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1 Introduction

Methods of quantum field theory are widely used to solve problems of elementary particle

physics, nuclear physics, condensed matter physics or cosmology. This includes problems

involving a few particles or excitations around the conventional vacuum but also thermal

equilibrium states or arbitrary out-of-equilibrium dynamics. Problems of the latter type

are usually treated in terms of the Schwinger-Keldysh closed time path [1–3], see for ex-

ample [4–12] for introductions and overviews. This formalism is particularly useful when a

coupling parameter is small such that perturbative methods can be used. Theoretical tech-

niques that are often employed are the mapping to an (effective) kinetic theory description

or resummation schemes such as the two-particle irreducible one.
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An advantage of the theoretical methods based on the closed time path is that they

usually provide quite detailed microscopic information and that they are capable to follow

the time evolution of arbitrary density matrices out-of-equilibrium, at least in principle.

There are also no restrictions concerning the time and length scales one can consider, apart

from those that are set by the range of validity of perturbative expansion schemes or other

additional approximations (for example the classical statistical approximation which is

sometimes used for problems involving large occupation numbers of bosonic particles). On

the other side, this implies also a rather high complexity of the formalism and oftentimes

high numerical effort for the concrete solution of a given problem.

For some theoretical problems, one is actually not interested in the full microscopic dy-

namics but rather in the behavior of the theory for large length and time scales. If it is not

hindered by conservation laws or integrable dynamics, the long-time limit is usually domi-

nated by thermalization and the corresponding equilibrium states. The thermal states have

lost all memory of the initial state except for the conserved charges, in particular energy

and momentum which determine the temperature and fluid velocity and conserved particle

numbers which determine corresponding chemical potentials. The theoretic description of

thermal states is quite universal as it only involves the thermodynamic equation of state

and the standard thermodynamic formalism.

In addition to the thermal equilibrium states, also the long time dynamics is actually

governed by the conservation laws to a large extend. Intuitively speaking, those modes that

are fully or approximately preserved by conservation laws from relaxing to some equilibrium

configuration dominate the long-time dynamics, while other modes relax on shorter time

scales [13, 14]. The traditional formalism to describe this is the one of hydrodynamics, or

fluid dynamics in modern terminology. In addition to the conserved currents, such as the

energy momentum tensor or conserved number currents, also long-range fields and order

parameters such as e.g. the electromagnetic field or the magnetization need to be included

in the theoretical description [14].

The fluid dynamic description is not quite as universal as thermodynamics because it

needs additional information about transport properties, for example the shear and bulk

viscosity or dissipative damping terms for the long range fields and order parameters.

The range of applicability of a fluid dynamic description is set by the time (and associated

length) scale of thermalization. The thermalization time is shorter, and therefore the range

of applicability of a fluid dynamic description larger, when interaction effects are stronger.

It is possible to obtain fluid dynamics as the long time limit of kinetic theory. Theo-

retical methods such as the Chapman-Enskog expansion [15] or Grad’s method of moments

(see e.g. [16, 17]) describe the mapping in detail. In terms of these methods one can also

determine the transport properties by microscopic calculations based on kinetic theory.

While this approach is fine for the situations where it is applicable (such as dilute gases)

it has the conceptual disadvantage that it needs both a weak coupling assumption for the

applicability of kinetic theory and a form of a strong coupling assumption for the appli-

cability of a fluid dynamic description. One may therefore wonder whether there exists a

shortcut in the theoretical setup that leads more directly from the formulation of a quan-

tum field theory to a fluid dynamic type of formalism. Such a “shortcut formalism” should
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be capable of describing local equilibrium situations and the corresponding dynamics but

without relying on the weak coupling assumptions underlying kinetic theory. For thermo-

dynamic equilibrium, such a formalism exists of course in the form of the imaginary time

or Matsubara formalism and it is heavily used also for non-perturbative calculations (e.g.

in the setup of lattice gauge theory).

It is plausible that there should also be a general quantum field theoretic formalism

which is applicable out-of-equilibrium, however not in the sense of arbitrary, far-from-

equilibrium states but rather for states that can be described by an approximate local

equilibrium. Such a situation may be coined as close-to-equilibrium. One formalism of this

type is linear response theory. It is restricted to small excitations around global equilibrium

states but within this limitation it allows for non-perturbative statements (in the sense of

the expansion in a coupling constant), for example the fluctuation-dissipation theorem or

the Green-Kubo relations. One may also argue that for strongly interacting theories with a

gravitational dual, such a close-to-equilibrium formalism is used already at least implicitly

in many calculations based on the AdS/CFT correspondence.

It should then also be possible to construct such a close-to-equilibrium formalism using

solely the methods of quantum field theory without relying on perturbative assumptions

and the mapping to kinetic theory. These considerations are part of the motivation for the

present work.

The formalism we aim to develop here is a direct generalization of equilibrium quantum

field theory. Instead of using the full machinery of the Schwinger-Keldysh closed time

path, we will use analytic continuation.1 This has the advantage that part of the formal

complexity of the closed time path formalism can be avoided. For example, we will not

need a full doubling of the fields corresponding to the two branches of the time contour.

However, as will be discussed in detail below, we will have to introduce a specific sign

operator that allows to parametrize the branch cuts in the analytic (generalized) frequency

plane associated with dissipative behavior. Because the sign operator allows to distinguish

between the two sides of the branch cut, and therefore retarded and advanced correlation

functions, a few aspects of the resulting formalism work in practice similar as for the

closed time path formalism. In particular, and that is the main result of this paper, it is

thereby possible to obtain real and causal equations of motion including dissipative effects

for field expectation values from the variation of an analytically continued version of the

one-particle irreducible quantum effective action.

The fact that our formalism is based on an effective action implies that not only

the field equations or equations of motion can be studied, but also very directly various

correlation functions which follow from functional derivatives of the analytic action. This

is in contrast to the traditional formulation of fluid dynamics which starts directly with the

equations of motion. The correlation functions obtained in this way describe generalizations

of thermal equilibrium fluctuations in various fields. In ref. [19], such fluctuations are called

quasi-stationary.

1The analytic continuation technique has a long history as an approach to non-equilibrium problems,

see for example refs. [13, 18].
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The analytic continuation we will study starts from an Euclidean description of local

equilibrium states. In the presence of additional field expectation values or order parame-

ters, these local equilibrium states should be understood in the sense of generalized Gibbs

ensembles [20]. One should also keep in mind that local equilibrium is typically only an

approximation to the full dynamics (although it can be a rather good approximation).

The formalism assumes implicitly that the theory is probed on length and time scales that

are large compared to the thermalization dynamics, or, in other words, that approximate

local thermalization is efficient enough for those degrees of freedom that make up the bath.

There are, of course, also situations where this assumption is not justified.

We do not assume, however, that dissipative processes are absent. In contrast, their

proper description will be one of the main points of the present paper. A particularly nice

feature of the close-to-equilibrium formalism is that it allows a straight-forward discussion

of entropy production. This includes entropy production due to dissipative processes con-

cerning a (quantum) field expectation value Φa as well as shear and bulk viscous dissipation.

As will be discussed in detail below, the temperature and fluid velocity do not have the

same status as quantum field expectation values or order parameter fields Φa. In particular,

the analytic effective action is not stationary with respect to variations of the temperature

or fluid velocity. These fields should rather be seen as certain parameter fields for which

the dynamics does not directly follow from the equations of motion but rather somewhat

implicitly from general coordinate invariance or the closely connected conservation laws for

energy and momentum. More details are discussed below.

The formalism presented here allows to derive the equations of motion of fluid dynamics

from the variation of an effective action. This is discussed for a fluid without conserved

charges apart from energy and momentum within the so-called first order approximation in

section 7. The extension to more general fluids as well as the second order formalism will be

discussed elsewhere. Attempts to construct a variational principle that yields the equations

of fluid dynamics have a long history, see for example [21] for an overview. Recently, fluid

dynamics was discussed extensively in the context of effective field theory [22–40]. While

actions for ideal fluid dynamics can be constructed in different ways, it is more difficult to

treat dissipation, for a recent discussion see [40].

The formalism developed here differs from earlier works in several ways. Most promi-

nently, it is based on the analytic continuation of the one-particle irreducible effective

action. The effect of quantum and thermal fluctuations or noise is already included in

this object. No functional integrals over fluid variables are part of this formalism (except

possibly to describe additional initial state fluctuations). The effect of quantum and ther-

mal fluctuations is taken into account by the functional integrals that define the quantum

effective action in the Euclidean domain, i.e. before analytic continuation.

This setup implies in particular that the dissipative equations of motion derived from

the analytic effective action for field expectation values Φa are not subject to further

renormalization effects by quantum and thermal fluctuations. In the presence of initial

state fluctuations in the fluid fields, another level of statistical description is added which

may of course be described by correspondingly defined expectation values and correlation

functions as well as renormalized equations of motion, see for example [41].
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The one-particle irreducible effective action is very closely related to the partition

function in the grand canonical ensemble. It was recently discussed how one can obtain

constraints for the non-dissipative terms of fluid dynamics from investigations of the par-

tition function [42–46]. The formalism developed here could be used to generalize these

considerations such that also dissipation is taken into account.

The present paper is organized as follows. We start in section 2 with an introductory

discussion of the simple, damped harmonic oscillator. Some of the main elements of our

the formalism can already be introduced there. In section 3 we turn then to quantum

field theory. In particular, the quantum effective action for a situation with locally varying

temperature and fluid velocity is defined first in the Euclidean domain in subsection 3.1.

In order to understand properly the analytic structure of the quantum effective action, we

discuss the analytic structure of two-point functions in subsection 3.2 and of more general

correlation functions in subsection 3.3. The general structure of the analytically continued

quantum effective action (or analytic effective action for short) is discussed in subsection 3.4

and the relation to other actions, such as the often considered time-ordered or Feynman

effective action is considered in subsection 3.5.

In section 4 we discuss a generalized variational principle that allows to obtain dis-

sipative equations of motion directly from the analytic effective action. We discuss there

also the concept of a retarded functional derivative and why this leads to causal equations

of motion. In section 5 we discuss the important issue of energy momentum conservation

as well as entropy production. More specific, subsection 5.1 discusses how one can obtain

the expectation value of the energy-momentum tensor from the analytic effective action,

and subsection 5.2 discusses general coordinate covariance and the closely related issue of

energy-momentum conservation. We obtain there differential equations that can be used to

fix the space-time evolution of the temperature and fluid velocity. Particularly interesting

is an equation one can derive in that way for entropy production. This is discussed in

subsection 5.3 and also a local form of the second law of thermodynamic is stated there.

The different theoretical concepts and equations are then discussed for a particular

example of an effective action that describes a scalar field with O(N) symmetry in section 6

as well as for an action describing viscous relativistic fluid dynamics in section 7. Finally,

some conclusions are drawn in section 8. Appendix A contains a compilation of useful

relations about various two-point correlation functions as they can be derived via linear

response theory, for example the fluctuation-dissipation relation, Onsager’s relations or the

spectral representation.

2 The damped harmonic oscillator

The equation of motion of a simple, damped harmonic oscillator is

mẍ = −kx− cẋ , (2.1)

which can also we written as

ẍ+ 2ζω0ẋ+ ω2
0x = 0 , (2.2)
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with the undamped frequency ω0 =
√

k/m and the so-called damping ratio ζ = c/
√
4mk.

Without the damping term one can obtain the equation of motion from the variation of

the action

S[x] =

∫

dt

{

1

2
mẋ2 − 1

2
kx2
}

=

∫

dω

2π

m

2
x∗(ω)

[

ω2 − ω2
0

]

x(ω) . (2.3)

In the last equation we introduced the Fourier transform

x(t) =

∫

dω

2π
e−iωt x(ω) , (2.4)

and from x(t) ∈ R it follows that x∗(ω) = x(−ω).

To find an action for the damped harmonic oscillator one might be tempted to replace

simply the kernel [ω2−ω2
0] on the right hand side of (2.3) by [ω2+2iωζω0−ω2

0]. However,

the additional term linear in ω would simply cancel out — it is odd with respect to ω → −ω

while x∗(ω)x(ω) is even. In the time representation such a term would be a total derivative

and would therefore not contribute to the field equations.

