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Variational principles for immersed surfaces with
L2-bounded second fundamental form

By Tristan Rivière at Zürich

Abstract. In this work we present new tools for studying the variations of the Willmore
functional of immersed surfaces into Rm. This approach gives for instance a new proof of the
existence of a Willmore minimizing embedding of an arbitrary closed surface in arbitrary codi-
mension. We explain how the same approach can solve constraint minimization problems for
the Willmore functional. We show in particular that, for a given closed surface and a given
conformal class for this surface, there is an immersion in Rm, away possibly from isolated
branched points, which minimizes the Willmore energy among all possible Lipschitz immer-
sions in Rm having an L2-bounded second fundamental form and realizing this conformal
class. This branched immersion is either a smooth conformal Willmore branched immersion
or an isothermic branched immersion. We show that branched points do not exist whenever
the minimal energy in the conformal class is less than 8� and that these immersions extend
to smooth conformal Willmore embeddings or global isothermic embeddings of the surface in
that case. Finally, as a by-product of our analysis, we establish that inside a compact subspace
of the moduli space the following holds: the weak limit of Palais Smale Willmore sequences
are conformal Willmore, the weak limits of Palais Smale sequences of conformal Willmore are
either conformal Willmore or global isothermic and finally we observe also that weakly con-
verging Palais Smale sequences of global isothermic immersions are global isothermic. The
analysis developed along the paper – in particular these last results – opens the door to the pos-
sibility of constructing new critical saddle points of the Willmore functional without or with
constraints using min-max methods.

1. Introduction

The goal of the present paper is to present a suitable framework to proceed to the calculus
of variation of the Willmore functional for immersions.

Let Ê be a smooth immersion (rank d Ê is equal to two at every point) from a closed
oriented smooth 2-manifold † into an euclidian space Rm. The first fundamental form g Ê
defined by this immersion on † is the pull-back by Ê of the metric induced by the restriction
of the canonical metric of Rm, gRm , to the tangent planes Ê �T† of the immersed surface:

g Ê WD
Ê �gRm :
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If there is no ambiguity, we simply write g instead of g Ê . We shall denote by En Ê the Gauss map
of the immersion Ê which to a point p 2 † assigns the oriented orthonormal .m � 2/-plane
to the tangent plane Ê �Tp† of the immersed surface at Ê .p/. The map En Ê will be seen as a
map into the Grassmanian QGm�2.Rm/ (or equivalently QG2.Rm/) of oriented .m � 2/-planes
(resp. 2-planes) of Rm. Note that En Ê is also a map into the unit simple1) 2-vectors in Rm:
En Ê 2 ^

2Rm. We also denote by �En Ê the orthonormal projections of vectors in Rm onto the
.m � 2/-plane given by En Ê . With these notations the second fundamental form is defined as
follows:2)

8X; Y 2 Tp†; EIp.X; Y / WD �En Ê d
2 Ê .X; Y /:

The mean curvature vector of the immersion at p is given by

EH WD
1

2
trg.EI/ D

1

2

�
EI."1; "1/C EI."2; "2/

�
;

where ."1; "2/ is an orthonormal basis of Tp† for the metric g Ê .
In the present paper we are mainly interested in the Lagrangian given by the L2-norm of

the second fundamental form
E. Ê / WD

Z
†

jEIj2g dvolg ;

where dvolg is the volume form induced by the metric g Ê . An elementary computation gives

E. Ê / WD

Z
†

jEIj2g dvolg D
Z
†

jd En Ê j
2
g dvolg :

This energy E can hence be seen as being the Dirichlet energy of the Gauss map En Ê with
respect to the induced metric g Ê . The Gauss Bonnet Theorem implies that

(1.1) E. Ê / WD

Z
†

jEIj2g dvolg D 4
Z
†

j EH j2 dvolg � 4��.†/;

where �.†/ is the Euler characteristic of the surface †. The energy

W. Ê / WD

Z
†

j EH j2 dvolg

is the so-called Willmore energy and has extensively been studied since the early 20th century
due, on one hand, to its rich mathematical signification but also to its importance in other
areas of science (in general relativity, mechanics, biology, optics, etc.). Probably the main
property it satisfies which makes this Lagrangian so universal is the conformal invariance: For
any conformal diffeomorphism EU of Rm one has (see [3])

(1.2) W. Ê / D W. EU ı Ê /:

For a fixed surface †, because of (1.1) studying the variations of the L2-norm of the second
fundamental form or the variations of Willmore energy is identical.

Since the lower bound to W. Ê / among all possible immersions of closed surfaces is
non-zero and equal to 4� (see for instance [33]), it is natural to look at the existence of optimal
immersions which minimize W for a given surface †. When † is a sphere, it is well known

1) We have En Ê ^ En Ê D 0.
2) In order to define d2 Ê .X; Y / one has to extend locally the vector X or Y by a vectorfield, but it is not

difficult to check that �En Ê d
2 Ê .X; Y / is independent of this extension.
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that W. Ê / achieves its minimal value 4� for the standard unit S2 in R3 � Rm and only for
this submanifold. When † is a genus 1 surface, the existence of a smooth immersion into Rm

minimizing W was established by L. Simon in [23]. It has been conjectured by T. J. Willmore
that the minimizing configuration should be achieved by the torus of revolution in R3 obtained
by rotating around the z-axis the vertical circle included in theOxz-plane, of center .

p
2; 0; 0/

and radius 1 and the minimal energy would then be 2�2. This conjecture3) has later on been
extended to torii immersed in Rm. The existence result of L. Simon has been extended to
surfaces of arbitrary genus by M. Bauer and E. Kuwert in [1]: they proved that for an arbitrary
given closed oriented surface † there is an immersion into Rm that minimizes the Willmore
energy among all smooth immersions of that surface. The result of Bauer and Kuwert was using
the result of L. Simon whose proof is quite involved. The methodology followed by L. Simon
in his proof consists in working with the image of the immersion Ê .†/4) instead of working
with the immersion itself. This method could be called ambient approach; it differentiates from
the strategy we are using in the present work in the sense that it consists in working with Ê
itself instead just with its image. Our approach could be called a parametric approach.

In the present paper we first present a proof of Simon–Bauer–Kuwert’s using the para-
metric approach. This new strategy has the advantage of being “transposable” to the minimiza-
tion of the Willmore functional under various constraints, as it arises in several applications
(prescribed effective volume, prescribed conformal class, etc.) without having to change the
main lines of the proof. Moreover the arguments and tools that we will develop in this work are
not intrinsically linked to minimization procedure but are flexible enough in order to generate
new critical points of the Willmore functional under various constraints by applying fundamen-
tal principle of the calculus of variation such as the Mountain Pass Lemma, etc., as we shall
present it in forthcoming works.

The first difficulty encountered while working with immersions Ê instead of working
with their image Ê .†/ comes from the huge invariance group of the functional: the space of
diffeomorphisms of†, Diff.†/. Taking for instance a minimizing sequence Ê k of the Willmore
functional (without or with constraints) one can always compose Ê k with diffeomorphisms that
makes the sequence degenerate completely and not reaching an immersion at all! There is then
a “choice of gauge” to be made. By pulling back the standard metric gRm of Rm onto †,
Ê defines then a metric g Ê on † and hence a conformal structure on †. There exists then a
constant scalar curvature metric h on † and a conformal diffeomorphism ‰ from .†; h/ into
.†; g Ê / such that the immersion Ê ı‰ is conformal. The space of constant scalar curvature
metrics on† identifies (modulo dilations) to the space of conformal structures on† and hence
is finite dimensional, see [11]. We have then broken the “gauge degeneracy” by replacing Ê by
Ê ı‰ which satisfies the Coulomb gauge condition:

div.Ee1;rEe2/ D 0 where Eej WD e�� @xj . Ê ı‰/; e
�
WD j@x1.

Ê ı‰/j D j@x2.
Ê ı‰/j;

and the operator div and r are the standard operators

divX D @x1X1 C @x2X2 and r� WD .@x1 �; @x2 �/

taken in arbitrary complex coordinates z D x1 C ix2 with respect to the conformal structure
given by .†; h/.

3) A proof of this conjecture in codimension 1 has been up-loaded recently on the web by F. Marques and
A. Neves (see [16]).

4) Or more precisely with the rectifiable current Ê �Œ†�: the push forward by Ê of the integration current
over †
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At this stage however the possible perplexity of the reader regarding this choice of gauge
is totally justified because what we have gained by fixing the gauge that way is not clear at all
at this stage. Indeed, looking again at a minimizing sequence Ê k of the Willmore functional
(without or with constraints) and composing by ‰k in order to have a conformal immersion,
first one does not have a-priori a control of the conformal class defined by ˆk: .†; hk/ may
degenerate to the boundary of the moduli space. A first task in our proof is to exclude this even-
tuality. More seriously, as k goes to infinity we have a-priori no control at all of the conformal
factor e�k that could either go to C1 or 0 at some points and then we would be out of the
class of immersions at the limit. This cannot be excluded easily. The problem is that the control
of the L2-norm of the second fundamental form does not provide a global pointwise control
of the conformal factor e� – counter-examples are easy to manufacture. This is just critical: an
L2C"-control of the second fundamental form would have done it. However, below a certain
threshold this control exists. This phenomenon has been discovered in a series of works by
T. Toro [29, 30], S. Müller–V. Sverak [17] and F. Hélein [9]. Precisely one has

Theorem 1.1 (Control of local isothermal coordinates). Let Ê be a conformal immer-
sion of the disc D2 such that

(1.3)
Z
D2
jr En Ê j

2 <
8�

3
and M. Ê �ŒD

2�/ D

Z
D2

e2� dx1 dx2 < C1;

where M. Ê �ŒD2�/ is the mass5) of the current Ê �ŒD2�. Then for any 0 < � < 1 there exists a
constant C� independent of Ê such that

(1.4) sup
p2D2�

e�.p/ � C�
�
M. Ê �ŒD

2�/
�1=2 exp

�Z
D2
jr En Ê j

2

�
:

Moreover, for two given distinct points p1 and p2 in the interior ofD2 and again for 0 < � < 1
there exists a constant C > 0 independent of Ê such that

(1.5) k�kL1.D2�/ � C�

Z
D2
jr En Ê j

2
� C� log j Ê .p1/ � Ê .p2/j C C� logM. Ê �ŒD2�/:

Remark 1.2. The existence of two distinct points p1 and p2 such that, in the mini-
mization process, j Ê k.p1/ � Ê k.p2/j is not converging to zero – i.e. the maintenance of the
non-collapsing condition – will be obtained – see the 3-Point Normalization Lemma A.4 –
by the composition with an ad-hoc Möbius transformation of Rm which does not affect the
Willmore energy – see (1.2) – and hence the minimizing nature of the sequence.

This theorem is only implicit in the above mentioned works and therefore we give a proof
of it in Section 3. The main ingredients for proving Theorem 1.1 are the following. First, under
the energy assumption (1.3), one constructs a controlled energy orthonormal frame “lifting”
the Gauss map En Ê . Precisely one has

8En 2 W 1;2.D2; QG2.R
m// such that

Z
D2
jr Enj2 <

8�

3
; 9. Ef1; Ef2/ 2 .S

m�1/2W(1.6)

Ef1 � Ef2 D 0; En Ê D
Ef1 ^ Ef2 and

Z
D2
jrEe1j

2
C jrEe2j

2
� C

Z
D2
jr Enj2:

where C > 0 is some universal constant. Next one observes that the logarithm of the conformal
5) That is, M. Ê �ŒD2�/ WD sup¹

R
D2
Ê �! W k!k1 � 1º.
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factor, �, satisfies the following equation:6)

(1.7) ��� D @x1
Ef1 � @x2

Ef2 � @x2
Ef1 � @x1

Ef2:

The main estimate to exploit this equation and its Jacobian structure on the right-hand
side is given by the following theorem of H. Wente which has shown to play a central role in
the analysis of two-dimensional conformally invariant problems (see [19]).

Theorem 1.3 (Regularity by compensation, [32]). Let a and b be two functions in
W 1;2.D2/ and ' be the solution to the following equation:

(1.8)

´
��' D @x1a@x2b � @x2a@x1b in D2;

' D 0 on @D2:

Then the following estimate holds:

(1.9) k'kL1.D2/ C kr'kL2.D2/ � CkrakL2.D2/krbkL2.D2/:

where C is some universal constant.

Then � is the sum of solutions to equations of the form (1.8) and some harmonic rest.
Combining this decomposition, the Wente Theorem, and Harnack inequalities for the harmonic
rest are the main arguments in the proof of Theorem 1.1. The operation of finding a lifting of
the Gauss map En Ê , . Ef1; Ef2/, whose energy is controlled by the L2-norm of the second fun-
damental form (as in (1.6)) is the main limitation for having to restrict to energy below 8�=3.
This construction was proved in [9, Lemma 5.1.4]. It is not difficult to construct a counter-
example to the statement (1.6) when 8�=3 is replaced by any number strictly larger than 8� .
F. Hélein conjectured that 8�=3 could be replaced by 8� for m D 3 and 4� in codimension
larger than 1 and that these two numbers are optimal for the statement (1.6) necessarily to hold.
This conjecture has recently been proved in [12].

The previous discussion explains how, while minimizing the Willmore functional (with-
out or with constraints), the problem of the indeterminacy due to the huge invariance group
Diff.D2/ is locally solved and, as a consequence of Theorem 1.1, beside possibly at most
isolated points where the second fundamental form is concentrating at least 8�=3 energy, the
conformal factor cannot degenerate in the minimization process. However the assumption of
having a smooth immersion (beside these isolated points) at the limit could be lost a-priori since
locally the L2-norm of the second fundamental form cannot control more than the L1-norm
of the conformal factor7). It is then necessary, following a classical approach in calculus of
variations, to “embed” the problem in a weak class of immersions.

Let g0 be a reference smooth metric on†. One defines the Sobolev spacesW k;p.†;Rm/
of measurable maps from † into Rm in the following way:

W k;p.†;Rm/ D

´
f meas. †! Rm W

kX
lD0

Z
†

jr
lf jpg0 dvolg0 < C1

µ
:

6) In fact equation (1.7) is satisfied by any such a lifting and in particular by .Ee1; Ee2/ D e��.@x1 Ê ; @x2 Ê /.
We have indeed

@x1 Ee1 � @x2 Ee2 � @x2 Ee1 � @x1 Ee2 D @x1
Ef1 � @x2

Ef2 � @x2
Ef1 � @x1

Ef2

however in the present equation the advantage of . Ef1; Ef2/ over .Ee1; Ee2/ comes from the fact that we control its
W 1;2-energy by the L2-norm of the second fundamental form which is not the case a-priori for .Ee1; Ee2/.

7) Unless our limit is known to satisfy some special equation of course, but we will come to that later.
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Since † is assumed to be compact, it is not difficult to see that this space is independent of the
choice we have made of g0.

First we need to have a weak first fundamental form, that is, we need Ê �gRm to define
an L1-metric with a bounded inverse. The last requirement is satisfied if we assume that Ê
is in W 1;1.†/ and if d Ê has maximal rank 2 at every point with some uniform quantitative
control of “how far” d Ê is from being degenerate: there exists a c0 > 0 such that

(1.10) jd Ê ^ d Ê jg0 � c0 > 0;

where d Ê ^ d Ê is a 2-form on † taking values into 2-vectors from Rm and given in local
coordinates by 2 @x Ê ^ @y Ê dx ^ dy. Condition (1.10) is again independent of the choice of
the metric g0. For a Lipschitz immersion satisfying (1.10) we can define the Gauss map as
being the following measurable map in L1.†/:

En Ê WD ?
@x Ê ^ @y Ê

j@x Ê ^ @y Ê j
:

We then introduce the space E† of Lipschitz immersions of † with bounded second funda-
mental form as follows:

E† WD

²
Ê 2 W 1;1.†;Rm/ W Ê satisfies .1.10/ for some c0;

Z
†

jd Enj2g dvolg < C1
³
:

Any Lipschitz immersion Ê in E† defines a smooth conformal structure on †. This comes
again from the works of T. Toro [29, 30], S. Müller–V. Sverak [17] and F. Hélein [9]:

Theorem 1.4 (Existence of local isothermal coordinates, [29, 30], [17], and [9, Theo-
rem 5.1.1]). Let Ê 2 ED2 satisfy

(1.11)
Z
D2
jd En Ê j

2
g dvolg <

8�

3
:

Then there exists a bilipschitz homeomorphism of the disk � 2 W 1;1.D2;D2/ such that

(1.12)

´
j@x. Ê ı �/j

2
� j@y. Ê ı �/j

2
D 0 in D2;

@x. Ê ı �/ � @y. Ê ı �/ D 0:

Hence for any Lipschitz immersion Ê in E† one takes a finite covering of † by disks
.Uj / such that Z

Uj

jd En Ê j
2
g dvolg <

8�

3
;

one gets bilipschitz homeomorphisms �j for which Ê ı �j satisfies (1.12) and hence the tran-
sition functions ��1

k
ı �j are holomorphic. Then .Uj ; �j / defines a smooth conformal structure

on†. Let h be a constant scalar curvature associated to this conformal structure and the smooth
diffeomorphism ‰ of † such that the maps ��1j ı‰ are conformal from .†; h/ into D2. Then
we have that Ê ı‰ is a conformal W 1;1 \W 2;2 immersion of .†; h/. Using Theorem 1.1,
we can construct local isothermal coordinates for .†; g Ê ı‰/ with estimates, i.e. satisfying (1.4)
and (1.5), and work with maps in E† like with smooth embeddings.
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The next main difficulty encountered while working with the immersion Ê instead of its
image in the minimization process of Willmore equation comes from the Euler–Lagrange equa-
tion as it has been written originally in the early 20th century in the works of W. Blaschke [3],
G. Thomsen [27] (in codim 1, i.e. m D 3) and J. Weiner [31] (arbitrary m). A smooth immer-
sion Ê is a critical point to Willmore functional:

8E� 2 C1.†;Rm/;
d

dt
W. Ê C t E�/tD0 D 0

if and only if Ê satisfy the Willmore equation

(1.13) �? EH � 2j EH j
2 EH C QA. EH/ D 0;

where �? is the negative covariant Laplacian for the connection8) D in the normal bundle
N Ê .†/ derived from the ambient scalar product in Rm and where

QAp. EL/ D
X
i;j

EIp.Eei ; Eej / EIp.ei ; ej / � EL

for EL 2 Rm.
In [18] we explained why the Euler–Lagrange equation written in the form (1.13) seems

apparently not compatible with the Lagrangian it is coming from in the sense that W. Ê / only
controls the L2-norm of the mean curvature whereas, in order to give a distributional meaning
to the non-linearities in the equation, such as j EH j2 EH for instance, one needs more information
on the regularity of Ê ( EH 2 L3 for instance for this term).9) One of the main achievement
in [18] was to find a new formulation of the Willmore equation as a conservation law which
makes sense for immersions in E†.

