≡ a0.
(4) It follows from (2) and (3). �

3. Notation, definitions, and basic properties

In this section, we first introduce standing notation in subsection 3.1. Then in
subsection 3.2, we recall the definitions of spreading and generalized propagating
speed intervals as well as traveling wave solutions introduced in [21] and [58]. We
present some fundamental properties proved in [21] in subsection 3.3.

Throughout the rest of this paper, we assume (H1) and (H2). ai(t, x) (i =
1, 2, · · · , N) are the functions in (1.1).

3.1. Notation. Consider (1.1). We also consider all the space shifted equations
(1.5) of (1.1). To emphasis the dependence of (1.5) on y, we may write it as (1.5)y.

Let

X : = Cb
unif (R

N ,R)

= {u : RN → R | u is uniformly continuous and bounded },
(3.1)

equipped with uniform convergence topology. For given u1, u2 ∈ X, we write

u1 ≤ u2 (u1 < u2) if u1(x) ≤ u2(x) (u1(x) < u2(x)) for x ∈ R
N .

It follows from classical theory for parabolic equations (see [16], [20]) that for
any u0 ∈ X, any s ∈ R, and any y ∈ R

N , (1.5) has a unique (local) classical
solution u(t, ·; s, y, u0) with u(s, ·; s, y, u0) = u0(·). We may write u(t, x; s, 0, u0) as
u(t, x; s, u0), which is the solution of (1.1) with u(s, x; s, u0) = u0(x).

Let XL be as in (2.3). Note that XL ⊂ X and if u0 ∈ XL, then u(t, ·; s, y, u0) ∈
XL for any y ∈ R

N and t ≥ s at which u(t, ·; s, y, u0) exists.
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For a given globally Hölder continuous function a0(t, x) which is uniformly almost
periodic in t and periodic in xj with period pj (j = 1, 2, · · · , N), consider the linear
equation,

(3.2)
∂u

∂t
= Δu+

N∑
i=1

ai(t, x)
∂u

∂xi
+ a0(t, x)u, x ∈ R

N ,

complemented with the periodic boundary condition,

u(t, x1, · · · , xj−1, xj + pj , xj+1, · · · , xN )

= u(t, x1, · · · , xj−1, xj , xj+1, · · · , xN ), j = 1, 2, · · · , N.
(3.3)

For any μ ≥ 0 and ξ ∈ SN−1, also consider

(3.4)
∂u

∂t
= Δu+

N∑
i=1

aμ,ξi (t, x)
∂u

∂xi
+ aμ,ξ0 (t, x)u, x ∈ R

N ,

complemented with the periodic boundary condition (3.3), where, as in (1.4),

aμ,ξi (t, x) = ai(t, x)− 2μξi (i = 1, 2, · · · , N) and

aμ,ξ0 (t, x) = a0(t, x)− μ
N∑
i=1

ai(t, x)ξi + μ2.

Note that by (H2), u ≡ 0 is an equilibrium solution of (1.1). If a0(t, x) =

fu(t, x, 0) :=
∂f
∂u (t, x, 0), then (3.2) is the linearized equation of (1.1) at u ≡ 0.

Throughout this section, a0(t, x) (a0(t)) denotes a globally Hölder continuous
function which is uniformly almost periodic in t and periodic in xj with period pj
(j = 1, 2, · · · , N) (almost periodic in t), unless specified otherwise. We say that
a0(t, x) is of the form a0(t, x) = a01(t) + a02(x) if there are a01(t) which is almost
periodic in t and a02(x) which is periodic in xj with period pj (j = 1, 2, · · · , N)
such that a0(t, x) = a01(t) + a02(x) for t ∈ R and x ∈ R

N .
Let a = ({ai}Ni=1, a0) and λ(μ, ξ; a) be the principal Lyapunov exponent of (3.4)

and (3.3) or (1.6). Since ai (i = 1, 2, · · · , N) are as in (1.1) and are fixed, we
may write λ(μ, ξ; a) as λ(μ, ξ; a0) if no confusion occurs. Note that λ(0, ξ; a0) is
independent of ξ ∈ SN−1, and we may write it as λ(a0). Then λ(a0) is the principal
Lyapunov exponent of (3.2) and (3.3). As mentioned in section 2, when ai(t, x)
(i = 1, 2, · · · , N) and a0(t, x) are periodic in t with the same period T , λ(μ, ξ; a0) =
λ∗(μ, ξ; a0), where λ∗(μ, ξ; a0) is the principal eigenvalue of (1.4).

Let cl(ξ; a0) and cl(ξ) be as in (1.7) and (1.8), respectively. Recall that cl(ξ) is
called the linear spreading speed for (1.1).

Observe that following from the arguments in [61], there holds

(3.5) u+
inf := inf

t∈R,x∈RN
u+(t, x) > 0,

and there is no solution u(t, x) of (1.1) which is almost periodic in t, periodic in
xj with period pj (j = 1, 2, · · · , N), and 0 < u(t, x) < u+(t, x) for t ∈ R, x ∈ R

N .
By (H2) and the comparison principle for parabolic equations, for any u0 ∈ X with
u0 ≥ 0, any s ∈ R, and any y ∈ R

N , u(t+ s, ·; s, y, u0) exists for all t ≥ 0.
Also observe that examples of functions f satisfying (H1) and (H2) include those

which satisfy that f(t, x, 0) = 0, λ(a0) > 0 (a0(t, x) = fu(t, x, 0)), f(t, x, u) < 0 for

u � 1, and ∂
∂u

(
f(t,x,u)

u

)
< 0 for u > 0 (see the arguments in [61]).
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Throughout this paper, D and SN−1 denote the subsets of RN defined as follows:

(3.6) D = [0, p1]× [0, p2]× · · · × [0, pN ]

and

(3.7) SN−1 = {ξ ∈ R
N |‖ξ‖ = 1},

where ‖ · ‖ is the usual norm in R
N . If (1.1) is periodic in t, as mentioned in the

Introduction, for any ξ ∈ SN−1, there is a so-called spreading speed of (1.1) in the
direction of ξ. We denote it by c∗(ξ).

For given u0 ∈ X and ξ ∈ SN−1, we define

(3.8) lim inf
x·ξ→−∞

u0(x) = lim
r→−∞

inf
x∈RN ,x·ξ≤r

u0(x)

and

(3.9) lim sup
x·ξ→∞

u0(x) = lim
r→∞

sup
x∈RN ,x·ξ≥r

u0(x).

For given u(t, ·) ∈ X, ξ ∈ SN−1, and c ∈ R, we define

lim inf
x·ξ≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
x∈RN ,x·ξ≤ct

u(t, x),(3.10)

lim sup
x·ξ≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
x∈RN ,x·ξ≥ct

u(t, x),(3.11)

and

lim sup
‖x‖≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
x∈RN ,‖x‖≥ct

u(t, x),(3.12)

lim inf
|x·ξ|≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
x∈RN ,|x·ξ|≤ct

u(t, x).(3.13)

For given u(t, ·; z) ∈ X (z belongs to some parameter set Z), ξ ∈ SN−1, and
c ∈ R, we say that lim infx·ξ≤ct,t→∞ u(t, x; z) ≥ u∗ uniformly in z ∈ Z if for any
ε > 0, there is T > 0 such that

u(t, x; z) ≥ u∗ − ε for t ≥ T, x ∈ R
N with x · ξ ≤ ct, z ∈ Z.

We define lim supx·ξ≥ct,t→∞ u(t, x; z) ≤ u∗, lim sup‖x‖≥ct,t→∞ u(t, x; z) ≤ u∗, and

lim inf |x·ξ|≤ct,t→∞ u(t, x; z) ≥ u∗ uniformly in z ∈ Z in a similar manner.
For a given function g(t, x) (g(t, x, u)), we write g(t, x) ≡ g(t) or g(t, x) ≡ g(x)

or g(t, x) ≡ g (g(t, x, u) ≡ g(t, u) or g(t, x) ≡ g(x, u) or g(t, x, u) ≡ g(u)) if g(t, x)
(g(t, x, u)) is independent of x or t or both t and x.

For a given globally Hölder continuous function g(t, x) which is uniformly almost
periodic in t and periodic in xj with period pj (j = 1, 2, · · · , N), we say that it can
be approximated by time periodic functions if there are globally Hölder continuous
functions gn(t, x) which are periodic in t with period Tn and periodic in xj with
period pj (j = 1, 2, · · · , N) such that gn(t, x) → g(t, x) uniformly in t ∈ R and
x ∈ R

N .

3.2. Definitions. In this subsection, we recall the definitions of spreading speed
intervals, generalized propagating speed intervals, and traveling wave solutions.

For a given ξ ∈ SN−1, let

X+
1 (ξ) = {u0 ∈ X | 0 ≤ u0 ≤ sup

x∈RN

u0(x) < u+
inf ,

0 < lim inf
x·ξ→−∞

u0(x) < u+
inf , u0(x) = 0 for x · ξ � 1}

(3.14)
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and

(3.15) X+
2 (ξ) = {u0 ∈ X|u0 ≥ 0, lim inf

x·ξ→−∞
u0(x) > 0, lim sup

x·ξ→∞
u0(x) = 0}.

Recall that u0 ∈ X+
2 (ξ) is called a front in the direction of ξ and that

u(t, x; s, y, u0) with u0 ∈ X+
2 (ξ) is called a front solution in the direction of ξ.

Definition 3.1. The solution u ≡ 0 of (1.1) is called linearly unstable with respect
to space periodic perturbations if λ(a0) > 0, where a0(t, x) = fu(t, x, 0). The
solution u = u+(t, x) of (1.1) is called globally stable with respect to space periodic
perturbations if for any u0 ∈ XL, u0(x) ≥ 0 and u0(x) �≡ 0,

‖u(t+ s, ·; s, y, u0(·))− u+(t+ s, ·+ y)‖XL
→ 0 as t → ∞

uniformly in s ∈ R and y ∈ R
N .

Definition 3.2 (Spreading speed interval, [21]). For a given vector ξ ∈ SN−1, let

C∗
inf(ξ) =

{
c | ∀ u0 ∈ X+

1 (ξ),

lim inf
x·ξ≤ct,t→∞

(u(t+ s, x; s, u0)− u+(t+ s, x)) = 0 uniformly in s ∈ R

}
and

C∗
sup(ξ) =

{
c | ∀ u0 ∈ X+

1 (ξ), lim sup
x·ξ≥ct,t→∞

u(t+ s, x; s, u0) = 0 uniformly in s ∈ R

}
.