The kernel of the Fourier representation on the right hand side of eq. (2.3) plays the

role of the inverse propagator. It has zero-crossings at ω = ±ω0 corresponding to the two

poles of the propagator or the two independent solutions of the equation of motion (2.2)

for ζ = 0. The general expectation for an effective propagator in the presence of dissi-

pative mechanisms is that poles are broadened and become branch cuts. For the inverse

propagator this implies that zero-crossings are avoided by additional discontinuous terms.

Consider for example the inverse propagator

ω2 + 2isI(ω)ω ζω0 − ω2
0 , (2.5)

where

sI(ω) = sign(Imω) . (2.6)

Formally, the zero crossings of (2.5) are at

ω = −isI(ω)ζω0 ±
√

ω2
0 − ζ2ω2

0 . (2.7)

However, this equation has no solutions because the imaginary terms on both sides always

have opposite signs. In other words, for Imω > 0 it appears as if the zero-crossing of (2.5)

were at Imω < 0 and vice versa.

One could, however, also say that the expression in (2.5) has several zero-crossings on

different Riemann sheets. Indeed, one Riemann sheet corresponds to the analytic contin-

uation from the upper half to the whole complex ω-plane, and the expression in (2.5) is

simply given by ω2 + 2i ω ζω0 − ω2
0 with zero-crossings at ω = −iζω0 ±

√

ω2
0 − ζ2ω2

0. The

second Riemann sheet corresponds to the analytic continuation from the lower half plane

such that the expression in (2.5) is given by ω2−2i ω ζω0−ω2
0 and the zero-crossings are at

ω = iζω0 ±
√

ω2
0 − ζ2ω2

0. Both are glued together along the real ω-axis by virtue of sI(ω).

As will be discussed below, the zero-crossings on the two Riemann sheets correspond to

the dissipative equations of motion for forward and backward time evolution.
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One may now try for the effective action of the damped harmonic oscillator the ex-

pression (we use conventions where the effective action Γ[x] differs from S[x] in overall

sign)

Γ[x] =

∫

dω

2π

m

2
x∗(ω)

[

− ω2 − 2i sI(ω)ω ζω0 + ω2
0

]

x(ω)

=

∫

dt

{

− 1

2
mẋ2 +

1

2
c x sR(∂t)ẋ+

1

2
kx2
}

.

(2.8)

In the second line we have gone back to the time representation and replaced

sI(ω) = sign(Imω) → sign(Im i∂t) = sign(Re ∂t) = sR(∂t) . (2.9)

Note that due to the symbol sI(ω) in the first line and sR(∂t) in the second line of (2.8)

the damping terms are formally even under the symmetry ω → −ω in the frequency

representation and cannot be written as total derivatives in the time representation.

The variation of the action (2.8) gives up to boundary terms

δΓ =

∫

dt
{

mẍ δx− c ẋ sR(∂t)δx+ kx δx
}

. (2.10)

We have used here that sR(∂t) is an odd function in ∂t in order to perform partial integra-

tion. One sees from (2.10) that the principle of stationary action δΓ = 0 leads to the right

equation of motion for forward time propagation if one demands that sR(∂t)δx = −δx.

Similarly, the principle of stationary action for variations with sR(∂t)δx = δx leads to the

equation of motion with reversed time direction. One could also write the variation of the

action as

δΓ =

∫

dt
{

δxmẍ+ δx c sR(∂t)ẋ+ δx kx
}

, (2.11)

which gives the correct equation of motion when one sets sR(∂t)ẋ = ẋ for forward time

evolution and sR(∂t)ẋ = −ẋ for backward time evolution after the variation. More general,

for forward time evolution, one has to set sR(∂t) → −1 if δx is to the right of this operator

and sR(∂t) → 1 if δx is to the left of the operator sR(∂t). This will be discussed in more

detail below.

One can also obtain the equations of motion for forward or backward time evolution,

respectively, from variation of the action (2.8) in frequency representation as δΓ/δx(ω) = 0.

Depending on the sign of the (infinitesimal) imaginary part of ω, the symbol sI(ω) in the

first line of (2.8) is positive or negative. For variations δx(ω) with sI(ω) = −1 one obtains

the equation of motion for forward time evolution, while variations with the opposite sign

of the imaginary part of ω lead to the equations with reversed time direction. A summary

of the correct variations to obtain the dissipative equations of motion is given in table 1.

Note that the Feynman or time ordered effective action would be obtained from (2.8)

by choosing the infinitesimal imaginary part of the frequency negative for negative real part

and positive for positive real part (see also figure 1 in the appendix). That corresponds

to replacing sI(ω) → sign
(

Re(ω)
)

in (2.8). The variation of the Feynman action obtained

thus does not lead to a real equation of motion, see also [7, 8].

– 7 –
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Forward time ev. sR(∂t)δx(t) = −δx(t) δx(ω) with sI(ω) = −1 δx∗(ω) with sI(ω) = +1

Backward time ev. sR(∂t)δx(t) = +δx(t) δx(ω) with sI(ω) = +1 δx∗(ω) with sI(ω) = −1

Table 1. Variations for which the principle of stationary action δΓ = 0 leads to the correct

dissipative equations of motion with forward and backward time evolution, respectively.

It is interesting to extend the action (2.8) to curved space by introducing a 0+1-

dimensional metric g(t) > 0 with inverse g−1. From general covariance, the extension

of (2.8) is

Γ[x, g] =

∫

dt
√
g

{

− 1

2
mg−1ẋ2 +

1

2
c x sR(g

− 1

2∂t)g
− 1

2 ẋ+
1

2
kx2 +ΦG(T )

}

. (2.12)

We have also added here a term ΦG(T ) that accounts for the grand canonical potential of

the bath degrees of freedom that are not described explicitly by the action (2.12) but have

been “integrated out” already.2

One can actually use partial integration to bring (2.12) to the alternative form

Γ[x, g] =

∫

dt
√
g

{

− 1

2
mg−1ẋ2 − 1

2
c g−

1

2 ẋ sR(g
− 1

2∂t)x+
1

2
kx2 +ΦG(T )

}

. (2.13)

For this one considers sR(·) to be an odd function of the argument and shows that a similar

partial integration as above is actually possible for any odd function.

From the variation of Γ with respect to g one can obtain the expectation value of the

0+1-dimensional analog of the energy-momentum tensor,

1

2

√
g T 00 =

δΓ

δg
. (2.14)

The dissipative term does not contribute to this; the formal reason will be discussed below.

For the variation of the grand canonical potential term one has to write T = 1/(
√
gβ0)

and keep β0 fixed. Generally, in local thermal equilibrium, the temperature T is related to

the inverse temperature vector βµ = uµ/T or T = 1/
√

−gµνβµβν and βµ should be kept

fixed when the metric is varied. The inverse temperature βµ does not play the role of a

dynamical field but should rather be seen as an external parameter field which determines

the local equilibrium state. It’s time dependence is fixed by the conservation laws of energy

and momentum.

Using dΦG = −SdT and ΦG = U − TS, where U is the thermal energy of the bath

variables, gives for the total energy associated with (2.12) (setting now g = 1)

E = T 00 =
1

2
mẋ2 +

1

2
kx2 + U(T ) . (2.15)

2To see that this is indeed the correct expression one considers the time integral along the Matsubara

contour from some time t to t − iβ0. In general, local thermal equilibrium is described by a manifold

with periodicity in complex space-time coordinates such that bosonic (fermionic) fields satisfy φ(xµ) =

±φ(xµ − iβµ) where the inverse temperature vector βµ = uµ/T is determined by the fluid velocity uµ and

the temperature T .
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Although in the presence of viscous damping the mechanical energy and the thermal energy

are not conserved separately, their sum is. Within a local equilibrium assumption one can

actually use the energy conservation law dE/dt = 0 to determine the time-dependence of

the temperature T (t) from the time dependence of the mechanical energy which, in turn,

follows via the dissipative equations of motion.

3 The analytic quantum effective action

After the introductory discussion of the simple damped harmonic oscillator, let us now

turn to field theory. For quantum field theories that respect the principles of unitarity,

dissipative effects are not present at the level of the fundamental theory described by the

microscopic action. However, they can arise in specific sense on the level of the quantum

effective action. This will be discussed in detail below. To gain some intuitive under-

standing how it is possible that effective dissipative terms arise in the transition from the

microscopic action to the quantum effective action consider the following two examples.

The first example is the decay of an unstable particle or resonance. For concreteness

take a muon that can decay into an electron and two neutrinos. The theory is unitary on the

microscopic level, but the decay width appearing in the effective muon propagator can also

be seen as a dissipative property. One can formally “integrate out” the fields corresponding

to the decay products. This corresponds to a partial trace over the corresponding part

of the full density matrix. In the remaining sector describing the muon, the dynamics

is described by a reduced density matrix and can appear as dissipative. In particular,

energy and momentum do not have to be conserved there. The situation is similar for

strong electromagnetic fields with field strengths above the Schwinger threshold of electron-

positron pair production. In a description where electrons and positrons are “integrated

out” or “traced out”, this appears as a dissipative effect.

The second example is a thermal situation where many degrees of freedom play a role

such that a complete microscopic description becomes intractable. A statistical description

at non-zero temperature leads to modifications of the quantum effective action (and the

corresponding equations of motion) and in particular additional dissipative terms can ap-

pear. Energy and information can be transferred to the heat bath and lead to an increase

of the thermal energy and entropy.

In the following we will develop a theoretical formalism that can account for the physics

of these effects which is based on the analytically continued quantum effective action, or an-

alytic effective action for short. Alternative formulations could be based on the Schwinger-

Keldysh closed time path effective action, see for example [7, 8]. The two formalisms differ

somewhat in practical terms. They also address different types of problems. While the

closed time path effective action allows to address general far-from-equilibrium situations,

the formalism discussed below is a direct generalization of the equilibrium formalism and

therefore more suited for close-to-equilibrium situations.
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3.1 Generating functionals in the Euclidean domain

We start the constructions by discussing different generating functionals and in particular

the quantum effective action in Euclidean space. It can then be analytically continued in

the subsequent step. One may take as a starting point the partition function of a theory

described in terms of fundamental fields φa(x) in the functional integral representation. In

principle, φa might have bosonic and fermionic components, the latter being represented

by Grassmann fields. For the present study we shall assume at some places bosonic fields

for simplicity but the generalization to Grassmann fields is straight forward with some

additional care concerning minus signs from the interchanging of fields.

In the presence of corresponding source terms Ja(x), the partition function is

Z[J ] =

∫

Dφe−SE [φ]+
∫
x
Jφ. (3.1)

The configuration space for the Euclidean action SE [φ] depends on the vacuum state of

the theory. We will be interested here in (approximate) local equilibrium states that can

be described by a temperature T (x) and a fluid velocity uµ(x). They will enter the con-

struction in terms of the combination βµ = uµ/T . For convenience we will use a general

coordinate system with metric gµν(x). Global thermal equilibrium is included as a special

case and in particular also the conventional vacuum with vanishing temperature T → 0.

From the similarity between the local density matrix (we use metric with signature

(−,+,+,+))

eβ
µ(x)Pµ (3.2)

with the translation operator

ei∆xµPµ (3.3)

one is lead to the representation of the partition function Z[J ] in terms of a functional

integral on a geometry with periodicity in imaginary space direction such that bosonic

(fermionic) fields satisfy φ(xµ − iβµ(x)) = ±φ(xµ).

The microscopic Euclidean action that enters (3.1) is defined by analytic continuation

from the space-time with Minkowski signature. More specific, one has

SE [φ] = −iS[φ]
∣

∣

analy. cont.
= −i

∫

ddx
√
gL (3.4)

where
√
g =

√

− det gµν is the determinant of the metric (with Minkowski signature) and

L is the Lagrangian. We use here a formulation where the metric is not modified by

the analytic continuation but the space-time differential dxµ is complex. More specific, in

a coordinate system where the fluid velocity points in the x0 direction, uµ = (1, 0, 0, 0),

one has dxµ = (−idτ/T, dxj) where dτ ∈ [0, 1] and the dxj are real. In other coordinate

systems, all components dxµ are in general complex.