Theorem 1.5 (The conservative Willmore equation). The Willmore equation (1.13) is
equivalent to

(1.14) d
�
�g d EH � 3 �g �En Ê .d

EH/
�
� d ?

�
d En Ê ^

EH
�
D 0;

where �g is the Hodge operator on† associated with the induced metric g Ê , and ? is the usual
Hodge operator on forms.

In particular, a conformal immersion Ê from the flat unit-disc D2 into Rm is Willmore if
and only if

(1.15) � EH � 3 div
�
�En Ê .r

EH/
�
C div?

�
r
?
En Ê ^

EH
�
D 0;

where the operators r, r?, �, and div are understood with respect to the flat metric on D2.
Namely, r D .@x1 ; @x2/, r

? D .�@x2 ; @x1/,�� D @
2
x21
� C@2

x22
, and divX D @x1X1 C @x2X2.

This conservative form of the Willmore equation and more conservation laws attached to
it permits to pass to the limit in local Palais Smale sequences to the Willmore Lagrangian. The
following result is established in [2].

8) Namely, for every section � of N Ê .†/, one has DX� WD �En Ê .��X/
9) This is apparent paradox corresponds a bit to the following: writing the Euler–Lagrange equation of the

Dirichlet energy
R
D2 jruj

2 – that is, the Laplace equation �u D 0 – in the form �u2 � jr2uj2 D 0 requires u
to have at least two derivatives in L2 though the Lagrangian gives only a-priori a W 1;2-control which is indeed
sufficient for considering �u D 0.
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Theorem 1.6 (Convergence of Willmore Palais Smale sequences, [2]). Let Ê k be a se-
quence of conformal immersions in ED2 . Assume

(i)
R
D2 jr En Ê k

j2 < 8�=3,

(ii) Ê k.D2/ � Bm1 .0/,

(iii) there exist p1; p2 2 D2 such that lim inf j Ê k.p1/ � Ê k.p2/j > 0.

Under these assumptions if, in .W 2;2 \W 1;1.D2//�,

(1.16) � EHk � 3 div
�
�En Ê

k

.r EHk/
�
C div?

�
r
?
En Ê

k
^ EHk

�
! 0;

then10) there exists a subsequence Ê k0 which converges weakly in W 2;2
loc to an analytic immer-

sion Ê1 of the disc satisfying the conformal Willmore equation

(1.17) � EH1 � 3 div
�
�En Ê1

.r EH1/
�
C div?

�
r
?
En Ê
1
^ EH1

�
D =Œf .z/ EH0;1�;

where f .z/ is an holomorphic function of the disc D2 and EH0;1 is the Weingarten map11) of
the immersion Ê1 given by

EH0;1 WD 2
�1e�2�1�En

�
@2
x2
Ê
1 � @

2
y2
Ê
1 � 2i@

2
xy
Ê
1

�
;

where e�1 D j@x Ê1j D j@y Ê1j and is the standard contraction operator in Rm between
a multi-vector and a vector.

The conformal Willmore equation, also called constrained Willmore, is obtained by con-
sidering critical points of the Willmore functional among immersions realizing a fixed con-
formal class and assuming the critical point is not isothermic – we shall see this notion a bit
below – see [4]. Note that f .z/ is just the expression in the conformal chart of an holomorphic
quadratic differential q WD f .z/ dz ˝ dz of the Riemann surface whose conformal structure
is generated by Ê .

The analyticity of the weak limits to local Palais Smale sequences described in Theo-
rem 1.6 above was obtained by proving that the constrained Willmore equation (1.17) is equiv-
alent to the existence of S 2 W 1;2.D2;R/ and ER 2 W 1;2.D2;^2Rm/ satisfying

(1.18)

8̂̂<̂
:̂
��S D �

�
r ? En Ê

�
� r
? ER;

�� ER D .�1/m�1 ?
�
rEn Ê � r

? ER
�
C .r ? En Ê /r

?S;

�� Ê D r ER � r? Ê C rSr? Ê ;

where the contraction operation � is defined in [18, 19]. We call this system the conservative
conformal Willmore system. Observe that the right-hand sides of this system is only made of
linear combinations of jacobians of functions which are at least W 1;2. Using Wente’s Theo-
rem 1.3 one easily bootstrap in the equation and obtain the smoothness of Ê . This conservative
form of the conformal Willmore equation is also the key tool for passing to the limit in Palais
Smale sequences of Willmore Lagrangian (see [2]).

10) Here EHk denotes the mean-curvature vector of the immersion Ê k .
11) Observe that we had a different notation in [2], where EH0;1 was denoting the conjugate of what EH0;1

here denotes.
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So far we have then understood how to control isothermal coordinates locally and also
obtained the local convergence of “almost Willmore surfaces” towards analytic conformal Will-
more surfaces. Moreover these two results can be extended to the framework of weak immer-
sions: to the space E† of Lipschitz immersions with L2-bounded second fundamental forms.
Our task now is to implement these local procedures to a global framework in order to be able
to deal with the minimization procedure itself. To that end we introduce a distance d – or more
precisely a family of equivalent distances on E† – for which the space .E†; d / will be com-
plete. The details of the construction of this distance are given in Section 2. As explained in
Section 3, under the assumption that there is a minimizing sequence of Willmore functional
with conformal class not diverging in the moduli space of † we can make use of Ekeland’s
variational principle in order to produce sequences of immersions that will be Palais Smale –
satisfying (1.16) – in the controlled isothermal coordinates constructed in Theorem 1.1 and
that will converge to an analytic immersion in these charts. A consequence of Theorem 1.1 is
that an extraction of subsequence is possible in order to cover any compact part of the surface
minus finitely many fixed points by controlled isothermal charts. Hence we obtain at the limit
an element in E† which is minimizing W and which is analytic away at most from finitely
many points. These points are removable due, on one hand, to the fact that the total Willmore
energy of this immersion has to be less than 8� – for minimality reason – and on the other
hand to the fact that the with Li–Yau inequality excludes the possibility of having a branched
point below 8� (see Lemma A.5 and the argument at the end of Section 3). Finally we exclude
the possibility of the conformal class to degenerate to the “boundary of the moduli space” for
energetic reasons (this is explained in Proposition 3.7) and we have not only given a new proof
of the following theorem originally due to L. Simon and M. Bauer–E. Kuwert for the space of
smooth immersions (see [23] and [1]), but we have been able moreover to extend it to the space
E† of Lipschitz immersions with L2-bounded second fundamental form.

Theorem 1.7 (Existence of a minimizer of W in E†). Let m be an arbitrary dimension
larger than 2, let † be a smooth compact orientable surface without boundary. Then there
exists a smooth Willmore embedding of † into Rm minimizing the Willmore energy among all
Lipschitz immersions with L2-bounded second fundamental form (i.e. elements in E†).

In Section 4 of the paper we explain how to adapt the argument for proving the previous
theorem to a minimization problem under constraint.

Remark 1.8. For proving Theorem 1.7 the use of Ekeland’s variational principle is not
absolutely necessary in our approach. Indeed, since we are working below the Li–Yau thresh-
old, W. Ê / < 8� , the risk of having to deal with branched points at the limit for a minimiz-
ing sequence is hence excluded. Due to Lemma 3.4, modulo renormalizations by composition
with ad-hoc elements of the Möbius group, any minimizing sequence is weakly pre-compact –
strongly even – in E† and the fundamental variational argument applied to a limiting element
to this renormalized minimizing sequence, a minimizer ofW in E†, ensures that the minimizer
satisfies weakly the Willmore energy and we can apply our regularity theory from [18] in order
to have a solution to Theorem 1.7. We have decided however to develop the approach given by
Ekeland’s variational principle in order to have a common framework that would includes also
the minimization under various constraints that we describe below. Indeed for such problems
we do not work necessarily below the Li–Yau threshold anymore and branch points could ap-
pear at the limit. We are then leaving E†. Since the limit of our minimizing sequence might
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not be in the minimizing space anymore, we cannot make use of the fundamental variational
principle in order to derive the Euler–Lagrange equation and Ekeland’s variational principle
help us to overcome this difficulty.

Before to state the main result of Section 4, we recall a classical definition.

Definition 1.9 (Local isothermic immersions into R3). A C 2 immersion of a surface †
into R3 is called local isothermic if, away from isolated points, the curvature lines define
conformal coordinates.

Local isothermic immersions realizes very particular surfaces that have been studied since
the 19th century. A survey on the classical geometry of local isothermic immersions as well
as their role in integrable system theory can be found in [5, 6, 28]. We wish to extend this
definition to immersion taking values into an arbitrary euclidian space. To that end we shall
give some characterization of local isothermic immersions in the following proposition that we
are proving in Section 5.

Proposition 1.10. A C 2 immersion Ê of a surface † is local isothermic if and only
if there exists an holomorphic quadratic differential q (locally in some complex coordinates
q D f .z/ dz ˝ dz) of the Riemann surface Q†, obtained by equipping † with the complex
structure generated by Ê and by removing possibly isolated points, such that

(1.19) hq; h0iWP WD e
�2�
=.f .z/ EH0/ � 0;

where EH0 is the conjugate of the Weingarten map in local coordinates

EH0 WD 2
�1e�2��En

�
@2
x2
Ê � @2

y2
Ê � 2i@2xy

Ê
�

and h0 is the Weingarten operator given locally by

h0 WD 2 �En.@
2
z2
Ê / dz ˝ dz D e2� EH0 dz ˝ dz

and h � ; � iWP is the Weil–Peterson pointwise product.12)

Since an element in E† defines a smooth conformal structure and since it defines an
L2 Weingarten operator, using the above proposition, one easily extends the notion of isother-
mic immersions to elements in E† for general target Rm with m � 3.

Definition 1.11 (Local isothermic immersions into Rm). A weak immersion of a sur-
face† into Rm in the space E† is called local isothermic if, away from possibly isolated points,
in local conformal coordinates, there exists an holomorphic function f such that

=.f .z/ EH0/ � 0:

There is another characterization of isothermic immersions that we recall and which co-
incide with the previous characterization also for weak immersions into Rm (i.e. elements
in E†).

12) One verifies easily that the two-form f .z/ EH0 dz dz is independent of the local choice of complex coor-
dinates and defines a complex valued 2-form on † which is the pointwise Hermitian–Weil–Peterson product.
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Proposition 1.12. A Lipschitz immersion Ê in E† is local isothermic if and only if,
away from possibly isolated points, there exist local complex coordinates for the structure
defined by Ê , a Lipschitz map EL on this coordinate domain such that

(1.20) e�2�@z Ê D @z EL;

where e2� D j@x Ê j2 D j@y Ê j2 and z D x C iy.

This proposition is also proved in Section 5.
Finally we give a last characterization of local isothermic weak immersion into Rm that

we will need in our proof; this is the following proposition which is also proved in Section 5.

Proposition 1.13. A Lipschitz immersion Ê in E† is local isothermic if and only if,
away from possibly isolated points, there exists in local conformal coordinates a Lipschitz
map EL from these coordinates into Rm such that

(1.21)

´
r
? EL � r Ê D 0;

r
? EL ^ r Ê D 0:

Remark 1.14. The isothermic equation in the form (1.21) has to be compared with the
conformal Willmore equation written in [2]: there exists an EL such that

(1.22)

´
r
? EL � r Ê D 0;

r
? EL ^ r Ê D 2.�1/mr?

�
?.En Ê

EH/
�
r Ê :

There is an apparent strong similarity between the two equations, the isothermic equation (1.21)
“corresponds” to the conformal Willmore equation (1.22) when its right-hand-side of (1.22) is
replaced by zero. There is however a major difference between these two equations. Equa-
tion (1.22) is elliptic and this can be seen by showing that .S; ER/ given by´

rS WD r Ê � EL;

r ER WD r Ê ^ ELC 2r? Ê ^ EH

solves the elliptic system (1.18) (see [18]), whereas (1.21) is hyperbolic (see [19]), which
is confirmed by the next remark. Observe that parallel mean curvature surfaces that satisfy
�En.r

EH/ D 0 – for instance CMC in R3 – are solutions both to the isothermic and the confor-
mal Willmore equation.

Remark 1.15. It is an interesting question to ask how regular Lipschitz local isother-
mic immersions with L2-bounded fundamental form can be. They are not necessarily analytic
since axially symmetric surfaces are automatically isothermic immersions. Hence an arbitrary
axially symmetric surface with L2-bounded second fundamental form is isothermic but not
necessarily C 2 – it is however C 1;1=2 and it would be interesting either to try to find less
regular examples in E† or to prove that isothermic surfaces are necessarily C 1;1=2.

Finally we extend the notion of local isothermic immersions into R3 to a notion of global
isothermic immersions into Rm. Because of the lack of regularity of the most elementary exam-
ples of isothermic immersions such as rotationally invariant surfaces, the definition of global
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isothermic immersions requires a framework that includes non-C 2 immersions but which, how-
ever, ensures the existence of a smooth complex structure on †. The framework of Lipschitz
immersions with L2-bounded second fundamental form E† seems to be the most suitable for
that and comes also naturally in the minimization procedure of Willmore surfaces inside a
conformal class as we will describe below.

Definition 1.16 (Global isothermic immersions). A weak immersion Ê in E† into Rm is
called global isothermic if there exists an holomorphic quadratic differential q of the Riemann
surface defined by Ê such that

hq; h0iWP � 0:

Global isothermic immersions with meromorphic quadratic differentials which are L1

could also be considered. As we explain in Section 5, a characterization of global isothermic
immersions is given by the fact that they are the degenerate points for the map which to an
immersion assigns its conformal class (see Lemma 5.1). This is why it is not so surprising to
see them appearing as singular points in the minimization process under constrained conformal
class. They might also appear as degenerate critical points in min-max procedures. Adapting
the method we used to prove Theorem 1.7 to the constrained case, we establish the following
result which is the main result of the present work.

Theorem 1.17 (Existence of a minimizer of W in a conformal class). Let m be an
arbitrary integer larger than 2, let† be a smooth compact orientable surface without boundary
and let c be a conformal class for this surface. Then there exists an immersion, away from
possibly isolated branched points, realizing the infimum of the Willmore energy in the sub-
space of Lipschitz immersions withL2-bounded second fundamental form, E†, with prescribed
conformal class c. Such a minimal immersion is either a smooth, possibly branched, conformal
Willmore immersion of † in Rm satisfying

�? EH � 2j EH j
2 EH C QA. EH/ D =.q; h0/WP;

where q is an holomorphic quadratic differential of .†; c/, h0 is the Weingarten operator and
. � ; � / is the pointwise Weil–Peterson product13) or14) it is a global isothermic immersion of
† minus finitely many points. If the minimal Willmore energy in this conformal class is less
than 8� , then the immersion has no branched points and it extends to an embedding of †.

Remark 1.18. The existence of either a conformal Willmore surface or an isothermic
surfaces minimizing Willmore energy is already a severe restriction about the nature of the
immersion minimizing Willmore energy in its conformal class. This could however be further
explored and it would be interesting to know if there really exist conformal classes with a
minimizer which is isothermic without being conformal Willmore.

Partial existence results of minimizers of the Willmore energy in a given conformal class
for the dimensions m D 3 and m D 4 have been announced in [22] and in [21]. Moreover, in
a recent preprint, [12], the existence of a minimizer of W within a fixed conformal class in

13) In local complex coordinates .q; h0/WP D e
�2�f .z/ EH0 where q D f .z/ dz ˝ dz.

14) The “or” is not exclusive, there are isothermic immersions which are conformal Willmore such as parallel
mean-curvature surfaces.
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E† is proved. However no information such as the possible equation that such a minimizer
would satisfy, etc., is given in this work. The existence result as it is stated in [12] is a direct
consequence of the weak sequential completeness of E† that is given in Lemma 3.4 (see also
Remark 3.5). The description of the minimizers we give in Section 4 and the derivation of
the equations they satisfy together with their regularity requires substantial additional work
and goes through the use of the approach of the variations for Willmore functional we aim to
present in this work. In a recent preprint, [14], which was already announced some years ago,
E. Kuwert and R. Schätzle have developed a careful analysis of the minimization of Willmore
energy in dimensions m D 3 and m D 4 and under some energy constraint assumption. In this
work they were able to rule out the degeneracy case and prove that the conformal Willmore
equation is satisfied for any minimizer satisfying this energy constraint.

As a byproduct of our analysis we observe that in a compact subset of the moduli space
of the surface † the following holds: weak limit of Palais Smale Willmore are conformal Will-
more, that weak limits of Palais Smale sequences of conformal Willmore are either conformal
Willmore or global isothermic and finally we observe also that weakly converging Palais Smale
sequences of global isothermic immersions are global isothermic. This notion of global Palais
Smale will be presented and used in a forthcoming paper to present the Mountain Pass Lemma
for Willmore energy in order to produce saddle points for this Lagrangian with or without
constraints.

Our paper is organized as follows: in Section 2 we define the metric space of Lipschitz
conformal immersions with L2-bounded second fundamental forms. In Section 3 we give a
proof of the existence of a minimizer of the Willmore energy for an arbitrary closed surface †
and an arbitrary codimension (i.e. proof of Theorem 1.7). In Section 4 we show how the proof
in Section 3 can be adapted to prove the existence of a minimizer of the Willmore energy in
a conformal class (i.e. proof of Theorem 1.17). In Section 5 we present isothermic immersion
and explain why they are the degenerate points of the conformal class mapping. In the appendix
we give the proof of several lemmas and propositions used in the previous sections.

2. The metric space of Lipschitz immersions withL2-bounded second fundamental form

2.1. Definitions and notations. Let ˆ 2 E† and ‰ be a Lipschitz homeomorphism
from D2 into †. For a.e. .x; y/ 2 D2 we denote by H.D. Ê ı‰// the Hopf differential of
Ê ı‰:

H.r. Ê ı‰// WD
�
j@x. Ê ı‰/j

2
� j@y. Ê ı‰/j

2
�
� 2i @x. Ê ı‰/ � @y. Ê ı‰/:

Similarly for a metric g D
P2
ijD1 gij dxi ˝ dxj on the disc D2 we define

H.g/ WD Œg11 � g22� � 2i g12:
15)

Remark that ifH.r. Ê ı‰// D 0, then due to the conformal invariance of the Dirichlet energy
one has

(2.1)
Z
‰.D2/

jd En Ê j
2
g dvolg D

Z
D2
jr.En Ê ı‰/j

2.x; y/ dx dy;

where r is the usual gradient operator on the disk D2 for the flat metric, i.e. r WD .@x �; @y �/.