Define

c∗inf(ξ) = sup { c | c ∈ C∗
inf(ξ)}, c∗sup(ξ) = inf { c | c ∈ C∗

sup(ξ)}.
The interval [c∗inf(ξ), c

∗
sup(ξ)] is called the spreading speed interval of (1.1) in the

direction of ξ.

Definition 3.3 (Generalized propagating speed interval, [21]). For a given ξ ∈
SN−1 and a given u0 ∈ X+

2 (ξ), let

Cinf(u0, ξ) = {c| lim inf
x·ξ≤ct,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R, y ∈ R
N}

and

Csup(u0, ξ) = {c| lim sup
x·ξ≥ct,t→∞

u(t+ s, x; s, y, u0) = 0 uniformly in s ∈ R, y ∈ R
N}.

Let

cinf(u0, ξ) = sup{c|c ∈ Cinf(u0, ξ)}, csup(u0, ξ) = inf{c|c ∈ Csup(u0, ξ)}.
The interval [cinf(u0, ξ), csup(u0, ξ)] is called the generalized propagating speed in-
terval of u0 in the direction of ξ.

If cinf(u0, ξ) = csup(u0, ξ), then u(t, ·; s, u0) is called a front solution of (1.1) in
the direction of ξ with propagation speed c(u0, ξ) := cinf(u0, ξ)(= csup(u0, ξ)).

Definition 3.4 (Traveling wave, [21], [58]). u(t, x) is said to be a traveling wave
solution of (1.1) connecting u+ and 0 in the direction of ξ ∈ SN−1 if there exist
U(x; s, y, ξ) and c(t; s, y, ξ) satisfying the following properties:

(1) U(·; s, y, ξ) ∈ X is continuous in s ∈ R and y ∈ R
N . Moreover, U(·; s, y, ξ)

is recurrent in s (see Definition A.3 in Appendix A for a definition) and
periodic in yj with period pj (j = 1, 2, · · · , N).
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(2)

lim
ξ·x→−∞

(
U(x; s, y, ξ)− u+(s, x+ y)

)
= 0, lim

ξ·x→∞
U(x; s, y, ξ) = 0

uniformly in s ∈ R and y ∈ R
N .

(3) u(0, x) = U(x; 0, 0, ξ) and

u(t+ s, x; s, y, U(·; s, y, ξ)) = U(x− c(t; s, y, ξ)ξ; t+ s, y + c(t; s, y, ξ), ξ)

for any s ∈ R, y ∈ R
N .

We say {U(·; s, y, ξ)}s∈R,y∈RN generates a traveling wave solution in the direction

of ξ ∈ SN−1 if there is c(t; s, y, ξ) such that U(x; s, y, ξ) and c(t; s, y, ξ) satisfy the
above properties. In this case, we define

cinf(U, ξ) = lim inf
t→∞

inf
s∈R,y∈RN

c(t; s, y, ξ)

t

and

csup(U, ξ) = lim sup
t→∞

sup
s∈R,y∈RN

c(t; s, y, ξ)

t

and call [cinf(U, ξ), csup(U, ξ)] the averaged speed interval of the traveling wave so-
lution generated by {U(·; s, y, ξ)}s∈R,y∈RN .

3.3. Fundamental properties. In this subsection, we present some fundamental
properties for spreading and generalized propagating speed intervals proved in [21]
for use in later sections and/or for the reader’s reference.

Proposition 3.5 ([21], Theorem 2.1).

(1) (Boundedness ) For any ξ ∈ SN−1, [c∗inf(ξ), c
∗
sup(ξ)] is a finite interval.

(2) (Recovery of the classical spreading speed ) If (1.1) is periodic in t, then
c∗inf(ξ) = c∗sup(ξ) = c∗(ξ) for any ξ ∈ SN−1.

(3) (Minimality )
(i) For any ξ ∈ SN−1 and u0 ∈ X+

2 (ξ), c∗inf(ξ) ≤ cinf(u0, ξ) and c∗sup(ξ) ≤
csup(u0, ξ).
(ii) For any ξ ∈ SN−1 and u0 ∈ X+

1 (ξ), c∗inf(ξ) = cinf(u0, ξ) and c∗sup(ξ) =
csup(u0, ξ).

(4) (Minimality ) If {U(·; s, y, ξ)}s∈R,y∈RN generates a traveling wave solution

of (1.1) connecting u+ and u− ≡ 0 in the direction of ξ ∈ SN−1, then
c∗sup(ξ) ≤ csup(U, ξ) and c∗inf(ξ) ≤ cinf(U, ξ).

Proposition 3.6 ([21], Theorem 2.2).

(1) For any 0 < δ < u+
inf , ξ ∈ SN−1, u0 ∈ X+

1 (ξ), c′ < c∗inf(ξ) and c′′ > c∗sup(ξ),

lim inf
x·ξ≤c′ t,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0,

and

lim sup
x·ξ≥c′′t,t→∞

u(t+ s, x; s, y, u0) = 0

uniformly in s ∈ R and y ∈ R
N .
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(2) Assume that 0 ≤ u0 < u+
inf (u0 ∈ X) and u0(x) = 0 for ‖x‖ � 1. Then for

any c > sup‖ξ‖=1 c
∗
sup(ξ),

lim sup
‖x‖≥ct,t→∞

u(t+ s, x; s, y, u0) = 0

uniformly in s ∈ R and y ∈ R
N .

(3) Assume that ξ ∈ SN−1 and 0 < c < min{c∗inf(ξ), c∗inf(−ξ)}. Then for any
σ > 0, there is rσ > 0 such that for any u0 ≥ 0 (u0 ∈ X) with u0(x) ≥ σ
for |x · ξ| ≤ rσ,

lim inf
|x·ξ|≤ct,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R and y ∈ R
N .

We remark that Propositions 3.5 and 3.6 justify the nature of the notion of
spreading speed intervals and show that the concept of spreading speed intervals
is the natural extension of the spreading speeds for time independent or periodic
KPP models.

Proposition 3.7. (1) ([21, Lemma 3.2] ) Let ξ ∈ SN−1, u0 ∈ X+
2 (ξ), and

c ∈ R be given. If there are δ0 and T0 > 0 such that

lim inf
x·ξ≤cnT0,n→∞

u(nT0 + s, x; s, y, u0) ≥ δ0

uniformly in s ∈ R and y ∈ R
N , then for any c′ < c,

lim inf
x·ξ≤c′ t,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R and y ∈ R
N .

(2) ([21, Lemma 3.4] ) Assume that there is u∗
0 ∈ X+

1 (ξ) such that

lim inf
x·ξ≤ct,t→∞

(
u(t+ s, x; s, y, u∗

0)− u+(t+ s, x+ y)
)
= 0

uniformly in s ∈ R and y ∈ R
N . Then c ≤ c∗inf(ξ).

4. Spreading speeds and generalized propagating speeds

in the partially spatially homogeneous case

In this section, we study spatial spread and front propagation dynamics in the
partially spatially homogeneous case.

Throughout this section, we assume that ai(t, x) ≡ ai(t), i = 1, 2, · · · , N , and
that a0(t) is some given globally Hölder continuous almost periodic function unless
specified otherwise. For given a0(t), μ ∈ R, and ξ ∈ SN−1, λ(μ, ξ; a0) is the
principal Lyapunov exponent of (3.4) and (3.3), and cl(ξ; a0) and cl(ξ) are as in (1.7)

and (1.8), respectively. If λ(a0) > 0, μ∗(a0) > 0 is such that cl(ξ; a0) =
λ(μ∗(a0),ξ;a0)

μ∗(a0)

(it will be seen in the following that such μ∗(a0) exists and is unique).
The following two theorems are the main results of this section.

Theorem 4.1 (Spatial spread).

(1) (Upper bound ) Assume that f(t, x, u) ≤ a0(t)u for t ∈ R, x ∈ R
N , and

u ≥ 0. Then

c∗sup(ξ) ≤ cl(ξ; a0) for any ξ ∈ SN−1.
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(2) (Lower bound ) Assume that λ(a0) > 0 and f(t, x, u) ≥ a0(t)u for t ∈ R,
x ∈ R

N , and 0 ≤ u 
 1. Then

c∗inf(ξ) ≥ cl(ξ; a0) for any ξ ∈ SN−1.

In particular, if fu(t, x, 0) ≡ fu(t, 0, 0), then

c∗inf(ξ) ≥ cl(ξ) for any ξ ∈ SN−1.

(3) (Variational principle/linear determinacy ) If f(t, x, u) ≤ fu(t, x, 0)u for
t ∈ R, x ∈ R

N , and u ≥ 0, and fu(t, x, 0) ≡ fu(t, 0, 0), then

c∗inf(ξ) = c∗sup(ξ) = cl(ξ) for any ξ ∈ SN−1.

Recall that cl(ξ) is the linear spreading speed of (1.1) in the direction of ξ. If
c∗inf(ξ) = c∗sup(ξ) = cl(ξ), as in the periodic case, we say (1.1) satisfies the linear
determinacy (see [32], [33], [67], etc. for the study on linear determinacy) and the

characterization c∗inf(ξ) = c∗sup(ξ) = cl(ξ) = infμ>0
λ(μ,ξ;a0)

μ (a0(t) = fu(t, 0, 0)) is

called the variational principle for c∗(ξ) := c∗inf(ξ)(= c∗sup(ξ)).
Observe that f(t, x, u) ≡ f(t, u) and f(t, x, u) ≡ u(a0(t) − b(t, x)u) are among

the examples which satisfy fu(t, x, 0) ≡ fu(t, 0, 0).

Theorem 4.2 (Generalized propagation).

(1) (Upper bound ) Assume that f(t, x, u) ≤ a0(t)u for t ∈ R, x ∈ R
N , and

u ≥ 0. If ξ ∈ SN−1 and u0 ∈ X+
2 (ξ) satisfy the fact that u0(x) ≤ Ce−μx·ξ

for x · ξ � 1 and some C > 0 and μ > 0, then

csup(u0, ξ) ≤
λ(μ, ξ; a0)

μ
.

(2) (Lower bound ) Assume that λ(a0) > 0 and f(t, x, u) ≥ a0(t)u for t ∈ R,
x ∈ R

N , and 0 ≤ u 
 1. If ξ ∈ SN−1 and u0 ∈ X+
2 (ξ) satisfy the fact that

u0(x) ≥ Ce−μx·ξ for x · ξ � 1 and some C > 0 and 0 < μ < μ∗(a0), then

cinf(u0, ξ) ≥
λ(μ, ξ; a0)

μ
.

