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VARIATIONAL PROBLEMS OF NORMAL CURVATURE TENSOR

AND CONCIRCULAR SCALAR FIELDS
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Abstract. We consider the integral of (the square of) the length of the normal curva-
ture tensor for immersions of manifolds into real space forms, especially into spheres. The
first variation formula is given and the Euler-Lagrange equation is expressed in terms of the
isothermal coordinates when the submanifold is two-dimensional. The relations between the
critical surfaces and Willmore surfaces are discussed. We also give formulas concerning the
residue of logarithmic singularities of S-Willmore points or estimate it by a conformal invari-
ant.

We show that if a compact critical surface satisfies certain conditions and the immersion
is minimal, then the Gauss curvature is a non-negative constant and the immersion is a stan-
dard minimal immersion of a sphere or a constant isotropic minimal immersion of a flat torus.
To prove this result, we study two-dimensional Riemannian manifolds admitting concircular
scalar fields whose characteristic functions are polynomials of degree 2. Moreover, the case
that the characteristic functions are polynomials of degree 3 is studied.

Introduction. In the 1960’s, Willmore proposed studying the functional

L[φ] =
∫

M

(η2 − K)dv

on the space of immersions φ : M → R
3 of a compact orientable surface M into a three-

dimensional Euclidean space R
3, where η is the mean curvature of φ, K the Gauss curvature

of the induced metric and dv the volume element. The functional L[φ] is called the Willmore
functional and a critical surface is called a Willmore surface.

Around 1980, Bryant [5] studied Willmore surfaces in a three-dimensional sphere S3

and contributed to the subject. He defined a conformal Gauss map of a surface M in S3

into the de Sitter space of all oriented small spheres of S3 and showed that M is a Willmore
surface if and only if the conformal Gauss map is harmonic. Furthermore, he obtained a
duality theorem for Willmore surfaces in S3. Ejiri [11] introduced the notion of S-Willmore

surfaces and generalized Bryant’s duality theorem to S-Willmore surfaces in Sn. He also
proved that Willmore surfaces of genus 0 in S4(1) are S-Willmore surfaces and classified
them. Recently, Hélein [13] constructed a Weierstrass type representation of all Willmore
immersions in terms of closed one-forms. In the studies mentioned above, the most important
fact about Willmore surfaces is that L[φ] is invariant under conformal transformations of the
ambient space. The Willmore functional is generalized to submanifolds in a Euclidean space
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or a sphere. One is Pinkall’s conformal invariant ([20]) and the other is given in Rigoli [21].
The generalized Willmore functional dealt with in this paper coincides with the latter. For a
general presentation of the problem, see [26].

It is well-known that, for a submanifold Mm in a space form, the normal curvature tensor
R⊥ ∈ C∞(

∧2
T ∗M ⊗ (T ⊥M)∗ ⊗T ⊥M) is invariant under conformal transformations of the

ambient space. Therefore the functional

R
⊥
q [φ] =

∫

M

‖R⊥‖qdv

on the space of immersions φ : Mm → M̃(c) is also a conformal invariant if q = m/2.
However, for the most part, we shall deal with the functional R⊥

2 [φ], because it is the Yang-
Mills integral of the normal bundle. We shall also deal with the case that q = 1 when M

is a surface. We here note that the geometric meaning of L[φ] and R⊥
2 [φ] for surfaces is as

follows: The integrand of L[φ] is equal, up to a constant factor, to the sum of the square of
lengths of major and minor axes of the curvature ellipse in the normal space at each point. On
the other hand, the integrand ‖R⊥‖2 of R⊥

2 [φ] is equal to the square of the area encircled by
the curvature ellipse up to a constant factor.

Guadalupe and Rodriguez [12] studied the integral of the normal curvature and obtained
some inequalities relating the area of the surface and the integral of the square of the length of
the mean curvature vector with topological invariants. Their integral of the normal curvature
is different from ours. We should note that R⊥

1 [φ] (resp. R⊥
2 [φ]) is the integral of the absolute

value (resp. the square of the length) of the normal curvaure.
In Section 1, we give the fundamental formulas in the theory of submanifolds in a real

space form. We also rewrite the corresponding formulas in terms of isothermal coordinates
when the submanifold is two-dimensional.

In Section 2, we obtain the first variation formulas of L[φ] and R⊥
q [φ]. The Euler-

Lagrange equation of L[φ] has already known as mentioned above. However, the computation
in this paper seems to be briefer than that of [22]. The Euler-Lagrange equation of R⊥

q [φ]
is given in Theorem 2.7. The functional R⊥

2 [φ] is a conformal invariant if the submanifold
is of dimension 4 and is the Yang-Mills integral. We shall prove in Theorem 2.8 that if
φ : M4 → M̃(c) is an immersion of a 4-dimensional compact oriented manifold M4 into an
n-dimensional space form M̃(c) and the normal connection is self-dual or anti-self-dual, then
φ is a critical immersion of R⊥

2 [φ]. We should note that since R⊥
2 [φ] is a functional defined

on a space of immersions, the normal bundle and the induced metric vary with φ.
In Section 3, we reduce the Euler-Lagrange equation of R⊥

q [φ] (q = 1 and 2) to the
situation that the submanifold is a surface. The result is given in Theorem 3.1.