15) Observe that for any immersion Ê of D2 into Rm with our notations H.r Ê / D H. Ê �gRm/.
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For‰ 2 W 1;1.D2;D2/ such that log jr‰j 2 L1.D2/ we denote by Dis. Ê ı‰/.x; y/
the complex distortion at .x; y/ 2 D2 given by

Dis. Ê ı‰/.x; y/ WD
H.r. Ê ı‰//

jr Ê ı‰j2
.x; y/:

Similarly also we define for a metric g D
P2
ijD1 gij dxi ˝ dxj on the disc D2 the complex

distortion of this metric to be

Dis.g/ WD
H.g/

trg
D
g11 � g22 � 2 i g12

g11 C g22
:16)

Observe that

(2.2) jDis.g/j2 D 1 � 4
detg
.trg/2

< 1:

Definition 2.1. An admissible measurable complex structure on † is a measurable sec-
tion17) J of the endomorphism bundle of † satisfying J 2 D � id and such that

(2.3)
ln
jX ^ JX jg0
jX ^ jX jg0


L1..T†/0/

< C1;

where j is an arbitrary smooth complex structure on †, the metric j � jg0 on T† ^ T† is in-
duced from an arbitrary reference metric18) g0 on T† and .T†/0 is the tangent bundle minus
the zero section.

Remark 2.2. Observe that for Ê 2 E† the complex structure induced by Ê �gRm is
admissible. Indeed condition (1.10) together with the fact that Ê 2 W 1;1.†/ implies that there
exists a C1 > 0 such that

8p 2 †; 8X 2 Tp† n ¹0º; C�11 jX jg0 � jX jg � C1jX jg0 ;

from which one easily deduce the existence of C2 such that at every point in †

C�12 volg0 � volg � C2 volg0

and we deduce (2.3) by combining the previous equivalences of the metrics and their volume
form with the identity

X ^ Œg� �X D jd Ê �X j2 volg ;

where Œg�� is the action of the complex structure associated to g.

Now given a measurable admissible complex structure J on †, we define the complex
distortion with respect to J of an immersion ‰ 2 W 1;1.D2; †/ to be the function

DisJ .‰/ 2 L1.D2;C/

16) Once again for any immersion Ê of D2 into Rm, Dis.r Ê / D Dis. Ê �gRm/.
17) That is, J is a measurable map from † into End.T†/ such that for a.e. p 2 † J.p/ is an endomorphism

of Tp†, the tangent space to † at p such that J.p/ ı J.p/ is minus the identity map of Tp† into itself.
18) Observe that ln

jX^JX jg0
jX^J0X jg0

is independent of the choice of g0.
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given by

(2.4) DisJ .‰/ WD
j@x‰j

2
g � j@y‰j

2
g � 2i h@x‰; @y‰ig

j@x‰j2g C j@y‰j
2
g

;

where g is an arbitrary metric compatible19) with the complex structure J . It is also not difficult
to check that jDisJ .‰/j < 1.

2.2. The distance functions dJ . For any measurable admissible complex structure J
and non-negative integer k, we shall consider the following space of quasi-conformal Lipschitz
parametrization into †:

QJ
k WD

®
‰ 2W 1;1.D2; †/ W log jr‰j 2L1.D2/; kDisJ .‰/kL1.D2/ � 1�2

�k a.e. in D2
¯
:

On E† � E† we introduce the following non-negative function:

�Jk .
Ê
1; Ê 2/ WD sup

‰2QJ
k

ƒ. Ê 1; Ê 2; ‰/;

where

ƒ. Ê 1; Ê 2; ‰/ WD

�Z
D2
jr.En1 � En2/j

2 dx dy

� 1
2

C
log jr. Ê 1 ı‰/j � log jr. Ê 2 ı‰/j


L1.D2/

C
r. Ê 1 ı‰ � Ê 2 ı‰/L2.D2/;

where we made use of the notation

Eni WD En Ê
iı‰
D ?

@x. Ê i ı‰/ ^ @y. Ê i ı‰/

j@x. Ê i ı‰/ ^ @y. Ê i ı‰/j
for i D 1; 2:

Proposition 2.3. Let J be an admissible measurable complex structure on†. We define
dJ to be the following non-negative function on E† � E†:

dJ . Ê 1; Ê 2/ WD
X
k2N

2�k�Jk .
Ê
1; Ê 2/C kln jX jg1 � ln jX jg2kL1..T†/0/;

where gi WD Ê �i gRm and .T†/0 is equal to the tangent bundle to † minus the zero section.
Then dJ defines a distance function on E†.

Proof. First we have to prove that dJ is a well-defined function. There is indeed a sup
operation and we have to show that dJ . Ê 1; Ê 2/ < C1 for any pair . Ê 1; Ê 2/ 2 E† � E†.

Since Ê 1 and Ê 2 are in E†, because of (1.10) – see also Remark 2.2 – the two metrics
g1 WD Ê

�
1gRm and g2 WD Ê �2gRm are equivalent to a reference metric g0 that we assume to be

compatible with g0, i.e. there exists a Cgi ;g0 > 0 such that

(2.5) 8X 2 .T†/0; C�1gi ;g0 jX jgi � jX jg0 � Cgi ;g0 jX jgi :

Hence
kln jX jg1 � ln jX jg2kL1..T†/0/ < C1:

19) We have g.J �; J �/ D g. � ; � /.
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Let k 2 N and let ‰ 2 QJ
k

. Let g0, g1 and g2 be the following three metrics on D2 given by
g0 WD ‰

�g0 and gi WD ‰
�gi , where g0 is a reference metric compatible with J . We have

jDis.g0/j D jDisJ .‰/j < 1 � 2�k :

Hence we deduce from Lemma A.1 the following inequalities:

(2.6)
1

2
inf

X2.T†/0

jX j2g0
jX j2gi

�
tr.g0/
tr.gi /

� 2k sup
X2.T†/0

jX j2g0
jX j2gi

:

From which, together with (2.5), we deduce that

(2.7) 2�.kC1/ C�1g2;g0C
�1
g1;g0

�
tr.g1/
tr.g2/

D
jr. Ê 1 ı‰/j

2

jr. Ê 2 ı‰/j2
� 2kC1Cg2;g0Cg1;g0 :

Let now ˛ D ˛1 dxC˛2 dy be a 1-form onD2. DenoteG0 WD .g0;ij / andA WD .˛1; ˛2/.
We have

j˛j2g0 dvolg0 D AG
�1
0 AT

p
det.G0/ dx dy:

We have also

AG�10 AT
p

det.G0/ � AAT .det.G0/�1/�1=2 inf
�2Spec..G0/�1/

�;

where Spec..G0/�1/ denotes the spectrum of the inverse of G0. Hence we have

AG�10 AT
p

det.G0/ � �AAT ;

where

� WD inf

´s
�1

�2
;

s
�2

�1

µ
;

where �1 and �2 are the two eigenvalues of G�10 . Clearly 0 < � < 1. From (2.2) we have

1

�C 1
�

D
1

2

q
1 � .Dis.g0//2:

Hence we deduce, since jDis.g0/j D jDisJ .‰/j < 1 � 2�k < 1,

� > 2�1�k=2:

We deduce from the previous identities that for i D 1; 2Z
‰.D2/

jd En Ê
i
j
2
g0
dvolg0 � 2

�1�k=2

Z
D2
jr En Ê

iı‰
j
2 dx dy:

Using now the equivalence of the norms mentioned in Remark 2.2, we obtain that

(2.8) 21Ck=2
Z
†

jd En Ê
i
j
2
gi
dvolgi �

Z
D2
jr En Ê

iı‰
j
2 dx dy:

In a similar way we deduce also that

(2.9) 21Ck=2
Z
†

jd Ê i j
2
gi
dvolgi �

Z
D2
jr. Ê i ı‰/j

2 dx dy:
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We hence deduce from (2.7), (2.8) and (2.9) that

(2.10) �Jk .
Ê
1; Ê 2/ D sup

‰12QJ
k

ƒ. Ê 1; Ê 2; ‰/ < C Ê
1; Ê 2

.2k=4 C k/:

Combining this fact together with (2.6), we obtain that

dJ . Ê 1; Ê 2/ < C1

for any pair . Ê 1; Ê 2/ in E† � E†.
We prove now that dJ is a distance function.

Symmetry. It is clear by definition.

Triangular inequality. Observe first that for all . Ê 1; Ê 2/ 2 .E†/2 and ‰ 2 QJ
k

(2.11) ƒ. Ê 1; Ê 2; ‰/ D ƒ. Ê 2; Ê 1; ‰/;

and moreover for all . Ê 1; Ê 2; Ê 3/ 2 .E†/3 and ‰ 2 QJ
k

(2.12) ƒ. Ê 1; Ê 2; ‰/ � ƒ. Ê 1; Ê 3; ‰/Cƒ. Ê 3; Ê 2; ‰/:

Let " > 0. There exists a ‰ 2 E† such that for all ‰ 2 QJ
k

(2.13) �Jk .
Ê
1; Ê 2/ � ƒ. Ê 1; Ê 2; ‰/C ":

Combining (2.12) and (2.13), we obtain for any " > 0

�Jk .
Ê
1; Ê 2/ � �

J
k .
Ê
1; Ê 3/C�

J
k .
Ê
3; Ê 2/C ";

which implies the triangular inequality for dJ .

Discernibility. Assume we have dJ . Ê 1; Ê 2/ D 0. Then for any quasi-conformal map
‰ W D2 ! † we have Ê 1 ı‰ D Ê 2 ı‰. This clearly implies that Ê 1 D Ê 2.

This concludes the proof of the fact that dJ is a distance function on E† and Proposi-
tion 2.3 is proved.

Proposition 2.4. Let J and J 0 be two admissible measurable complex structures on †.
Then dJ and dJ

0

are equivalent distances on E† and there holds for all . Ê 1; Ê 2/ 2 .E†/2

(2.14) 8�1 e�ı.J;J
0/ dJ . Ê 1; Ê 2/ � d

J 0. Ê 1; Ê 2/ � 8e
ı.J;J 0/ dJ . Ê 1; Ê 2/;

where ı.J; J 0/ is the following distance between the two complex structures:

ı.J; J 0/ WD

ln
jX ^ JX jg0
jX ^ J 0X jg0


L1..T†/0/

(for an arbitrary metric g0).

Proof. Let ‰ be a quasi-conformal map from the disc D2 into †. Then (2.4) implies

1 � jDisJ .‰/j2 D 4
j@x‰ ^ @y‰j

2
g�

j@x‰j2g C j@y‰j
2
g

�2 ;
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where g is an arbitrary metric compatible with J . We have hence for instance

j@x‰j
2
g D j@x‰ ^ J@x‰j and j@y‰j

2
g D j@y‰ ^ J@y‰j:

Let J be the complex structure such that J@x‰ D @y‰. We have

1 � jDisJ .‰/j2 D 4
�
j@x‰ ^ J@x‰jg

j@x‰ ^ J@x‰jg
C
j@y‰ ^ J@y‰jg

j@y‰ ^ J@y‰jg

��1
D 4

�
j@x‰ ^ J@x‰jg0
j@x‰ ^ J@x‰jg0

C
j@y‰ ^ J@y‰jg0
j@y‰ ^ J@y‰jg0

��1
;

where g0 is an arbitrary reference metric on †. Using an elementary algebraic inequality20),
we obtain that for any quasi-conformal map ‰ from D2 into †

(2.15)
1 � jDisJ .‰/j2

1 � jDisJ
0

.‰/j2
�

�
j@x‰ ^ J

0@x‰jg0
j@x‰ ^ J@x‰jg0

C
j@y‰ ^ J

0@y‰jg0
j@y‰ ^ J@y‰jg0

�
� 2eı.J;J

0/:

Hence we have

(2.16) 1 � jDisJ .‰/j � 4 eı.J;J
0/Œ1 � jDisJ

0

.‰/j�:

Let k0 D Œı.J; J 0/= log 2�C 1. We have that

jDisJ .‰/j < 1 � 2�k H) jDisJ
0

.‰/j < 1 � 2�k�k0�2:

Hence
8k 2 N; 2�k �Jk .

Ê
1; Ê 2/ � 2

k0C2 2�k�k0�2�J
0

kCk0C2
. Ê 1; Ê 2/;

from which we deduce
dJ . Ê 1; Ê 2/ � 2

k0C2 dJ
0

. Ê 1; Ê 2/:

This last inequality implies Proposition 2.4.

2.3. Completeness of the metric spaces .E†; d
J /. In this subsection we prove the

following result.

Proposition 2.5. For any admissible measurable complex structure J on †, the metric
space .E†; dJ / is complete.

Proof. Because of the equivalence of the dJ we can choose an arbitrary J that we will
assume to be smooth. We first choose a finite covering of † by open sets Ui such that each Ui
is diffeomorphic to a disc and we denote by ‰i diffeomorphisms from D2 into Ui such that
DisJ .‰i / D 0. Let now Ê k 2 E† such that

d. Ê k�1; Ê k/ � 2
�k�1:

Denote gk WD Ê �kgRm . The assumption implies that Ê k ı‰i converges strongly in W 1;2 to
a limit E�i W D2 ! Rm. Hence jr Ê k ı‰i j converges a.e. to jrE�i j and hence log jr Ê k ı‰i j
converges a.e. to log jrE�i j 2 R [ ¹C1º [ ¹�1º. From the Cauchy sequence assumption for
Ê
k w.r.t. dJ we have that log jr Ê k ı‰i j is Cauchy in L1 and this limit can only be log jrE�i j

20) Namely, for all a; a0; b; b0 > 0, 1
aCb
�
�
a0

a C
b0

b

�
1

a0Cb0
.
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which is then in L1.D2/. We have moreover

8j; l D 1; 2; ‰�i gk;jl D @xj .
Ê
k ı‰i / � @xl .

Ê
k ı‰i /! @xj

E�i � @xl
E�i a.e.

Since

(2.17) 8k 2 N; klog jX jgk � log jX jg1kL1..T†/0/ � 2
�1;

we have that

8X 2 R2 ¤ 0; log

"
2X

j;lD1

‰�i gk;jlX
jX l

#
! log

"
2X

j;lD1

@xj
E�i � @xl

E�iX
jX l

#
a.e.

and hence

(2.18) 8X 2 R2 ¤ 0;

ˇ̌̌̌
ˇlog

"
2X

j;lD1

@xj
E�i � @xl

E�iX
jX l

#ˇ̌̌̌
ˇ � log jX jg1 C 2

�1:

We deduce from the previous inequality that E�i is an immersion from D2 into Rm and there
exists a ci > 0 such that

(2.19) jd E�i ^ d E�i j � ci > 0 on Ui :

Hence the E�i are Lipschitz immersions. We have, for any pair i; j ,

E��1i ı
E�j D ‰

�1
i ı‰j ;

hence there exists a E� , a Lipschitz immersion from † into Rm, such that E�i D E� ı‰i for all i .
Let

Eni;k WD En Ê
kı‰i

D ?
@x. Ê k ı‰i / ^ @y. Ê k ı‰i /

j@x. Ê k ı‰i / ^ @y. Ê k ı‰i /j
:

From the Cauchy sequence assumption for Ê k we deduce that Eni;k converges strongly in
PW 1;2.D2/ to a limit that we denote by Eni , moreover, from the above we have that

?
@x. Ê k ı‰i / ^ @y. Ê k ı‰i /

j@x. Ê k ı‰i / ^ @y. Ê k ı‰i /j
! ?

@x E�i ^ @y E�i

j@x E�i ^ @y E�i j
a.e.

Hence we have that

(2.20) ?
@x E�i ^ @y E�i

j@x E�i ^ @y E�i j
D Eni 2 W

1;2.D2/:

Hence E� is a Lipschitz immersion inducing a metric comparable to the smooth reference metric
g0 whose Gauss map is inW 1;2 with respect to this metric. This implies that E� 2 E† and it can
be proved with moderate efforts that

dJ . Ê k; E�/! 0:

This concludes the proof of Proposition 2.5.
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2.4. Control of dg. Ê ; Ê C t Ew/ for conformal Ê and for W 2;2 \W 1;1 perturba-
tions Ew.

Lemma 2.6. There exists an "0 > 0 such that for any conformal immersion Ê of the
disc D2 into Rm in W 2;2 \W 1;1 satisfying

(2.21)
Z
D2
jr En Ê j

2 dx dy <
4�

3
;

for any Ew 2 W 1;1 \W 2;2.D2;Rm/ compactly supported in D2
1=2

such that

(2.22) kr EwkL1.D2/ C kr
2
EwkL2.D2/ � 1;

denoting Ê t WD Ê C t Ew, then there exists a C > 0 independent of Ê and Ew such that, for
jt j < ŒinfD2

1=2
jr Ê j�=4,

dg. Ê t ; Ê / �
C

infD2
1=2
jr Ê j

jt jkr2wk2(2.23)

C
C

infD2
1=2
jr Ê j

�
1C
kr Ê k1krEnk2 C kr Ê k2

infD2
1=2
jr Ê j

�
jt jkrwk1;

where g WD Ê �gRm .