(3) (Front solutions of constant speeds ) Assume that f(t, x, u) ≤ fu(t, x, 0)u
for t ∈ R, x ∈ R

N , and u ≥ 0, and fu(t, x, 0) ≡ fu(t, 0, 0). If ξ ∈ SN−1 and
u0 ∈ X+

2 (ξ) satisfy the fact that C1e
−μx·ξ ≤ u0(x) ≤ C2e

−μx·ξ for x · ξ � 1
and some C1, C2 > 0 and 0 < μ < μ∗(a0) with a0(t) ≡ fu(t, 0, 0), then

cinf(u0, ξ) = usup(u0, ξ) =
λ(μ, ξ; a0)

μ
.

Hence for any c ≥ cl(ξ) there is a front solution of (1.1) in the direction
of ξ with speed c, and there is no front solution in the direction of ξ with
speed smaller than cl(ξ).

To prove Theorems 4.1 and 4.2, we first prove some lemmas.
First of all, without loss of generality, we assume that ai(t) ≡ 0. Otherwise, let

v(t, x) = v(t, x1, · · · , xN )

= u(t, x1 −
∫ t

0

a1(s)ds, x2 −
∫ t

0

a2(s)ds, · · · , xN −
∫ t

0

aN (s)ds).
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Then v satisfies

(4.1) vt = Δv + f̃(t, x, v), x ∈ R
N ,

where

f̃(t, x1, x2, · · · , xN , v)

= f(t, x1 −
∫ t

0

a1(s)ds, x2 −
∫ t

0

a2(s)ds, · · · , xN −
∫ t

0

aN (s)ds, v).

It is not difficult to verify that (4.1) satisfies (H1) and (H2). Let

âi = lim
t→∞

1

t

∫ t

0

ai(s)ds (i = 1, 2, · · · , N).

For a given ξ = (ξ1, ξ2, · · · , ξN )
 ∈ SN−1, denote [c̃∗inf(ξ), c̃
∗
sup(ξ)] as the spreading

speed interval of (4.1) in the direction of ξ ∈ SN−1. We have

c∗inf(ξ) = c̃∗inf(ξ)−
N∑
i=1

âiξi, c∗sup(ξ) = c̃∗sup(ξ)−
N∑
i=1

âiξi.

For given a0(·), ξ = (ξ1, ξ2, · · · , ξN )
 ∈ SN−1, and μ ∈ R, by Theorem 2.10 (1), we
have

λ(μ, ξ; ({ai}Ni=1, a0))

μ
=

λ(μ, ξ; ({0}Ni=1, a0))

μ
−

N∑
i=1

âiξi.

Therefore, in the rest of this section, we assume that ai(t) ≡ 0. Hence (1.1) reads
as

(4.2)
∂u

∂t
= Δu+ f(t, x, u), x ∈ R

N .

Recall that u(t, ·; s, u0) denotes the solution of (4.2) with u(s, ·; s, u0) = u0(·).
For given a0(t), μ ∈ R, and ξ ∈ SN−1, (3.4) becomes

(4.3)
∂u

∂t
= Δu+

N∑
i=1

aμ,ξi

∂u

∂xi
+ aμ,ξ0 (t)u, x ∈ R

N ,

where aμ,ξ = ({aμ,ξi }Ni=1, a
μ,ξ
0 ), aμ,ξi = −2μξi (i = 1, 2, · · · , N), and aμ,ξ0 (t) =

a0(t) + μ2. Let u(t, ·; s, u0, a
μ,ξ) be the solution of (4.3) and (3.3) with

u(s, ·; s, u0, a
μ,ξ) = u0(·) for u0 ∈ XL.

Note that for any ξ ∈ SN−1 and μ > 0,

λ(μ, ξ; a0) = â0 + μ2,

where â0 = limt−s→∞
1

t−s

∫ t

s
a0(τ )dτ (see Theorem 2.10 (1)). Hence λ(μ, ξ; a0) is

independent of ξ, and we may write it as λ(μ; a0). For any μ �= 0,

λ(μ; a0)

μ
=

â0
μ

+ μ.

Therefore if λ(a0) > 0, there is a unique μ∗ := μ∗(a0) > 0 such that

(4.4)
λ(μ∗; a0)

μ∗ = inf
μ>0

λ(μ; a0)

μ
.

In the following, we assume that λ(a0) > 0 unless specified otherwise. Let
0 < μ∗

− < μ∗ < μ∗
+ be fixed, where μ∗ is such that (4.4) holds.
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For any s ∈ R, μ > 0, ξ ∈ SN−1, and T > 0, let

Φ(T ; s, a0, μ, ξ)u0 = u(s+ T, ·; s, u0, a
μ,ξ)

for u0 ∈ XL. Then Φ(T ; s, a0, μ, ξ) : XL → XL is a compact and strongly monotone
operator (i.e., for any bounded subset E ⊂ XL, Φ(T ; s, a0, μ, ξ)E is relatively com-
pact in XL, and for any u0 ∈ XL with u0 ≥ 0 and u0 �= 0, (Φ(T ; s, a0, μ, ξ)u0)(x) >
0 for x ∈ D). By the Krein-Rutman theorem, the eigenvalue of Φ(T ; s, a0, μ, ξ)
with the largest module is real and simple. We call it the principal eigenvalue of
Φ(T ; s, a0, μ, ξ) and denote it by λT (s, a0, μ, ξ). Let e(Φ(T ; s, a0, μ, ξ)) be a corre-
sponding eigenfunction. We have that e(Φ(T ; s, a0, μ, ξ)) = constant and

λT (s, a0, μ, ξ) = e
∫ T
0
(a0(s+τ)+μ2)dτ ,

1

T
lnλT (s, a0, μ, ξ) =

1

T

∫ T

0

(a0(s+ τ ) + μ2)dτ.(4.5)

Note that λT (s, a0, μ, ξ) is independent of ξ, and we may write it as λT (s, a0, μ).

It is clear that for T � 1, 1
T

∫ T

0
a0(s+ τ )dτ > 0 for any s ∈ R (see Theorem A.1),

and then there is a unique μ∗(T, s, a0) > 0 such that

1

T

lnλT (s, a0, μ
∗(T, s, a0))

μ∗(T, s, a0)
= inf

μ>0

1

T

lnλT (s, a0, μ)

μ
.

Lemma 4.3 below follows from Theorem A.1.

Lemma 4.3. For any 0 < ε < min{μ∗
+ − μ∗, μ∗ − μ∗

−}, there is T ≥ 1 such that

μ∗(T, s, a0) ∈ (μ∗ − ε/2, μ∗ + ε/2),

1

T

lnλT (s, a0, μ
∗(T, s, a0))

μ∗(T, s, a0)
∈
(λ(μ∗; a0)

μ∗ − ε/2,
λ(μ∗; a0)

μ∗ + ε/2
)

for all s ∈ R, and there is μT ∈ (μ∗ − ε/2, μ∗ + ε/2) such that

μT < μ∗(T, s, a0) for all s ∈ R.

Observe that when μ = 0, (4.3) reads as

(4.6)
∂u

∂t
= Δu+ a0(t)u.

For any u0 ∈ C(RN ,R) with u0(x) ≤ M exp(α‖x‖) for ‖x‖ � 1 and some M,α > 0,
(4.6) has also a unique solution u(t, ·; s, u0, a0) with u(s, ·; s, u0, a0) = u0(·) (see

[16]). Put Φ̃(t; s, a0)u0 := u(t + s, ·; s, u0, a0) for such initial u0. Then for any
μ ∈ R, ξ ∈ SN−1, and u0 ∈ XL, there holds

(Φ(T ; s, a0, μ, ξ)u0)(x) = eμx·ξ(Φ̃(T ; s, a0)u
μ,ξ
0 )(x),

where uμ,ξ
0 (x) = e−μx·ξu0(x) and u0 ∈ XL.

Observe also that there is a nonnegative measure m(y, dy) independent of μ, ξ
and a0 such that

(4.7) (Φ̃(T ; s, a0)u
μ,ξ
0 )(x) = e

∫ T
0

a0(s+τ)dτ ·
∫

uμ,ξ
0 (x− y)m(y, dy)

for all s ∈ R. Hence

Φ(T ; s, a0, μ, ξ)u0(x) = e
∫ T
0

a0(s+τ)dτ ·
∫

eμy·ξu0(x− y)m(y, dy)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPREADING SPEEDS IN TIME ALMOST PERIODIC KPP MODELS 5149

and

(4.8)
1

T
lnλT (s, a0, μ) =

1

T

(∫ T

0

a0(s+ τ ) + ln

∫
eμy·ξm(y, dy)

)
.

Let w(s) be a smooth function satisfying w(s) = 1 for s < 1 and w(s) = 0 for

s ≥ 2. For given B >
√
p21 + p22 + · · ·+ p2N , define Φ̃B(T ; s, a0)u

μ,ξ
0 by

(4.9) (Φ̃B(T ; s, a0)u
μ,ξ
0 )(x) = e

∫ T
0

a0(s+τ)dτ ·
∫

uμ,ξ
0 (x− y)mB(y, dy)

and define ΦB(T ; s, a0, μ, ξ) by

(4.10) (ΦB(T ; s, a0, μ, ξ)u0)(x) = eμx·ξ(Φ̃B(T, s, a0)u
μ,ξ
0 )(x),

where mB(y, dy) = w(‖y‖/B)m(y, dy) and uμ,ξ
0 (x) = e−μx·ξu0(x) (u0 ∈ XL). Simi-

lar to Φ(T ; s, a0, μ, ξ), ΦB(T ; s, a0, μ, ξ) : XL → XL is compact and strongly mono-
tone. Let λT,B(s, a0, μ, ξ) be the principal eigenvalue of ΦB(T, s, a0, μ, ξ). Then

(4.11)
1

T
lnλT,B(s, a0, μ, ξ) =

1

T

(∫ T

0

a0(s+ τ ) + ln

∫
eμy·ξmB(y, dy)

)
.

Fix T , B, and a0. For μ > 0, let

(4.12) Ψ(s, μ, ξ) =
1

T

lnλT,B(s, a0, μ, ξ)

μ

and

(4.13) ψ(s, μ, ξ) =
∂

∂μ

(
μΨ(s, μ, ξ)

)
.

Then

Ψ(s, μ, ξ) =
1

T

∫ T+s

s
a0(τ )dτ + ln

∫
eμy·ξmB(y, dy)

μ
and

ψ(s, μ, ξ) =
1

T

∫
eμy·ξy · ξmB(y, dy)∫
eμy·ξmB(y, dy)

.