In Section 4, we shall study critical surfaces of L[φ] and R⊥
2 [φ]. We give formulas

relating the sum of residues of logarithmic singularities of S-Willmore points in a compact
oriented Willmore surface with conformal invariants. In particular, the conformal invariant
appeared in the formula (4.8) is the Willmore integral. We conclude this section by showing
Theorem 4.8 that is stated as follows:
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Let φ : M2 → Sn(c) be a minimal immersion of compact surface M2 into Sn(c). If φ is a
critical immersion of R⊥

2 [φ] and the curvature ellipses are circles, then the Gauss curvature is
constant and the immersion is a standard minimal immersion of a sphere, a constant isotropic
minimal immersion of a flat torus.

To complete the proof of Theorem 4.8, we need to study concircular scalar fields in
Section 6.

In Section 5, we shall consider the equation satisfied by concircular scalar fields on a
two-dimensional manifold M as the Euler-Lagrange equation of the functional

FJ [g ] =
∫

M

J (K)dvg ,

where J is a function on R. Moreover, we shall introduce Tashiro’s work concerning concir-
cular scalar fields.

In Section 6, by making use of elliptic functions, we classify complete two-dimensional
manifolds admitting concircular scalar fields whose characteristic functions are polynomials
of the scalar field which are of degree 2 or 3. The classification is given in Theorem 6.3. The
proof of Theorem 4.8 is completed by using Theorem 6.4.

The author would like to express his hearty thanks to Professor M. Okumura who in-
troduced to him the results by Tashiro [24] explained in Section 5 and to the referee for his
valuable comments.

1. Submanifolds in a space form. Let φ : M → M̃ be an immersion of an m-
dimensional C∞ manifold M into an n-dimensional Riemannian manifold M̃. We shall de-
note the Riemannian metric on M̃ by g̃ and the induced metric on M by g . Indices i, j, k, l run
over the range {1, . . . ,m}, λ,µ, ν, κ the range {1, . . . , n} and u, v the range {m + 1, . . . , n}.
The differential dφ of the map φ can be regarded as a C∞ section of the bundle T ∗M⊗φ∗T M̃ ,
namely dφ ∈ C∞(T ∗M ⊗ φ∗T M̃) and, in terms of local coordinates {x1, . . . , xm} (resp.
{y1, . . . , yn}) in M (resp. in M̃), it is represented as

dφ = ∂φλ

∂xi
dxi ⊗ ∂

∂yλ
, (yλ = φλ(x1, . . . , xm)) ,(1.1)

where we use the so-called Einstein summantion convention. The induced metric g is given
by

g (X, Y ) = g̃ ((dφ(X), dφ(Y ))(1.2)

for any vector fields X and Y tangent to M .
Let N : T ⊥M → φ∗T M̃ be the inclusion map of the normal bundle T ⊥M into φ∗T M̃ .

Then it is regarded as a C∞ section of Hom(T ⊥M,φ∗T M̃). The connection on φ∗T M̃ in-
duced from the Levi-Civita connection on M̃ and the normal connection on T ⊥M induce a
connection ∇ on Hom(T ⊥M,φ∗T M̃). Then the Weingarten equation for φ becomes

∇N = −dφ ◦ A ,(1.3)
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where A ∈ C∞(T ∗M ⊗ T M ⊗ (T ⊥M)∗) and, for a normal vector field ξ , Aξ ∈ C∞(T ∗M ⊗
T M) is the shape operator correspnding to ξ . The relation between Aξ and the second funda-
mental form h ∈ C∞(S2T ∗M ⊗ T ⊥M) is given by

g (AξX,Y ) = g̃ (h(X, Y ), ξ)(1.4)

for vector fields X and Y tangent to M . We shall put H = N ◦ h, which belongs to
C∞(S2T ∗M,φ∗T M̃). The Gauss equation is given by

∇dφ = H ,(1.5)

∇ being the induced connection on the bundle T ∗M ⊗ φ∗T M̃ .
Let M̃ be a space form M̃(c) of constant sectional curvature c. Then the structure equa-

tions of Gauss, Codazzi, Ricci are given, respectively, by

g (R(X, Y )Z,W) = c{g (X,W)g (Y,Z) − g (X,Z)g (Y,W)}
+ g̃ (H(X,W),H(Y,Z) − g̃ (H(X,Z),H(Y,W)) ,

(1.6)

(∇h)(X, Y,Z) = (∇h)(Y,X,Z) ,(1.7)