To make this more concrete, we consider a time-like hypersurface Σ which can be

defined in terms of a scalar time function t(x) as the manifold with t(x) = t̄. To each

position xµ on this base manifold we associate a Matsubara circle in imaginary direction

−iβµ(x) and write the position on the product Manifold Σ × M as xµ − iτβµ(x) where
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τ ∈ [0, 1]. Correspondingly, we decompose the d dimensional differential volume element

ddx
√
g = dΣµdx

µ
M into the integral over a d − 1 dimensional hypersurface dΣµ and the

Matsubara integral in the imaginary flow time direction dxµM = −iβµdτ . Indeed, if the

hypersurface Σ is defined in terms of a time function t(x) as the manifold with t(x) = t̄,

one has

dΣµ = ddx
√
g δ
(

t̄− t(x)
)

∂µt(x) , (3.5)

and for any direction dxµ that is not orthogonal to ∂µt(x) one can write

dΣµdx
µ = ddx

√
g δ
(

t̄− t(x)
)

dxµ∂µt = ddx
√
g δ
(

t̄− t(x)
)

dt(x) = ddx
√
g . (3.6)

This shows that the volume element in the Euclidean domain ddx
√
g = dΣµdx

µ
M =

−iβµdΣµdτ contains a factor −i.

The Lagrangian is of the standard form, for example for a scalar field with ❩2 sym-

metry,

− L =
1

2
∂µϕ∂

µϕ+
1

2
m2ϕ2 +

1

4!
λϕ4. (3.7)

Note, however, that similar to the differential dxµ also the derivatives are complex. In a

coordinate system where uµ points in x0 direction one has ∂0 = ∂
∂x0 = i ∂

∂x̄0 = i∂0̄ whereas

the other derivatives are real. For Minkowski metric, the kinetic term in (3.7) becomes
1
2(∂0̄ϕ∂0̄ϕ + ∂jϕ∂jϕ) which explains in which sense the analytically continued theory is

indeed of Euclidean form. More general, the derivatives ∂µ are complex.

In addition to the action SE [φ], also the source term in (3.1) is evaluated in the

Euclidean domain. More specific, the abbreviated form in (3.1) stands for

∫

x
Jφ = i

∫

ddx
√
g
{

J(x)φ(x)
}

(3.8)

where similar as for SE [φ] the volume integral is over the imaginary, compact direction

dxµM = −iuµdτ and the space-like hypersurface Σµ. Functional derivatives are defined

such that for example (recall that ddx contains a factor −i)

1√
g(y)

δ

δJ(y)

∫

x
Jφ = φ(y) . (3.9)

We use here a d-dimensional functional derivative where the space-time argument y in (3.9)

consists of a (real) base point and an imaginary part which parametrizes the position on

the Matsubara axis, yµ = Re(yµ) − iτβµ. Accordingly, on the right hand side of eq. (3.9)

the integral over the Matsubara circle is reduced to a sinlge point.

For some purposes, one actually needs a d − 1 dimensional functional derivative that

acts at a specific position on the surface Σµ but does not reduce the integral along the Mat-

subara circle to a single point. This is in particular needed to evaluate thermal expectation

values of composite fields such as the energy-momentum tensor. In the present work, we

will use the d-dimensional functional derivatives in such cases but add an integral along

the Matsubara direction afterwards by hand. For this prescription, auxiliary fields like the

metric gµν(x) are formally extended to complex coordinates xµ−iτβµ(x), as well, although
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final expressions will always be evaluated for configurations where gµν is independent of

the Matsubara time τ .

To repeat, the action in the Euclidean domain SE [φ] lives on a configuration space

which associates to every base point xµ one imaginary direction dxµM = −iuµdτ which

is compactified at finite temperature. The other d − 1 directions parametrize a space-

like hypersurface Σµ of the complete space-time. The volume integral
∫

ddx
√
g on the

right hand side of (3.4) goes along the hyper surface Σµ and once around the loop in the

compactified imaginary direction. This construction can be made more explicit in terms

of the ADM formalism when needed [20, 42]. For the present purpose, we will not need

further details.

The positioning of the surface Σµ in time direction can be varied freely if one assumes

that local equilibrium in the sense of a generalized Gibbs ensemble holds everywhere. It

is usually convenient to place the surface such that it intersects with a space-time point

where expectation values should be calculated. The local temperature T (x) and fluid ve-

locity uµ(x), that describe a local equilibrium configuration are at this point not specified

further. Ultimately, they will be fixed by general covariance and the closely related co-

variant conservation of energy and momentum as well as initial values. One should keep

in mind that a local equilibrium picture is based on physical assumptions which hold in

general at best approximately. In particular, the picture assumes that the processes that

drive thermalization are efficient enough such that the local equilibrium picture can be ap-

plied on the time- and length scales one wishes to study. In a very homogeneous situation,

or on very large space and time scales, this is typically the case and thermal equilibrium

corresponds to the unique state of the theory for given conserved quantities, in particular

energy and momentum.

It is important to emphasize that local equilibrium differs in general from a complete,

global equilibrium. Deviations from the latter are parametrized by gradients of temperature

and fluid velocity but also by other fields that deviate from their equilibrium configuration.

In the formalism we develop, these additional, non-equilibrated fields are followed explicitly

and are in this sense not part of the “thermal bath”. In this situation one might understand

the local equilibrium configuration in terms of a generalized Gibbs ensemble.

By taking functional derivatives of Z[J ] with respect to the sources one can obtain

expectation values and correlation functions corresponding to the state described by SE [φ].

It is useful to introduce also the Schwinger functional in the Euclidean domain WE [J ] by

the definition

Z[J ] = eWE [J ] . (3.10)

Repeated functional derivatives of W [J ] yield connected correlation functions while a single

functional derivative yields the expectation value of φ,

1√
g(x)

δ

δJa(x)
WE [J ] = Φa(x) = 〈φa(x)〉 . (3.11)
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The quantum effective action is a functional of field expectation values. Formally it is

defined in the Euclidean domain as the Legendre transform of WE [J ],

ΓE [Φ] =

∫

x
Ja(x)Φa(x)−WE [J ] with Φa(x) =

1√
g(x)

δ

δJa(x)
WE [J ] . (3.12)

Repeated functional derivatives of ΓE [Φ] give one-particle irreducible correlation functions.

This may seem to be a quite formal statement but it has very interesting implications: a

complete connected correlation function can be determined by adding only tree-level expres-

sions but with effective vertices and propagators obtained from the functional derivatives

of ΓE [Φ] instead to those from the functional derivatives of the microscopic action SE [φ].

The effective action in the Euclidean domain ΓE [Φ] is also subject to the following

field equation, which can be directly derived from eq. (3.12),

δ

δΦa(x)
ΓE [Φ] =

√
g(x) Ja(x) . (3.13)

For vanishing source, Ja(x) = 0, this equation resembles the classical equation of motion

that follows from Hamilton’s principle for a classical field theory, δS[φ] = 0. However, so

far the effective action ΓE [Φ] is defined in the Euclidean domain where it accounts for the

trace over a density matrix. Only statistical expectation values and correlation functions on

a space-like hypersurface can be calculated directly from this. Note that the action SE [φ]

and similarly the Schwinger functional WE [J ] and effective action ΓE [Φ] in the Euclidean

domain depend formally also on the choice of the space-like hypersurface Σµ. For example,

one can calculate correlation functions for fields at different positions on this surface from

the functional derivatives of WE [J ]. Correlation functions between points that are not on

the surface Σµ cannot be calculated, yet.

Before we obtain a dynamical equation of motion for the field expectation value Φ

from ΓE [Φ] we need to study analytic continuation and the analytic structure of ΓE [Φ].

By the latter we mean here the analytic structure of the correlation functions that follow

from the functional derivatives of ΓE [Φ] as a function of the space-time arguments. The

notion will become more clear in due course.

The result of this analysis will be an analytically continued effective action Γ[Φ] from

which one can derive correlation functions or Greens functions that go beyond the expec-

tation values in local thermal equilibrium on a fixed space-like hypersurface. In particular,

the analytically continued effective action will allow to derive dynamical dissipative equa-

tions of motion for field expectation values Φ(x). We will start to investigate the analytic

structure of Γ[Φ] in the sector where it is best understood, namely the sector of two-point

correlation functions.

3.2 Analytic continuation of two-point functions

We discuss now the analytic structure of connected two-point correlation functions which

correspond to the second functional derivatives of the Schwinger functional W [J ] and the

effective action Γ[Φ]. For this subsection we consider global equilibrium states with temper-

ature T and fluid velocity uµ in flat space with Minkowski metric gµν = ηµν . The description
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is simplest in the coordinate system where the fluid is at rest, i.e. uµ = (1, 0, 0, 0) and we

will adopt this choice for the time being. Some results can later be taken over to more

general local equilibrium states and curved space within the corresponding approximations.

The analytic structure of two-point correlation functions in global equilibrium states

is rather well understood, see for example [18]. A comprehensive compilation of the main

classical results such as the fluctuation-dissipation relation, Onsagers relations and the

spectral representation including their derivation is provided in appendix A. Here we

discuss the main elements needed for analytic continuation.

From the Schwinger functional in eq. (3.10) one can obtain the two-point function in

the Euclidean domain as

W
(2)
E (x, y) =

δ2

δJa(x)δJb(y)
WE [J ] = 〈φa(x)φb(y)〉c = 〈φa(x)φb(y)〉 − 〈φa(x)〉〈φb(y)〉 .

(3.14)

The arguments x and y consist here of (real) spatial positions and imaginary times on the

Matsubara torus. We write this as x = (−ix̄0, ~x) with x̄0 ∈ [0, 1/T ] etc. When evaluated

for vanishing source J and because of translational symmetry in space and imaginary time,

the correlation function in (3.14) is a function of x− y only,

δ2

δJa(x)δJb(y)
WE [J ]

∣

∣

J=0
= ∆M

ab (x− y) . (3.15)

It is useful to consider the Fourier representation defined by

∆M
ab (x− y) = T

∞
∑

n=−∞

∫

dd−1p

(2π)d−1
e−iωn(x̄0−ȳ0)+i~p(~x−~y)∆M

ab (iωn, ~p ) , (3.16)

where ωn is the Matsubara frequency with values ωn = 2πTn for bosonic fields φa, φb and

ωn = 2πT (n+ 1/2) for fermionic fields.

As discussed in appendix A, the Matsubara correlation function ∆M
ab is actually a

special case of a more general correlation function Gab which is defined for general complex

frequency argument. More specific, on the axis of imaginary Matsubara frequencies one has

∆M
ab (iωn, ~p ) = Gab(iωn, ~p ) , (3.17)

and Gab(p
0, ~p ) is the unique analytic continuation of ∆M

ab (iωn, ~p ) to the full plane of com-

plex frequencies p0 ∈ C which is analytic everywhere except for possible poles and brach

cuts on the real frequency axis p0 ∈ R. The complex argument Greens function has a

Källen-Lehmann spectral representation which makes its analytic structure with respect to

p0 directly apparent,

Gab(p
0, ~p ) =

∫ ∞

−∞

dw
ρab(w

2 − ~p2, w)

w − p0
, (3.18)

see also eq. (A.30).

Other correlations functions such as retarded, advanced or Feynman propagator func-

tions follow from the complex frequency Greens function by evaluating it in particular
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regions in the complex frequency plane,

∆R
ab(p) = Gab(p

0 + iǫ, ~p ) ,

∆A
ab(p) = Gab(p

0 − iǫ, ~p ) ,

∆F
ab(p) = Gab

(

p0 + iǫ sign(p0), ~p
)

,

(3.19)

see also eq. (A.31). These relations show that the complex argument Greens function is

actually a very useful object.

One can actually directly extend the definition of the Schwinger functional WE [J ]

by analytic continuation in such a way that the functional derivatives yield the complex

argument Green’s function [47]. In momentum space,

δ2

δJa(−p)δJb(q)
WE [J ]

∣

∣

J=0
= Gab(p) (2π)

4δ(4)(p− q) . (3.20)

Obviously, when evaluated in the appropriate regions of the complex frequency plane, this

definition agrees with (3.15) but it has the advantage that one can also directly obtain

other correlation functions, e.g. the retarded one, from the general expression (3.20).

So far we have worked in the reference frame where the fluid is at rest, uµ = (1, 0, 0, 0).