Note that ψ(s, μ, ξ) is independent of s. We may then write it as ψ(μ, ξ). By direct
computation,

ψμ(μ, ξ) =
1

T

∫
eμy·ξ(y · ξ)2mB(y, dy)

∫
eμy·ξmB(y, dy)−

(∫
eμy·ξy · ξmB(y, dy)

)2

(∫
eμy·ξmB(y, dy)

)2 .

It then follows from the Hölder inequality that

(4.14) ψμ(μ, ξ) > 0.

We also have

Ψμ(s, μ, ξ) =
1

μ
[ψ(μ, ξ)−Ψ(s, μ, ξ)],(4.15)

∂

∂μ
(μ2Ψμ(s, μ, ξ)) = μ

∂

∂μ
ψ(μ, ξ) > 0.(4.16)

By the properties of fundamental solutions for parabolic equations (see [16]) and
the almost periodicity of (1.1) in t, we have

‖ΦB(T, s, a0, μ, ξ)u0 − Φ(T, s, a0, μ, ξ)u0‖XL
→ 0
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as B → ∞ uniformly with respect to s ∈ R, μ in bounded subsets of [0,∞),
ξ ∈ SN−1, and u0 ∈ XL with ‖u0‖XL

= 1. This together with (4.5), (4.8), (4.11),
(4.14), (4.15), and (4.16) implies that forB � 1, there is a unique μ∗

B(T, s, a0, ξ) > 0
such that Ψμ(s, μ

∗
B(T, s, a0, ξ), ξ) = 0 and

1

T

lnλT,B(s, a0, μ
∗
B(T, s, a0, ξ), ξ)

μ∗
B(T, s, a0, ξ)

= inf
μ>0

1

T

lnλT,B(s, a0, μ, ξ)

μ
.

Moreover, Lemma 4.4 follows.

Lemma 4.4. Let ε > 0 and T ≥ 1 be as in Lemma 4.3. Then there is B ≥ 1 such
that

μ∗
B(T, s, a0, ξ) ∈ (μ∗ − ε, μ∗ + ε),

1

T

lnλT,B(s, a0, μ
∗
B(T, s, a0, ξ), ξ)

μ∗
B(T, s, a0, ξ)

∈
(λ(μ∗; a0)

μ∗ − ε,
λ(μ∗; a0)

μ∗ + ε
)

for all s ∈ R and ξ ∈ SN−1. Moreover, there is μT,B ∈ (μ∗ − ε, μ∗ + ε) such that

μT,B < μ∗
B(T, s, a0, ξ) for all s ∈ R and ξ ∈ SN−1.

The next lemma will play a crucial role in the proof of Theorem 4.1.

Lemma 4.5. Assume that there is an almost periodic function a0(·) such that
λ(a0) > 0 and f(t, x, u) ≥ a0(t)u for t ∈ R, x ∈ R

N , and 0 ≤ u 
 1. For any ε > 0
and ξ ∈ SN−1, there are T ≥ 1 and v0 ∈ X+

1 (ξ) such that

(4.17) u(T + s, x; s, y, v0) ≥ v0(x− cξT )

for all x, y ∈ R
N , s ∈ R, and c < infμ>0

λ(μ;a0)
μ − ε(= λ(μ∗;a0)

μ∗ − ε).

Proof. We prove the lemma by modifying the arguments in [36], [34] or [66] for the
time periodic case.

First of all, take any ξ ∈ SN−1 and fix it. By Lemma 4.4, for any ε > 0, there
are T ≥ 1 and B ≥ 1 such that μ∗

B(T, s, a0, ξ) ∈ (μ∗ − ε, μ∗ + ε) for all s ∈ R and
there is μT,B ∈ (μ∗ − ε, μ∗ + ε) such that μT,B < μ∗

B(T, s, a0, ξ) for all s ∈ R. Then

1

T

lnλT,B(s, a0, μT,B , ξ)

μT,B
>

λ(μ∗; a0)

μ∗ − ε for all s ∈ R.

Fix T , B, and a0. Let Ψ(s, μ, ξ) and ψ(s, μ, ξ) be as in (4.12) and (4.13). Recall
that ψ(s, μ, ξ) is independent of s, and we write it as ψ(μ, ξ). By (4.15) and (4.16),

ψ(μ∗
B(T, s, a0), ξ) = Ψ(s, μ∗

B(T, s, a0, ξ), ξ)

and

(4.18) ψ(μ, ξ) < Ψ(s, μ, ξ) for μ < μ∗
B(T, s, a0, ξ).

Note that ∂ψ(μ,ξ)
∂μ for μ ∈ [μ∗

−, μ
∗
+] is bounded above by a constant independent

of T ≥ 1 and B ≥ 1. Let μ = μT,B in the following. Then there is a constant
M0 > 0 (independent of ε) such that

ψ(μ, ξ) >
λ(μ∗; a0)

μ∗ −M0ε.

Let 0 < γ 
 1 be such that∫
eμy·ξ cos(γy · ξ)mB(y, dy) > 0.
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Let

z(γ) =
1

γ
tan−1

∫
eμy·ξ sin(γy · ξ)mB(y, dy)∫
eμy·ξ cos(γy · ξ)mB(y, dx)

.

It is not difficult to prove that

lim
γ→0

z(γ) = Tψ(μ, ξ).

Let 0 < γ 
 1 be such that z(γ) > 0 and

γ(B + z(γ)) < π.

For 0 < δ < u+
inf , define

ṽ(r) =

{
δe−μr sin(γr) for 0 ≤ r ≤ π/γ,

0 otherwise

and

v(x) = ṽ(x · ξ).
Choose 0 < δ 
 1 such that

0 ≤ Φ̃(t; s, a0)vδ ≤ β for 0 ≤ t ≤ T, s ∈ R,

where vδ(x) ≡ δ and β > 0 is such that

f(t, x, u) ≥ a0(t)u for t ∈ R, x ∈ R
N , 0 ≤ u ≤ β.

Then by the comparison principle for parabolic equations,

u(t+ s, ·; s, y, v0) ≥ Φ̃(t; s, a0)v0 ≥ Φ̃B(t; s, a0)v0

for 0 ≤ t ≤ T , s ∈ R, y ∈ R
N , and any v0 ∈ X with 0 ≤ v0 ≤ δ.

Note that

Φ̃B(T ; s, a0)v(·+ rξ + z(γ)ξ)(0) = e
∫ T
0

a0(s+τ)dτ ·
∫

v(−y + rξ + z(γ)ξ)mB(y, dy).

When 0 ≤ r ≤ π/γ and ‖y‖ ≤ B, −π/γ ≤ −y · ξ + r + z(γ) ≤ 2π/γ. Hence

v(−y + rξ + z(γ)ξ) ≥ δe−μ(−y·ξ+r+z(γ)) sin(γ(−y · ξ + r + z(γ)))

for 0 ≤ r ≤ π/γ and ‖y‖ ≤ B. This implies that

Φ̃B(T ; s, a0)v(·+ rξ + z(γ)ξ)(0)

≥ δ · e
∫ T
0

a0(s+τ)dτ ·
∫

e−μ(−y·ξ+r+z(γ)) sin(γ(−y · ξ + r + z(γ)))mB(y, dy)

= δ · e
∫ T
0

a0(s+τ)dτe−μre−μz(γ) ·
(
sin(γ(r + z(γ)))

∫
eμy·ξ cos(γy · ξ)mB(y, dy)

− cos(γ(r + z(γ)))

∫
eμy·ξ sin(γy · ξ)mB(y, dy)

)
= δ · e

∫ T
0

a0(s+τ)dτe−μre−μz(γ) ·
∫

eμy·ξ cos(γy · ξ)mB(y, dy)
(
sin(γ(r + z(γ)))

− tan(γz(γ)) cos(γ(r + z(γ)))
)

= e−μz(γ) sec(γz(γ))v(rξ)e
∫ T
0

a0(s+τ)dτ ·
∫

eμy·ξ cos(γy · ξ)mB(y, dy)

for 0 ≤ r ≤ π/γ and ‖y‖ ≤ B.
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Note that

lim
γ→0

e−μz(γ) = e−μTψ(μ;ξ),

lim
γ→0

e
∫ T
0

a0(s+τ)ds ·
∫

eμy·ξ cos(γy · ξ)mB(y, dy) = eμTΨ(s,μ;ξ).

Hence

lim
γ→0

e−μz(γ) sec(γz(γ))e
∫ T
0

a0(s+τ)ds ·
∫

eμy·ξ cos(γy · ξ)mB(y, dy)

= eμT (Ψ(s,μ;ξ)−ψ(μ;ξ)) > 1

uniformly in s ∈ R. This, together with v(rξ) = 0 for r ≤ 0 or r ≥ π/γ, implies
that for 0 < γ 
 1,

Φ̃B(T, s, a0)v(·+ rξ + z(γ)ξ)(0) ≥ v(rξ)

for all s ∈ R and r ∈ R.
Observe that ṽ attains its maximum at a unique point r̄ = γ−1 tan−1(γ/μ).

Define

ṽ0(r) =

{
ṽ(r̄) for r ≤ −π/γ + r̄,

ṽ(r + π/γ) for r ≥ −π/γ + r̄

and

v0(x) = ṽ0(x · ξ).
Then

Φ̃B(T, s, a0)v0(·)(x) ≥ v0(x− z(γ)ξ)

for 0 < γ 
 1 and all x ∈ R
N .

Recall that

lim
γ→0

z(γ) = Tψ(μ, ξ) > T
(λ(μ∗, a0)

μ∗ −M0ε
)
.

Then

u(T + s, x; s, y, v0) ≥ Φ̃B(T, s, a0)v0(·)(x) ≥ v0(x− cξT )

for all s ∈ R and x, y ∈ R
N , and c < λ(μ∗;a0)

μ∗ −M0ε. The lemma is thus proved by

the independence of M0 on ε. �

We now prove Theorem 4.1.

Proof of Theorem 4.1. (1) It is a special case of Theorem 5.1 (1). See the next
section for the proof of Theorem 5.1 (1).

(2) First of all, take any ξ ∈ SN−1 and fix it. For given ε > 0, let T and v0 be
as in Lemma 4.5. Then

u(T + s, x; s, y, v0) ≥ v0(x− cξT ) for x, y ∈ R
N , s ∈ R.

This implies that

u(s+ 2T, x; s, y, v0) ≥ u(s+ 2T, x;T + s, y, v0(· − cξT ))

= u(s+ 2T, x− cξT ;T + s, y + cξT, v0(·))
≥ v0(x− 2cξT ) for s ∈ R, x, y ∈ R

N .