Proof. We denote the conformal factor as usual as follows: e� WD j@x Ê j D j@y Ê j. De-
note

e� D kr Ê k1 and e� WD inf
D2
1=2

e�:

Consider t such that 4 jt j < e�. Since w is supported in D2
1=2

and since krwk1 � 1, we have

j@x Ê t ^ @y Ê t j � e
2�
� jt jj@x Ew ^ @y Ê j � jt jj@x Ê ^ @y Ewj � t

2
j@x Ew ^ @y Ewj

� e2� � 2jt je� � t2

�
7

16
e2� D

7

16
j@x Ê ^ @y Ê j:

A straightforward but a bit lengthy computation shows that

(2.24) jr.En Ê � En Ê
t
/j � C jt je��

�
jr Ewje��jr2 Ê j C jr2 Ewj

�
;

where C is independent of all the data Ê , Ew and t . Since

� Ê D 2e2� EH;

where EH is the mean curvature vector of the immersion of D2 which is pointwisely controlled
by jr Enj, standard elliptic estimates implyZ

D2
1=2

jr
2 Ê j

2
� Ce2�

Z
D2
jr Enj2 C C

Z
D2
jr Ê j

2:
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Integrating hence (2.24) on D2, since jr.En Ê � En Ê
t
/j is supported on D2

1=2
, we obtain

kr.En Ê � En Ê
t
/k2 �

C

infD2
1=2
jr Ê j

�
jt jkr2 Ewk2(2.25)

C
kr Ê k1krEnk2 C kr Ê k2

infD2
1=2
jr Ê j

jt j kr Ewk1

�
:

We have the pointwise identity

jr Ê t � r Ê j � jt jjr Ewj

and hence

(2.26)
Z
D2
jr Ê t � r Ê j

2
� C jt j2kr Ewk21:

We have also ˇ̌̌̌
log
jr Ê t j

2

jr Ê j2

ˇ̌̌̌
D
ˇ̌
log
�
1C 2e�2�tr Ew � r Ê C e�2�t2jr Ewj2

�ˇ̌
:

Hence for 4jt j < e� we deduce

(2.27)
log jr Ê t j � log jr Ê j


L1.D2/

�
C

infD2
1=2
jr Ê j

jt jkr Ewk1:

Combining (2.25), (2.26) and (2.27), we obtain

ƒ. Ê ; Ê t ; idD2/ �
C

infD2
1=2
jr Ê j

jt jkr2 Ewk2(2.28)

C
C

infD2
1=2
jr Ê j

�
1C
kr Ê k1krEnk2 C kr Ê k2

infD2
1=2
jr Ê j

�
� jt jkrwk1:

Let now ‰ be an arbitrary map in Q
g

k
. Ê /. Since Ê is conformal, ‰ is a quasiconformal map

satisfying
jDisg.‰/j D jDis. Ê ı‰/j � 1 � 2�k :

This implies

(2.29) .2kC1 � 1/�1j@y‰j
2 < j@x‰j

2
� .2kC1 � 1/j@y‰j

2;

and

(2.30)
ˇ̌̌̌
@x‰

j@x‰j
�
@y‰

j@y‰j

ˇ̌̌̌2
< 1 � 2�k�1:

After some short computation, we deduce from the previous line

(2.31) 2�5=22�3k=2jr‰j2 � detr‰ D @x‰ � @y‰ �
jr‰j2

2
:
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Hence we have Z
D2
jr.En Ê ı‰ � En Ê tı‰

/j2 dx dy(2.32)

�

Z
D2
jr.En Ê � En Ê

t
/j2 ı‰ jr‰j2 dx dy

� 25=2 23k=2
Z
D2
jr.En Ê � En Ê

t
/j2 ı‰ detr‰ dx dy

� 25=2 23k=2
Z
D2
jr.En Ê � En Ê

t
/j2 dx dy

� 25=2 23k=2ƒ2. Ê ; Ê t ; idD2/:

Similarly we have Z
D2
jr. Ê ı‰ � Ê t ı‰/j

2 dx dy(2.33)

� 25=2 23k=2
Z
D2
jr. Ê � Ê t /j

2
ı‰ detr‰ dx dy

� 25=2 23k=2ƒ2. Ê ; Ê t ; idD2/:

We have moreover, since jr. Ê ı‰/j D e� jr‰j,ˇ̌̌̌
log
jr. Ê t ı‰/j

2

jr. Ê ı‰/j2

ˇ̌̌̌
D
ˇ̌
log
�
1C 2e�2�jr‰j�2tr. Ew ı‰/ � r. Ê ı‰/

C e�2�t2jr‰j�2jr Ew ı‰j2
�ˇ̌
:

Using the fact that jr. Ew ı‰/j � jr Ewjjr‰j, we then have for jt j < ŒinfD2
1=2
jr Ê j�=4

(2.34)
log jr. Ê t ı‰/j � log jr. Ê ı‰/j


L1.D2/

�
C

infD2
1=2
jr Ê j

jt jkr Ewk1:

Hence combining (2.32), (2.33) and (2.34), we have obtained the existence of C > 0 indepen-
dent of Ê and Ew such that for jt j < ŒinfD2

1=2
jr Ê j�=4, for any ‰ 2 Q

Œg�

k

ƒ. Ê ; Ê t ; ‰/ �
23k=4C

infD2
1=2
jr Ê j

jt jkr2 Ewk2(2.35)

C
23k=4C

infD2
1=2
jr Ê j

�
1C
kr Ê k1krEnk2 C kr Ê k2

infD2
1=2
jr Ê j

�
� jt jkr Ewk1:

where C is independent of ‰. Hence we deduceX
k2N

2�k�
Œg�

k
. Ê t ; Ê / �

C

infD2
1=2
jr Ê j

jt jkr2 Ewk2(2.36)

C
C

infD2
1=2
jr Ê j

�
1C
kr Ê k1krEnk2 C kr Ê k2

infD2
1=2
jr Ê j

�
� jt jkr Ewk1:
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At a point p 2 D2 we have for X D X1@x1 CX2@x2 , denoting jX j20 D X
2
1 CX

2
2 ,

jX jg Ê t
jX jg Ê

D 1C 2e�2�tr Ew
X

jX j0
� r Ê

X

jX j0
C e�2�t2

ˇ̌̌̌
r Ew

X

jX j0

ˇ̌̌̌2
:

Hence for jt j < e� we have that

(2.37) klog jX jg Ê t � log jX jg Ê kL1..T†/0/ �
C

infD2
1=2
jr Ê j

jt jkr Ewk1;

where we are using the fact that, for such t and Ew, e��jt jjr Ewj < 1. Inequality (2.36) together
with inequality (2.37) imply (2.23) and Lemma 2.6 is proved.

3. Existence of minimizers of the Willmore energy

In this section we prove the following result.

Theorem 3.1. Let † be an abstract closed two-dimensional smooth manifolds. Assume
that there exists a minimizing sequence Ê k 2 E† of the Willmore energy such that the confor-
mal class induced by Ê �

k
gRm stays in the compact subset of the Riemann moduli space of †

and assume that
lim sup
k!C1

W. Ê k/ D

Z
†

j EHkj
2
gk
dvolgk < 8�;

where gk WD Ê �kgRm and EHk is the mean-curvature vector of the immersion Ê k . Then the
infimum inf Ê 2E†

W. Ê / is achieved by a smooth embedding.

Before proving Theorem 3.1, we first state the following proposition which is a direct
application of Ekeland’s variational principle (see [24, Theorem 5.1]).

Proposition 3.2. Let J be an arbitrary smooth complex structure on † and let Ê k be a
minimizing sequence such that

W. Ê k/ � inf
Ê 2E†

W. Ê /C 2�k :

Then there exists a E�k 2 E† such that

(i) E�k minimizes in E† the following functional

(3.1) W.E�k/ D inf
Ê 2E†

W. Ê /C 2�k=2 dJ . Ê ; E�k/;

(ii) we have

(3.2) W.E�k/ � W. Ê k/;

(iii) we have

(3.3) dJ .E�k; Ê k/ � 2
�k=2:
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Proof of Theorem 3.1. We can assume that † is not S2 since a classical result implies
that

inf
Ê 2E

S2

W. Ê / D 4�

and is achieved by the unit sphere of R3 � Rm (see for instance [33]). Let Ê k be a minimizing
sequence of the Willmore energy W in the space E† satisfying

(3.4) W. Ê k/ � inf
Ê 2E†

W. Ê /C 2�k :

A straightforward mollification argument allows to work under the assumption that we have
Ê
k 2 C

1.†;Rm/. The assumption of the theorem is telling us that the conformal class of the
induced metric Ê �

k
gRm is contained in a compact subset of the moduli space of †. Therefore,

modulo extraction of a subsequence, we can find a sequence of complex structure Jk and
diffeomorphisms fk of † such that

Ê
k ı fk W .†; Jk/! Rm is conformal;

and, if hk denotes

(3.5) Jk ! J1 w.r.t. ı;

then Ê k ı fk satisfies of course still (3.4). Denote by hk , resp. h1, the smooth constant scalar
curvature metric compatible with Jk , resp. J1, having a fixed volume 1 on †. We may also
ensure that

(3.6) klog jX jhk � log jX jh1kL1..T†/0/ ! 0:

We are now using Lemma A.4 in order to “normalize” the embeddings Ê k ı fk .
For the minimizing sequence Ê k ı fk , modulo extraction of a subsequence, we can find

a sequence of geodesic balls B2rk .pk/ such that rk ! r1 > 0, pk ! p1 2 † andZ
B2rk .pk/

jd En Ê
k
j
2
gk
dvolgk < ı:

For each k we consider the “normalization Möbius transformations” „k given by Lemma A.4
for the ball B2rk .pk/, and we replace our minimizing sequence Ê k ı fk by „k ı Ê k ı fk . In
order to simplify the notations we then write Ê k instead of „k ı Ê k ı fk .

To each x 2 † we assign �x > 0 such thatZ
B�x .x/

jd Enj2hk dvolhk D
Z
B�x .x/

jd Enj2gk dvolgk D
8�

3
;

where B�x .x/ is the geodesic ball in .†; hk/ of center x and radius �x and gk WD f �k Ê
�
k
gRm .

We extract a finite Besicovitch covering: each point in † is covered by at most N of such balls
where N only depends on .†; g1/. Let .B�i

k
.xi
k
//i2I be this finite covering. We can extract

a subsequence such that I is independent of k, such that each xi
k

converges to a limit xi1 and
each �i

k
converges to a limit �i1. Let

I0 WD ¹i 2 I W �
i
1 D 0º:
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Let I1 WD I n I0. It is clear that the union of the closures of the balls
S
i2I1

B�i1.x
i
1/ cov-

ers †. Because of the strict convexity of the balls with respect either to the euclidian distance
(† D T 2) or the hyperbolic distance (genus.†/ > 1) the points in † which are not contained
in the union of the open balls

S
i2I B�i1.x

i
1/ cannot accumulate and therefore are isolated

and hence finite. Denote

(3.7) ¹a1; : : : ; aN º WD † n
[
i2I1

B�i1.x
i
1/:

Hence from now on we have a sequence of complex structures Jk on † such that

Jk ! J1 w.r.t. ı

with associated constant scalar curvature metrics hk of volume 1 and satisfying

klog jX jhk � log jX jh1kL1..T†/0/ ! 0

and we have a sequence of smooth immersions Ê k of † into Rm satisfying (3.4) and the
following five conditions:

(1) We have

(3.8) Ê
k is conformal from .†; Jk/ into Rm:

(2) There are finitely many points a1; : : : ; aN in† and a fixed finite covering .B�i1.x
i
1//i2I1

of † n ¹a1; : : : ; aN º such that for any i 2 I1, 0 < � < �1 and k large enough

(3.9)
Z
B�.x

i
k
/

jd En Ê
k
j
2
gk
dvolgk <

8�

3
;

where gk WD Ê �kgRm .

(3) There exists a positive real R > 0 such that

(3.10) Ê
k.†/ � BR.0/:

(4) There exists a constant C > 0 such that

(3.11) H2. Ê k.†// � C:

(5) There exist an index i 2 I1 and a positive real number 1 > c > 0 independent of k such
that

(3.12) c .�i1/
2h � g Ê

k
� c�1.�i1/

2h:

Using now Proposition 3.2, we construct E�k satisfying (3.1), (3.2) and (3.3).

We claim now the following

Lemma 3.3. For any compact K � † n ¹a1; : : : ; aN º there exist CK > 0 and kK 2 N
such that

(3.13) sup
k�kK

klog jd Ê kjhkkL1.K/ � CK < C1:
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Proof of Lemma 3.3. For any compact subsetK of† n ¹a1; : : : ; aN º there exists a ı > 0
such that K � † n

SN
iD1Bı.ai /. Since

† n

N[
iD1

Bı.ai / �
[
i2I1

B�i1.x
i
1/;

there exist �i1 > ri > 0 such that

(3.14) † n

N[
iD1

Bı.ai / �
[
i2I1

Bri .x
i
1/

and for k large enough one has for any i 2 I1,

Bri .x
i
1/ � B�ik .x

i
k/:

Let si D .r i C �i1/=2. We consider k large enough in such a way that Bsi .xi1/ � B�ik .x
i
k
/

for any i 2 I1. On the ball Bsi .xi1/ for the index i0 such that (3.12) holds, one has

sup
k�kK

klog jd Ê kjhkkL1.Bsi0 .xi01//
� C < C1:

Considering now any other ball Bri .xi1/ whose intersection with Bri0 .x
i0
1/ is non-empty.

Since (3.9) holds, there exists a moving frame .Ee1; Ee2/ satisfying (A.45)–(A.48). Using the
same arguments as at the beginning of the proof of Lemma A.4, we have that for any radius
r i < r < si

k�k � �kkL1.Br .xi1//
� Cr ;

where g Ê
k
D e2�khk and �k is the average of �k overBr.xi1/. AsBr.xi / intersectsBsi0 .x

i0
1/

for some r , we deduce that, for such an r ,

sup
k�kK

klog jd Ê kjhkkL1.Br .xi1// � C < C1:

We iterate this procedure until having reached every ball Bri .xi1/ for i 2 I1 since † is as-
sumed to be connected. Hence the claim (3.13) is proved and this finishes the proof of Lem-
ma 3.3.

Observe that the above arguments apply to a general setting of sequences in E† with
uniformly bounded Willmore energy and controlled conformal classes for proving a weak semi-
compactness lemma for weak immersions in the space E†:

Lemma 3.4. Let † be a closed two-dimensional manifold. Let Ê k be a sequence of
elements in E† such that W.ˆk/ is uniformly bounded. Assume that the conformal class of
the conformal structure ck (i.e. complex structure of †) defined by Ê k remains in a compact
subspace of the moduli space of†. Then, modulo extraction of a subsequence, the sequence ck
converges to a smooth limiting complex structure c1, and there exist a sequence of Lipschitz
diffeomorphisms fk of † such that Ê k ı fk is conformal from .†; ck/ into Rm. Moreover,
there exists a sequence „k of conformal diffeomorphisms of Rm [ ¹1º and at most finitely
many points ¹a1; : : : ; aN º such that

(3.15) lim sup
k!C1

H .„k ı Ê k ı fk.†// < C1; „k ı Ê k ı fk.†/ � BR.0/
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for some R > 0 independent of k, and

(3.16) E�k WD „k ı Ê k ı fk * E�1 weakly in .W 2;2
loc \W

1;1
loc /�.† n ¹a1; : : : ; aN º/:

The convergences are understood with respect to hk , which is the constant scalar curvature
metric of unit volume attached to the conformal structure ck .

Furthermore, there holds for all compact subsets K of † n ¹a1; : : : ; aN º that

(3.17) lim sup
k!C1

klog jd E�kjhkkL1.K/ < C1:

Finally, E�1 is an element of F†, a weak immersion of † n ¹a1; : : : ; aN º, and conformal from
.†; c1/ into Rm.

Remark 3.5. For† D T 2, observe that if we assume lim supk!C1W. Ê k/ < 8� , due,
on one hand, to the main result in [20] and to the Li–Yau inequality (3.52) (see [15]) for Lem-
ma 3.4 to hold we do not need to assume that the conformal class ck is pre-compact in the
moduli space of† and we obtain moreover that E�1 is in E†. This is what we called the sequen-
tially weak completeness modulo Möbius group action of the space of weak immersion ET 2

below 8� .

Proof of Theorem 3.1 continued. Since, from (3.3), dJ . Ê k; E�k/ � 2�k=2, by taking on
each Bri .xi1/, ‰

i to be the canonical coordinate map .x; y/ of the Poincaré half plane H
once Bri .xi1/ has been identified with a connected part of a fundamental domain associated
to .†; Jk/ we have

klog jd Ê kjhk � log jd E�kjhkkL1.Bri .xi1//(3.18)

� klog jr. Ê k ı‰
i /j � log jr.E�k ı‰

i /jkL1.D2/

� dJk . Ê k; E�k/ � C 2�k=2;

where we have used Proposition 2.4 and the fact that ı.Jk; J / is uniformly bounded since Jk
converges to a limit J1. Hence we deduce that for any compact K � † n ¹a1; : : : ; aN º there
exist CK > 0 and kK 2 N such that

(3.19) sup
k�kK

klog jd E�kjhkkL1.K/ � CK < C1:

Moreover, since for the same ‰i on Bri .xi1/, Ê k ı‰
i is conformal from D2 into Rm, com-

bining the fact that

klog jX jgE�k
� log jX jg Ê

k

kL1..T†/0/ � d
Jk .E�k; Ê k/ � C2

�k=2

together with inequality (3.18) and identity (A.2), we obtain

(3.20)
logC

�
1C Dis.E�k ı‰

i /
�
L1.D2/

� 2�k=2:

This implies that for any compactK � † n ¹a1; : : : ; aN º there exists a CK > 0 for any k 2 N

(3.21)
log

jd E�k �X ^ d E�k � JkX j

jd E�k �X j
2


L1.TK/

� CK2
�k=2:



68 Rivière, Variational principles for immersed surfaces

We have proved that

(3.22) sup
k�kK

klog jr Ê k ı‰
i
jkL1.Bri .x

i
1//
� C i < C1:

Moreover

4�1 sup
k�kK

Z
D2
j�. Ê k ı‰

i /j2e�2�k dx dy D sup
k�kK

Z
Bri .x

i
1/

j EH j2gk dvolgk(3.23)

�
8�

3
:

Hence, combining (3.22) and (3.23), we deduce that

(3.24) sup
k�kK

Z
S
i2I1

Bri .x
i
1/

j�hk
Ê
kj
2 dvolhk < C1:

Combining this fact and the fact that

sup
k�kK

Z
S
i2I1

Bri .x
i
1/

jd Ê kj
2
hk
dvolhk(3.25)

D sup
k�kK

Z
S
i2I1

Bri .x
i
1/

jd Ê kj
2
gk
dvolgk � sup

k�kK

H2. Ê k.†// < C1;

we have that, modulo extraction of a subsequence, d Ê k converges strongly in Lp.K/ (for all
p < C1) w.r.t. hk (which itself converges to h1 in every norm). This implies thatr. Ê k ı‰i /
converges strongly in Lp.K \ Bri .xi1// for all p < C1. From (3.18) and (3.20) we deduce
that d E�k converges also strongly in Lp.K/ to a limit d E�1 where E�1 is a Lipschitz conformal
immersion of .K; J1/ into Rm. We have then, using also (3.19), for all p < C1,

(3.26) EnE�k
D �hk

d E�k ^ d E�k

jd E�k ^ d E�kjhk

! �h1

d E�1 ^ d E�1

jd E�1 ^ d E�1jh1

D EnE�1
in Lp.K/:

From the definition of dJ have for any i 2 I1Z
D2
jr.En E‰k

ı‰i � EnE�k
ı‰i /j2 dx dy � dJk .E�k; Ê k/(3.27)

� C dJ .E�k; Ê k/

� C 2�k=2:

Hence we have

lim sup
k!C1

Z
K

jd EnE�k
j
2
hk
dvolhk � lim sup

k!C1

Z
K

jd En Ê
k
j
2
hk
dvolhk(3.28)

D lim sup
k!C1

Z
K

jd En Ê
k
j
2
gk
dvolgk < C1:

Combining (3.26) and (3.28), we deduce thatZ
K

jd EnE�1
j
2
h1

dvolh1 D
Z
K

jd EnE�1
j
2
g1

dvolg1(3.29)

� lim sup
k!C1

Z
K

jd En Ê
k
j
2
gk
dvolgk

� inf
Ê 2E†

4W. Ê / � 4��.†/;
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where g1 WD E��1gRm . Hence, by iterating the previous facts for a sequence of compactsKl of
† n ¹a1; : : : ; aN º such that

S
l Kl D † n ¹a1; : : : ; aN º one obtains that E�1 realizes a confor-

mal, locally Lipschitz, immersion of † n ¹a1; : : : ; aN º such that

(3.30)
Z
†n¹a1;:::;aN º

jd EnE�1
j
2
g1

dvolg1 � inf
Ê 2E†

4W. Ê / � 4��.†/:

We claim now that

Lemma 3.6. The map

(3.31) E�1 is a conformal Willmore immersion of † n ¹a1; : : : ; aN º

and hence is analytic on † n ¹a1; : : : ; aN º (see [2]).