R⊥(X, Y )ξ = h(X,AξY ) − h(Y,AξX)(1.8)

for X,Y,Z,W ∈ T M and ξ ∈ T ⊥M (cf. [9]), where R⊥ ∈ C∞(
∧2

T ∗M ⊗ (T ⊥M)∗ ⊗
T ⊥M) is the normal curvature tensor. We note that ∇ in (1.7) is the induced connection
on (T ∗M)2 ⊗ T ⊥M . In the sequel, we shall use the same notation ∇ for each connection
induced on various vector bundles constructed from T M, T ⊥M and φ∗T M̃ except for the
two-dimensional case, and shall not state to which vector bundle various tensors belong. From
(1.6), we have formulas for Ricci tensor Ric and scalar curvature ρ:

Ric(X, Y ) = c(m − 1)g (X, Y ) + mg̃ (h(X, Y ), η) −
∑

i

g̃ (h(X,Xi), h(Y,Xi )) ,(1.9)

ρ = cm(m − 1) + m2‖η‖2 − ‖H‖2 ,(1.10)

where η is the mean curvature vector field defined by

η = 1

m

∑

i

h(Xi ,Xi) ,

{X1, . . . , Xm} being an orthonormal frame tangent to M .
Next, we deal with oriented C∞ surfaces differentiably immersed in a sphere Sn(c) =

{p ∈ R
n+1|‖p‖ = 1/

√
c}. Using isothermal coordinates z = x+

√
−1y, we write the induced

metric g as

g = 2F(z, z̄)|dz|2 ,(1.11)

where F is a positive C∞ function. We note that F becomes real analytic if the immersion
φ is minimal, has parallel mean curvature vector or makes M to be a Willmore surface (cf.
[11]). The area element is given by
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dv = 2Fdx ∧ dy =
√

−1Fdz ∧ dz̄ .(1.12)

For integers p and q , let Ep,q be the complex line bundle over M whose elements are
equivalence classes of (U, z, P,w), where

(a) U is an open domain in M and P ∈ U ,
(b) z is a local isothermal parameter defined in U and w ∈ C,
(c) (U, z, P,w) ∼ (U ′, z′, P ′, w′) if and only if

(i) P = P ′ ∈ U ∩ U ′, and
(ii) w′ = w((∂z/∂z′)(P ))p((∂z/∂z′)(P ))

q
.

See [8] for details. We shall sometimes use the complex conjugation Ep,q → Eq,p in our
computation. If α = ᾱ for α ∈ Ep,q , then it is said to be real. For instance, F(= F(z, z̄)dz ⊗
dz̄) is in E1,1 and real. The Gauss curvature K of g is given by

K = − 1

F
∂∂̄ log F = 1

2

 log F ,(1.13)

where ∂ = ∂/∂z, ∂̄ = ∂/∂z̄ and 
 = −2F−1∂∂̄. The metric g induces Levi-Civita connec-
tion ∇ on the bigraded algebra E =

∑

p,q Ep,q with tensor product. The covariant differential
operator ∇ decomposes into ∇ ′ and ∇ ′′, where ∇ ′ (resp. ∇ ′′) is a differential operator of bide-
gree (1, 0) (resp. (0, 1)). The operators ∇ ′ and ∇ ′′ are defined by

∇ ′α = (∂α(z, z̄) − p∂ log F · α(z, z̄))(dz)p+1 ⊗ (dz̄)q ,

∇ ′′α = (∂̄α(z, z̄) − q∂̄ log F · α(z, z̄))(dz)p ⊗ (dz̄)q+1
(1.14)

for α = α(z, z̄)(dz)p ⊗ (dz̄)q ∈ C∞(Ep,q). In particular, we have ∇ ′F = 0 = ∇ ′′F . For the
Ricci identity, we have

[∇ ′,∇ ′′]α = (q − p)KF ⊗ α .(1.15)

All higher order derivatives of φ will be considered as functions with values in C
n+1 =

R
n+1 ⊗R C. Let the symmetric product a = (a1, . . . , an+1) and b = (b1, . . . , bn+1) in C

n+1

be defined by

〈a, b〉 =
n+1
∑

h=1

ahbh .(1.16)

Then the Hermitian product on C
n+1 is given by 〈a, b̄〉. The norm of α ∈ Ep,q ⊗ C

n+1 is
defined as

|α|2 = F−(p+q)〈α, ᾱ〉 .(1.17)

We immediately have

〈∇ ′φ,∇ ′φ〉 = 0 , 〈∇ ′′φ,∇ ′′φ〉 = 0 , 〈∇ ′φ,∇ ′′φ〉 = F .(1.18)

Let x1 = x and x2 = y. We put Hij = H(∂/∂xi, ∂/∂xj ), where H is the second
fundamental form of the immersion φ : M → Sn(c). If we consider Hij as a vector in C

n+1,
then we see that the Gauss equation (1.5) becomes
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∇ ′2φ = 1