By induction, we have

u(s+ nT, x; s, y, v0) ≥ v0(x− cnξT ) for s ∈ R, x, y ∈ R
N , n = 1, 2, · · · .
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This together with Proposition 3.7 implies that for any ε > 0 and c < infμ>0
λ(μ;a0)

μ
− ε,

lim
x·ξ≤ct,t→∞

(u(t+ s, x; s, y, v0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R. Therefore, by Proposition 3.7, c∗inf(ξ) ≥ infμ>0
λ(μ;a0)

μ − ε and

then c∗inf(ξ) ≥ infμ>0
λ(μ;a0)

μ .

Now assume that fu(t, x, 0) ≡ fu(t, 0, 0). Let a0(t) = f(t, 0, 0). Then for any
0 < δ 
 1,

f(t, x, u) ≥ (a0(t)− δ)u for t ∈ R, x ∈ R
N , 0 ≤ u 
 1.

By the above arguments,
c∗inf(ξ) ≥ cl(ξ; a0 − δ).

By Theorem 2.7, cl(ξ; a0 − δ) → cl(ξ; a0) = cl(ξ) as δ → 0. We then have

c∗inf(ξ) ≥ cl(ξ).

(3) Assume that f(t, x, u) ≤ fu(t, x, 0)u for t ∈ R, x ∈ R
N , and u ≥ 0, and

fu(t, x, 0) ≡ fu(t, 0, 0). By (1), we have

c∗sup(ξ) ≤ inf
μ>0

λ(μ; a0)

μ
for any ξ ∈ SN−1.

By (2),

c∗inf(ξ) ≥ cl(ξ) for any ξ ∈ SN−1.

We then must have

c∗inf(ξ) = c∗sup(ξ) = cl(ξ) for any ξ ∈ SN−1.

�
Proof of Theorem 4.2. (1) It is a special case of Theorem 5.2 (1). See the next
section for the proof of Theorem 5.2 (1).

(2) We prove it by modifying the arguments in [45].

First of all, let c < λ(μ,ξ;a0)
μ be fixed. Take a δ > 0 such that

λ(ã0) > 0, c <
λ(μ, ξ; ã0)

μ
, and μ < μ̃∗,

where ã0(t) = a0(t) − δ and μ̃∗ is such that λ(μ̃∗,ξ;ã0)
μ̃∗ = infμ>0

λ(μ,ξ;ã0)
μ (this is

possible because of the continuity of λ(μ, ξ; a0) in a0). Let β > 0 be such that

f(t, x, u) ≥ a0(t)u for t ∈ R, x ∈ R
N , 0 ≤ u ≤ β.

For any given constant M0, let f̃(t, u) = u(a0(t) − M0u). Then (1.1) with f

being replaced by f̃ satisfies (H1) and (H2). Let ũ+(t, x) be the positive solution of

(1.1) with f being replaced by f̃ satisfying the fact that ũ+(t, x) is almost periodic
in t and periodic in xj with period pj (j = 1, 2, · · · , N). Choose M0 sufficiently
large so that

0 < ũ+(t, x) < β for t ∈ R, x ∈ R
N .

Then there is β̃ with 0 < β̃ < β such that

f(t, x, u) ≥ f̃(t, u) ≥ ã0(t)u for t ∈ R, x ∈ R
N , 0 ≤ u ≤ β̃.

Moreover, there is ũ∗
0(r) such that it is decreasing in r,

ũ0(x) ≤ u0(x) and ũ0(x) < β̃ for x ∈ R
N ,
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and

ũ0(x) ≥ C̃e−μx·ξ for x · ξ � 1 and some C̃ > 0,

where ũ0(x) = ũ∗
0(x · ξ). Clearly, ũ0 ∈ X+

2 (ξ).
Note that λ(μ, ξ; ã0) is independent of ξ ∈ SN−1, and we may then write it as

λ(μ; ã0). Take μ1, μ2 with μ < μ1 < μ2 < μ̃∗ such that c < λ(μ2;ã0)
μ2

. Then

λ(μ; ã0)

μ
>

λ(μ1; ã0)

μ1
>

λ(μ2; ã0)

μ2
>

λ(μ̃∗; ã0)

μ̃∗ .

For any ε > 0, there is T > 0 such that

c <
λ(μi; ã0)

μi
− ε <

∫ T+s

s
ãμi,ξ
0 (τ )dτ

Tμi
<

λ(μi; ã0)

μi
+ ε

for i = 1, 2 and all s ∈ R, and∫ T+s

s
ãμ1,ξ
0 (τ )dτ

Tμ1
>

∫ T+s

s
ãμ2,ξ
0 (τ )dτ

Tμ2
+ ε

for all s ∈ R.
Let

cni (s) =
1

T

∫ s+nT

s+(n−1)T
ãμi,ξ
0 (τ )dτ

μi

and

φn
i (t) = e

∫ t
s+(n−1)T

(ã
μi,ξ
0 (τ)−μic

n
i (s))dτ

for s ∈ R, i = 1, 2, and n = 1, 2, · · · .
Let

ψn(t, x; s) = d1e
−μ1(x·ξ−

∑n−1
k=1 ck2 (s)T−cn2 (s)(t−(n−1)T−s))φn

1 (t)

− d2e
−μ2(x·ξ−

∑n−1
k=1 ck2 (s)T−cn2 (s)(t−(n−1)T−s))φn

2 (t)

for x ∈ R
N , s ∈ R, s + (n− 1)T ≤ t < s+ nT , and n = 1, 2, · · · , where d1 and d2

are two positive constants to be determined later.
Note that cn2 (s) < cn1 (s) for s ∈ R and n = 1, 2, · · · . Then ψn(t, x; s) is a sub-

solution of (4.6) with a0 being replaced by ã0 for s+ (n− 1)T < t < s+ nT . Note
also that

ψn(s+ nT, x; s) = ψn+1(s+ nT, x; s) for x ∈ R
N , s ∈ R, n = 1, 2, · · · .

ψn(t, x; s) < 0 for x ·ξ−
∑n−1

k=1 c
k
2(s)T−cn2 (s)(t−(n−1)T−s) 
 0, and ψn(t, x; s) ∼

d1e
−μ1(x·ξ−

∑n−1
k=1 ck2 (s)T−cn2 (s)(t−(n−1)T−s))φn

1 (t) for

x · ξ −
n−1∑
k=1

ck2(s)T − cn2 (s)(t− (n− 1)T − s) � 1.

It then follows that there are d1 > d2 > 0 such that

ũ0(x) ≥ ψ1(s, x; s),

ψn(t, x; s) ≤ β̃, s+ (n− 1)T ≤ t ≤ s+ nT
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for x ∈ R
N , s ∈ R, and n = 1, 2, · · · , and

ψn(t, (
n−1∑
k=1

ck2(s)T + cn2 (s)(t− (n− 1)T − s))ξ; s) = d1φ
n
1 (t)− d2φ

n
2 (t) ≥ δ0

for some δ0 > 0, any s ∈ R, s+ (n− 1)T ≤ t ≤ s+ nT , n = 1, 2, · · · .
Let ũ(t, x; s, ũ0) be the solution of (4.2) with f being replaced by f̃ and with

ũ(s, x; s, ũ0) = ũ0(x). It then follows that

β > ũ(t, x; s, ũ0) ≥ ψn(t, x; s) for s+ (n− 1)T ≤ t ≤ s+ nT

for n = 1, 2, · · · and s ∈ R, x, y ∈ R
N .

Then by the comparison principle for parabolic equations, we have

u(t, x; s, y, u0) ≥ u(t, x; s, y, ũ0) ≥ ũ(t, x; s, ũ0) ≥ δ0

for s ∈ R, y ∈ R
N , x · ξ ≤

∑n−1
k=1 c

k
2(s)T + cn2 (s)(t− (n−1)T +s) and s+(n−1)T ≤

t ≤ s+ nT , n = 1, 2, · · · .
By Proposition 3.7, we then have

lim inf
x·ξ≤(c−ε)t,t→∞

(u(t+ s, x; s, y, u0)− u+(t+ s, x+ y)) = 0

uniformly in s ∈ R and y ∈ R
N . This, together with the arbitrariness of c with

c < λ(μ,ξ;a0)
μ and the arbitrariness of ε, implies that cinf(u0, ξ) ≥ λ(μ,ξ;a0)

μ .

(3) First, by (1),

csup(u0, ξ; a0) ≤
λ(μ, ξ; a0)

μ
,

where a0(t) = fu(t, 0, 0) ≡ fu(t, x, 0).
For any δ > 0,

f(t, x, u) ≥ (fu(t, x, 0)− δ)u for t ∈ R, x ∈ R
N , 0 < u 
 1.

Then by (2),

cinf(u0, ξ) ≥
λ(μ, ξ; a0 − δ)

μ
.

Letting δ → 0, by Theorem 2.7, we have

csup(u0, ξ) = cinf(u0, ξ) =
λ(μ, ξ; a0)

μ
. �

5. Spreading speeds and generalized propagating speeds

in some general case

In this section, we investigate the spatial spread and front propagation dynamics
in some general case.

Throughout this section, we assume that a0(t, x) is some given function which
is uniformly almost periodic in t, periodic in xj with period pj (j = 1, 2, · · · , N),
and globally Hölder continuous in t and x. u(t, ·; s, y, u0) denotes the solution
of (1.5) with u(s, ·; s, y, u0) = u0(·) (u0 ∈ X), and u(t, ·; s, u0) = u(t, ·; s, 0, u0).
For given a0(t, x), μ ≥ 0, and ξ ∈ SN−1, λ(μ, ξ; a0) is the principal Lyapunov
exponent of (3.4) and (3.3). φ(σta

μ,ξ) is the associated principal Floquet bundle

(see (2.4) in section 2 for a definition), where aμ,ξ = ({aμ,ξi }Ni=1, a
μ,ξ
0 ) (see (3.4))

and σta
μ,ξ(·, ·) = aμ,ξ(·+ t, ·). κ(σta

μ,ξ) is defined as in (2.5) with b being replaced
by σta

μ,ξ. cl(ξ; a0) and cl(ξ) are defined in (1.7) and (1.8), respectively.
The main results of this section are stated as follows.
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Theorem 5.1 (Upper and lower bounds and variational principle).

(1) (Upper bound ) Assume that f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R
N , and

u ≥ 0. Then

c∗sup(ξ) ≤ cl(ξ; a0) for any ξ ∈ SN−1.