Proof of Lemma 3.6. Denote by k the metric k D E��kgRm . Because of (3.20) we have
that

kDisJk . E�k/kL1.Bri .xi1// � C2
�k=2

! 0:

We can then apply Lemma A.3 in order to obtain the existence of a diffeomorphism �k from
D2 into D2 such that E„i

k
WD E�k ı‰

i ı �k is conformal and satisfies

(3.32) lim sup
k!C1

k�kkC0;˛.D2/ C k�
�1
k kC0;˛.D2/ < C1

and for any � < 1, (A.13) implies

(3.33) lim sup
k!C1

klog jr E„kjkL1.D2�/ C k
E„
j

k
kW 2;2.D2�/

< C1:

Combining this with (3.18) and (3.20), we also obtain

(3.34) lim sup
k!C1

klog jrE�kjkL1.D2�/ < C1:

Let � < 1 and Ew 2 W 1;1 \W 2;2.D2;Rm/ such that Ew 2 C10 .D
2
� ;R

m/ and

kr EwkL1.D2/ C kr
2
EwkL2.D2/ � 1:

Denote by k the metric k D E��kgRm . Because of (3.19) and (3.20) we have, because of Propo-
sition 2.4,

(3.35) dk ' dgk ' dJ independent of k:

Since E�k minimizes W. � /C 2�k=2 dJ . � ; E�k/, we have that for any such Ew and for jt j small
enough, independent of k, say jt j < t0, denoting

E� tk WD
E�k C t�.Bri .xi1//

Ew ı ��1k ı .‰
i /�1 2 E†;

where �.Bri .xi1// is the characteristic function of the ball Bri .xi1/,

(3.36) W.E�k/ � W.E�
t
k/C 2

�k=2 dJ .E� tk;
E�k/ � W.E�

t
k/C C 2�k=2 dk .E� tk;

E�k/:

Using now Lemma 2.6, we deduce the existence of a constant C > 0 independent of k, Ew and t
such that

(3.37) W.E�k/ � W.E�
t
k/C C2

�k=2
jt jŒkr Ewk1 C kr

2
Ewk2�:
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We have

W.E�k/ �W.E�
t
k/ D 4

�1

Z
Bri .x

i
1/

jd EnE�k
j
2
k
dvolk � jd EnE�t

k

j
2
 t
k

dvol t
k
;

where  t
k
WD .E� t

k
/�gRm . A straightforward but a bit lengthy argument shows that

jd EnE�t
k

j
2
 t
k

dvol t
k
D jd EnE�k

j
2
k
dvolk C t Ew ı �

�1
k ı .‰

i /�1 � EFE�k
dvolE�k(3.38)

C t2G.E�k; Ew; t/ dvolE�k ;

where

(3.39) lim sup
k!C1

sup
jt j<t0

Z
Bri .x

i
1/

jG.E�k; Ew; t/j dvolE�k < C1:

Now a classical computation from Blaschke [3] for m D 3 and [31] for arbitrary m gives for a
regular immersion E� from Bri .x

i
1/ into Rm that

(3.40) 4�1 EFE� D �?
EHE� C

QA. EHE�/ � 2j
EHE� j

2 EHE� ;

where �? is the negative covariant Laplacian on the normal bundle of the immersion E�, more-
over for any EL 2 Rm,

QA. EL/ WD

2X
i;jD1

EB.Eei ; Eej / EB.Eei ; Eej / � EL;

where EB is the second fundamental form of the immersion E�. At this stage it is very important
to observe that we are computing EFE� for a smooth immersion �. It does not make sense for an
immersion in E† such as E�k . One of the main computation in [18] establishes that in conformal
coordinates ‰ from D2 into Bri .xi1/ one has

div
�
r EHE� � 3�EnE�

.r EHE�/C ?.r
?
EnE� ^

EHE�/
�

(3.41)

D �2e2�
�
�? EHE� C

QA. EHE�/ � 2j
EHE� j

2 EHE�

�
;

where e� is the conformal factor of the immersion in conformal coordinates w.r.t. these coor-
dinates .x; y/ and �EnE� is the orthogonal projection onto the normal space to the immersion E� .
One observe that

e2�Œdx2 C dy2� D dvolE� :

Hence (3.41) implies that for any function Ef in C10 .D
2;Rm/, for any smooth immersion E�

from Bri .x
i
1/ into Rm and for any conformal coordinates ‰ one hasZ

D2
r Ef �

�
r EHE� � 3�EnE�

.r EHE�/C ?.r
?
EnE� ^

EHE�/
�
dx dy(3.42)

D 2

Z
Bri .x

i
1/

Ef ı‰�1 �
�
�? EHE� C

QA. EHE�/ � 2j
EHE� j

2 EHE�

�
dvol ;

where  D ��gRm . As observed in [18], the projection �EnE� can be expressed using the Gauss
.m � 2/-vector EnE� and the interior multiplication between multivectors

�EnE�
.Ev/ WD EnE� .EnE� Ev/:
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Hence we have in particular

(3.43) �EnE�
.r EHE�/ D .rEnE�/ .EnE�

EHE�/C EnE� ..rEnE�/
EHE�/C EnE� .EnE� r

EHE�/:

Taking now ' 2 C10 .D
2/ such that

R
D2 ' D 1 and denote

'".x/ WD "
�2'."�1 x/:

We also denote

E�";k WD '" ? E�k and E� t";k WD '" ?
E�k C t�.Bri .xi1//

Ew ı ��1k ı .‰
i /�1:

We have that E�";k ! E� strongly inW 2;2.Bri .x
i
1/;R

m/ and for " small enough klog jrE�";kjk1
remains uniformly bounded. Hence we deduce that, as " goes to zero

(3.44) EnE�";k
! EnE�k

strongly in W 1;2.Bri .x
i
1/;R

m/;

and

(3.45) EHE�";k
! EHE�k

strongly in L2.Bri .xi1/;R
m/:

Hence, combining (3.43)–(3.45) we obtain that, for any Ef 2 W 1;1\W 2;2.D2;Rm/, as " goes
to zero Z

D2
r Ef �

�
r EHE�";k

� 3�EnE�";k
.r EHE�";k

/C ?.r?EnE�";k
^ EHE�";k

/
�
dx dy(3.46)

!

Z
D2
r Ef �

�
r EHE�k

� 3�EnE�k
.r EHE�k

/C ?.r?EnE�k
^ EHE�k

/
�
dx dy:

One verifies easily moreover that G.E�";k; Ew; t/! G.E�k; Ew; t/ in L1. Hence applying (3.38)
and (3.41) to E� WD E�";k and passing to the limit as " goes to zero using again (3.44)

W.E�k/ �W.E�
t
k/ D �2

�1t

Z
D2
r Ew �

�
r EHE�k

� 3�EnE�k
.r EHE�k

/(3.47)

C ?.r?EnE�k
^ EHE�k

/
�
dx dy

� 8�1t2
Z
Bri .x

i
1/

G.E�k; Ew; t/:

Thus, combining (3.37) and (3.47), dividing by jt j taking respectively the limit as t ! 0C and
t ! 0� one obtains for any Ew in W 1;1 \W 2;2.D2;Rm/ supported in a strict open subset
to D2 ˇ̌̌̌Z

D2
r Ew �

�
r EHE�k

� 3�EnE�k
.r EHE�k

/C ?.r?EnE�k
^ EHE�k

/
�
dx dy

ˇ̌̌̌
(3.48)

� C2�k=2
�
kr Ewk1 C kr

2
Ewk2

�
:

This implies that

(3.49) div
�
r EHE�k

� 3�EnE�k
.r EHE�k

/C ?.r?EnE�k
^ EHE�k

/
�
! 0 in .W 1;1

\W 2;2/�:

Using [2, Theorems II.1 and II.2], we deduce that E�1 is conformal Willmore on Bri .xi1/
but since E�1 is conformal from .Bri .x

i
1/; J1/ into Rm, using again [2, Theorem II.2] we

obtain that E�1 is analytic on Bri .xi1/. This holds for any i in I1 and hence we have proved
Lemma 3.6.



72 Rivière, Variational principles for immersed surfaces

Proof of Theorem 3.1 continued. The goal now is to extend E�1 as a smooth embedding
through the points aj .

Let aj be such a point. Let ‰j denote a positive conformal diffeomorphism from D2,
equipped with the canonical complex structure, into a neighborhood Uj of aj in .†; J1/ and
such that ‰j .0/ D aj . We keep denoting E�1 the composition E�1 ı‰j .

Note that E�1 is conformal from D2 n ¹0º into Rm and we have that

H2.E�1.D
2
n ¹0º// < C1:

Moreover E�1.D2 n ¹0º/ � BR.0/. Hence E�1 2 L1 \W 1;2.D2 n ¹0º;Rm/. Since the 2-cap-
acity of a point in two dimensions is zero, we deduce that

E�1 2 L
1
\W 1;2.D2;Rm/:

Similarly, EnE�1 realizes a map in W 1;2.D2 n ¹0º;Grm�2.Rm//. For the same reason as
before, EnE�1 extends to a map in W 1;2.D2;Grm�2.Rm//. We now use Lemma A.5 which is
already implicitly present in [9,10, 17] but for which we thought that it could have been useful
for the reader to have the details of a proof of it presented in the appendix. We can deduce from
this lemma that E�1 extends to a Lipschitz map through 0 and that there exists an integer n such
that

(3.50) .C � o.1// jzjn�1 �

ˇ̌̌̌
@E�1

@z

ˇ̌̌̌
� .C C o.1//jzjn�1:

We claim that n D 1. Because of this estimate, for any ı > 0 there exists an rı > 0 such that,
for any r < rı ,

E�1.Br.0// � B�.E�1.0// and j@x E�1j D j@x E�1j D e
�
1 �

C.1 � ı/
p
2
jzjn�1:

where � D C.
p
2/�1n�1.1Cı/rm. We have then that the mass of E�1.†/ present inB�.E�1.0//

can be estimated from below as follows:

M
�
E�1.†/ B�.E�1.0//

�
� C 2

.1 � ı/2

2

Z
Br .0/

jzj2n�2(3.51)

�
�

n
C 2

.1 � ı/2

2
r2n

� n

�
1 � ı

1C ı

�2
��2:

This implies that the lower 2-density �2�..E�1/�Œ†�; E�1.0// of .E�1/�Œ†� at E�1.0/ is larger
than or equal to n. The Li–Yau inequality (see [15]), which also holds for varifolds with weak
L2-bounded mean curvature which are smooth outside one point (as proved in [13]), implies

(3.52) n � �2�
�
.E�1/�Œ†�; E�1.0/

�
�
W.E�1.†//

4�
:

Because of the lower semi-continuity of W and the assumption that W.E�k.†// < 8� � ı for
some ı > 0, we deduce that n D 1.

We have then proved that E�1 is aW 2;2 Lipschitz immersion, that is, an element from E†
which is smooth on † n ¹a1; : : : ; aN º and satisfies

W.E�1/ � inf
Ê 2E†

W. Ê /:
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Because of the minimality of E�, for any i and any Ew 2 C10 .Br.ai // for some r , we have that,
for t small enough,

(3.53) W.E�1/ � W.E�1 C t Ew/:

Arguing like above we have the asymptotic expansion

W.E�1/ �W.E�1 C t Ew/ D �2
�1 t

Z
D2
r Ew �

�
r EHE�1

� 3�EnE�1
.r EHE�1

/(3.54)

C ?.r?EnE�1
^ EHE�1

/
�
dx dy

� 8�1 t2
Z
Br.ai /

G.E�1; Ew; t/;

where we are using some holomorphic chart on Br.ai / which identifies Br.ai / with D2 and
where

R
Br.ai /

G.E�1; Ew; t/ is uniformly bounded w.r.t. t as before. Combining (3.53) and (3.54)
we deduce that the map E�1 realizes a weak WillmoreW 2;2 \W 1;1 immersion and from [18]
we deduce that E�1 is an analytic immersion. Since W.E�1/ < 8� , we deduce that E�1 realizes
an embedding which concludes the proof of Theorem 3.1.

In order to complete the proof of Theorem 1.7 we have to exclude the possibility for the
conformal class to degenerate while considering a minimizing sequence. This is a consequence
of the following result obtained in [20] which has also been proved in [12].

Theorem 3.7. Let .†; ck/ be a sequence of closed Riemann surfaces of fixed topology
but with degenerating conformal class ck diverging to the boundary of the moduli space of †.
Let Ê k be a sequence of conformal immersions in E†. Then

(3.55) lim inf
k!C1

Z
†

j EH Ê
k
j
2 dvol Ê �

k
gRm

> inf
Ê 2E†

W. Ê /:

4. Existence of minimizers of the Willmore energy in a conformal class

4.1. The completeness of the metric space of W 2;2 Lipschitz immersions of † in
a given conformal class. We assume in this section that† is a connected closed smooth two-
dimensional manifold of genus larger than or equal to 1. Let c be a conformal class † which
is represented by a smooth complex structure J on †. Denote by g an arbitrary smooth metric
on g that we can choose to be compatible with J . We introduce the subspace space of E† of
Lipschitz immersions realizing a complex structure equivalent to J :

Ec† WD ¹
Ê 2 E† W 9‰ 2 W

2;2.†;†/ such that ‰ is a bilipschitz diffeomorphism and
Ê ı‰ W .†; J /! Rm is conformalº:

We are now proving the following proposition.

Proposition 4.1. The metric space .Ec†; d
J / is complete. �

Proof. Let Ê k be a Cauchy sequence for dJ . From Proposition 2.5 there exists a limit
Ê
1 in E†. Denote by ‰k a Lipschitz diffeomorphism such that Ê k ı‰k is conformal. De-

note by gk WD Ê �kgRm and Jk the associated complex structure. Then ‰k realizes a bilips-
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chitz conformal diffeomorphism between .†; J / and .†; Jk/. Because of the dJ convergence,
Jk converges inL1 \W 1;2-norm to J1, the complex structure associated to g1 WD Ê �1gRm .
Denote by .U i /i2I a finite covering by balls of † chosen in such a way thatZ

Ui

jd En Ê
1
j
2 dvolg1 <

4�

3
:

Denote by �i1 W D
2 ! .U i ; J1/ the conformal parametrization given by [9, Lemma 5.1.4]

combined with the moving frame technic of the proof of [9, Theorem 5.4.3] that we exposed
also in the proofs of Lemma A.3 and Lemma A.5 below. For each i in I we use Lemma A.3 in
order to construct 'k W D2 ! D2 such that �i

k
WD �i1 ı 'k W D

2 ! .Ui ; Jk/ is conformal and
�i
k

is uniformly bounded in W 2;2 and log jr�i
k
j is also uniformly bounded in L1 (by taking

possibly U i a bit smaller but still realizing a covering of †). Denote by f i
k
.z/ WD .‰i

k
/�1 ı �i

k
the maps from D2 into .†; J /. These sequences realize sequences of conformal maps which
are harmonic if one equips .†; J / with a corresponding constant scalar curvature metric h and
denote the corresponding volume form. Observe that since ‰k is a conformal diffeomorphism
one hasZ

†

! D

Z
†

.‰�1k /�! D
1

2

Z
†

jd‰�1k j
2
h;gk

dvolgk �
1

card I

X
i2I

Z
Ui

jrf ik j
2
h dx1 dx2:

Hence ‰�1
k

is a uniformly bounded sequence in W 1;2.†;†/ (the metric gk remains compa-
rable to an arbitrary smooth fixed metric on † because of the dJ convergence) and the f i

k
are uniformly bounded sequences of conformal maps in W 1;2.D2; †/. Hence the f i

k
are uni-

formly bounded energy harmonic maps. Since the constant scalar curvature of the metric h
is non-positive (genus.†/ > 0), the sequences converge strongly in C l -norm in the interiors
of Ui (see for instance [11]). Since the �i

k
are uniformly bounded in W 2;2, since log jr�i

k
j is

also uniformly bounded in L1 and since kDisJ1.�i
k
/k1 ! 0, we deduce that ‰�1

k
converges

to a bilipschitz diffeomorphism ‰�11 which is conformal between .†; J1/ and .†; J /. This
implies that the dJ limit Ê1 is in Ec† and this concludes the proof of Proposition 4.1.

4.2. Minimizing Willmore energy in a conformal class. In this section we prove the
following theorem.

Theorem 4.2. Let † be a closed surface, let c be a conformal class on † and let m be
an integer larger than or equal to 3. Assume that

inf
Ê 2Ec†

W. Ê / � 8�:

Then the infimum is achieved by either

(i) a C1 conformally Willmore embedding of † into Rm,

or

(ii) a global isothermic embedding of .†; c/.

If one has
inf
Ê 2Ec†

W. Ê / > 8�;

the results is the same modulo the possible existence of isolated branched points.
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Proof. Let Ê k be a minimizing sequence of W in Ec†. Applying the Normalization
Lemma and arguing exactly like in the beginning of the proof of Theorem 3.1, we can assume
that

(1) We have

(4.1) Ê
k is conformal from .†; J / into Rm:

(2) There are finitely many points a1; : : : ; aN in† and a fixed finite covering .B�i1.x
i
1//i2I1

of † n ¹a1; : : : ; aN º such that for any i 2 I1, 0 < � < �1 and k large enough

(4.2)
Z
B�.x

i
1/

jd En Ê
k
j
2
gk
dvolgk <

8�

3
;

where gk WD Ê �kgRm .

(3) There exists a positive real R > 0 such that

(4.3) Ê
k.†/ � BR.0/:

(4) There exists a constant C > 0 such that

(4.4) H2. Ê k.†// � C:

(5) There exist a positive real number r > 0, independent of k, and three distinct points P1,
P2 and P3, independent of k too, in the interior of one ball B�i1.x

i
1/ such that

(4.5) 8i ¤ j; j Ê k.Pi / � Ê k.Pj /j � r > 0:

The following proposition is a direct application of Ekeland’s variational principle since the
space .Ec†; d

J / is a complete metric space as we showed in the previous subsection.