Obviously, objects like the complex argument Green’s function Gab(p) can also be evaluated

in other frames. In that case one should take the combination ω = −uµpµ to be complex in

general, and the poles and brach cuts will be on the axis where ω is real. The momentum

components orthogonal to the fluid velocity ∆µ
νpν = (δµν + uµuν)p

ν are real. In the

following we will work in such a more general frame.

Let us now turn to the effective action ΓE [φ] as defined in eq. (3.12) and in particular its

second functional derivative. From the definition as a Legendre transform in the Euclidean

domain and assuming that W [J ] is strictly convex, it follows that

∑

b

∫

y

(

δ2WE [J ]

δJa(x)δJb(y)

)(

δ2ΓE [Φ]

δΦb(y)δΦc(z)

)

= δac δ(x− z) . (3.21)

The expectation value Φ is related to the source J by the field equation (3.13). When

evaluated for homogeneous field Φ, one can write the second functional derivative of ΓE [Φ]

in momentum space as

δ2

δΦa(−p)δΦb(q)
ΓE [Φ] = Pab(p) (2π)

4δ(4)(p− q) . (3.22)

A priori this is only defined in the Euclidean domain, i.e. for imaginary Matsubara frequen-

cies ω = −uµpµ = iωn (as well as real momenta ∆µ
νpν orthogonal to the fluid velocity).

However, similar to (3.20) one can extend this to general complex frequencies ω by analytic

continuation.

Due to the relation (3.21), the object Pab(p) satisfies

∑

b

Gab(p)Pbc(p) = δac , (3.23)
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and is therefore called the inverse complex argument Green’s function. Because of the

analytic structure of Gab(p), the eigenvalues of Pab(p) cannot have any zero crossings or

branch cuts except on the axis of real ω = −uµpµ. One can decompose the inverse complex-

argument two-point function

Pab(p) = P1,ab(p)− isI(−uµpµ)P2,ab(p) , (3.24)

where sI(ω) = sign(Imω). Both functions P1,ab(p) and P2,ab(p) are regular when crossing

the real frequency axis. However, the sign sI(−uµpµ) changes, which leads to a branch

cut behavior for the function Pab(p). The function P2,ab(p) parametrizes the strength of

the branch cut. From the definition (3.22) one obtains the symmetry properties (assuming

bosonic fields)

Pab(p) = Pba(−p) , P1,ab(p) = P1,ba(−p) , P2,ab(p) = −P2,ba(−p) . (3.25)

So far, the analytic continuation of correlation functions was done in momentum and

frequency space by analytic continuation from the discrete, imaginary Matsubara frequen-

cies to the plane of complex frequencies p0 ∈ ❈. One would like to have also a position

space representation which is not only defined in the configuration space with compact

imaginary time direction but can be directly evaluated in real space. To that end one can

define the real space representations of the functions P1 and P2 by

P1,ab(x− y) =

∫

ddp

(2π)d
eip(x−y)P1,ab(p) , P2,ab(x− y) = −i

∫

ddp

(2π)d
eip(x−y)P2,ab(p) ,

(3.26)

where the momentum and frequency integrals go along the real directions. No ambiguities

arise here because P1,ab(p) and P2,ab(p) are regular at the real frequency axis. Note that we

have included a factor −i in the definition of P2,ab(x− y) for convenience. In real position

space one can now write the decomposition of the inverse Green’s function (3.24) as

Pab(x− y) = P1,ab(x− y) + sR

(

uµ
∂

∂xµ

)

P2,ab(x− y) . (3.27)

We have also replaced here

sI(−uµpµ) = sign
(

Im(−uµpµ)
)

→ sign

(

Im

(

iuµ
∂

∂xµ

)

)

= sign

(

Re

(

uµ
∂

∂xµ

)

)

= sR

(

uµ
∂

∂xµ

)

.

(3.28)

Typically P1,ab(p) and P2,ab(p) will be a polynomial in combinations of momenta pµ and

accordingly the position space representations P1,ab(x− y) and P2,ab(x− y) will consist of

combinations of distributions such as δ(x− y) and derivatives thereof.

We define now also an analytically continued effective action in real position space via

a deformation of the time integration contour. More specific, in the Euclidean domain,

the time was integrated along the (compact) imaginary direction dx0 = −idx̄0, see the
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discussion around (3.6). This contour can be deformed such that it goes along the (non-

compact) real direction dx0 ∈ R. The infinitesimal volume element ddx
√
g is then real, as

well. It is convenient to divide by the factor i that has been introduced in (3.8) and to

define the analytically continued action in real space as

Γ[Φ] = −iΓE [Φ]
∣

∣

deformed time contour
. (3.29)

For the effective action in real space we will use standard functional derivatives which differ

formally from the functional derivatives in the Euclidean domain by a factor i. However,

this should not lead to any confusion is practice.

As an example, the part of the effective action Γ[Φ] that is quadratic in the fields δΦ

is of the form

Γ2 =
1

2

∫

x,y
δΦa(x)

[

P1,ab(x− y) + sR

(

uµ
∂

∂xµ

)

P2,ab(x− y)

]

δΦb(y) ,

=
1

2

∫

x,y
δΦa(x)

[

P1,ab(x− y) + P2,ab(x− y)sR

(

uµ
∂

∂yµ

)]

δΦb(y) ,

(3.30)

where the integrals over x and y are now in real coordinate space. While the first term ∼ P1

in (3.30) is of the standard form, the second term ∼ P2 is less common. It parametrizes

the discontinuity of the inverse propagator along the real frequency axis.

If one considers sR(·) to be an odd function of the argument, one can actually perform

partial integration to transfer the operator sR(u
µ∂µ) between the different terms. This

has been done in the second line of (3.30). In the present context, partial integration is

possible because we work in cartesian coordinates and because uµ is constant. In a more

general coordinate system with differential volume element ddx
√
g one can see that partial

integration according to

∫

ddx
√
g A(x)

[

uµ(x)∂µ
]N

B(x) = (−1)N
∫

ddx
√
g
{[

uµ(x)∂µ
]N

A(x)
}

B(x) (3.31)

is possible for ∇µu
µ(x) = 0. This could imply that relations like

∫

ddx
√
g A(x)sR

(

uµ(x)∂µ
)

B(x) = −
∫

ddx
√
g
{

sR
(

uµ(x)∂µ
)

A(x)
}

B(x) (3.32)

could only be used for ∇µu
µ = 0. However, the sign function is unchanged if the argument

is rescaled by a positive factor eα and one can therefore replace sR(u
µ∂µ) by sR(e

αuµ∂µ)

with α(x) chosen such that ∇µ(e
αuµ) = 0. This shows that sR(u

µ∂µ) is in this sense well

defined also in such more general situations.

A more clear geometric picture is obtained if one replaces

sR(u
µ∂µ) → sR(Lu) (3.33)

or sR(u
µ∂µ) → sR(Lβ) where Lu and Lβ are Lie derivatives in the direction uµ and βµ =

uµ/T , respectively. When acting on scalar fields one has Lu = uµ∂µ but the Lie derivative

is also well defined for vector, tensor or spinor valued expressions. Moreover, it does not
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depend on the metric connection. Working with Lβ might sometimes have advantages for

calculating variations of fields with fixed βµ(x).

Note that according to (3.19) and because of (3.21) one can obtain the operators

inverse to the retarded and advanced Green’s functions in position space from (3.30) by

specific choices of the sign sR(u
µ∂µ). One has

∑

b

∫

y

[

P1,ab(x− y) + P2,ab(x− y)
]

∆R
bc(y − z) = δacδ(x− z) ,

∑

b

∫

y

[

P1,ab(x− y)− P2,ab(x− y)
]

∆A
bc(y − z) = δacδ(x− z) ,

(3.34)

so that these the two combinations of P1 and P2 on the left hand side of (3.34) can be

understood as the inverse retarded and advanced propagators, respectively.

Let us now come to the implications of the field equation (3.13) after analytic con-

tinuation. To study its implications we expand the effective action ΓE [φ] in powers of

fields

Γ[Φ] =

∫

p

1

2
Φa(−p)Pab(p) Φb(p) + ∆Γ[Φ] , (3.35)

where ∆Γ[Φ] contains terms of cubic and higher order in Φ. We assume here that expec-

tation value Φ vanishes for vanishing source which implies that no linear term is present in

eq. (3.35). We have also dropped a possible constant term as irrelevant for the following

discussion. The field equation (3.13) reads now formally

Pab(p)Φb(p) +
δ

δΦa(−p)
∆Γ[Φ] = 0 . (3.36)

To define the objects in (3.36), we have used here analytic continuation from the Eu-

clidean domain to the Minkowski signature domain, such that the frequency p0 is real.

However, this leaves open what has to be taken for sI(−uµpµ). From causality arguments,

the linear part of the field equation for forward time evolution should be inverse to the

retarded propagator (and for backward time evolution inverse to the advanced propaga-

tor). This suggests that one has to take for forward time evolution variations δΦa(−p)

with sI(−uνpν) = +1 and for backward time evolution sI(−uνpν) = −1. This agrees with

the generalized variational principle introduced in section 2. The result is

(

P1,ab(p)− iP2,ab(p)
)

Φb(p) +
δ

δΦa(−p)
∆Γ[Φ] = 0 (forward time evolution) ,

(

P1,ab(p) + iP2,ab(p)
)

Φb(p) +
δ

δΦa(−p)
∆Γ[Φ] = 0 (backward time evolution) .

(3.37)

It is straight forward to translate these relations to position space. The dissipative equa-

tions of motion will be discussed in more general context also in section 4.

3.3 Analytic structure of higher order correlation functions

So far we have studied the analytic structure of two-point functions or the correspond-

ing sector of the effective action Γ[Φ]. In general, the analytic structure of higher order

correlation functions is much less understood.
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It is, however, nevertheless possible to generalize the method to somewhat more general

situations. Consider an effective action of the following form (we take here φ and χ to be

bosonic fields for simplicity)

Γ[φ, χ] =

∫

p

1

2
φa(−p)Pab(p)φb(p) +

∫

p

1

2
χa(−p)Qab(p)χb(p)

+

∫

q1,q2,q3

δ(q1 + q2 + q3)
1

2
habc(q2, q3)χa(q1)φb(q2)φc(q3) + ∆Γ[φ] ,

(3.38)

where habc(q2, q3) = hacb(q3, q2). The matrix Pab(p) = Pba(−p) can be decomposed as

in eq. (3.24) and similarly Qab(p) = Qba(−p). The effective vertex habc(q2, q3) and the

terms in ∆Γ[φ] are assumed not to contain any discontinuous terms involving sI(−uµpµ)

(where p is some combination of the involved momenta). The equations of motion following

from (3.38) for forward (backward) time evolution are obtained by following the general

principle described above, as

(

P1,ab(p)∓ iP2,ab(p)
)

φb(p)

+

∫

q1,q3

δ(q1 − p+ q3)hdab(−p, q3)χd(q1)φb(q3) +
δ

δφa(−p)
∆Γ[φ] = 0 , (3.39)

as well as

(

Q1,ab(p)∓ iQ2,ab(p)
)

χb(p) +

∫

q2,q3

δ(−p+ q2 + q3)
1

2
habc(q2, q3)φa(q2)φb(q3) = 0 . (3.40)

Because equation (3.40) is linear in χ it can formally be solved,

χa(p) = −
(

Q1(p)∓ iQ2(p)
)−1

ad

∫

q2,q3

δ(−p+ q2 + q3)
1

2
hdbc(q2, q3)φb(q2)φc(q3) . (3.41)

This solution, in turn, can be used in eq. (3.39) to give

(

P1,ab(p)∓ iP2,ab(p)
)

φb(p)

−
∫

q2,q3,q4

δ(−p+ q1+ q2+ q3)heab(−p, q2)
(

Q1(p)∓ iQ2(p)
)

−1

ef
hfcd(q3, q4)φb(q2)φc(q3)φd(q4)

+
δ

δφa(−p)
∆Γ[φ]=0 .