(2) (Lower bound ) Assume that ai(t, x) ≡ ai(x) and that λ(a0) > 0, f(t, x, u) ≥
a0(t, x)u for t ∈ R, x ∈ R

N , 0 ≤ u 
 1. Assume further that a0(t, x) can
be approximated by time periodic functions. Then

c∗inf(ξ) ≥ cl(ξ; a0) for any ξ ∈ SN−1.

In particular, if ai(t, x) ≡ ai(x) and fu(t, x, 0) can be approximated by time
periodic functions, then

c∗inf(ξ) ≥ cl(ξ) for any ξ ∈ SN−1.

(3) (Variational principle/linear determinacy ) Assume that ai(t, x) ≡ ai(x)
and f(t, x, u) satisfies that f(t, x, u) ≤ fu(t, x, 0)u for t ∈ R, x ∈ R

N , and
u ≥ 0, and fu(t, x, 0) can be approximated by time periodic functions. Then

c∗inf(ξ) = c∗sup(ξ) = cl(ξ) for any ξ ∈ SN−1.

Theorem 5.2 (Generalized propagation).

(1) (Upper bound ) Assume that f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R
N , and

u ≥ 0. If u0 ∈ X+
2 (ξ) is such that u0(x) ≤ Ce−μx·ξ for x · ξ � 1 and some

C > 0 and μ > 0, then

csup(u0, ξ) ≤
λ(μ, ξ)

μ
.

(2) (Lower bound ) Assume that ai(t, x) ≡ ai(x) (i = 1, 2, · · · , N) and that
λ(a0) > 0, f(t, x, u) ≥ a0(t, x)u for t ∈ R, x ∈ R

N , 0 ≤ u 
 1. Assume
further that a0(t, x) can be approximated by time periodic functions. If
u0 ∈ X+

2 (ξ) is such that u0(x) ≥ Ce−μx·ξ for x · ξ � 1 and some C > 0

and 0 < μ < μ∗, where μ∗ is such that λ(μ∗,ξ;a0)
μ∗ = infμ>0

λ(μ,ξ;a0)
μ , then

cinf(u0, ξ) ≥
λ(μ, ξ; a0)

μ
.

(3) (Front solutions of constant speeds ) Assume that ai(t, x) ≡ ai(x) (i =
1, 2, · · · , N) and f(t, x, u) ≤ fu(t, x, 0)u for t ∈ R, x ∈ R

N , and u ≥ 0, and
that a0(t, x) = fu(t, x, 0) can be approximated by time periodic functions.
If u0 ∈ X+

2 (ξ) is such that C1e
−μx·ξ ≤ u0(x) ≤ C2e

−μx·ξ for x · ξ � 1 and
some C1, C2 > 0 and 0 < μ < μ∗, then

cinf(u0, ξ) = usup(u0, ξ) =
λ(μ, ξ; a0)

μ
.

Hence for any c ≥ cl(ξ), there is a front solution of (1.1) in the direction
of ξ which propagates at the speed c and there is no front solution in the
direction of ξ which propagates slower than cl(ξ).

Observe that f(t, x, u) = u(a(x) − b(t, x)u), f(t + T, x, u) = f(t, x, u), and
f(t, x, u) ≡ f(x, u) are examples with the property that fu(t, x, 0) can be approxi-
mated by time periodic functions.
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Proof of Theorem 5.1. (1) Assume that f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R
N ,

and u ≥ 0.
Given any μ > 0 and u0 ∈ X+

1 (ξ), there is α0 > 0 such that

u0(x) ≤ α0e
−μx·ξφ(σsa

μ,ξ)(x)

for x ∈ R
N and s ∈ R. It then follows from the comparison principle for parabolic

equations and Theorem 2.8 that

u(t, x; s, u0) ≤ α0e
−μ

(
x·ξ−

∫ t
s κ(στaμ,ξ)dτ

μ

)
φ(σta

μ,ξ)(x)

for s ∈ R, t > s, and x ∈ R
N .

Note that

λ(μ, ξ; a0) = lim
t−s→∞

1

t− s

∫ t

s

κ(στa
μ,ξ)dτ

(see Theorem 2.4). Hence for any ε > 0,

u(t+ s, x; s, u0) ≤ e−μ
(
x·ξ− λ(μ,ξ)+ε

μ t
)
φ(σt+sa

μ,ξ)(x)

for t � 1 and s ∈ R. This implies that for any c > λ(μ,ξ;a0)
μ ,

lim sup
x·ξ≥ct,t→∞

u(t+ s, x; s, u0) = 0

uniformly in s ∈ R. Therefore c∗sup(ξ) ≤
λ(μ,ξ;a)

μ for any μ > 0 and then c∗sup(ξ) ≤
infμ>0

λ(μ,ξ;a0)
μ .

(2) First let 0 < β < 1 be such that

f(t, x, u) ≥ a0(t, x)u for t ∈ R, x ∈ R
N , 0 ≤ u ≤ β.

Assume that an0 (t, x) (n = 1, 2, · · · ) are periodic in t with period Tn and that

lim
n→∞

sup
t∈R,x∈RN

|an0 (t, x)− a0(t, x)| = 0.

Without loss of generality, we may assume that

an0 (t, x) ≤ a0(t, x) for t ∈ R, x ∈ R
N , n = 1, 2, · · · .

Define fn(t, x) = u(an0 (t, x) − M0u), where M0 is some positive number to be
determined later. Then

f(t, x, u) ≥ fn(t, x, u) for t ∈ R, x ∈ R
N , 0 ≤ u ≤ β,

and by Theorem 2.7,

λ(0, ξ; an0 ) > 0 for n � 1.

It follows from the arguments in [61] that (1.1), with f being replaced by fn, satisfies
(H1) and (H2). Let u+

n (t, x) be the positive solution of (1.1) with f being replaced
by fn satisfying the fact that u+

n (t, x) is almost periodic in t and periodic in xj with
period pj (j = 1, 2, · · · , N). Take M0 > 0 to be sufficiently large so that

0 < u+
n (t, x) < β for t ∈ R, x ∈ R

N , n � 1.

Let c∗n(ξ) be the spreading speed of (1.1) with f(t, x, u) being replaced by
fn(t, x, u). Then by Proposition 3.7 and the comparison principle for parabolic
equations,

c∗inf(ξ) ≥ c∗n(ξ) for ξ ∈ SN−1, n � 1.
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Now by the theory developed in [65], [66], there is a bounded sequence {μn} such
that

c∗n(ξ) = inf
μ>0

λ(μ, ξ; an0 )

μ
=

λ(μn, ξ; a
n
0 )

μn
.

Without loss of generality, assume that μn → μ0. By the continuity of λ(μ, ξ; an0 )
(see Theorem 2.7) in an0 and λ(0, ξ; a0) > 0 (see (H2)), we must have μ0 �= 0. Hence
by Theorem 2.7,

lim
n→∞

λ(μn, ξ; a
n
0 ) = λ(μ0, ξ; a0).

It then follows that

c∗inf(ξ) ≥
λ(μ0, ξ; a0)

μ0
≥ inf

μ>0

λ(μ, ξ; a0)

μ
.

Finally assume that ai(t, x) ≡ ai(x) (i = 1, 2, · · · , N) and that fu(t, x, 0) can be
approximated by time periodic functions. Note that for any δ > 0,

f(t, x, u) ≥ (fu(t, x, 0)− δ)u for t ∈ R, x ∈ R
N , 0 ≤ u 
 1.

Let a0 = fu(t, x, 0). Then by the above arguments, c∗inf(ξ) ≥ cl(ξ; a0 − δ) for any
ξ ∈ SN−1 and δ > 0. Letting δ → 0, by Theorem 2.7, we have

c∗inf ≥ cl(ξ) for any ξ ∈ SN−1.

(3) It follows from (1) and (2). �

Proof of Theorem 5.2. (1) By the assumption on u0, there is α > 0 such that

u0(x− y) ≤ αe−μx·ξφ(σsa
μ,ξ)(x) for x ∈ R

N

for any s ∈ R and y ∈ D. It then follows from Theorem 2.8, the comparison principle
for parabolic equations, and the assumption f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R

N

and u ≥ 0 that

u(t, x; s, y, u0) = u(t, x+y; s, u0(·−y)) ≤ αe−μ((x+y)·ξ−
∫ t
s κ(στaμ,ξ)dτ

μ )φ(σta
μ,ξ)(x+y)

for t ≥ s, x ∈ R
N , and y ∈ D. Note that

lim
t−s→∞

1

t− s

∫ t

s

κ(στa
μ,ξ)dτ = λ(μ, ξ; a0).

Hence for any ε > 0, ∫ t+s

s
κ(στa

μ,ξ)dτ

μ
≤ (

λ(μ, ξ)

μ
+ ε)t

for t � 1 and any s ∈ R. This implies that for c > λ(μ,ξ;a0)
μ ,

lim sup
x·ξ≥ct,t→∞

u(t+ s, x; s, y, u0) = 0

uniformly in s ∈ R and y ∈ D (hence y ∈ R
N by the periodicity (1.1) in x).

Therefore csup(ξ, u0) ≤ λ(μ,ξ;a0)
μ .

(2) If λ(μ,ξ;a0)
μ = c∗inf(ξ), it follows from Proposition 3.5 that cinf(u0, ξ) ≥

c∗inf(ξ) =
λ(μ,ξ;a0)

μ .
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Assume λ(μ,ξ;a0)
μ > c∗inf(ξ) = λ(μ∗,ξ;a0)

μ∗ and μ < μ∗. Assume an0 (t, x) (n =

1, 2, · · · ) are periodic in t with period Tn and that

lim
n→∞

sup
t∈R,x∈RN

|an0 (t, x)− a0(t, x)| = 0.

Without loss of generality, we assume that

an0 (t, x) ≤ a0(t, x) for t ∈ R, x ∈ R
N , n = 1, 2, · · · .