Proposition 4.3. Let J be an arbitrary smooth complex structure on † and let c be the
conformal class of .†; J /. Let Ê k be a minimizing sequence for W in Ec† such that

W. Ê k/ � inf
Ê 2Ec†

W. Ê /C 2�k :

Then there exists a E�k 2 Ec† such that

(i) E�k minimizes in Ec† the following functional

(4.6) W.E�k/ D inf
Ê 2Ec†

W. Ê /C 2�k=2 dJ . Ê ; E�k/;

(ii) we have

(4.7) W.E�k/ � W. Ê k/;

(iii) we have

(4.8) dJ .E�k; Ê k/ � 2
�k=2:
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As in the previous section we prove that d E�k converges strongly inLploc.†n¹a1; : : : ; aN º/

to a limiting W 2;2 immersion E�1 of † n ¹a1; : : : ; aN º and moreover we have that

(4.9)
Z
†n¹a1;:::;aN º

jd EnE�1
j
2
g1

dvolg1 � inf
Ê 2Ec†

4W. Ê / � 4��.†/:

We claim now that

Lemma 4.4. Under the previous notations we have that either

(4.10) E�1 is a conformal Willmore immersion of † n ¹a1; : : : ; aN º

and hence is analytic on † n ¹a1; : : : ; aN º (see [2]) or

E�1 is an isothermic immersion of .† n ¹a1; : : : ; aN º; J /:

Proof of Lemma 4.4. We consider two cases.

First case: there exists a subsequence E�k which is not made of isothermic surfaces.
Let ‰i be a local conformal chart on Bri .xi1/ for the complex structure J . We have that
E�k ı‰

i is conformal onD2. From Lemma 5.1 we know that a perturbation Ew 2 W 1;1\W 2;2

of E�k keeps infinitesimally the conformal class c if and only if for any holomorphic quadratic
differential q of .†; J / which is an holomorphic section of K ˝K, where K is the canonical
bundle T .0;1/† of .1; 0/-forms over .†; J /, one has

(4.11) .@z Ew � @z E�k dz ˝ dz; q/WP D 0;

where . � ; � /WP is the Weil–Petersson Hermitian product given locally (assuming Ew is supported
in a ball Bri .xi1/ on which we have holomorphic chart given by ‰i that we simply denote
by z), writing q D f .z/ dz ˝ dz,

.@z Ew � @z E�k dz ˝ dz; q/WP WD
i

2

Z
D2
e�2�k@z Ew � @z E�k f .z/ dz ^ dz;

where e2�k D j@x E�kj2 D j@y E�kj2.
Consider hence Ew 2 W 1;1 \W 2;2.D2;Rm/ supported in the interior of D2, satisfying

(4.11) and such that
kr EwkL1.D2/ C kr

2
EwkL2.D2/ � 1:

Using Lemma 5.1 and the Implicit Function Theorem, we conclude that there exists a family
E� t
k

in Ec† such that
E� tk WD

E�k C t�.Bri .xi1//
Ew ı .‰i /�1 C o.t/:

From now on we shall omit to write explicitly the composition with .‰i /�1 and write simply
Ew instead of Ew ı .‰i /�1.

Arguing exactly like in the previous section this implies that there exists a constantC > 0

such that for all Ew supported in a strict open subset of D2 and satisfying (4.11) one hasˇ̌̌̌Z
D2
r Ew �

�
r EHk � 3�Enk .r

EHk/C ?.r
?
Enk ^ EHk/

�
dx dy

ˇ̌̌̌
(4.12)

� C 2�k=2
�
kr Ewk1 C kr

2
Ewk2

�
;

where
EHk WD EHE�k

and Enk WD EnE�k
:
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Using the notations and computations in Appendix 5.1, we obtain that the constraints (4.11) on
Ew become

(4.13) 8j D 1; : : : ;Q;

Z
D2
f j .z/ EH0;k � Ew

i

2
dz ^ dz D 0;

where we recall that f j .z/ dz ˝ dz is the expression in the‰i conformal chart of the different
element qj of a fixed basis of the Q-dimensional complex space of holomorphic quadratic
differentials Q.J / of .†; J / and where EH0;k is the Weingarten operator associated to the
immersion E�k . Combining (4.12) and (4.13), we then obtain the existence of a sequence

�k D .�
j

k
/jD1;:::;N 2 CQ

such that

(4.14) div
�
r EHk � 3�Enk .r

EHk/C ?.r
?
Enk ^ EHk/

�
C=

�
fk.z/ EH0;k

�
! 0

in .W 1;1 \W 2;2/�, where

fk.z/ WD

QX
jD1

�
j

k
f j .z/:

Using the computations in [2, Section III.2.2], we have

(4.15) e2�k
�
�? EHk C 2<

�
. EH0;k � EHk/ EH0;k

��
� =

�
fk.z/ EHk;0

�
! 0

in .W 1;1 \W 2;2/�. The covariant Laplacian in conformal coordinates is given by

(4.16) e2�k �? EHk D �Enk

�
div�Enk .r

EHk/
�
� 4=

�
i�Enk@z�Enk@z

EHk
�
:

Combining (4.15) and (4.16), we obtain that

(4.17) =
�
4i�Enk@z�Enk@z

EHk C 2ie
2�k . EH0;k � EHk/ EH0;k � fk.z/ EHk;0

�
! 0

in .W 1;1 \W 2;2/�. It is convenient to introduce Ak 2 C given by

(4.18) Ak D e
��kfk.z/ � 2ie

�k EH0;k � EHk :

With this notation we have in particular

(4.19) @z.e
�k Ak/ D �2i@z

�
e2�k EH0;k � EHk

�
:

Using the general equation @z.e��kez/ D 2�1 EH0 (see again [2, Section III.2.2]), we have

(4.20) @z.Ak ez/ D �2ie
��k@z

�
e2�k EH0;k � EHk

�
ez C

e�k

2
Ak EH0;k :

We recall at this stage the Codazzi–Mainardi equation21)

(4.21) e�2�k@z
�
e2�k EH0;k � EHk

�
D EHk � @z EHk C EH0;k � @z EHk :

21) See [2, Lemma A.3] for a proof. A careful reader should be warned that the convention we made in [2] is
different than ours here in the sense that EH0 is replaced by its conjugate.
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Combining (4.18), (4.20) and (4.21), we obtain that

@z.Ak Eez/ D �2ie
�k
�
EHk � @z EHk C EH0;k � @z EHk

�
Eez C

e�k

2
Ak EH0;k(4.22)

D �2ie�k
�
EHk � @z EHk C EH0;k � @z EHk

�
Eez C

1

2
fk.z/ EH0;k

� ie2�k
�
EH0;k � EHk

�
EH0;k :

Another computation in [2, Section III.2.2] gives

�2i@z�Enk@z
EHk D �2i�Enk@z�Enk@z

EHk(4.23)

C 2ie�k
�
. EHk � @z EHk/Eez C . EH0;k � @z EHk/Eez

�
:

Combining (4.22) and (4.23), we obtain

@z.Ak Eez/ � 2i@z�Enk@z
EHk(4.24)

D �2i �Enk@z�Enk@z
EHk � 2ie

�k
�
. EH0;k � @z EHk/ Eez � . EH0;k � @z EHk/ Eez

�
C
1

2
fk.z/ EH0;k � i e

2�k
�
EH0;k � EHk

�
EH0;k :

Observe that

(4.25) =
�
�2ie�k

�
. EH0;k � @z EHk/Eez � . EH0;k � @z EHk/ Eez

��
D 0:

Combining (4.17), (4.24) and (4.25), we obtain

(4.26) =
�
@z
�
Ak Eez � 2i �Enk@z

EHk
��
! 0

in .W 1;1 \W 2;2/�, or in other words

(4.27) =
�
@z
�
e��kfk.z/Eez � 2ie

�k EH0;k � EHk Eez � 2i�Enk@z
EHk
��
! 0

in .W 1;1 \W 2;2/�. Let EFk D EF<k C i EF
=
k
2 L2;1.D2;Rm ˝C/ be the unique solution of

(4.28)

8<: @z EFk D e
��kfk.z/Eez � 2ie

�k EH0;k � EHk Eez � 2i�Enk@z
EHk in D2;

@� EF
=
k D 0 on @D2:

Hence combining (4.27) and (4.28), we have

(4.29)

´
� EF =k ! 0 in .W 1;1

\W 2;2/�;

@� EF
=
k D 0 on @D2:

This implies in particular that

(4.30) r EF =k ! 0 strongly in .W 1;q.D2//�; for all q > 2:

Let
EQC
k WD

EQ<k C i
EQ=k D �4e

�k EH0;k � EHk Eez � 4�Enk@z
EHk 2 Rm ˝C:
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It is proved in [18] that for any conformal immersion E�k , EQ WD . EQ<; EQ=/ satisfies

(4.31)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

EQk � rE�k WD EQ
<
k � @x

E�k C EQ
=
k � @y

E�k

D 0;

EQk ^ rE�k WD EQ
<
k ^ @x

E�k C EQ
=
k ^ @y

E�k

D 2.�1/m r?
�
?.Enk EHk/

�
rE�k :

We rewrite (4.28) in the form

(4.32) r
? EF<k Cr

EF =k D
EQk C e

2�k

 
f =
k
.z/@x E�k � f

<
k
.z/@y E�k

�f <
k
.z/@x E�k � f

=
k
.z/@y E�k

!
:

Combining (4.31) and (4.32) gives finally

(4.33)

´ �
r
? EF<k Cr

EF =k
�
� rE�k D 0;�

r
? EF<k Cr

EF =k
�
^ rE�k D 2.�1/

m
r
?
�
?.Enk EHk/

�
rE�k :

As in the proof of Theorem 3.1 we can extract a subsequence to E�k that weakly converges to a
limiting conformal immersion E�1 in W 1;1 \W 2;2 and Enk weakly converges in W 1;2 to the
Gauss map En1 of �1. Because of (4.29) and (4.30) we have

(4.34) r EF =k � r
E�k D div.r EF =k � E�k/ �� EF

=
k �
E�k ! 0 in D 0.D2/

and

(4.35) r EF =k ^ r
E�k D div.r EF =k ^ E�k/ �� EF

=
k ^
E�k ! 0 in D 0.D2/:

Assume first there exists a subsequence – that we still denote by E�k – such that j�kj is uniformly
bounded and hence a subsequence such that �k ! �1 D .�

j
1/jD1;:::;Q. This implies that

(4.36) fk.z/! f1.z/ WD

QX
jD1

�j1 f j .z/ in C l.D2/; for all l 2 N:

Standard elliptic estimates applied to the system (4.28) imply that, modulo extraction of a
subsequence, EFk converges weakly in Lp for any p < 222) to a map EF1 which is real because
of (4.30). By Rellich Kondrachov compact embedding rE�k strongly converges to rE�1 in Lq

for any q < C1. Hence using the Jacobian structures we have

r
? EF<k � r

E�k D � div
�
EF<k � r

?E�k
�

(4.37)

! � div
�
EF1 � r

?E�1
�
D r

? EF<1 � r
E�1;

r
? EF<k ^ r

E�k D � div
�
EF<k ^ r

?E�k
�

! � div
�
EF1 ^ r

?E�1
�
D r

? EF1 ^ rE�1;

r
?
�
?.Enk EHk/

�
rE�k D � div

��
?.Enk EHk/

�
r
?E�k

�
! � div

��
?.En1 EH1/

�
r
?E�1

�
D r

?
�
?.En1 EH1/

�
rE�1:

22) Also weakly� in L2;1.
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Hence we have proved that E�1 satisfies the following system: there is an EF1 2 L2;1.D2;Rm/
such that ´

r
? EF1 � rE�1 D 0;

r
? EF1 ^ rE�1 D 2.�1/

m
r
?
�
?.En1 EH1/

�
rE�1:

This is equivalent to the fact that E�1 satisfies the conformal Willmore equation and E�1 is
analytic.

Assume now that
lim

k!C1
j�kj D C1:

Then we consider EFk=j�kj and dividing equation (4.28) by j�kj and passing to the limit in the
Jacobian expressions as above we get the existence of a map EL1 and a non-zero holomorphic
function g1.z/ contained in the span of f j such that

(4.38) @z EL1 D e
�2�1g1.z/@z E�1:

This could have been done on all the balls Bri .xi1/ simultaneously23) and hence, like in the
proof of Lemma 5.1, since @z.e�2�1@z E�1/ D 2�1 EH0;1, (4.37) implies the existence of a
non-trivial holomorphic form q of Q.J / such that

=.hq; h0;1iWP/ � 0;

where locally in holomorphic coordinates h0 WD e2� EH0 dz ˝ dz. This is equivalent to the fact
that E�1 is isothermic. We have then proved Lemma 4.4 in the first case: when there exists a
subsequence E�k which is not made of isothermic surfaces.

Second case: all the E�k are isothermic conformal immersion of .†; J /. This would
mean that there exists a sequence of holomorphic quadratic differentials qk ¤ 0 such that

(4.39) =.hqk; h0;kiWP/ � 0:

We can normalize qk in such a way that hqk; qkiWP D 1 and since Q.J / is finite dimensional
we can extract a subsequence such that qk converges strongly in any C l -norm (for any l 2 N)
to a non-zero limiting holomorphic quadratic differential q1. We have seen that d E�k converges
strongly in Lploc.† n ¹a1; : : : ; aN º/ to a limitingW 2;2 immersion E�1 of † n ¹a1; : : : ; aN º and
since the second fundamental form of E�k is uniformly bounded in L2, h0;k converges weakly
in L2 to the Weingarten operator h0;1 of E�1. We can then pass in the limit in the identity
(4.39). This implies that

(4.40) =.hq1; h0;1iWP/ � 0;

from which we deduce that E�1 is an isothermic immersion of † n ¹a1; : : : ; aN º into Rm. This
concludes the proof of Lemma 4.4 in all cases.

The proof of Theorem 4.2 can be finished exactly like in the proof of Theorem 3.1 in order
to exploit the assumption inf Ê 2Ec†

W. Ê / � 8� and “remove” the singularity points ai .

23) Either qk WD
PN
jD1 �

j
k
f j .z/ dz ˝ dz is bounded in the space Q.J / of holomorphic quadratic forms

of .†; J / or goes to infinity in norm (for the Weil–Peterson Hermitian product).
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5. The conformal constraint and isothermic immersions

We first describe the immersions which are the singular points for the map which assigns
to an immersion its conformal class as we will prove in Lemma 5.1: the isothermic immersions.

Proof of Proposition 1.10. Note that C 2 isothermic immersions into R3 have been de-
fined in Definition 1.9. There are locally, away from isolated points, conformal coordinates in
which the second fundamental form is diagonal. Hence this means that the Weingarten map is
real in such charts. Take two such complex charts z D x1 C ix2 and � D �1 C i�2 overlapping
on some open set. The Weingarten operator is independent of the complex chart and we have

h0 WD 2 e
�2��En.@

2
z2
Ê / dz ˝ dz D 2e�2��En.@

2
�2
Ê / d� ˝ d�:

Our assumption reads =.�En.@
2
z2
Ê // D =.�En.@

2
�2
Ê // D 0. Moreover we have that

<.�En.@
2
�2
Ê // D .z0.�//2<.�En.@

2
z2
Ê //:

This implies that the imaginary part of the holomorphic function .z0.�//2 is zero which implies
that z0.�/ is constant and .z0.�//2 is a real constant. Thus dz ˝ dz and d� ˝ d� are propor-
tional to each other by a real non-zero constant and this implies that the form dz ˝ dz extends
to an holomorphic quadratic differential q of the Riemann surface Q† obtained by withdrawing
to † the umbilic points of the immersion Ê and we have by construction hq; h0iWP D 0.

We are now proving the reciprocal. Let q be an holomorphic quadratic differential of Q†.
Away from the isolated zeros of q we can choose complex coordinate z such that

q.z/ D dz ˝ dz

(indeed in arbitrary complex coordinates q.�/ D f .�/ d� ˝ d� where f is holomorphic and
just choose z.�/ D

p
f .�/. In these coordinates the condition (1.19) implies =. EH0/ D 0which

means that the second fundamental form is diagonal in these complex coordinates and hence
Ê is local isothermic.

Proof of Proposition 1.12. Let Ê be an immersion. From computations made in [2, Sec-
tion III.2.2] we have in complex coordinates

(5.1) @z
�
e�2�@z Ê

�
D 2�1 EH0:

Assume Ê is local isothermic. Because of the previous proposition there exist complex coordi-
nates in which =Œ EH0� D 0. Hence in these coordinates

(5.2) =
�
@z
�
e�2�@z Ê

��
D 0 in D2:

Let EL D EL< C i EL= 2 Rm ˝C be the unique solution to the following elliptic system:´
@z EL D e

�2� @z Ê in D2;

EL= D 0 on @D2:

Then, because of (5.2), EL= solves ´
� EL= D 0 in D2;

EL= D 0 on @D2:
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This implies that EL D EL< 2 Rm. Hence we have proved (1.20). Assuming now that (1.20)
holds, we obtain the existence of complex coordinates such that (5.2) is satisfied which implies
from (5.1) that =. EH0/ D 0 and from which we deduce that Ê is isothermic. This finishes the
proof of Proposition 1.12.

Proof of Proposition 1.13. An elementary computation gives for any pair Ê and EL from
D2 into Rm

4=
�
@z EL � @z Ê

�
D r EL � r? Ê

and

4=
�
@z EL ^ @z Ê

�
D r EL ^ r? Ê :

Hence (1.20) clearly implies (1.21).
Assuming now that (1.21) holds, we have then the existence of EL 2 Rm such that´

Ee1 ^ @y EL D Ee2 ^ @x EL;

Ee1 � @y EL D Ee2 � @x EL:

A short computation shows that this implies the existence of .a; b/ 2 R2 such that

r
? EL D

 
b a

a �b

! 
Ee1

Ee2

!

or in other words, introducing f WD e�.aC ib/, one has

(5.3) @z EL D f e
�2�@z Ê :

Since the components of EL are real, and by consequence the components of � EL are real as
well, we have that

=
�
@z
�
fe�2�@z Ê

��
D 0:

Using (5.1) this gives

@zf Eez � @zf Eez D �
e�

2

�
f EH0 � f EH0

�
:

Since EH0 is orthogonal to the tangent plane of the immersion and since Eez and Eez are in the
complexified space to the tangent space and are linearly independent, we deduce

@zf D 0:

Take now w D
p
f . Then equation (5.3) becomes

@w EL D e
�2�
jf j@w Ê

and one observes that e� jf j�1=2 is the new conformal factor of Ê in the coordinate w, which
means that Ê satisfies (1.20) in these coordinates and hence, from the previous proposition,
Ê is an isothermic immersion.