(3.42)

Interestingly, in this form, the equation of motion for φ has now a non-linear term with a

discontinuity. The field equation is such that the matrix
(

Q1(p) ∓ iQ2(p)
)−1

ef
which con-

nects φc(q3)φd(q4) to φb(q2) and the point of variation δφa(−p) is the retarded (advanced)

propagator for forward (backward) time evolution. That is what one expects from causality

considerations.
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It is now illuminating to note that the field χ enters quadratic in the effective action

Γ[φ, χ] in eq. (3.38) and one can therefore integrate it out directly. That gives

Γ[φ] =

∫

p

1

2
φa(−p)Pab(p)φb(p)

−
∫

q1...q4

δ(q1 + q2 + q3 + q4)
1

8
heab(q1, q2)

(

Q(q3 + q4)
)

−1

ef
hfcd(q3, q4)φa(q1)φb(q2)φc(q3)φd(q4)

+ ∆Γ[φ] . (3.43)

Note that the second term is quartic in φ and contains the symbol sI(ω3+ω4) = −sI(ω1+ω2)

where ω1 = −uνp
ν
1 etc. In more general situations, the effective action Γ[Φ] might contain

terms involving sI(ω) where ω is any combination of frequencies of fields.

3.4 The general structure of the analytic quantum effective action

Let us now discuss the expected structure of the analytically continued quantum effective

action in more detail. For convenience, we will use a general coordinate system and one

requirement for the terms that appear in Γ[Φ] will be general covariance (we neglect the

effect of possible gravitational anomalies in this exploratory study). Obviously, Γ[Φ] can

have contributions ΓRegular[Φ] which do not show any discontinuities along the real fre-

quency axis. Such terms can be treated in the standard way, very similar to Euclidean

field theory where discontinuities do not arise at all.

However, in addition there can be terms that are discontinuous along the real frequency

axis. We will assume that such terms are written in terms of the symbol sI(ω) in frequency

representation or involve the symbol

sR

(

uµ(x)
∂

∂xµ

)

or sR(Lu) (3.44)

in a position space representation.3 The position space representation has the advantage

that it can be written in an explicitly covariant way more easily.

The discontinuous terms that have been discussed above were of the form

ΓDisc[Φ] =

∫

ddx
√
g

{

f [Φ](x) sR

(

uµ(x)
∂

∂xµ

)

g[Φ](x)

}

(3.45)

The objects f [Φ](x) and g[Φ](x) can for example be local functionals linear in Φ(x) as

in the example of the damped harmonic oscillator discussed in section 2 or more general

linear functionals of the fields as discussed in section 3.2. However, they can also be

non-linear functionals in Φ as discussed in section 3.3. In the situations discussed so

far, f [Φ](x) and g[Φ](x) were regular in the sense that they were assumed not to involve

3It might be a bit surprising to see the fluid velocity uµ appearing, in particular if one is actually

interested in starting with the conventional vacuum state T → 0. For this state, the fluid velocity is not

well defined. We expect that it does for this state actually not play a role in which direction uµ is pointing

initially, as long as it is time-like and future oriented. Within a local equilibrium assumption, a fluid with

non-zero temperature and well defined fluid velocity is formed, however, as soon as some energy has been

dissipated.
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further discontinuities. Note that one can transfer the operator sR
(

uµ(x) ∂
∂xµ

)

from acting

on g[Φ](x) to acting on f [Φ](x) by partial integration, see (3.32) and the discussion there.

Other structures that are conceivable are for example of the form (we use the abbre-

viation
∫

x =
∫

ddx
√
g etc.)

ΓDisc[Φ] =

∫

x,y

{

f [Φ](x) sR

(

uµ(x)
∂

∂xµ

)

g[Φ](x, y) sR

(

uµ(y)
∂

∂yµ

)

h[Φ](y)

}

, (3.46)

or

ΓDisc[Φ] =

∫

x,y,z

{

f [Φ](x) sR

(

uµ(x)
∂

∂xµ

)

g[Φ](x, y, z) sR

(

uµ(y)
∂

∂yµ

)

h[Φ](y)

+ sR

(

uµ(z)
∂

∂zµ

)

j[Φ](z)

}

,

(3.47)

where f [Φ], g[Φ], h[Φ] and j[Φ] are linear or non-linear functionals of the field expectation

value Φ without discontinuities. We assume here that they are scalars in the sense of

general covariance but it might also be possible to allow for vectors, spinors or tensors;

possibly by using covariant or Lie derivatives within the operator sR(. . .). The discussion

of the generalized variational principle in the next section below will allow for general

“tree structures” as in the examples above, with one spatial integral and a corresponding

discontinuity operator sR for each line and functionals of the field Φ without discontinuities

at the nodes. However, this structure should not contain any “loops”.

It has to be stated that at this point it is merely a conjecture that possible terms in

the analytically continued quantum effective action are all of the form described above.

More detailed investigations are needed to confirm this or to find more general allowed

structures. In practice, it is typically not possible to trace the full form of the effective

action and the most important terms involving discontinuities arise at quadratic order in

the fields (as discussed in section 3.2) or are of the form (3.45).

3.5 Relation to time-ordered and Matsubara actions

Here we discuss how the analytically continued effective action is related to other effective

actions. First, the time-ordered or Feynman propagator follows from the complex frequency

propagator by choosing the appropriate integration contour in the complex frequency plane,

cf. eq. (3.19). This amounts to replacing sI(ω) → sR(ω). The same replacement yields the

time-ordered inverse propagator from the complex frequency inverse propagator. Moreover,

the discussion in the previous subsections shows that this prescription can actually be used

for the entire action.

In time representation the replacing sI(ω)→sR(ω) becomes formally sR(∂t)→−sI(∂t).

(We assume uµ = (1, 0, 0, 0) in this subsection for simplicity.) However, this should rather

be understood as a non-local operator in the following sense. In frequency domain sR(ω)

corresponds to the operator (seen as a matrix with indices ω and ω′)

O(ω, ω′) = 2πδ(ω′ − ω) sign(ω) (3.48)
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In the time domain the corresponding operator is

O(t′, t) =

∫

dω′

2π
e−iω′t′

∫

dω

2π
eiωtO(ω′, ω) =

∫

dω

2π
e−iω(t′−t) sign(ω)

= − i

π
PV

1

t′ − t
= −δ(t′ − t)sI(∂t) .

(3.49)

In the second to last equation PV denotes the principal value and the last equation defines

more formally what is meant by the symbol sI(∂t) = sign(Im ∂t). Keeping this correspon-

dence in mind we will continue to work with the symbolic notation sI(∂t) in the following.

Symbolically, in terms of the effective Lagrangian density (defined by Γ[φ] = −
∫

ddx√
gL ), the Feynman effective action is obtained from the analytic effective action by

LF = L
∣

∣

sR(∂t)→−sI(∂t)
. (3.50)

In a completely analogous way one obtains the anti-time-ordered or Dyson effective ac-

tion by

LD = L
∣

∣

sR(∂t)→sI(∂t)
. (3.51)

The Euclidean or Matsubara effective action is obtained by analytic continuation to

Euclidean frequencies and replacing sI(ω) → sI(iωn) = sR(ωn), where ωn is the Masubara

frequency,

LM = L
∣

∣

sI(ω)→sR(ωn)
. (3.52)

In (Euclidean) time representation this corresponds formally to sR(∂t) → −sI(∂τ ). How-

ever, in practical applications of the imaginary time formalism such as for tunneling prob-

lems, one may rather work with a non-local representation analogous to (3.49), see ref. [48]

for an example.

In this context, it is actually useful to know the generalization of (3.49) for a compact

time direction where τ = τ + 1,

σ(τ ′ − τ) =
∑

n 6=0

e−i2πn(τ ′−τ) sign(n) =
e2πi(τ

′−τ) − e−2πi(τ ′−τ)

e2πi(τ ′−τ) + e−2πi(τ ′−τ) − 2
. (3.53)

Note in particular that σ(τ ′ − τ) = −σ(τ − τ ′) is anti-symmetric.

The Schwinger-Keldysh or closed-time-path effective action can be constructed via the

difference of time-ordered and anti-time-ordered actions or directly from advanced and

retarded inverse propagators. A more detailed discussion will be given elsewhere.

4 Generalized variational principle and dissipative equations of motion

We now formulate the variational principle by which one can obtain the dissipative, causal

equations of motion for the field expectation value Φa(x) from the analytically continued

quantum effective action Γ[Φ]. The main question here is how the sign sR(u
µ∂µ) has to be

chosen.

We formulate the variational principle such that it leads to the equations of motion for

(standard) forward time propagation. The equations for a (somewhat artificial) situation
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where the time direction is reversed can be obtained with the appropriate changes of sign

in a straight forward way. For an effective action as described in subsection (3.4) one can

obtain the equation of motion for the field Φa(x) from the equation

δΓ[Φ]

δΦa(x)

∣

∣

∣

∣

ret

=
√
g(x) Ja(x) . (4.1)

To take the “retarded variational derivative” one calculates the variation δΓ[Φ] as usual

and sets then sR
(

uµ ∂
∂xµ

)

→ −1 if the field variation δΦa(x) is to the right of that operator

and sR
(

uµ ∂
∂xµ

)

→ 1 if the field variation δΦa(x) is to the left of that operator. This

principle is consistent with the possibility to transfer sR
(

uµ ∂
∂xµ

)

by partial integration, see

the discussion around eq. (3.32).

For tree-like structures like in (3.47) one has to choose sR(u
µ∂µ) → −1 if the deriva-

tive operator points towards the node f [Φ](x), g[Φ](x, y, z) or similar that is varied, and

sR(u
µ∂µ) → 1 if the derivative operator acts to the opposite direction. For tree-like struc-

tures this is well defined because every node is connected to all other nodes in a uniquely

orientable way. As examples for the prescribed variational principle one may take the

harmonic oscillator in section 2 or the example with composite fields in subsection 3.3.

A particularly simple situation arises when the symbol sR(u
µ∂µ) appears within a

commutator such as

I[Φ] =

∫

ddx
√
g
1

2

[

Φa(x), sR(u
µ∂µ)

]

fa[Φ](x) , (4.2)

where f [Φ](x) is a regular functional of the fields. In that case, by the rules formulated

above, the “retarded variational derivative” with respect to Φa hits effectively only the

field in the commutator because all other terms cancel. One has

δI[Φ]

δΦa(x)

∣

∣

∣

∣

ret

=
√
g(x) fa[Φ](x) . (4.3)

The “oriented” or “retarded” functional derivative described above is closely connected

with causality. It makes sure that the field equation following from eq. (4.1) depends only

on field expectation values and other physical information in the past light cone with

respect to x. To see this, take another functional derivative of the field equation (4.1) (we

specialize to flat space and use here cartesian coordinates with
√
g = 1 for simplicity),

δ

δΦb(y)

δΓ

δΦa(x)

∣

∣

∣

∣

ret

=
δ

δΦb(y)
Ja(x) . (4.4)

Inverting this equation using eqs. (3.21) and (3.19) gives the retarded Green’s function,

δ

δJb(y)
Φa(x) = ∆R

ab(x, y) . (4.5)

This equation tells that the expectation value Φa(x) that solves the field equation (4.1) is

causal in the sense that it can only be modified by sources Jb(y) at positions y that are in

the past light cone of x. Otherwise, the right hand side of (4.5) vanishes. Note that the
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issue of causality is more complicated in curved space-time. One would need more powerful

arguments to exclude the appearance of closed time-like curves, for example.

Note that an alternative way to obtain causal and real equations of motion would have

been via the Schwinger-Keldysh formalism. The one-particle irreducible effective action

can be defined on a closed time path and its variation leads to causal and real equations of

motion including dissipative effects [49], see also [7, 8].4 The closed time-path formalism

has also been discussed in the context of curved space [50], including expressions for a

covariantly conserved expectation value of the energy-momentum tensor. To that topic we

turn next.

5 Energy-momentum conservation and entropy production

In this section we discuss the important issue of energy and momentum conservation as

well as entropy production in the context of an analytically continued quantum field theory

with dissipation. We start by deriving and discussing an expression for the expectation

value of Tµν from the analytic effective action.

5.1 Energy-momentum tensor

Very similar to the field equations, the expectation value of the energy-momentum tensor

can contain dissipative terms. In analogy to the retarded derivative (4.1) that leads to the

equations of motion, the following expression should hold

δΓ[Φ, gµν , β
µ]

δgµν(x)

∣

∣

∣

∣

ret

= −1

2

√
g〈Tµν(x)〉 . (5.1)

The “retarded functional derivative” is defined as discussed below (4.1) but now for vari-

ations with respect to gµν(x). Note that the right hand side of (5.1) should also appear

as the source term for Einsteins field equations in a context where the analytic action

Γ[Φ, gµν , β
µ] contains gravitational terms.