Then there are μ < μ1 < μ2 < μ∗ such that

λ(μ, ξ; a0)

μ
> cn1 :=

λ(μ1, ξ; a
n
0 )

μ1
> cn2 :=

λ(μ2, ξ; a
n
0 )

μ2

for n � 1. Note that cn1 and cn2 can be made as close to λ(μ,ξ;a0)
μ as we wish by

choosing sufficiently large n and proper μ1, μ2.
Assume that p ∈ R

N is such that ai(t, x + p) ≡ ai(t, x) (i = 1, 2, · · · , N),
a0(t, x + p) ≡ a0(t, x), f(t, x + p, u) ≡ f(t, x, u), and p · ξ > 0. Fix n sufficiently
large. Let

ψn(t+ s, x) = d1e
−μ1(x·ξ−cn2 t)φ∗(t, x;μ1, ξ, a

n
0 )− d2e

−μ2(x·ξ−cn2 t)φ∗(t, x;μ2, ξ, a
n
0 ),

where d1, d2 are positive constants to be determined later, and φ∗(t, x;μi, ξ, a
n
0 )

is a positive principal eigenfunction of (1.4) with a0 being replaced by an0 and
T = Tn (i = 1, 2). Then by Theorem 2.9, ψn(t, x) is a sub-solution of (3.4)
with a0 being replaced by an0 . Note that ψn(t, x) < 0 for x · ξ − cn2 t 
 0 and
ψn(t, x) ∼ d1e

−μ1(x·ξ−cn2 t)φn
1 (t, x) for x · ξ − cn2 t � 1. It then follows that there are

d1 > d2 > 0 such that

u0(· − y − kp) ≥ ψn(s, ·)
for all s ∈ R, y ∈ D, k ∈ Z

+,

ψn(t+ s, x) > δ > 0

for cn2 t− p · ξ ≤ x · ξ ≤ cn2 t and some δ 
 1, and

ψn(t+ s, ·) ≤ β, t ≥ 0,

for all s ∈ R, where β > 0 is such that f(t, x, u) ≥ a0(t, x)u for 0 ≤ u ≤ β. It then
follows that

u(t+ s, x− kpξ; s, y, u0) = u(t+ s, x; s, u0(· − y − kpξ)) ≥ ψn(t+ s, x)

for t > 0, s ∈ R, y ∈ D, k ∈ Z
+. This implies that

(5.1) u(t+ s, x; s, y, u0) ≥ δ

for s ∈ R, t > 0, y ∈ D, x · ξ ≤ cn2 t.
By (5.1) and Proposition 3.7, for c < cn2 ,

lim
x·ξ≤ct,t→∞

(u(t+ s, x; s, u0)− u+(t+ s, x)) = 0

uniformly in s ∈ R and y ∈ D (hence y ∈ R
N ). This implies that cinf(u0, ξ) ≥ cn2

and then cinf(u0, ξ) ≥ λ(μ,ξ;a0)
μ .

(3) First, by (1),

csup(u0, ξ) ≤
λ(μ, ξ; a0)

μ
.
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For any 0 < δ 
 1, f(t, x, u) ≥ (fu(t, x, 0) − δ)u for t ∈ R, x ∈ R
N , and

0 < u 
 1. By (2),

cinf(u0, ξ) ≥
λ(μ, ξ; a0 − δ)

μ
.

Letting δ → 0, by Theorem 2.7, we have

cinf(u0, ξ) ≥
λ(μ, ξ; a0)

μ
.

Therefore, we must have

cinf(u0, ξ) = csup(u0, ξ) =
λ(μ, ξ; a0)

μ
.

Next, for any c ≥ cl(ξ), choose u0 ∈ X+
2 (ξ) such that u0(x) = e−μx·ξ for x ·ξ � 1

if c > cl(ξ) and choose u0 ∈ X+
1 (ξ) if c = cl(ξ). Then by the above arguments,

Proposition 3.5, and Theorem 5.1 (3), u(t, x; s, u0) is a front solution of (1.1) in
the direction of ξ with speed c. By Proposition 3.5 again, for any u0 ∈ X+

2 (ξ),
csup(u0, ξ) ≥ cinf(u0, ξ) ≥ c∗inf(ξ) = cl(ξ). Hence there is no front solution in the
direction of ξ which propagates slower than cl(ξ). �

6. Influence of spatial and temporal variations on spreading speeds

In this section, we consider the influence of time and space variation on spreading
speed.

Throughout this section, a0(t, x) = fu(t, x, 0). We write λ(μ, ξ; a0) or λ(μ, ξ; a)
for the principal Lyapunov exponent of (3.4) and (3.3).

Let

âi(x) = lim
t→∞

1

t

∫ t

0

ai(s, x)ds, â0(x) = lim
t→∞

1

t

∫ t

0

a0(s, x)ds,

ǎi(t) =
1

|D|

∫
D

ai(t, x)dx, ǎ0(t) =
1

|D|

∫
D

a0(t, x)dx,

āi =
1

|D|

∫
D

âi(x)dx, ā0 =
1

|D|

∫
D

â0(x)dx,

where i = 1, 2, · · · , N and |D| denotes the Lebesgue measure of D. Put

ĉl(ξ) := cl(ξ, â) := inf
μ>0

λ(μ, ξ; â)

μ
,

čl(ξ) := cl(ξ; ǎ) := inf
μ>0

λ(μ, ξ; ǎ)

μ
,

and

c̄l(ξ) := cl(ξ; ā) := inf
μ>0

λ(μ, ξ; ā)

μ
,

where â = ({âi}Ni=1, â0), ǎ = ({ǎi}Ni=1, ǎ0), and ā = ({āi}Ni=1, ā0), and where
λ(μ, ξ; â), λ(μ, ξ; ǎ), and λ(μ, ξ; ā) are the principal Lyapunov exponents of (2.8)
and (2.2), with a being replaced by â, ǎ, and ā, respectively.

The main results of this section are stated in the following two theorems.
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Theorem 6.1 (Influence of time and space variation on linear spreading speed).

(1) If ai(t, x) ≡ ai(t) (i = 1, 2, · · · , N) and a0(t, x) ≡ a0(t), then

cl(ξ) = ĉl(ξ) for any ξ ∈ SN−1.

(2) If ai(t, x) ≡ ai(x) (i = 1, 2, · · · , N), then

cl(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1.

Moreover, cl(ξ) = ĉl(ξ) for some ξ ∈ SN−1 if and only if a0(t, x) is of the
form a0(t, x) = a01(t) + a02(x).

(3) If ai(t, x) ≡ ai (i = 1, 2, · · · , N) and a0(t, x) ≡ a0(x), then

cl(ξ) ≥ čl(ξ) for any ξ ∈ SN−1.

Moreover, cl(ξ) = čl(ξ) for some ξ ∈ SN−1 if and only if a0(x) ≡ a0.
(4) If ai(t, x) ≡ ai (i = 1, 2, · · · , N), then

cl(ξ) ≥ ĉl(ξ) ≥ c̄l(ξ) for any ξ ∈ SN−1.

Moreover, cl(ξ) = ĉl(ξ) = c̄l(ξ) for some ξ ∈ SN−1 if and only if a0(t, x) ≡
a0(t).

Theorem 6.2 (Influence of time and space variation on spreading speeds).

(1) If ai(t, x) ≡ ai(t) (i = 1, 2, · · · , N) and a0(t, x) ≡ a0(t), then

c∗sup(ξ) ≥ c∗inf(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1.

Moreover, if f(t, x, u) ≤ a0(t)u for t ∈ R, x ∈ R
N , and u ≥ 0, then

c∗sup(ξ) = c∗inf(ξ) = ĉl(ξ) for any ξ ∈ SN−1.

(2) If ai(t, x) ≡ ai(x) (i = 1, 2, · · · , N) and a0(t, x) can be approximated by
time periodic functions, then

c∗sup(ξ) ≥ c∗inf(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1.

Moreover, if f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R
N , and u ≥ 0, then

c∗sup(ξ) = c∗inf(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1

and (c∗sup(ξ) =)c∗inf(ξ) = ĉl(ξ) for some ξ ∈ SN−1 if and only if a0(t, x) is
of the form a0(t, x) = a01(t) + a02(x).

(3) If ai(t, x) ≡ ai (i = 1, 2, · · · , N) and a0(t, x) ≡ a0(x), then

c∗sup(ξ) ≥ c∗inf(ξ) ≥ c̄l(ξ) for any ξ ∈ SN−1.

Moreover, if f(t, x, u) ≤ a0(x)u for t ∈ R, x ∈ R
N , and u ≥ 0, then

c∗sup(ξ) = c∗inf(ξ) ≥ c̄l(ξ) for any ξ ∈ SN−1

and (c∗sup(ξ) =)c∗inf(ξ) = c̄l(ξ) for some ξ ∈ SN−1 if and only if a0(x) ≡ a0
for t ∈ R and x ∈ R

N .
(4) If ai(t, x) ≡ ai (i = 1, 2, · · · , N) and a0(t, x) can be approximated by time

periodic functions, then

c∗sup(ξ) ≥ c∗inf(ξ) ≥ ĉl(ξ) ≥ c̄l(ξ) for any ξ ∈ SN−1.

Moreover, if f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R
N , and u ≥ 0, then

c∗sup(ξ) = c∗inf(ξ) ≥ ĉl(ξ) ≥ c̄l(ξ) for any ξ ∈ SN−1
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and (c∗sup(ξ) =)c∗inf(ξ) = ĉl(ξ) = c̄l(ξ) for some ξ ∈ SN−1 if and only if
a0(t, x) ≡ a0(t).

Observe that

â0(x) = f̂u(x, 0), ǎ0(t) = f̌u(t, 0), ā0 = f̄u(0),

where

f̂(x, u) = lim
t→∞

1

t

∫ t

0

f(s, x, u)ds,

f̌(t, u) =
1

|D|

∫
D

f(t, x, u)dx,

and

f̄(u) =
1

|D|

∫
D

f̂(x, u)dx.

If f(t, x, u) ≤ fu(t, x, 0)u for u ≥ 0 and f̂ , f̌ , f̄ are KPP type functions, then by
Theorem 4.1 (3) and Theorem 5.1 (3), c̄l(ξ), čl(ξ) and c̄l(ξ) are the spreading speeds
of the following time-averaged, space-averaged, and time-space-averaged equations
of (1.1),

∂u

∂t
= Δu+

N∑
i=1

âi(x)
∂u

∂xi
+ f̂(x, u), x ∈ R

N ,(6.1)

∂u

∂t
= Δu+

N∑
i=1

ǎi(t)
∂u

∂xi
+ f̌(t, u), x ∈ R

N ,(6.2)

and

(6.3)
∂u

∂t
= Δu+

N∑
i=1

āi
∂u

∂xi
+ f̄(u), x ∈ R

N ,

respectively. Therefore, Theorems 6.1 and 6.2 show that the time and space vari-
ation of the media cannot slow down the spatial spread; it indeed speeds up the
spatial spread except in certain degenerate cases.

Proof of Theorem 6.1. (1) By Theorem 2.10 (1), for any μ ≥ 0 and ξ ∈ SN−1,

λ(μ, ξ; a0) = lim
t−s→∞

1

t− s

∫ t

s

(a0(τ )− μ

N∑
i=1

ai(τ )ξi + μ2)dτ = â0 − μ

N∑
i=1

âiξi + μ2.