4
(H11 − H22 − 2

√
−1H12)(dz)2 .(1.19)

The right hand side is a vector normal to M in Sn(c), which we shall denote by γ . The mean
curvature vector field η satisfies

η = cφ −
1

2

φ ,(1.20)

because 
φ = −(2/F )∇ ′∇ ′′φ. Taking a local orthonormal cross sections {N3, . . . , Nn} in
T ⊥M and regarding them as C

n+1-valued functions, we have
(

∂Nu + ηu∂φ +
1

F
γ u∂̄φ

)

dz = ωv
uNv ,(1.21)

where η = ηvNv, γ = γ vNv and ωv
u is the components of the normal connection extended

to the complexification CT ⊥M of the normal bundle. For ξ ∈ C∞(Ep,q ⊗ CT ⊥M), we may
define the covariant differentiation of ξ by

′∇⊥ξ = (′∇ξu + ωu
vξv)Nu , ′′∇⊥ξ = (′′∇ξu + ω̄u

vξv)Nu ,(1.22)

where ξ = ξuNu = ξu(z, z̄)(dz)p ⊗ (dz̄)qNu. Then the Weingarten equation (1.3) becomes

∇ ′ξ − ′∇⊥ξ = −〈ξ, η〉∇ ′φ − 1

F
〈ξ, γ 〉∇ ′′φ ,(1.23)

in virtue of (1.21).
The structure equation (1.6) through (1.8) of Gauss, Codazzi and Ricci are the following:

K = c + ‖η‖2 − |γ |2 ,(1.24)
′′∇⊥γ = F ′∇⊥η ,(1.25)

R⊥ξ = 1

F
{〈ξ, γ̄ 〉γ − 〈ξ, γ 〉γ̄ } ,(1.26)

for ξ ∈ C∞(Ep,q ⊗ CT ⊥M), where

R⊥ = ∇ ′ω̄ − ∇ ′′ω + [ω, ω̄] ∈ C∞(E1,1 ⊗ Hom(CT ⊥M, CT ⊥M)) .

We note that the components of R⊥ are given by

R⊥
u
v =

√
−1

2
R⊥

12u
vdz ⊗ dz̄ ,(1.27)

and hence it is pure imaginary. We finally note that Ricci identity for ξ ∈ C∞(Ep,q⊗CT ⊥M)

is

[′∇⊥, ′′∇⊥]ξ = (q − p)KF ⊗ ξ + R⊥ξ .(1.28)

2. Variation of the length of normal curvature tensor. Let φ be an immersion of
an oriented m-dimensional manifold M into an n-dimensional Riemannian manifold M̃ . We
shall assume that m ≥ 2.
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DEFINITION. By a compactly supported variation of φ, we mean a C∞ map Φ :
(−ε, ε) × M → M̃ , (where ε > 0), such that

(a) each map φt = Φ(t, ·) : M → M̃ is an immersion and φ = φ0,
(b) the closure of the set {p ∈ M | φt (p) �= φ(p) for some t ∈ (−ε, ε)} is compact.

The variation vector V of Φ is a vector field along φ which is defined by

V = dΦ

(

∂

∂t

)
∣

∣

∣

∣

t=0

.

Thus, if we put W = dΦ(∂/∂t), then W(0, p) = V (p) for every p ∈ M . We decompose W

into the tangential and normal components:

W = dφt (T ) + Ntζ ,(2.1)

where Nt is the inclusion map of the normal bundle (T ⊥M)t into φ∗
t T M̃ with respect to the

immersion φt . We note that T and ζ depend on t , but we omit t from them. On (−ε, ε) × M ,
we define an operator δt by

δtf = ∂f

∂t
, δt

(

∂

∂yλ

)

Φ

= WµΓ̃µ
ν
λ

(

∂

∂yν

)

Φ

, δt
∂

∂xi
= 0(2.2)

for every λ and i, where f is a C∞ function on (−ε, ε) × M , Γ̃µ
ν
λ are Christoffel’s symbols

of the Levi-Civita connection of M̃ and (∂/∂yλ)Φ is the natural local frame in Φ∗T M̃ . We
extend δt as a derivation to the tensor bundle

∑

T r
s (M) ⊗ Φ∗T p

q (M̃).

LEMMA 2.1. Let g t be the induced metric φ∗
t g̃ on {t} × M for each t ∈ (−ε, ε).

Let LT denote the Lie derivative with respect to T and (Ht )ζ be defined by (Ht )ζ (X, Y ) =
g̃ (Ht (X, Y ),Ntζ ) for X,Y ∈ T M, where Ht is the second fundamental form of the immer-

sion φt . Then we have

δtg t = LT g t − 2(Ht )ζ .(2.3)

PROOF. We first note that

δt g̃ = 0 ,(2.4)

since

δt (g̃ λµdyλ ⊗ dyµ) = W ν ∂

∂yν
g̃ λµdyλ ⊗ dyµ

− g̃ λµW κ Γ̃κ
λ
νdyν ⊗ dyµ − g̃ λµW κ Γ̃κ

µ
νdyλ ⊗ dyν

= W ν∇ν g̃ λµdyλ ⊗ dyµ = 0 .