For the following it is useful to decompose the analytic action like

Γ[Φ, gµν , β
µ] = ΓR[Φ, gµν , β

µ] + ΓD[Φ, gµν , β
µ] , (5.2)

where the reduced action is defined as an integral over real space

ΓR[Φ, gµν , β
µ] = −

∫

ddx
√
gLR , (5.3)

of the effective Lagrangian with non-dissipative terms only,

LR = L
∣

∣

sR(∂t)→0
. (5.4)

4In the closed time path formalism, the analog of eq. (4.2) is a term of the form
∫

ddx
√
g
(

Φ+
a (x) −

Φ−
a (x)

)

fa[(Φ
+ +Φ−)/2](x), where Φ+

a (x) and Φ−
a (x) describe the fields on the forward and backward time

path, respectively. Variation with respect to Φ+
a (x) evaluated at the point Φ+

a (x) = Φ−
a (x), leads to the

analog of eq. (4.3).
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The remainder term ΓD[Φ, gµν , β
µ] contains dissipative (i.e. discontinuous) terms, only.

In a similar way we decompose the expectation value of the energy momentum tensor

according to

〈Tµν(x)〉 = (T̄R)
µν(x) + (T̄D)

µν(x) , (5.5)

with

δΓR[Φ, gµν , β
µ]

δgµν(x)
= −1

2

√
g (T̄R)

µν(x) ,
δΓD[Φ, gµν , β

µ]

δgµν(x)

∣

∣

∣

∣

ret

= −1

2

√
g (T̄D)

µν(x) . (5.6)

Because ΓR contains no dissipative terms, the retarded functional derivative agrees with

the conventional one.

5.2 General covariance and energy-momentum conservation

Let us now discuss energy-momentum conservation. For theories without dissipation, the

(covariant) conservation of the energy-momentum tensor is a consequence of general co-

variance and the field equations. We will discuss this here in terms of the reduced action

ΓR[Φ, gµν , β
µ] as defined in (5.3) and (5.4).

Infinitesimal general coordinate transformations can be written as a “gauge transfor-

mation” of the metric (see for example [51])

δgGµν(x) = gµλ(x)
∂ǫλ(x)

∂xν
+ gνλ(x)

∂ǫλ(x)

∂xµ
+

∂gµν(x)

∂xλ
ǫλ(x) , (5.7)

with an infinitesimal vector field ǫλ(x). Also the matter field expectation values Φa(x)

transform according to their respective representation δΦG
a (x). The combined fluid velocity

and temperature field βµ = uµ/T transforms as a vector,

δβµ
G(x) = −βν(x)

∂ǫµ(x)

∂xν
+

∂βµ(x)

∂xν
ǫν(x) . (5.8)

The reduced effective action ΓR[Φ, gµν , β
µ] is invariant under general coordinate trans-

formations (we neglect possible gravitational anomalies),

ΓR

[

Φ+ δΦG, gµν + δgGµν , β
µ + βµ

G

]

= ΓR

[

Φ, gµν , β
µ
]

. (5.9)

In a situation without dissipation, the variation of ΓR with respect to the field expectation

values Φ would vanish as a consequence of the equations of motion. If in addition, the

dependence on βµ(x) drops out (for example due to T = 0), one has

δΓR = −1

2

∫

ddx
√
g 〈Tµν(x)〉δgGµν(x) . (5.10)

One can then use eq. (5.7) to write this as

δΓR =

∫

ddx
√
g ǫλ(x)∇µ〈Tµ

λ(x)〉 . (5.11)

Because ǫλ(x) is arbitrary, general covariance implies the covariant conservation law

∇µ〈Tµ
λ(x)〉 = 0.
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In the presence of dissipative effects, the picture is changed at three points. First, the

dissipative equations of motion (4.1) do not imply that the reduced action ΓR is stationary

with respect to variations of Φ. Second, the expectation value of the energy momentum

tensor is now given by the retarded functional derivative of the analytic action according

to (5.1) instead of the variation of the reduced action in (5.10). Third, it is now not

consistent any more to drop the dependence on βµ(x). The dissipative effects will generate

a heat bath at non-zero temperature even if one starts initially at T = 0.5 The change of

ΓR due to an infinitesimal general coordinate transformation becomes

δΓR =

∫

ddx
δΓR

δΦa(x)
δΦG

a (x) +

∫

ddx
√
g ǫλ(x)∇µ(T̄R)

µ
λ(x) +

∫

ddx
δΓR

δβµ(x)
δβµ

G(x) .

(5.12)

In an autonomous situation, the complete energy-momentum tensor (T̄R)
µν + (T̄D)

µν has

to be covariantly conserved so that one can replace

∇µ(T̄R)
µ
λ(x) = −∇µ(T̄D)

µ
λ(x) . (5.13)

One is therefore left with
∫

ddx

{

δΓR

δΦa(x)
δΦG

a (x)−
√
g(x) ǫλ(x)∇µ(T̄D)

µ
λ(x) +

δΓR

δβµ(x)
δβµ

G(x)

}

= 0 . (5.14)

These equations must be fulfilled for arbitrary choice of ǫλ(x) which leads to four ad-

ditional equations. These differential equations determine the space-time evolution of

βµ(x). Alternatively, one can determine such equations from the covariant conservation

law ∇µ〈Tµν〉 = 0 itself.

To analyze the implications of (5.14) in a little more detail, define the field Kµ(x) by

δΓR

δβµ(x)
=

√
g(x)Kµ(x) , (5.15)

and write, using (4.1) for Ja(x) = 0,

δΓR

δΦa(x)
= − δΓD

δΦa(x)

∣

∣

∣

∣

ret

= −√
g(x)Ma(x) . (5.16)

For concreteness, assume that Φa(x) transforms as a scalar,

δΦG
a (x) = ǫλ(x)

∂

∂xλ
Φa(x) . (5.17)

Equation (5.14) becomes then
∫

ddx
√
g ǫλ(x)

{

−Ma(x)∂λΦa(x)−∇µ(T̄D)
µ
λ(x)+∇µ

[

βµ(x)Kλ(x)
]

+Kµ(x)∇λβ
µ(x)

}

= 0 .

(5.18)

Because ǫλ(x) is arbitrary, this implies

Ma(x)∂λΦa(x) +∇µ(T̄D)
µ
λ(x) = ∇µ

[

βµ(x)Kλ(x)
]

+Kµ(x)∇λβ
µ(x) . (5.19)

As stated above, these four differential equations determine the space-time evolution of

βµ(x) for a physical situation with covariantly conserved energy-momentum tensor.

5This argument assumes a local equilibrium picture. More general, in a far-from equilibrium situations

one will have to take other variables into account that play a role similar to βµ in the current discussion.
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5.3 Entropy production

It is illustrating to analyze the differential equations obtained from general covariance in

the previous subsection in a little more detail. In particular, consider the contraction of

eq. (5.19) with βλ. It can be written as

Maβ
λ∂λΦa + βλ∇µ(T̄D)

µ
λ = ∇µ

[

βµβλKλ

]

. (5.20)

To understand the significance of the term on the right hand side of (5.20), consider the

special case where the only βµ-dependent term in the reduced action ΓR is the effective

potential,

δΓR

δβµ(x)
=

δ

δβµ(x)

∫

ddx
√
g U(T ) (5.21)

where U(T ) = −p(T ) is the grand canonical potential density and T = 1/
√

−gµνβµβν is

the temperature. In that case Kλ = −sT 3βλ, where s = ∂p/∂T is the entropy density.

This implies

βµβλKλ = sµ (5.22)

where sµ = suµ is the entropy current in the present situation. One can actually extend

this to a definition of the entropy current sµ in more general situations. With this in-

terpretation in mind, equation (5.20) has very interesting consequences. In general, the

divergence ∇µs
µ measures the local production of entropy by dissipative processes. The

local entropy production by the dissipative processes concerning the scalar field Φa as well

as the dissipative terms in the energy-momentum tensor is therefore given by the left hand

side of (5.20).

Assuming that there are no cancelations between the two terms, one should have as a

consequence of a local form of the second law of thermodynamics ∇µs
µ(x) ≥ 0,

Ma(x)β
µ(x)∂µΦa(x) =

1√
g(x)

δΓD

δΦa(x)

∣

∣

∣

∣

ret

βµ(x)∂µΦa(x) ≥ 0 , (5.23)

and similar

βµ(x)∇ν(T̄D)
µν(x) = βµ(x)∇ν

[

− 2√
g(x)

δΓD

δgµν(x)

∣

∣

∣

∣

ret

]

≥ 0 . (5.24)

In the present form, (5.23) holds for scalar fields Φa. However, similar relations can be

obtained for fields in the vector, spinor or tensor representation.

A remark of caution is in order at this point. While the entropy current can be defined

as in (5.22) for situations that are very close to local equilibrium, it can be necessary to

change this definition in situations where one deviates from equilibrium somewhat stronger.

An example for this is relativistic fluid dynamics at second order in gradients, see for

example ref. [52].

Note that the action ΓD[Φ] that enters (5.23) and (5.24) yields precisely those terms

in Γ[Φ] that contain the symbol sR(Lu) and account for dissipation.
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6 Example I: scalar field with O(N) symmetry

6.1 Dissipative equations of motion

We discuss here the formalism developed in the previous sections for the example of a

relativistic scalar field theory with global O(N) symmetry. We take the analytic effective

action to be of the form

Γ[ϕ, gµν , β
µ] =

∫

ddx
√
g

{

1

2
Z(ρ, T )gµν∂µϕj∂νϕj + U(ρ, T )

+
1

2
C(ρ, T )

[

ϕj , sR(u
µ∂µ)

]

βν∂νϕj

}

,

(6.1)

where ρ = 1
2ϕjϕj is the O(N) invariant combination of fields, T = 1/

√

−gµνβµβν is the

temperature and βµ = uµ/T is the “inverse temperature vector”. We first derive the

equation of motion for ϕj by variation according to the prescription in section 4. The

variation of (6.1) at fixed metric gµν and inverse temperature field βµ gives

δΓ =

∫

ddx
√
g

{

Z(ρ, T )gµν∂µδϕj∂νϕj +
1

2
Z ′(ρ, T )ϕmδϕm gµν∂µϕj∂νϕj + U ′(ρ, T )ϕmδϕm

+
1

2
C(ρ, T )

[

δϕj , sR(u
µ∂µ)

]

βν∂νϕj +
1

2
C(ρ, T )

[

ϕj , sR(u
µ∂µ)

]

βν∂νδϕj

+
1

2
C ′(ρ, T )ϕmδϕm

[

ϕj , sR(u
µ∂µ)

]

βν∂νϕj

}

. (6.2)

The primes denote here derivatives with respect to ρ. The terms in the first line are

standard variations of terms without discontinuities. For the first term in the second line

of (6.2), the commutator [δϕj , sR(u
µ∂µ)] = δϕjsR(u

µ∂µ)− sR(u
µ∂µ)δϕj contains one term

where the variation δϕ is to the left of the operator sR(u
µ∂µ) and for the retarded variation

one has to set sR(u
µ∂µ) → 1 there. In contrast, for the second term, δϕ is to the right and

one has to set sR(u
µ∂µ) → −1. In total, this results in [δϕj , sR(u

µ∂µ)] → 2δϕj .

For the second term in the second line of (6.2) as well as for the term in the third

line, the field variation δϕj is always to the right or to the left of sR(u
µ∂µ). Accordingly

the commutator leads to a vanishing contribution by these terms. One can then transfer

the remaining partial derivatives acting on field variations δϕ to other terms by partial

integration and finds for the field equation (4.1) at vanishing source J = 0,

−∇µ

[

Z(ρ, T )∂µϕj

]

+
1

2
Z ′(ρ, T )ϕj∂µϕm∂µϕm+U ′(ρ, T )ϕj +C(ρ, T )βµ∂µϕj = 0 . (6.3)

One can see this as a generalization of the Klein-Gordon equation with an additional

damping term.