Then

cl(ξ) = inf
μ>0

â0 − μ
∑N

i=1 âiξi + μ2

μ
= ĉl(ξ)

for any ξ ∈ SN−1.
(2) By Theorem 2.10 (2), λ(μ, ξ; a) ≥ λ(μ, ξ; â) for any μ > 0 and ξ ∈ R

N .
Hence cl(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1. If cl(ξ) = ĉl(ξ) for some ξ ∈ SN−1 and
a0(t, x) is not of form a0(t, x) = a01(t) + a02(x), then by Theorem 2.10 (2) again,

λ(μ, ξ; a) > λ(μ, ξ; â) for any μ > 0, ξ ∈ SN−1. Since cl(ξ) = infμ>0
λ(μ,ξ;a)

μ =

infμ−
0 ≤μ≤μ+

0

λ(μ,ξ;a)
μ (see Theorem 2.7), there is μ∗ ∈ [μ−

0 , μ
+
0 ] such that cl(ξ) =
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λ(μ∗,ξ;a)
μ∗ . But λ(μ∗,ξ;a)

μ∗ > λ̂(μ∗,ξ;â)
μ∗ . Then we must have ĉl(ξ) < cl(ξ), a contra-

diction. Therefore, if cl(ξ) = ĉl(ξ) for some ξ ∈ SN−1, we must have a0(t, x) =
a01(t) + a02(x).

Conversely, if a0(t, x) = a01(t) + a02(x), then by Theorem 2.10 (2), λ(μ, ξ; a) =
λ(μ, ξ; â) for any μ > 0 and ξ ∈ SN−1. Hence cl(ξ) = ĉl(ξ) for any ξ ∈ SN−1.

(3) By Theorem 2.10 (3), λ(μ, ξ; a) ≥ λ(μ, ξ; ǎ) for μ ≥ 0 and any ξ ∈ SN−1 and
λ(μ, ξ; a) = λ(μ, ξ; ǎ) for some μ ≥ 0 and some ξ ∈ SN−1 if and only if a0(x) ≡ a0.
(3) then follows by the similar arguments as in (2).

(4) By (2), cl(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1. By (3), ĉl(ξ) ≥ c̄l(ξ) for any
ξ ∈ SN−1. It then follows that

cl(ξ) ≥ ĉl(ξ) ≥ c̄l(ξ)

for any ξ ∈ SN−1. Moreover, by (2) and (3), cl(ξ) = ĉl(ξ) = c̄l(ξ) for some
ξ ∈ SN−1 if and only if a0(t, x) = a01(t) + a02(x) and a02(x) ≡ a02, hence if and
only if a0(t, x) ≡ a0(t). �

Proof of Theorem 6.2. Observe that in any case, there holds

c∗sup(ξ) ≥ c∗inf(ξ) for any ξ ∈ SN−1.

(1) By Theorem 4.1 (2), we have

c∗inf(ξ) ≥ cl(ξ)

for any ξ ∈ SN−1. By Theorem 6.1 (1),

cl(ξ) = ĉl(ξ) for any ξ ∈ SN−1.

Hence

c∗inf(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1.

It then follows that

c∗sup(ξ) ≥ c∗inf(ξ) ≥ ĉl(ξ) for ξ ∈ SN−1.

If f(t, x, u) ≤ a0(t)u for t ∈ R, x ∈ R
N , and u ≥ 0, then by Theorem 4.1 (3) and

Theorem 6.1 (1),

c∗sup(ξ) = c∗inf(ξ) = ĉl(ξ) for any ξ ∈ SN−1.

(2) By Theorem 5.1 (2),

c∗inf(ξ) ≥ cl(ξ) for any ξ ∈ SN−1.

By Theorem 6.1 (2),

cl(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1.

It then follows that

c∗sup(ξ) ≥ c∗inf(ξ) ≥ ĉl(ξ) for any ξ ∈ SN−1.

If in addition f(t, x, u) ≤ a0(t, x)u for t ∈ R, x ∈ R
N , and u ≥ 0, and a0(t, x)

can be approximated by time periodic functions, then by Theorem 5.1 (3),

c∗sup(ξ) ≡ c∗inf(ξ) = cl(ξ) for any ξ ∈ SN−1.

This implies that c∗inf(ξ) = ĉl(ξ) for some ξ ∈ SN−1 if and only if cl(ξ) = ĉl(ξ) for
some ξ ∈ SN−1, which, by Theorem 6.1 (2) is equivalent to the fact that a0(t, x) is
of the form a0(t, x) = a01(t) + a02(x).
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(3) It follows from Theorem 5.1 (2), (3), and Theorem 6.1 (3) and the similar
arguments as in (2).

(4) It follows from Theorem 5.1 (2), (3), and Theorem 6.1 (4) and the similar
arguments as in (2). �

Appendix A: Almost periodic functions and compact flows

In this section, we recall the definitions of compact flows and almost periodic
functions and collect some basic properties.

Definition A.1. Let Z be a compact metric space and B(Z) be the Borel σ-algebra
of Z.

(1) (Z,R) := (Z, {σt}t∈R) is called a compact flow if σt : Z → Z (t ∈ R)
satisfies: [ (t, z) 
→ σtz ] is jointly continuous in (t, z) ∈ R×Z, σ0 = id, and
σs ◦ σt = σt+s for any s, t ∈ R. We may write z · t or (z, t) for σtz.

(2) Assume that (Z, {σt}t∈R) is a compact flow. A probability measure P on
(Z,B(Z)) is called an invariant measure for (Z, {σt}t∈R) if for any E ∈ B(Z)
and any t ∈ R, P(σt(E)) = P(E). An invariant measure P for (Z, {σt}t∈R)
is said to be ergodic if for any E ∈ B(Z) satisfying P(σ−1

t (E)�E) = 0 for
all t ∈ R, P(E) = 1 or P(E) = 0.

(3) Assume that (Z, {σt}t∈R) is a compact flow. (Z, {σt}t∈R) is said to be
uniquely ergodic if it has a unique invariant measure (in such a case, the
unique invariant measure is necessarily ergodic). We say that (Z, {σt}t∈R)
is minimal or recurrent if for any z ∈ Z, the orbit {σtz : t ∈ R } is dense
in Z.

Given g ∈ C(R× R
n,Rm), let

H(g) = cl{g · τ |τ ∈ R},

where g · τ (t, x) = g(t + τ, x) and the closure is taken under the compact open
topology. H(g) is usually called the hull of g. Let (H(g), {σt}t∈R) be the translation
flow defined by σt(g̃) = g̃(t + ·, ·) for g̃ ∈ H(g). If g is bounded and uniformly
continuous on R × E for any bounded subset E ⊂ R

n, then H(g) is compact
and metrizable under the compact open topology and hence (H(g), {σt}t∈R) is a
compact flow (see [54]).

Definition A.2. (1) A function g ∈ Cunif (R,R
m) is said to be almost periodic

if for any sequences {α′

n}, {β
′

n} ⊂ R, there are subsequences {αn} ⊂ {α′

n},
{βn} ⊂ {β′

n} such that

(A.1) lim
k→∞

lim
n→∞

g(t+ αn + βk) = lim
n→∞

g(t+ αn + βn)

pointwise for t ∈ R.
(2) A function g ∈ C(R × R

n,Rm), (t, x) 
→ g(t, x), is said to be uniformly
almost periodic in t if g is uniformly continuous on R×E for any bounded
subset E ⊂ R

n and is almost periodic in t for each x ∈ R
n.

(3) Let g ∈ C(R× R
n,Rm) be uniformly almost periodic in t, and let

(A.2) g(t, x) ∼
∑
λ∈R

aλ(x)e
iλt
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be the Fourier series of f (see [64], [73] for the definition). Then S(g) =
{λ|aλ(x) �≡ 0} is called the Fourier spectrum of g, and M(g) = the smallest
additive subgroup of R containing S(g) is called the frequency module of g.

Remark A.1. (1) If g ∈ Cunif (R,R
m) is almost periodic, then for any sequences

{α′

n}, {β
′

n} ⊂ R, there are subsequences {αn} ⊂ {α′

n}, {βn} ⊂ {β′

n} such
that the limit in (A.1) is uniform in t ∈ R (see [13]).

(2) Suppose that g(t, x) (g ∈ C(R × R
n,Rm)) is uniformly almost periodic in

t. Then (H(g), {σt}t∈R) is minimal and uniquely ergodic (see [54], [73]).
(3) If g(t, x) (g ∈ C(R×R

n,Rm)) is uniformly almost periodic in t, then aλ(x)

in (A.2) is given by aλ(x) = limt→∞
1
t
∫ t

0
g(s, x)e−iλsds (see [73]).

Definition A.3. A function g ∈ C(R×R
n,Rm) is said to be recurrent in the first

independent variable if it is bounded and uniformly continuous on R × E for any
bounded subset E ⊂ R

n and (H(g), {σt}t∈R) is minimal.

Theorem A.1. If g ∈ C(R × R
n,R) is uniformly almost periodic in t, then the

limit limt−s→∞
1

t−s

∫ t

s
g(τ, x)dτ exists for any x ∈ R.

Proof. It follows from the results contained in [29]. �
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15. M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and random

media, Soviet Math. Dokl., 20 (1979), 1282-1286. MR553200 (81d:80005)
16. A. Friedman, “Partial Differential Equations of Parabolic Type,” Prentice-Hall, Inc., Engle-

wood Cliffs, N.J., 1964. MR0181836 (31:6062)
17. J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math.

Ann., 335 (2006), no. 3, 489–525. MR2221123 (2007b:34071)

18. F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decay and mono-
tonicity, prepint.

19. S. Heinze, G. Papanicolaou, and A. Stevens, A variational principle for propagation speeds in
inhomogeneous media, SIAM J. Appl. Math., 62 (2001), 129-148. MR1857539 (2002j:35169)

20. D. Henry, “Geometric Theory of Semilinear Parabolic Equations”, Lecture Notes in Math.
vol. 840, Springer-Verlag, Berlin, 1981. MR610244 (83j:35084)

21. J. H. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost
and space periodic media, preprint.

22. W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of
Fisher type in periodic media. Boundary value problems for functional-differential equations,
World Sci. Publ., River Edge, NJ, 1995, 187-199. MR1375475 (97a:35112)

23. W. Hudson and B. Zinner, Existence of traveling waves for a generalized discrete Fisher’s
equation, Comm. Appl. Nonlinear Anal., 1 (1994), no. 3, 23-46. MR1295491 (95k:35110)
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