It follows from (2.4) that

(δtg t )(X, Y ) = δt (g t (X, Y )) = δt (g̃ (dφt (X), dφt (Y )))

= g̃ ((δtdφt )(X), dφt (Y )) + g̃ (dφt (X), (δtdφt )(Y ))
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for every X,Y ∈ T M . Since

δtdφt = δt

(

∂Φλ

∂xi
dxi ⊗

(

∂

∂yλ

)

Φ

)

=
(

∂Wλ

∂xi
+ W ν Γ̃ν

λ
µ

∂Φµ

∂xi

)

dxi ⊗
(

∂

∂yλ

)

Φ

= ∇W ,

we have, from (1.5),

(δtg t )(X, Y ) = g̃ (∇XW,dφt (Y )) + g̃ (dφt (X),∇Y W)

= X · g̃ (W, dφt (Y )) − g̃ (W, (∇ t
Xdφt )(Y )) − g̃ (W, dφt (∇ t

XY ))

+ Y · g̃ (dφt (X),W) − g̃ ((∇ t
Y dφt )(X),W) − g̃ (dφt(∇ t

Y X),W)

= X · g t (T , Y ) − g t (T ,∇ t
XY ) + Y · g t (X, T ) − g t (∇ t

Y X,T )

− g̃ (Ntζ,Ht (X, Y )) − g̃ (Ht (Y,X),Nt ζ )

= (L
T
g t )(X, Y ) − 2(Ht)ζ (X, Y ) ,

where ∇ t is the induced connection on the bundle T ∗M ⊗ φ∗
t M̃ over {t} × M . ✷

LEMMA 2.2. Let g
−1
t be the inverse matrix of the metric g t and dvt be the volume

form on M with respect to g t . Then we have

δtg
−1
t = −g

−1
t {L

T
g t − 2(Ht)ζ }g −1

t ,(2.5)

δtdvt = {divT − mg̃ (η, ζ )}dvt ,(2.6)

divT denoting the divergence of the vector field T .

PROOF. Since

0 = δt (g tg
−1
t ) = (δtg t )g

−1
t + g t (δtg

−1
t ) ,

substituting (2.3) into the first term, we obtain (2.5). We denote the determinant of g t by gt

and (i, k)-cofactor by △ik . Then ∂
√

gt/∂t = (∂gt/∂t)/2
√

gt and

∂gt/∂t =
m

∑

k=1

{

∂(g t )1k

∂t
△1k + ∂(g t )2k

∂t
△2k + · · · + ∂(g t )mk

∂t
△mk

}

=
∑

k

∑

i

(δtg t )ik(g t )
ikgt = gt (LT g t − 2(Ht )ζ )ik(g t )

ik

= 2{divT − mg̃ (η, ζ )}gt .

Thus we have (2.6). ✷

LEMMA 2.3. The variation δtHt of the second fundamental form Ht is given by

(δtHt )(X, Y ) = (∇ t∇W)(X, Y ) + R̃(W, dφt (X))dφt (Y ) − dφt ((δtΓ )(X, Y ))(2.7)

for every X,Y ∈ T M, where δtΓ = (∂Γj
i
k(t))/∂t)dxj ⊗ dxk ⊗ ∂/∂xi , Γj

i
k(t) being

Christoffel’s symbols of the Levi-Civita connection of g t .
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PROOF. From (1.5), we have

(δtHt )(X, Y ) = (δt∇ tdφt )(X, Y )

for X,Y ∈ T M , where we note that

∇ tdφt =
(

∂2

∂xi∂xj
Φλ + ∂Φν

∂xi
Γ̃ν

λ
µ

∂Φµ

∂xj
− Γi

k
j (t)

∂Φλ

∂xk

)

dxi ⊗ dxj ⊗ (∂/∂yλ)Φ .

Therefore, using the Ricci formula

[δt ,∇ t ]dφt = R̃(W, dφt (X))dφt (Y ) − dφt ((δtΓ )(X, Y ))

and δtdφt = ∇W , we obtain (2.7).

REMARK. In our later computation, we shall take an inner product of δtHt with normal
vectors and so we need not compute δtΓ . Here, we only note that δtΓ is a tensor field given
by

2g t ((δtΓ )(X, Y ), Z) = (∇ tk)(X, Y,Z) + (∇ tk)(Y,Z,X) − (∇ tk)(Z,X, Y ) ,

where k = LT g t −2 (Ht)ζ . This will be necessary for the computation of the second variation
formula.