Note that for N ≥ 2 the action (6.1) has continuous global symmetries and associated

conserved currents. Dissipation leads then to local equilibrium states with non-vanishing

chemical potentials corresponding to the additional conserved quantum numbers. For a

consistent description, these chemical potentials should actually be included in (6.1) as ad-

ditional parameter fields. Differential equations that determine their space-time evolution

can be derived from the conservation laws. This will be discussed in more detail elsewhere.
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6.2 Energy-momentum tensor and entropy production

The expectation value of the energy-momentum tensor follows from retarded variation

of (6.1) with respect to gµν at fixed ϕ and βµ

〈Tµν(x)〉 = − 2√
g(x)

δΓ[ϕ, gµν , β
µ]

δgµν

∣

∣

∣

∣

ret

= Z(ρ, T )∂µϕj∂
νϕj −

(

gµν + uµuνT
∂

∂T

){

1

2
Z(ρ, T )gµν∂µϕj∂νϕj + U(ρ, T )

}

(6.4)

For the action (6.1), there is actually no contribution from the dissipative terms to the

energy momentum tensor so that 〈Tµν(x)〉 = (T̄R)
µν(x). Note that the expression in (6.4)

reduces to the standard form of the energy-momentum tensor for a scalar field when the

temperature dependence drops out, as well as to the energy-momentum tensor for an ideal

fluid with pressure p = −U and enthalpy density ǫ+ p = sT = −T ∂
∂T U for Z(ρ, T ) = 0.

The reduced action corresponding to (6.1) is given by

ΓR[ϕ, gµν , β
µ] =

∫

ddx
√
g

{

1

2
Z(ρ, T )gµν∂µϕj∂νϕj + U(ρ, T )

}

, (6.5)

and the dissipative part by

ΓD[ϕ, gµν , β
µ] =

∫

ddx
√
g

{

1

2
C(ρ, T )

[

ϕj , sR(u
µ∂µ)

]

βν∂νϕj

}

. (6.6)

Accordingly, the vector field Kµ as defined in (5.15) is given by

Kµ = T 2βµT
∂

∂T

{

1

2
Z(ρ, T )gαβ∂αϕj∂βϕj + U(ρ, T )

}

, (6.7)

and the analog of (5.16) is in the present situation

Mj =
1√
g

δΓD

δϕj

∣

∣

∣

∣

ret

= C(ρ, T )βµ∂µϕj . (6.8)

These quantities can be used in the analog of eq. (5.19) in order to obtain an equation that

fixes the space-time evolution of βµ. Particularly interesting is the entropy production. In

the present context, one has

sµ = βµβλKλ = −βµ T
∂

∂T

{

1

2
Z(ρ, T )gαβ∂αϕj∂βϕj + U(ρ, T )

}

, (6.9)

and accordingly

sG = − ∂

∂T

{

1

2
Z(ρ, T )gαβ∂αϕj∂βϕj + U(ρ, T )

}

(6.10)

can be seen as a generalized entropy density. Equation (5.20) implies

∇µs
µ = C(ρ, T )(βµ∂µϕj)(β

ν∂νϕj) . (6.11)
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This is positive semi-definite indeed for

C(ρ, T ) ≥ 0 . (6.12)

This relation should therefore be seen as a requirement of the second law of thermodynamics

in the present context. For the special case where the fluid is at rest uµ = (1, 0, 0, 0), entropy

production becomes

∇µs
µ = ṡG =

C(ρ, T )

T 2
ϕ̇jϕ̇j . (6.13)

The entropy increases when the field ϕj oscillates. An example for such a situation is the

period of reheating after inflation.

7 Example II: relativistic fluid dynamics

We discuss now how the equations of relativistic fluid dynamics can emerge from the

formalism developed is sections 3–5. We consider here a fluid without any conserved

charges apart from energy and momentum.

First, consider an effective action of the form

Γ[gµν , β
µ] = ΓR[gµν , β

µ] =

∫

ddx
√
g U(T ) , (7.1)

where the effective potential U(T ) = −p(T ) equals the negative of pressure, T =

1/
√

−gµνβµβν is the temperature and βµ = uµ/T is a combination of fluid velocity and

temperature. The energy-momentum tensor obtained by variation with respect to gµν at

fixed βµ according to (5.1) gives

Tµν = (ǫ+ p)uµuν + pgµν , (7.2)

where ǫ+p = Ts = T ∂
∂T p is the enthalpy density. This is the energy-momentum tensor of an

ideal fluid. The space-time evolution of βµ follows as usual from the covariant conservation

law ∇µT
µν = 0 or, equivalently, from general covariance as discussed in section 5.2. That

leads to the ideal relativistic fluid equations

uµ∂µǫ+ (ǫ+ p)∇µu
µ = 0 , (ǫ+ p)uµ∇µu

ν +∆νµ∂µp = 0 , (7.3)

as usual. No dissipative effects are present for the ideal fluid and the entropy current

sµ = suµ is conserved.

Let us now attempt to introduce shear and bulk viscous dissipation. The energy-

momentum tensor must contain additional terms, the shear stress and bulk viscous pressure

which should follow from a retarded variational derivative with respect to the metric.

Consider the analytically continued effective action

Γ[gµν , β
µ] =

∫

ddx
√
g

{

U(T ) +
1

4

[

gµν , sR(Lu)
](

2η(T )σµν + ζ(T )∆µν∇ρu
ρ
)

}

, (7.4)
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where Lu is the Lie derivative in the direction uµ, ∆µν = uµuν+gµν is a projector orthogonal

to the fluid velocity uµ = Tβµ, and

σµν =

(

1

2
∆µα∆µβ +

1

2
∆µβ∆µα − 1

d− 1
∆µν∆αβ

)

∇αuβ (7.5)

is a combination of covariant derivatives of the fluid velocity that is symmetric, transverse

to the fluid velocity uµσ
µν = 0, and trace-less gµνσ

µν = 0. The function η(T ) is actually

the shear viscosity and ζ(T ) is the bulk viscosity.

The retarded functional derivative with respect to gµν of the action (7.4) according

to (5.1) gives

〈Tµν〉 = (ǫ+ p)uµuν + pgµν − 2ησµν − ζ∆µν∇ρu
ρ, (7.6)

which is the energy-momentum tensor of a fluid with shear and bulk viscosity in the

so-called first order formalism. It can be decomposed into the reduced part (T̄R)
µν =

(ǫ + p)uµuν + pgµν and the dissipative part (T̄D)
µν = −2ησµν − ζ∆µν∇ρu

ρ. The entropy

production follows from (5.20) as

∇µs
µ = βν∇µ(T̄D)

µν = −(∇µβν)(T̄D)
µν =

1

T

[

2ησµνσ
µν + ζ(∇ρu

ρ)2
]

, (7.7)

where we have used βν(T̄D)
µν = 0 and other symmetry properties. Eq. (7.7) is indeed the

correct expression for entropy production of a relativistic fluid without charges in the first

order formalism. The right hand side is positive semi-definite for η ≥ 0 and ζ ≥ 0.

One should keep in mind, that the first order approximation to viscous relativistic

fluid dynamics has problems with causality and linear stability [52, 53]. In any case, the

first order viscous fluid equations have physical significance only for very large length and

time scales. For shorter lengths and times, higher order gradients become relevant. We

postpone a discussion of second order viscous fluid dynamics, as well as a more detailed

discussion of the first order approximation, to the future.

8 Conclusions

We have discussed here how one can obtain causal, dissipative equations of motion from

the analytically continued, one-particle irreducible quantum effective action (or analytic

effective action for short). The latter has first been defined in the Euclidean domain

for situations that can be described by a generalized Gibbs ensemble in local thermal

equilibrium with a temperature and fluid velocity that depend on space and time. By

studying the analytic properties of correlation functions, first in the linear response regime

but subsequently also in more general, non-linear situations, it was possible to gain some

insights into the general analytic structure of correlation functions and thereby the analytic

structure of the quantum effective action itself.

The most important element is the branch cut behavior that can arise for example in

the two-point correlation functions along the real frequency axis. In a local equilibrium

situation and in position space, this branch cut can be parametrized in terms of the symbol

sR(Lu) = sR(u
µ∂µ) = sign

(

Re

(

uµ(x)
∂

∂xµ

)

)

. (8.1)
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This is the formal analog of sI(ω) = sign
(

Im(ω)
)

, the sign function that allows to

parametrize the branch cut in the frequency domain. The vector field uµ(x), that en-

ters (8.1) denotes the fluid velocity corresponding to the generalized local Gibbs ensemble.

Based on the symbol (8.1) one can formulate possible structures that can arise in the

analytic effective action Γ[Φ]. It is actually convenient to formulate the latter directly in

general coordinates with a metric gµν(x) and for a generalized Gibbs ensemble described by

the combination of fluid velocity and temperature βµ(x) = uµ(x)/T (x). One can then also

formulate a generalized variational principle that leads to causal and dissipative equations

of motion by formulating rules how the sign (8.1) has to be chosen, depending on whether

the field variation δΦ is to the left or to the right of this formal operator. That the resulting

equations of motion are causal can be seen on general grounds in flat space, see eqs. (4.4)

and (4.5). (The issue may be more involved in the context of general relativity with curved

space.)

One can also discuss the important issue of energy-momentum conservation in the

present formalism. To that end it is useful to work with a reduced action ΓR[Φ] that is

obtained from the full analytic effective action Γ[Φ] by dropping the discontinuous terms, i.

e. by formally setting sR(u
µ∂µ) → 0. A very interesting relation follows from studying the

implications of general coordinate invariance of the reduced action ΓR[Φ, gµν , β
µ]. Besides

the field expectation value Φ, the reduced action depends also on the metric gµν and

the temperature and fluid velocity field βµ = uµ/T . The condition that ΓR[Φ, gµν , β
µ]

be general covariant leads to four additional, non-trivial differential equations which can

be used to fix the space-time evolution of temperature T (x) and fluid velocity uµ(x).

(Alternatively, such relations can be derived from the covariant conservation law ∇µT
µν

and the equations of motion, similar to how it is usually done in the formalism of relativistic

fluid dynamics.)

From the consequences of general covariance, one can in particular derive an equation

that describes local entropy production. An inequality of the form ∇µs
µ(x) ≥ 0, where

sµ(x) is the entropy current, leads to a local form of the second law of thermodynamics and

puts some constraints on the dissipative dynamics. Calculations that determine the ana-

lytically continued effective action (within some approximation) from a more microscopic

starting point must make sure that the second law is respected.

All these relations can be studied in a more concrete form for the example of an

effective action that describes a scalar field with O(N) symmetry as is done in section 6.

In particular, the dissipative equation of motion corresponds then to a generalized Klein-

Gordon equation with a dissipative damping term. The entropy production inequality

leads to a constraint for the form of the analytic action Γ[Φ]. With this constraint taken

into account, the entropy is non-decreasing, indeed. Entropy can be produced for example

by an oscillating scalar field, a mechanism that plays a role for reheating after inflation in

the early universe.

The present paper had to leave open a couple of points that would deserve further

attention. In particular, we have concentrated here of the dissipative equations of mo-

tion, but of course, the analytic effective action contains also very valuable information

about various correlation functions. These correlation functions characterize fluctuations
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for a generalized local Gibbs ensemble and generalize directly both the thermal correlation

functions as one can study them in a complete thermal equilibrium, for example in the

Matsubara formalism, as well as correlation functions of quantum fields in vacuum. For a

recent discussion of correlation functions of fluid dynamic variables see ref. [54].

In the present paper we also restricted the discussion of relativistic fluid dynamics

in section 7 to the first order approximation. This can be extended to higher orders in

gradients as well as fluids with additional conserved charges and order parameter fields Φa.

This will be discussed in more detail in subsequent publications.

The reader may also wonder how the formalism discussed here relates to more general

out-of-equilibrium formalisms and in particular the Schwinger-Keldysh closed time path

formalism. Some discussion of this issue can be found in the introduction but a few points

may actually demand further clarifications to be given elsewhere. The relation may also

become more clear once more detailed applications of the present formalism have been

worked out.

Finally, an interesting question is also how one can determine the analytic effective

action from microscopic calculations. In principle, many different possibilities exist, rang-

ing from perturbation theory to non-perturbative numerical methods, AdS/CFT based

approaches or the functional renormalization group.6 We believe that the insights gained

here into the generic structure of Γ[Φ] are helpful for all these approaches.