Finally we prove that the global isothermic immersions are the degenerate points for the
conformal class mapping. Precisely we prove the following result.
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Lemma 5.1. Let Ê be a conformal W 2;2 \W 1;1 immersion of a closed Riemann sur-
face .†; J / of genus larger than or equal to one. Consider in a neighborhood of 0 the map

C W Ew 2 W 2;2
\W 1;1

! C. Ew/ 2 T†;

where T† is the Teichmüller space associated to the surface † and C. Ew/ is the Teichmüller
class issued from the immersion Ê C Ew with fixed generators of the �1 on †. The map C is
C 1 in a neighborhood of 0. Identifying T† with the space Q.J / of holomorphic quadratic
differentials24) on .†; J /, its differential at 0 is given by

(5.4) dC.0/ � E� D 8

QX
jD1

qj hqj ; @zE� � @z Ê dz ˝ dziWP;

where h � ; � iWP is the Weil–Peterson Hermitian product and .qj /jD1;:::;Q is an orthonormal
basis ofQ.J / for this product. Moreover Ê is an isothermic surface if and only if dC.0/ is not
a submersion onto the space of holomorphic quadratic differentials of .†; J /.

Proof. Let Ê be a conformal W 2;2 \W 1;1 immersion of .†; J / and Ew be a map in
W 2;2 \W 1;1.†;Rm/, small enough in this space, in such a way that Ê C Ew still defines an
immersion. Denote by J Ew theW 1;2 complex structure defined by . Ê C Ew/�gRm . Using Lem-
ma A.3 there exists a covering of† by disks .Ui /i2I andW 1;1 \W 2;2 diffeomorphisms  Ewi
from D2 into Ui such that . Ê C Ew/ ı  i is conformal. Considering now † together with the
covering Ui and the holomorphic transition maps

h Ewij .z/ WD . 
Ew
j /
�1
ı  Ewi ;

which satisfy of course the cocycle condition

h Ewij ı h
Ew
jk ı h

Ew
ki .z/ D z;

we have defined a new smooth complex structure on †, QJ Ew which is equivalent to .†; J Ew/:
there exist smooth conformal diffeomorphisms ' Ew from D2 into .Ui ; QJ Ew/ and an homeomor-
phism25) ‰ Ew of † isotopic to the identity which is conformal from .†; J Ew/ into .†; QJ Ew/ and
such that‰0 D id† and QJ 0 D J . Hence‰ Ew is bilipschitz and both‰ Ew and .‰ Ew/�1 areW 2;2.
By replacing now Ê by . Ê C Ew/ ı .‰ Ew/�1, if one shows that C is C 1 at 0, one has shown that
C is C 1 in a neighborhood of the origin.

In order to show that C is C 1 at 0 it suffices to show that the mappings wich to Ew assigns
the family of holomorphic transition functions h Ewij is C 1 from W 1;1 \W 2;2 into C 0 (which
implies that it isC 1 fromW 1;1 \W 2;2 intoC l for an arbitrary l on a slightly small covering).
In order to show that it suffices to show that the mappings which to Ew assigns  Ewi and . Ewi /

�1

are C 1 from W 1;1 \W 2;2 into W 2;p for some p > 1. This can be done following carefully
the construction of conformal coordinates in Lemma A.3. We leave the details to the reader.

We compute now the differential of C at the origin. As above h Ew denotes the metric
of constant scalar curvature compatible with .†; QJ Ew/ and we denote simply by h the con-
stant scalar curvature compatible with .†; J /. Let u Ew be the harmonic map from .†; J / into

24) See for instance [11, Theorem 4.2.2].
25) The surface † together with the charts .Ui ;  i / defines a smooth complex manifold since  �1j ı  i are

holomorphic, the smooth complex structure being given by the multiplication by i in the charts. It admits then a
constant scalar curvature metric h Ew and ‰ Ew is the harmonic diffeomorphism from .†; g Ew / into .†; h Ew / isotopic
to the identity, see [11].
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.†; QJ Ew/ isotopic to the identity given by [11, Corollary 3.10.1]. The map C. Ew/ is given ex-
plicitly by

C. Ew/ D

QX
jD1

A Ewj qj ;

where

A Ewj WD
˝
qj ;

�
h@xu

Ew ; @xu
Ew
ih Ew � h@yu

Ew ; @yu
Ew
ih Ew � 2ih@xu

Ew ; @yu
Ew
ih Ew

�
.dz/2

˛
WP:

Denote v Ew WD .‰ Ew/�1 ı u Ew and e�
Ew

g Ew D .‰ Ew/�h Ew . Hence we have in particular

A Ewj WD
˝
qj ; e

2� Ew
�
h@xv

Ew ; @xv
Ew
ig Ew � h@yv

Ew ; @yv
Ew
ig Ew � 2ih@xv

Ew ; @yv
Ew
ig Ew

�
.dz/2

˛
WP:

LetX E� WD dv Ew.0/ � �. Since v0 D id†, we have, writing locally qj D qzj .z/ dz ˝ dz in com-
plex coordinates26) satisfying in particular

j@x Ê j D j@y Ê j D e
�

and then in which h D e2�.0/g D e2�.0/C2�Œdx2 C dy2�

dA Ewj .0/ � � D

Z
†

e�2��2�.0/qzj .z/e
2�.0/

�
2h@xX

E� ; @x id†ig � 2h@yX E� ; @y id†ig

C 2ih@xX
E� ; @y id†ig C 2i h@yX E� ; @x id†ig

C dg Ew11.0/ � � � dg
Ew
22.0/ � � C 2i dg

Ew
12.0/ � �

� i
2
dz ^ dz:

Decomposing the vector-field X E� as X E� D X E�z @z CX
E�
z @z (where @z WD 2�1.@x � i@y/) and

observing that
dg Ew.0/ � � D .@xj

Ê � @xi E� C @xi
Ê � @xj E�/ij

gives

dA Ewj .0/ � � D 2i

Z
†

qzj .z/@zX
E�
z dz ^ dz(5.5)

C 4i

Z
†

e�2�qzj .z/@z
Ê � @zE� dz ^ dz:

Observe that

qzj .z/@zX
E�
z dz ^ dz D q

z
j .z/ dz ^ d.X

E�
z / D d

�
X E�z q

z
j .z/ dz

�
:

Let � be another complex coordinates. We have that

qj D q
z
j .z/ dz ˝ dz D .�

0/�2qzj .z/ d� ˝ d�:

Then q�j .�/ D .�
0/�2qzj .z/. We also have

X D X E�z @z CX
E�
z @z D �

0X E�z @� C �
0
X E�z @� :

Hence � 0X E�z D X
E�
�

and

˛ D X E�z q
z
j .z/ dz D X

E�
� .�
0/�1q

�
j .�/.�

0/2� 0 d� D X E�� q
�
j .�/ d�

26) As usual the Weil–Peterson metric is expressed using local complex coordinates bearing in mind that the
expression of the integrand is independent of this local choice.
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is an intrinsic 1-form globally defined on †. ThusZ
†

qzj .z/@zX
E�
z dz ^ dz D

Z
†

d˛ D 0

and (5.5) implies (5.4). It remains to prove that dC.0/ is a submersion onto the space of holo-
morphic quadratic differentials of .†; J /.

In local conformal coordinates for Ê we denote Eei D e��@xi Ê where e� D j@xi Ê j.
Let .En˛/˛D1;:::;m�2 be a local orthonormal frame of the normal bundle to Ê .†/. We denote
h˛ij WD �e

��Eei � @xj En˛. The Weingarten map is given by

EH0 D

m�2X
˛D1

H˛
0 En˛ WD

1

2

m�2X
˛D1

.h˛11 � h
˛
22 � 2 i h

˛
12/En˛:

Denote Eez WD e��@z Ê D 2�1.Ee1� i Ee2/ and Eez WD e��@z Ê D 2�1.Ee1C i Ee2/. Some elemen-
tary computations give (see for instance [2, Section III.2.2])

(5.6) @z.e
��
Eez/ D 2

�1 EH0:

Let E� be a map supported in the domain of definition for the local conformal charts that we
identify with D2. We assume E� to be in W 2;2

0 \W 1;1.D2/. Denote by fj .z/ dz ˝ dz the
expression of the basis qj in this conformal charts in such a way that fj .z/ are holomorphic
functions on D2. The expression (5.4) of dC.0/ � � gives

dC.0/ � E� D 8

QX
jD1

qj

Z
D2
fj .z/e

��
Eez � @zE�

i

2
dz ^ dz(5.7)

D �8

QX
jD1

qj

Z
D2
fj .z/@z.e

��
Eez/ � E�

i

2
dz ^ dz

D �8

QX
jD1

qj

Z
D2
fj .z/ EH0 � E�

i

2
dz ^ dz:

If

� !

�Z
D2
fj .z/ EH0 � E�

i

2
dz ^ dz

�
jD1;:::;Q

does not have a complex N -dimensional Range, then it would mean that the real 2N linear
forms on W 2;2 \W 1;1 given by

� !

�
<

�Z
D2
fj .z/ EH0 � E�

i

2
dz ^ dz

�
;=

�Z
D2
fj .z/ EH0 � E�

i

2
dz ^ dz

��
jD1;:::;Q

are linearly dependent. This is equivalent to the existence of a non-trivial family of real numbers
.�j ; ıj /jD1;:::;Q 2 R2Q such that for all E� 2 W 2;2 \W 1;1,

QX
jD1

�j <

�Z
D2
fj .z/ EH0 � E�

i

2
dz ^ dz

�
C ıj=

�Z
D2
fj .z/ EH0 � E�

i

2
dz ^ dz

�
D 0

or in other words there would exist .ıj C i�j / 2 CQ, being not all equal to zero, such that

=

"
NX
jD1

.ıj C i�j /fj .z/ EH0

#
� 0:
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In other words again, this would mean that there exists a non-zero holomorphic quadratic
form q in QJ such that

=.hq; h0iWP/ � 0;

where locally h0 WD e2� EH0 dz ˝ dz. This is equivalent to the fact that Ê is isothermic. Hence
if we make the assumption that Ê is not isothermic, the dimension of the range of dC.0/ is
Q D dim.Q.J //, which concludes the proof of Lemma 5.1.

A. Appendix

Lemma A.1. Let g and h be two metrics at a point p 2 D2 such that

jDis.g/j < 1 � 2�k;

where k 2 N. Then the following inequality holds:

(A.1)
1

2
inf

X2R2n¹0º

jX j2g

jX j2
h

�
tr.g/
tr.h/

� 2k sup
X2R2n¹0º

jX j2g

jX j2
h

:

Proof. Observe that

jX j2g D

�
tr.g/C<ŒH.g/�

2

�
X21 C

�
tr.g/ �<ŒH.g/�

2

�
X22 � =ŒH.g/�X1X2:

Hence, denoting also X D X1 C iX2

jX j2g D <

��
H.g/

2
X C

tr.g/
2
X

�
X

�
:

We deduce that

(A.2)
jX j2g

jX j2
h

D
tr.g/
tr.h/

1C<ŒDis.g/e2i � �
1C<ŒDis.h/ e2i � �

;

where X D jX je2i� .
Since jDis.g/j < 1 � 2�k , using (A.2) we have that

tr.g/
tr.h/

2�k

inf� j1C<ŒDis.h/e2i � �j
� sup
X2R2n¹0º

jX j2g

jX j2
h

:

Hence in particular inf� j1C<ŒDis.h/ e2i � �j > 0 and by taking e2i� WD Dis.h/=jDis.h/j (in
the case when Dis.h/ ¤ 0) we see that there is a � such that 1C<ŒDis.h/e2i � � > 0, by conti-
nuity this implies that

8� 2 R; 1C<ŒDis.h/e2i � � > 0:

This implies that inf� j1C<ŒDis.h/e2i � �j D 1 � jDis.h/j < 1 from which we deduce the up-
per bound in (A.1). Take now again X D jX jei� in such a way that e2i� WD Dis.h/=jDis.h/j
(still in the case when Dis.h/ ¤ 0). For this X we have

tr.h/
tr.g/

D
jX j2

h

jX j2g

1C<ŒDis.g/e2i � �
1C jDis.h/j

� 2 sup
X¤0

jX j2
h

jX j2g
;

which gives the lower bound in (A.1).
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Lemma A.2. There exists an "0 > 0 such that for any E� 2 W 2;2 \W 1;1.D2;Rm/
satisfying

(A.3) jDis.E�/j < "0

and Z
D2
jr EnE� j

2
g dvolg <

4�

3
;

where g WD E��gRm , there exist Ee1 and Ee2 in W 1;2.D2; Sm�1/ such that

Ee1 � Ee2 D 0; nE� D Ee1 ^ Ee2;(A.4) Z
D2

�
jrEe1j

2
g C jrEe2j

2
g

�
dvolg � 2

Z
D2
jr EnE� j

2
g dvolg(A.5)

and

(A.6)

´
d.�g.Ee1; d Ee2// D 0;

��
@D2
�g .Ee1; d Ee2/ D 0;

where �@D2 is the canonical inclusion of @D2 in R2.

Proof. This lemma is proved in [9, Lemma 5.1.4] for E� conformal – which implies that
g D E��gRm D e

� dx2 C dy2 and hence, in that case, for any function fZ
D2
jdf j2g dvolg D

Z
D2
jrf j2 dx dy:

We now explain how the strategy in [9] adapts to the case when Dis.E�/ D 0 is replaced by
(A.3). The assumption (A.3) implies that for all .x; y/ 2 D2 and X 2 T.x;y/D2

(A.7) .1 � "20/jX j
2
g0
� .detg/�1jX j2g � .1C "

2
0/jX j

2
g0
;

where g0 is the flat metric dx2 C dy2. We can first assume that nE� is a smooth map from
D2 into the Grassmann space of oriented 2-planes in Gr2.Rm/ – which are dense in the space
W 1;2.D2;Gr2.Rm// see step 6 of the proof of [9, Lemma 5.1.4]. Let Qe WD . Qe1; Qe2/ be a smooth
orthonormal 2-frame27) in Rm realizing (A.4). For each r 2 .0; 1� we minimize

Fr.�/ D

Z
D2r

j.e1; de2/j
2
g dvolg ;

among � 2 W 1;2.D2r ;R/ and e1 C ie2 D ei� . Qe1 C i Qe2/. Since .er1; de
r
2/ D d� C . Qe1; d Qe2/,

it follows that Fr is convex and the minimum is achieved by a unique er satisfying

(A.8)

´
d.�g.e

r
1; de

r
2// D 0 in D2r ;

��
@D2r
�g .e

r
1; de

r
2/ D 0;

where �@D2r is the canonical embedding of @D2r in R2. Hence there exists a unique function

27) This trivialization exists since we are now working with a smooth En� and the pull-back overD2 by En� of
the tautological bundle SO.m/=SO.m � 2/ over Gr2.Rm/ is trivial since D2 is contractible.
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f r 2 W
1;2
0 .D2r ;R/ such that �g.er1; de

r
2/ D df

r and f r satisfies

(A.9)

´
�g0f

r
D @xe

r
1 � @ye

r
2 � @xe

r
2 � @ye

r
1 C �g0d..�g0 � �g/ df

r/ in D2r ;

f r D 0 on @D2r ;

where �g0 is the Laplace operator for the flat metric �g0 D �Œ@
2
x C @

2
y �. Because of (A.7) we

have that for any one-form ˛ onD2 j.�g � �g0/˛j � "0 j˛j. Hence Wente’s estimates together
with more standard elliptic estimates give the boundZ

D2r

jrf r j2 dx dy �
3

16�

Z
D2r

jrer1j
2 dx dy

Z
D2r

jrer2j
2 dx dy(A.10)

C C"0

Z
D2r

jrf r j2 dx dy

for some universal C > 0. Thus for "0 chosen small enough we obtain the existence of C > 0

independent of r and the data of the lemma such that

(A.11)
Z
D2r

jrf r j2 dx dy �
3

16�
.1C 2C"0/

Z
D2r

jrer1j
2 dx dy

Z
D2r

jrer2j
2 dx dy:

Once this estimate is established, the rest of the arguments of F. Hélein carries over and we
obtain Lemma A.2.

Lemma A.3. There exist "0 > 0 and 0 < ˛ < 1 such that for any

E� 2 W 2;2
\W 1;1.D2;Rm/

satisfying
jDis.E�/j < "0

and Z
D2
jr EnE� j

2
g dvolg <

4�

3
;

where g WD E��gRm , there exists a � 2 W 1;1
loc \W

2;2
loc .D

2;D2/ such that E� ı � is conformal,

(A.12) k�kC0;˛.D2/ C k�
�1
kC0;˛.D2/ � C

�
exp.Cklog jrE�jkL1.D2//

�
;

where C > 0 is independent of E�, and for all 1 > r > 0 there exists a Cr > 0 such that

(A.13) klog jr.E� ı �/jkL1.D2r / C k
E� ı �kW 2;2.D2r /

� Cr
�
1C exp.klog jrE�jk1/

�
;

where Cr > 0 only depends on r and not on E�.

Proof. Let .Ee1; Ee2/ be the orthonormal 2-framing given by Lemma A.2 such that

EnE� D Ee1 ^ Ee2

and let f be such that f � 0 on @D2 and df D �g.Ee1; d Ee2/. Hence it solves´
�gf D .r

?
Ee1;rEe2/ on D2;

f D 0 on @D2;
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writing as in the proof of Lemma A.2

(A.14)

´
�g0f D @x Ee1 � @y Ee2 � @x Ee2 � @y Ee1 C �g0d..�g0 � �g/ df

r/ in D2;

f D 0 on @D2:

Using integrability compensation result [9, Theorem 3.4.1], we get the a-priori estimate

(A.15) krf kL2;1.D2/ � CkrEe1kL2.D2/krEe2kL2.D2/ C C"0krf kL2;1.D2/;

where we have used the fact that for any one-form ˛ on D2 j.�g � �g0/˛j � "0j˛j. Hence by
density of smooth maps, for "0 small enough, we convert the a-priori estimate (A.15) into an
estimate and by Lorentz–Sobolev embedding one has

(A.16) kf kL1.D2/ � C krf kL2;1.D2/ � C

Z
D2
jr EnE� j

2 dvolg :

Let "i WD d E��1Eei and let "�i be the dual unit frame for the g D E��gRm metric of ."1; "2/. We
have that

(A.17)

´
df ^ "�1 D .�gdf / ^ .�g"

�
1/ D �.Ee1; d Ee2/ ^ "

�
2;

df ^ "�2 D .�gdf / ^ .�g"
�
2/ D .Ee1; d Ee2/ ^ "

�
1 :

Moreover the Cartan formula gives

d"�i .Ee1; Ee2/ D d."
�
i .Ee2// � Ee2 � d."