We next compute the first and second terms of the right hand side of (2.7). Hereafter, we
assume that M̃ is a Riemannian manifold M̃(c) of constant sectional curvature c.

LEMMA 2.4. For every X,Y ∈ T M, we have

R̃(W, dφt (X))dφt (Y ) ≡ cg t (X, Y )Ntζ mod dφt (T M) ,(2.8)

(∇ t∇W)(X, Y ) ≡ Nt {(∇ tht )(X, Y, T ) + ht (∇ t
XT , Y ) + ht (X,∇ t

Y T )

+ (∇ t∇ tζ )(X, Y ) − ht (X,At
ζY )} mod dφt (T M) .

(2.9)

PROOF. Since M̃ = M̃(c), we have

R̃(W, dφt (X))dφt (Y ) = cg̃ (dφt (X), dφt (Y ))W − g̃ (W, dφt (Y ))dφt (X)

≡ cg t (X, Y )Ntζ mod dφt (T M) .

Equation (2.9) is proved as follows:

∇Y W = ∇ t
Y (dφt (T ) + Ntζ )

= Ht (Y, T ) + dφt (∇ t
Y T ) − dφt (A

t
ζY ) + Nt∇ t

Y ζ .
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Therefore, if X ∈ TpM and Y is a vector field on M such that ∇XY = 0 at p, then

(∇ t∇W)(X, Y ) = ∇ t
X∇Y W

= ∇ t
X{Ntht (Y, T ) + dφt (∇ t

Y T ) − dφt (A
t
ζY ) + Nt∇ t

Y ζ }
≡ Nt (∇ tht )(X, Y, T ) + Ntht (Y,∇ t

XT )

+ Ht(X,∇ t
Y T ) − Ht (X,At

ζY ) + Nt∇ t
X∇ t

Y ζ

= Nt {(∇ tht )(X, Y, T ) + ht (X,∇ t
Y T ) + ht (Y,∇ t

XT )

− ht (X,At
ζY ) + (∇ t∇ tζ )(X, Y )} mod dφt (TpM) ,

where At
ζ is the shape operator of φt with respect to ζ . ✷

It follows from (2.7) through (2.9) that

(δH)(X, Y ) ≡ N{(∇∇ζ )(X, Y ) + cg (X, Y )ζ + (∇h)(T ,X, Y )

− h(X,AζY ) + h(∇XT , Y ) + h(X,∇Y T )} mod dφ(T M),
(2.10)

where we have put δ = δt |t=0 and so on. For the mean curvature vector η, we have

δ(Nη) ≡ N

{

1

m
(−
ζ + S⊥ζ ) + cζ + ∇T η

}

mod dφ(T M) ,(2.11)

S⊥ being the symmetric transformation T ⊥M → T ⊥M defined by

g̃ (S⊥ξ, ξ ′) = trace(AξAξ ′) .

Here we take an orthonormal local frame field {Nu} in T ⊥M . The equation (2.11) is proved
as follows:

δ(Nη) =
1

m
δ

{

g
ijHij

λ

(

∂

∂yλ

)

φ

}

=
1

m

{

(δg −1)ijHij
λ

(

∂

∂yλ

)

φ

+ g
ij (δH)ij

λ

(

∂

∂yλ

)

φ

}

≡
1

m
{−(∇iT j + ∇jT i) + 2hij

uζ
u}Hij

λ

(

∂

∂yλ

)

φ

+
1

m
N(−
ζ − S⊥ζ + cmζ + m∇T η) +

2

m
(∇iT j )Hij

λ

(

∂

∂yλ

)

φ

= 1

m
N(−
ζ + S⊥ζ ) + cNζ + N∇

T
η mod dφ(T M) ,

because of (2.5) and (2.10). Let {Xi}i=1,... ,m be an orthonormal base in TpM .

LEMMA 2.5. Let S be the symmetric transformation of T M defined by g (SX, Y ) =
∑

i g̃ (H(X,Xi),H(Y,Xi)). Then the variation of the length of the second fundamental form
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and the mean curvature vector are given by

δ‖H‖2 = 2
∑

i,j

g̃ (H(Xi,Xj ), (∇∇ζ )(Xi ,Xj )) + 2
∑

i

Hζ (SXi ,Xi)

+ 2mcg̃ (η, ζ ) + d‖H‖2(T ) ,

(2.12)

δ‖η‖2 = − 2

m
g̃ (
ζ, η) + 2

m
g̃ (S⊥ζ, η) + 2cg̃ (ζ, η) + d‖η‖2(T ) ,(2.13)

respectively.