We are optimistic that the formalism based on the analytic effective action, as it has

been developed here, has many interesting applications in various fields of physics (and

perhaps even chemistry). This could range from the smallest scales as they are probed by

relativistic heavy ion collisions up to the largest scales of cosmology.

A Two-point functions in linear response theory

In this appendix we recall some standard definitions and results about different two-point

correlation functions for a quantum field theory in thermal equilibrium in the linear re-

sponse regime. In contrast to the other sections of this paper it will be useful here to work

in the operator representation of quantum field theory but the results can be generalized

easily to the functional integral representation. In a slight abuse of notation we will denote

operators and fields (in the functional integral formalism) by the same symbol but it should

always be clear from the context what is meant.

Let us start from the correlation function of two operators φa and φb which might be

elementary field operators but could as well be composite operators such as pairing fields

or for example energy density,

∆+
φaφb

(x− y) = 〈φa(x)φb(y)〉 = tr
{

ρ φa(x)φb(y)
}

. (A.1)

For some purposes, the above notation where the fields φa and φb appear in the index of

the function ∆+
φaφb

is useful, while for others the simplified notation

∆+
ab(x− y) = ∆+

φaφb
(x− y) (A.2)

6See ref. [47] for an approach using analytically continued renormalization group flow equations.
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has advantages. In this appendix, we will take the liberty to use both notations in parallel

while we stick to the simplified notation in the main text.

We take the density matrix to correspond to a thermal equilibrium with temperature

T and fluid velocity uµ (a possible chemical potential can be included as an external gauge

field),

ρ =
1

Z
e

uνP
ν

T . (A.3)

The operators φa and φb have the Heisenberg representation

φ(x) = e−ixνPν

φ(0)eixνPν

. (A.4)

Introduce now a complete set of states which are eigenstates of the four-momentum operator

Pν = (H, ~P ),

P
ν |m〉 = pνm|m〉 . (A.5)

The normalization is taken to be such that

✶ = |m〉〈m| , 〈m|n〉 = δmn . (A.6)

One obtains

∆+
φaφb

(x− y) =
∑

m,l

1

Z
e

uνpνm
T ei(pl−pm)(x−y)〈m|φa(0)|l〉〈l|φb(0)|m〉 . (A.7)

Introduce also the momentum space representation

∆+
φaφb

(x− y) =

∫

d4p

(2π)4
eip(x−y)∆+

φaφb
(p) , (A.8)

with

∆+
φaφb

(p) =
∑

m,l

δ(4)(p− pl + pm)
1

Z
e

uνpνm
T 〈m|φa(0)|l〉〈l|φb(0)|m〉 . (A.9)

Note that for T → 0 only the ground state survives in the sum over m and one has

∆+
φaφb

(p) =
∑

l

δ(4)(p− pl)〈0|φa(0)|l〉〈l|φb(0)|0〉 (T → 0) . (A.10)

In the case where φa and φb are elementary particle operators, the sum in (A.10) contains

positive frequencies, p0l ≥ 0, only. This is actually the reason for the name ∆+. For

non-vanishing temperature this is not the case, however. One has also

〈φb(y)φa(x)〉 = ∆+
φbφa

(y − x) =

∫

d4p

(2π)4
eip(x−y)∆+

φbφa
(−p) (A.11)

with

∆+
φbφa

(−p) = e
uνpν

T ∆+
φaφb

(p) . (A.12)
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Define now also the spectral and statistical correlation functions by

∆ρ
φaφb

(x− y) = 〈
[

φa(x), φb(y)
]

∓
〉 = tr

{

ρ
[

φa(x), φb(y)
]

∓

}

=

∫

p
eip(x−y)∆ρ

φaφb
(p) ,

∆S
φaφb

(x− y) =
1

2
〈
[

φa(x), φb(y)
]

±
〉 = 1

2
tr
{

ρ
[

φa(x), φb(y)
]

±

}

=

∫

p
eip(x−y)∆S

φaφb
(p) .

(A.13)

If at least one of the operators φa or φb is bosonic, the spectral function ∆ρ involves the

commutator (upper sign), if both φa and φb are fermionic the anti-commutator (lower sign).

For the statistical propagator the situation is reversed. One has

∆ρ
φaφb

(p) = ∆+
φaφb

(p)∓∆+
φbφa

(−p) =
(

1∓ e
uνpν

T

)

∆+
φaφb

(p) ,

∆S
φaφb

(p) =
1

2

[

∆+
φaφb

(p)±∆+
φbφa

(−p)
]

=
1

2

(

1± e
uνpν

T

)

∆+
φaφb

(p) .
(A.14)

This yields the so-called fluctuation-dissipation relation

∆S
φaφb

(p) =

[

1

2
± nB/F(−uνp

ν)

]

∆ρ
φaφb

(p) , (A.15)

where the Bose and Fermi occupation number functions are

nB/F(ω) =
1

e
ω
T ∓ 1

. (A.16)

Note that the square bracket in (A.15) is anti-symmetric under pν → −pν .

One defines also the Feynman, retarded and advanced propagators by

−i∆F
φaφb

(x− y) = 〈T φa(x)φb(y)〉 = θ(x0 − y0)〈φa(x)φb(y)〉 ± θ(y0 − x0)〈φb(y)φa(x)〉 ,
−i∆R

φaφb
(x− y) = θ(x0 − y0)〈

[

φa(x), φb(y)
]

∓
〉 , (A.17)

−i∆A
φaφb

(x− y) = −θ(y0 − x0)〈
[

φa(x), φb(y)
]

∓
〉 ,

with corresponding momentum space representations ∆F
φaφb

(p), ∆R
φaφb

(p) and ∆A
φaφb

(p).

From the Feynman propagator one obtains via analytic continuation the Matsubara prop-

agator. In momentum space (∆µ
ν = uµuν + δµν is the projector orthogonal to the fluid

velocity),

∆M (iωn,∆
µ
νp

ν) = ∆F (−uνp
ν = iωn,∆

µ
νp

ν) . (A.18)

The following relations follow directly from the definitions

∆R
φaφb

(x− y) = ±∆A
φbφa

(y − x) , ∆A
φaφb

(x− y) = ±∆R
φbφa

(y − x) , (A.19)

or, in momentum space,

∆R
φaφb

(p) = ±∆A
φbφa

(−p) , ∆A
φaφb

(p) = ±∆R
φbφa

(−p) . (A.20)

One has also

∆R
φaφb

(x− y) = ±∆R∗

φ†
aφ

†
b

(x− y) , ∆A
φaφb

(x− y) = ±∆A∗

φ†
aφ

†
b

(x− y) , (A.21)
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or, in momentum space,

∆R
φaφb

(p) = ±∆R∗

φ†
aφ

†
b

(−p) , ∆A
φaφb

(p) = ±∆A∗

φ†
aφ

†
b

(−p) . (A.22)

One can also discuss different discrete symmetries. Particularly useful is time reversal.

Assume that the field operators transform as

Tφa(x
0, ~x)T−1 = φaT(−x0, ~x) (A.23)

and that the density matrix is invariant up to a time-reversal breaking external parameter

B (such as a magnetic field)

Tρ(B)T−1 = ρ(−B) . (A.24)

One can show that the following relations are fulfilled (Onsager 1931)

∆R
φaφb

(x0 − y0, ~x− ~y;B) = ∆R
φ†
bT

φ†
aT

(x0 − y0,−~x+ ~y;−B) ,

∆A
φaφb

(x0 − y0, ~x− ~y;B) = ∆A
φ†
bT

φ†
aT

(x0 − y0,−~x+ ~y;−B) ,
(A.25)

or, in momentum space,

∆R
φaφb

(p0, ~p;B) = ∆R
φ†
bT

φ†
aT

(p0,−~p;−B) ,

∆A
φaφb

(p0, ~p;B) = ∆A
φ†
bT

φ†
aT

(p0,−~p;−B) .
(A.26)

In particular, for hermitean fields with definite time reversal parity such that φ†
aT(x) =

ηaφa(x), one has

∆R
φaφb

(p0, ~p;B) = ηaηb∆
R
φbφa

(p0,−~p;−B) , (A.27)

and similar for the advanced correlation function.

The spectral correlation function is directly related to the spectral density

∆ρ
φaφb

(p) = 2π ρφaφb
(−p2,−uνp

ν) . (A.28)

At non-zero temperature it depends both on p2 = −(p0)2 + ~p2 and the frequency in the

fluid rest frame −uνp
ν . It depends also on the temperature T as well as on external fields

such as a chemical potential. In the zero-temperature limit one recovers the conventional

vacuum spectral density as

lim
T→0

ρφaφb
(−p2,−uνp

ν) = sign(−uνp
ν) ρφaφb

(−p2) . (A.29)

Define now the complex argument Greens function by

Gφaφb
(−uνp

ν ,∆µ
νp

ν) =

∫ ∞

−∞

dw ρφaφb
(w2 −∆µνp

µpν , w)
1

w + uνpν
. (A.30)

The integral over w is along the real axis. The function G can be evaluated for ω =

−uνp
ν ∈ ❈. It has a brach cut or poles along the real ω axis. One can show that one
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Re(ω)

Im(ω)

Matsubara

retarded

advanced

Feynman

Figure 1. Contours for obtaining different propagators from the complex argument function G(p).

obtains the Feynman, retarded, advanced and Matsubara Greens functions by evaluating

G on the contours shown in figure 1, shifted slightly away from the real axis. More explicit,

∆R
φaφb

(p) = Gφaφb
(−uνp

ν + iǫ,∆µ
νp

ν) ,

∆A
φaφb

(p) = Gφaφb
(−uνp

ν − iǫ,∆µ
νp

ν) ,

∆F
φaφb

(p) = Gφaφb

(

− uνp
ν + iǫ sign(−uνp

ν),∆µ
νp

ν
)

,

∆M
φaφb

(p) = Gφaφb
(iωn,∆

µ
νp

ν) .

(A.31)

The spectral correlation function can be obtained from

∆ρ
φaφb

(p) = −i∆R
φaφb

(p) + i∆A
φaφb

(p) , (A.32)

an identity that follows directly from the definitions (A.13) and (A.17). Finally, the sta-

tistical correlation function can be obtained from this via the fluctuation-dissipation re-

lation (A.15). In the vacuum limit T → 0 one can use (A.29) to rewrite (A.30) in the

standard form

Gφaφb
(p) =

∫ ∞

0
dµ2 ρφaφb

(µ2)
1

p2 + µ2
. (A.33)

As is discussed in more detail in the main text, the function Gφaφb
(p) is obtained from

the second functional derivative of the Schwinger functional W [J ]. Similarly, its inverse

Pφaφb
(p) = G−1

φaφb
(p) , (A.34)

is obtained from the second functional derivative of the effective action Γ[φ]. Similar to

Gφaφb
(p), the function Pφaφb

(p) (or more specific its eigenvalues) might have brach cuts

and zero-crossings along the axis of real ω = −uνp
ν but nowhere else.

One can decompose the inverse complex-argument two-point function

Pφaφb
(p) = P1,φaφb

(p)− isI(−uνp
ν)P2,φaφb

(p) , (A.35)

where sI(ω) = sign(Imω). Both functions P1,φaφb
(p) and P2,φaφb

(p) are regular when

crossing the real frequency axis. However, the sign sI(−uνp
ν) changes, which leads to a
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brach cut behavior for the function Pφaφb
(p). The function P2,φaφb

(p) parametrizes the

strength of the branch cut.

For special cases of the operators φa, φb one can make further going statements. In

particular for φb(x) = φ∗
a(x) one has ρ(−p2,−uνp

ν) ∈ ❘ with corresponding relations

for the different correlation functions. If the operator φb corresponds to the conjugate

momentum of the operator φa, i.e. φb(x) = −iΠφa
(x) such that they fulfill a canonical

commutation relation at equal time

[

φa(t, ~x), φb(t, ~y)
]

= δ(3)(~x− ~y) , (A.36)

one has
∫ ∞

−∞

dp0 ρφaφb

(

(p0)2 − ~p2, p0
)

= 1 , (A.37)

for all values of ~p.
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