�
i .Ee1// � Ee2 � "

�
i .ŒEe1; Ee2�/(A.18)

D �"�i .ŒEe1; Ee2�/ D �"
�
i .DEe1 Ee2 �DEe2 Ee1/;

where D is the Levi-Civita connection associated to the induced metric g. Using the immer-
sion E�, we have that

DX Eei D PE�.d Eei �X/;

where PE� is the orthonormal projection in Rm onto T E�.D2/. Hence

DX Eei D .Ee1; d Eei �X/Ee1 C .Ee2; d Eei �X/ Ee2:

Combining this later fact with (A.18) gives

(A.19)

´
d"�1 D �.Ee1; d Ee2/ ^ "

�
2;

d"�2 D �"
�
1 ^ .Ee1; d Ee2/:

Combining (A.17) and (A.19) gives

(A.20) d.e�f "�1/ D 0 and d.e�f "�2/ D 0:

Hence there exists a � WD .�1; �2/ 2 W 2;2 \W 1;1.D2;R2/ such that

(A.21) d�i D e
�f "�i and �i .0/ D 0:

Note that r� has maximal rank equal to 2 at every point, therefore it realizes a Lipschitz
diffeomorphism from D2 into � WD �.D2/. Let @

@�i
be the dual basis to d�i . Since

d E� D

2X
iD1

d E� � "i"
�
i ;

one has

d E� �
@

@�i
D ef Eei :
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Hence E� ı ��1 is a conformal immersion. For every one-form ˛ on D2 one has

(A.22) .1 � "20/j˛j
2
g0
� .detg/j˛j2g � .1C "

2
0/j˛j

2
g0
:

Hence, since jd� j2g D e
2f , since detg D j@x E� � @y E�j2 and since

1

2
�

Dis.E�/2

2
� jrE�j�2j@x E� � @y E�j

2
�
1

2
C

Dis.E�/2

2
;

we deduce from (A.22) and (A.16) the following estimate:

(A.23) klog jr� jg0kL1.D2/ � Cklog jrE�jkL1.D2/ C C
Z
D2
jr EnE� j

2 dvolg :

Moreover from the above remark28) we have that jDis.�/j < 2 "0. Hence we deduce

(A.24)

8<:
jDis.��1/j < 2"0;

klog jr��1jg0kL1.�/ � Cklog jrE�jkL1.D2/ C C
Z
D2
jr EnE� j

2 dvolg :

Let h be the solution to the Riemann Mapping Theorem for �:

� h W �! D2 is holomorphic,

� h.0/ D 0 and h0.0/ 2 R with h0.0/ > 0.

The Riemann Mapping Theorem asserts that h is bi-holomorphic and we will denote by k
its holomorphic inverse from D2 into �. Finally let � WD ��1 ı k. (We shall often see � as a
C-valued map.) Then � satisfies

(A.25) @z� D �.z/@z�;

where

� ı h WD
@z�
�1

@z��1
D

H.r��1/

jr��1j2 C 2 detr��1
:

Since detr��1 � 0, we obtain

(A.26) k�kL1.D2/ � 2"0:

Let ı WD dist.0; @�/. Integrating d��1 on a segment S connecting 0 to one of its nearest point
P on @� gives

1 D

ˇ̌̌̌Z
S

d��1
ˇ̌̌̌
� ıkr��1k1

and integrating now d� on a ray R issued from zero and connecting ��1.P / gives

ı D jP � 0j D

ˇ̌̌̌Z
R

d�

ˇ̌̌̌
� kr�k1:

Hence we have

(A.27)
1

kr��1k1
� ı � kr�k1:

28) We use that jd�1 ^ d�2jg D jd� j2g=2 and (A.22).
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Combining (A.23), (A.24) and (A.27) gives

(A.28) jlog ıj � Cklog jrE�jkL1.D2/ C C
Z
D2
jr EnE� j

2 dvolg :

Since h is holomorphic and h.�/ D D2, we have

(A.29) kh0kL1.Bı=2.0// �
C1

ı
khk1 �

C1

ı
:

This implies that h.B2r .0// � B
2
C1r=ı

.0/ and hence for instance k.@B1=4.0// � �nBı=4C1.0/.
Hence

klog j�jkL1.@B1=4.0// � jlogŒ4C1kr�k1�j C jlog ıj(A.30)

� C
�
1C klog jrE�jkL1.D2/

�
C C

Z
D2
jr EnE� j

2 dvolg :

We have

(A.31) kk0kL1.B1=2.0// � 2C1kkk1 D 2C1kr�k1:

This implies that

kr�kL1.B1=4.0// � 2C1kr�
�1
k1kr�k1(A.32)

� 2C1 exp
�
Cklog jrE�jkL1.D2/ C C

Z
D2
jr EnE� j

2

�
:

In B1.0/ n B1=4.0/ we write �i D e�Ci�, where � is a real-valued function and where � takes
values in R=2�Z. Using this notation (A.25) becomes

Œ1 � � e�2i��

Œ1C � e�2i��
@z� D �i @z�;

which implies

(A.33) <

�
@

@z

�
.1C ˇ/

@�

@z

��
D 0;

where ˇ WD ˇ1 C iˇ2 D �2�e�2i�Œ1C �e2i���1. Hence � satisfies

(A.34)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2X
i;jD1

@xi Œaij @xj�� D 0 in B21 .0/ n B
2
1=4.0/;

� D 0 on @B21 .0/;

� D log j�j on @B21=4.0/;

where a11 D a22 D 1C ˇ1 and a12 D �a21 D �ˇ2. From (A.26) we have that jˇj < 4"0.
Hence for "0 > 0 small enough, the De Giorgi–Nash result (see for instance [26]) gives the
existence of 0 < ˛ < 1 such that

k�kC0;˛.B21nB
2
1=4
/ � Cklog j�jkW 1;1.@B1=4.0//

:

Using (A.32), we then obtain

(A.35) kj�jkC0;˛.B21nB
2
1=4
/ � 2C1 exp

�
Cklog jrE�jkL1.D2/ C C

Z
D2
jr EnE� j

2

�
:
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Since

(A.36) <

�
@

@z

�
.1C ˇ/�1

@�

@z

��
D 0;

we get a similar control to (A.35) for arg‰ onB21 n B
2
1=4

. Hence combining these last estimates
together with (A.32) again, we finally obtain

(A.37) k�kC0;˛.D2/ � 2C1 exp
�
Cklog jrE�jkL1.D2/ C C

Z
D2
jr EnE� j

2

�
;

which finishes the proof of Lemma A.3.

Lemma A.4 (Normalization Lemma). Let .†; h/ be a Riemann surface where h denotes
the hyperbolic metric of volume 1 associated to the conformal class c. Assume c is contained
in a compact class K of the moduli space of †. For any ƒ > 0 there exist R > 0, 1 > r > 0
and ı > 0 such that, for any conformal embedding Ê of † into Rm satisfying

(A.38)
Z
†

jd En Ê j
2
g dvolg < ƒ;

where g WD Ê �gRm , and for any choice of a geodesic disc B2r.p/ for the metric h satisfyingZ
B2r .p/

jd En Ê j
2
g dvolg < ı

there exists a Möbius transformation „ of Rm such that

„ ı Ê .†/ � BmR .0/;(A.39)

H2.„ ı Ê .†// � 3R2ƒ;(A.40)

cr�2h � g
„ı Ê
� c�1r�2h on Br.p/;(A.41) Z

Br.p/

jd En
„ı Ê
j
2
g dvolg <

8�

3
:(A.42)

Proof. Let � be the function given by e2�h D Ê �gRm . Then � satisfies

��h� D Kg e
2�
CKh;

where Kh D 4�.1 � genus.†// is the scalar curvature of the metric h and Kg is the scalar
curvature of the metric g WD Ê �gRm . Since the L1-norm of Kge2� is bounded by ƒ, standard
elliptic estimates give the existence of a constant C.†; h/ > 0 such that

(A.43) kd�kL2;1.†/ � C.†; h/.ƒ
2
C 1/;

where theL2;1-norm is taken w.r.t. h. Since h is assumed to be contained in a compact subpart
of the moduli space of †, we have that C.†; h/ is uniformly bounded. On the disc B2r.p/ we
take conformal coordinates in such a way that the flat metric in these coordinates is comparable
to h (i.e. h D e� Œdx21 C dx

2
2 � and e� is comparable to Cr2, where C is universal) and we iden-

tify B2r.p/ with the flat unit discD2. Let f such that e2f Œdx21 C dx
2
2 � D g (i.e. f D �C �).
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We have

(A.44) krf kL2;1 � C Œƒ
2
C 1�:

We assume ı < 8�=3 and then using [9, Lemma 5.1.4] there exists a W 1;2 orthonormal frame
.Ee1; Ee2/ on B2r.p/ such that

(A.45) En Ê D Ee1 ^ Ee2;

which is in W 1;2.D2; Sm�1 � Sm�1/, such that

Ee1 � Ee2 D 0; nE� D Ee1 ^ Ee2;(A.46) Z
D2

�
jrEe1j

2
C jrEe2j

2
�
dx dy � 2

Z
D2
jr EnE� j

2 dx dy(A.47)

and

(A.48)

8̂<̂
:

div.Ee1;rEe2// D 0 in D2;�
Ee1;

@Ee2

@�

�
D 0 on @D2:

With this frame, as in [9], we can express �f and we have

(A.49) �f D .r?Ee1;rEe2/:

Let � be the solution of

(A.50)

´
�� D .r?Ee1;rEe2/ on D2;

� D 0 on @D2:

Wente’s inequality gives

(A.51) k�kL1.D2/ C kr�kL2.D2/ � C

2X
iD1

Z
D2
jrEei j

2
� Cı:

Combining (A.44) and (A.51), we obtain, since f � � is harmonic, that

(A.52) kf � f kL1.D2
1=2
/ � Cı C C Œƒ

2
C 1�;

where f is the average of f on the 2 disc of radius 1=2, D2
1=2

.
We translate the surface Ê .†/ in such a way that Ê .p/ D 0. Denote byƒt .x/ D etx the

dilation of rate et . Observe that
En Ê D Enƒtı Ê

:

We consider now the new immersionƒt ı Ê that we denote by Ê t and ft WD f C t . We
are going to fix t such that f C t will be comparable to 1 but will be relatively small.

From [13, (A.6)] for any x0 2 Rm and 0 < � �C1,

��2H2. Ê t .†/ \ B� .x0// � 3

�
r�2H2. Ê t .†/ \ Br.x0//(A.53)

C

Z
Ê�1
t .Br .x0//

j EH j2 dvolg

�
:
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We claim that there exist �0 depending only on ƒ > W. Ê / and x1 2 B1.0/ such that
Ê
t .†/ \ B�0.x1/ D ;. For y 2 Ê .†/ one has

(A.54) lim
�!0

��2H2. Ê .†/ \ B� .y// D �:

For 0 < � < 1=2 we consider a regular covering of B1.0/ by balls B�.zl/ in such a way that
any point in B1.0/ is contained in at most C.m/ balls of the form B2�.zl/. The number of l
such that Z

Ê�1.B2�.zl //

j EH j2 dvolg > C�1
�

2

is bounded by 2ƒCC.m/. For an l such thatZ
Ê�1.B2�.zl //

j EH j2 dvolg < C�1
�

2

and such that there exists a y 2 B�.zl/ \† ¤ ;, combining (A.53) and (A.54) one obtains
that

.2�/�2H2. Ê .†/ \ B2�.zl// > C
�1�

2
:

The number of such l is then bounded by ��2 times a number depending only on m and ƒ –
where we are using again (A.53) but for x0 D 0, � D 1 and r !C1. The total number of
balls B�.zl/ is proportional to ��m. Sincem > 2, for � D �0 chosen small enough, depending
only on m and ƒ, we deduce the claim.

Let x1 and �0 given by the claim. Let I.x/ WD x � x1=jx � x1j2 be the inversion with
respect to x1. We will choose „t D I ıƒt for some suitable t . We have then

(A.55) „t . Ê .†// � B1=�0.0/;

Because of (A.52)

(A.56) ƒt ı Ê .D
2
1=2/ � B˛ etCf .0/

for ˛ being the exponential of the right-hand side of (A.52), ˛ WD eCıCCŒƒ
2C1�. Moreover,

still because of (A.52), we have

(A.57) �˛�2e2.tCf / � H2.ƒt ı Ê .D
2
1=2// D

Z
D2
1=2

e2.tCf / � �˛2e2.tCf /:

Choosing already t such that ˛etCf < 1, we conclude that (A.57) implies that

(A.58)
1

4˛2
e2.fCt/ � g

„tı Ê
�
˛2

�20
e2.fCt/;

from which we deduce

(A.59)
1

4
˛etCf � H2.„t ı Ê .D

2
1=2// �

�

�20
˛2e2.tCf /:

An exact computation gives

En
„tı Ê

D En Ê � 2.Enˆ . Ê t � x1// ^
Ê
t � x1

j Ê t � x1j2
;

where we see En as a 2-vector. Hence we obtain that

jr En
„tı Ê
j � 4jr En Ê j C 4�

�1
0 jr

Ê
t j:
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This implies, using (A.59),

(A.60)
Z
D2
1=2

jr En
„tı Ê
j � 4ı C 4

�

�40
˛2e2.tCf /:

We choose now t such that
4ı C 4

�

�40
˛2e2.tCf / D

8�

3

and collecting (A.55), (A.58) and (A.60) gives the result. Indeed it remains only to check
(A.40). We first observe that inequality (A.53) (which holds also for Ê replaced by „ ı Ê )
implies that, for any r � ��10 ,

H2.„ ı Ê .†// � C��20 r�2H2.„ ı Ê .†//C ��20 ƒ:

Letting � converge toC1 yields the desired estimate (A.40). Hence Lemma A.4 is proved.

Lemma A.5. Let E� be a conformal immersion of D2 n ¹0º into Rm satisfying

E� 2 W
2;2

loc .D
2
n ¹0º;Rm/ and log jrE�j 2 L1loc.D

2
n ¹0º/:

Assume E� extends to a map inW 1;2.D2/ and that the corresponding Gauss map EnE� also extends
to a map in W 1;2.D2;Grm�2.Rm//. Then E� realizes a Lipschitz conformal immersion of the
whole disc D2 and there exits a positive integer n and a constant C > 0 such that

(A.61) .C � o.1//jzjn�1 �

ˇ̌̌̌
@E�

@z

ˇ̌̌̌
� .C C o.1//jzjn�1:

Proof. We can always localize in order to ensure thatZ
D2
jr EnE� j

2 dx dy <
8�

3
:

Using [9, Lemma 5.1.4], we can deduce the existence of a framing Ee WD .Ee1; Ee2/ which is in
W 1;2.D2; Sm�1 � Sm�1/ such that

Ee1 � Ee2 D 0; nE� D Ee1 ^ Ee2;(A.62) Z
D2

�
jrEe1j

2
C jrEe2j

2
�
dx dy � 2

Z
D2
jr EnE� j

2 dx dy(A.63)

and

(A.64)

8̂<̂
:

div.Ee1;rEe2// D 0 in D2;�
Ee1;

@Ee2

@�

�
D 0 on @D2:

Similarly as in the proof of Lemma A.3, we introduce "i WD d E��1Eei and "�i to be the dual
framing. Denoting j@x E�j2 D j@y E�j2 D e2�, we have that the metric g1 WD E��gRm is given by
g D e2�Œdx2 C dy2�. Hence with respect to the flat metric g0 WD Œdx2 C dy2� one has

j"i j
2
g0
D g0."i ; "i / D e

�2�g1."i ; "i / D e
�2�
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and since h"i ; "�j i D ıij , we have that j"�i j
2
g0
D e2�. Thus we deduce that the 1-forms "�i are in

L2.D2/. Since

E� 2 W 1;1
\W

2;2
loc .D

2
n ¹0º;Rm/ and log jrE�j 2 L1loc.D

2
n ¹0º/;

we have that the framing given by
Efi WD e

��@xi
E�

is inL1loc\W
1;2

loc .D
2n¹0º;Rm/. Since E� is conformal, the unit framing . Ef1; Ef2/ is Coulomb29):

div. Ef1;r Ef2/ D 0 in D2 n ¹0º:

Denote by ei� the rotation which passes30) from . Ef1; Ef2/ to .Ee1; Ee2/. The Coulomb condi-
tion satisfied by the two framings implies that d� WD .iei� ; d.ei� // is a harmonic 1-form on
D2 n ¹0º and hence analytic on this domain. This implies that

"�i 2 L
1
loc \W

1;2
loc .D

2
n ¹0º/:

Again like in Lemma A.3 we introduce31) f 2 C 0 \W 1;2.D2/ to be the solution of´
�f D .r? Ee1;rEe2/ in D2;

f D 0 on @D2:

As in Lemma A.3, the computations give in D2 n ¹0º

8i D 1; 2; d Œe�f "�i � D 0 a.e. in D2 n ¹0º:

By the Schwartz Lemma the distribution dŒe�f "�i � is a finite linear combination of successive
derivatives of the Dirac mass at the origin, but since e�f "�i 2 L

2.D2/, this linear combination
can only be 0. Hence we have

8i D 1; 2; d Œe�f "�i � D 0 in D 0.D2/:

Hence, by Poincaré’s lemma, there exists a .�1; �2/ 2 W 1;2.D2;R2/ such that d�i D e�f "�i .
The dual basis .@=@�1; @=@�2/ D ef ."1; "2/ is positive, orthogonal onD2 n ¹0º and integrable
by nature. Hence � D �1 C i�2 is an holomorphic function on D2 n ¹0º which extends to
a W 1;2-map on D2. The classical Point Removability Theorem for holomorphic map implies
that � extends to an holomorphic function onD2. We can choose it in such a way that �.0/ D 0.
The holomorphicity of � implies in particular that jd� jg0 D e

��f is uniformly bounded and,
since f 2 L1.D2/, we deduce that � is bounded from above on D2. This later fact implies
that E� extends to a Lipschitz map on D2. Though jd� jg0 D e

��f has no zero on D2 n ¹0º,
� 0 might have a zero at the origin: there exists an holomorphic function h.z/ on D2 satisfying
h.0/ D 0, a complex number c0 and an integer n such that

(A.65) �.z/ D c0z
n.1C h.z//:

We have that locally

@E�

@�
D @�1

E� � i@�2
E� D d E�ef "�1 � id

E�ef "�2 D e
f ŒEe1 � i Ee2�:

29) This follows from a straightforward computation presented in [9, Chapter 5].
30) Note that ei� . Ef1 C i Ef2/ D .Ee1 C i Ee2/.
31) By virtue of Wente’s theorem (see [9, Theorem 3.1.2]).
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Hence, since f is continuous, we have that

(A.66)
ˇ̌̌̌
@E�

@�

ˇ̌̌̌
D
p
2ef .0/.1C o.1//:

Combining (A.65) and (A.66) gives

(A.67)
ˇ̌̌̌
@E�

@z

ˇ̌̌̌
D

ˇ̌̌̌
@E�

@�

ˇ̌̌̌ˇ̌̌̌
@�

@z

ˇ̌̌̌
D c0 n

p
2ef .0/jzjn�1.1C o.1//:

This last identity implies Lemma A.5.
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