PROOF. Since

‖H‖2 = Hij
λHkl

µ
g

ik
g

j l
g̃ λµ and ‖η‖2 = g̃ (Nη,Nη) ,

equations (2.12) and (2.13) are derived from (2.4), (2.5), (2.10) and (2.11) by a routine calcu-
lation. ✷

Next, we shall compute the variation of the length of the tensor field L, which we define
by L = h−ηg , and the normal curvature tensor R⊥. We note that NL and R⊥ are conformally
invariant, that is, N∗L∗ = NL and (R⊥)∗ = R⊥ under the change g̃

∗ = e2f
g̃ . This fact is

well-known. However, for reader’s convenience, we give the proof. By a straightforward
computation, we have

H ∗(X, Y ) = H(X, Y ) + g (X, Y )ξf ,

where ξf is the normal component of the gradient vector of f . Hence the mean curvature
vector satisfies

N∗η∗ = e−2f (Nη + ξf ) ,

from which it follows that

N∗L∗(X, Y ) = H ∗(X, Y ) − g
∗(X, Y )N∗η∗

= H(X, Y ) − g (X, Y )Nη

= NL(X, Y ) .

Define Lξ by

g (LξX,Y ) = g̃ (L(X, Y ), ξ) .

Then we can easily show that

L∗
ξX = A∗

ξX − g̃
∗(η∗, ξ)X

= AξX + g̃ (ξf , ξ)X − g̃ (η + ξf , ξ)X

= LξX

Since

NR⊥(X, Y )ξ = H(X,AξY ) − H(Y,AξX)

= NL(X,LξY ) − NL(Y,Lξ X) ,
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we have (R⊥)∗ = R⊥. Since

‖L‖2 = ‖H‖2 − m‖η‖2 ,(2.14)

equations (2.12) and (2.13) imply that

δ‖L‖2 = 2
∑

i,j

g̃ (L(Xi ,Xj ), (∇∇ζ )(Xi ,Xj )) + 2
∑

i

g̃ (h(SXi ,Xi), ζ )

− 2g̃ (S⊥η, ζ ) + d‖L‖2(T ) .

(2.15)

Therefore we have the following result which was obtained in [21] and [22].

THEOREM 2.6 ([21, 22, 26]). The Euler-Lagrange equation of the conformally in-

variant functional

L[φ] =
∫

M

‖L‖mdv

is

�(‖L‖m−2L) − ‖L‖m−2
{

(m − 1)Q⊥η −
∑

i,j

Ric(Xi ,Xj )L(Xi ,Xj )

}

= 0 ,(2.16)

where Q⊥ : T ⊥M → T ⊥M is the symmetric transformation defined by

g̃ (Q⊥ξ, ξ ′) =
∑

g̃ (L(Xi ,Xj ), ξ)g̃ (L(Xi ,Xj ), ξ
′)

and �B = −(∇i∇jBij
u)Nu for any section B of T ∗M ⊗ T ∗M ⊗ T ⊥M .

PROOF. We see from (2.6) that

d

dt
L[φt ]|t=0 =

∫

δ(‖L‖mdv)

=
∫ {

m

2
‖L‖m−2δ‖L‖2 + ‖L‖m(divT − mg̃ (η, ζ ))

}

dv .

Using (2.15), we have

m

2
‖L‖m−2δ‖L‖2 = m‖L‖m−2

{

∑

i,j

g̃ (L(Xi ,Xj ), (∇∇ζ )(Xi,Xj ))

+
∑

i

g̃ (h(SXi ,Xi), ζ ) − g̃ (S⊥η, ζ ) + 1

2
d‖L‖2(T )

}

.
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Hence

m

2
‖L‖m−2δ‖L‖2 + ‖L‖m(divT − mg̃ (η, ζ ))

= m
∑

g̃ (‖L‖m−2L(Xi,Xj ),∇∇ζ(Xi ,Xj ))

+ m‖L‖m−2{
g̃
(

∑

h(SXi ,Xi) − S⊥η − ‖L‖2η, ζ
)}

+ m

2
‖L‖m−2d‖L‖2(T ) + ‖L‖mdivT

= m
∑

g̃ (‖L‖m−2L(Xi,Xj ),∇∇ζ(Xi ,Xj ))

+ m‖L‖m−2
g̃
(

−
∑

Ric(Xi,Xj )L(Xi ,Xj ) + (m − 1)Q⊥η, ζ
)

+ div(‖L‖mT ) ,

where we have used

S⊥η = Q⊥η + m‖η‖2η ,

g (SX, Y ) = −Ric(X, Y ) + c(m − 1)g (X, Y ) + mg̃ (h(X, Y ), η) .

Integrating by parts and using Stokes’ formura, we obtain (2.16). ✷

Thus if the Ricci tensor is proportional to the metric tensor, then (2.16) reduces to

�(‖L‖m−2L) − (m − 1)‖L‖m−2Q⊥η = 0 .

In particular, we have the following result obtained in [21, 25].

COROLLARY. If m = 2, then (2.16) reduces to


η − Q⊥η = 0 .(2.17)

PROOF. We have only to show �L = (m − 1)
η. We can easily show that by using
the Codazzi equation (1.7). ✷

DEFINITION. Willmore surface is a surface satisfying (2.17) immersed in a space form.

Let us consider a variational problem for another conformal invariant R⊥. We shall
compute the Euler-Lagrange equation for the functional

R
⊥
q [φ] =

∫

‖R⊥‖qdv .

We note that if q = m/2, then R⊥
m/2[φ] is a conformal invariant. However we are also

interested in the case q = 2 for any dimension m, because the right hand side of the definition
of R⊥

2 [φ] is a Yang-Mills integral.
Here we explain the geometric meaning of ‖R⊥‖ in the case that q = 1 and m = 2 (cf.

[12]). For arbitrarily fixed point p ∈ M , the curvature ellipse Ep at p is defined as the set
{h(X,X)|X ∈ TpM, ‖X‖ = 1}. This is an ellipse lying on the plane �p which pass through
η and is spanned by the normal vectors a = (h11 − h22)/4F and b = h12/2F in the normal
space Tp

⊥M . We easily see that 4|γ |2(= 2‖L‖2) is equal to 4(‖a‖2 + ‖b‖2) and hence is
equal to the sum of the square of lengths of major and minor axes. The square of the area
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surrounded by Ep in �p is equal to π2(‖a‖2‖b‖2 − 〈a, b〉2). It follows that it is equal to

π2(|γ |4 − |〈γ, γ 〉|2)/4 at p. Since |R⊥|2 = F−2 ∑

u,v R⊥
u
vR⊥

u
v , we see from (1.26) that

(area)2 = π2|R⊥|2/8 = π2‖R⊥‖2/16 at p.

THEOREM 2.7. Let C ∈ C∞(T ∗M ⊗ T ∗M ⊗ T ⊥M) be defined by

C(X, Y ) =
m

∑

i=1

R⊥(Y,Xi)h(X,Xi) .

If q ≥ 2, then the Euler-Lagrange equation of the functional

R
⊥
q [φ] =

∫

‖R⊥‖qdv

is given by

�(‖R⊥‖q−2C) − 1

2
‖R⊥‖q−2

{

∑

i,j

P(Xi ,Xj )h(Xi,Xj ) − m

2q
‖R⊥‖2η

}

= 0 ,(2.18)

where P is defined by

P(X, Y ) = −
∑

trace(R⊥(X,Xi)R
⊥(Y,Xi )) .

In particular, if q = 2, then (2.18) becomes

�C − 1

2

{

∑

i,j

P(Xi ,Xj )h(Xi ,Xj ) − m

4
‖R⊥‖2η

}

= 0 .(2.19)

If q = 1 and R⊥ �= 0 anywhere on M, then we have

�(‖R⊥‖−1C) − 1

2
‖R⊥‖−1

{

∑

i,j

P(Xi ,Xj )h(Xi,Xj ) − m

2
‖R⊥‖2η

}

= 0 .(2.18’)

PROOF. Since

d

dt
R

⊥
q [φt ]

∣

∣

∣

∣

t=0

=
∫

‖R⊥‖q−2
{

q

2
δ‖R⊥‖2 + ‖R⊥‖2(divT − mg̃ (η, ζ ))

}

dv ,

we need to compute δ‖R⊥‖2. Define Dt by

Dt = (Ht)ik
µ(Ht )j l

λ(g t )
kldxi ⊗ dxj ⊗

(

∂

∂yλ

)

Φ

⊗
(

∂

∂yµ

)

Φ

.

Then, from (1.8), we have

‖Rt
⊥‖2 = {(Dt )ij

λµ − (Dt )ji
λµ}{(Dt )kl

νκ − (Dt )lk
νκ}(g t )

ik(g t )
j l
g̃ λν g̃ µκ .

Therefore
1

2
δ‖R⊥‖2 = {(δD)ij

λµ − (δD)ji
λµ}{Dkl

νκ − Dlk
νκ}g ik

g
j l
g̃ λν g̃ µκ

+ (Dij
λµ − Dji

λµ)(Dkl
νκ − Dlk

νκ)(δg −1)ikg j l
g̃ λν g̃ µκ .

(2.20)
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Next we compute δD:

δD = δ

(

Hik
µHj l

λ
g

kldxi ⊗ dxj ⊗
(

∂

∂yλ

)

φ

⊗
(

∂

∂yµ

)

φ

)

= {(δH)ik
µHj l

λ
g

kl + Hik
µ(δH)j l

λ
g

kl + Hik
µHj l

λ(δg −1)kl}

dxi ⊗ dxj ⊗
(

∂

∂yλ

)

φ

⊗
(

∂

∂yµ

)

φ

.

Using (2.5) and (2.10), we obtain

(δD)ij
λµ ≡ ∇i∇kζ

vNv
µHj

kλ + ∇j∇kζ
vNv

λHi
kµ

+ c(Hij
λNv

µζ v + Hij
µNv

λζ v)

+ T l(∇lhik
vNv

µhj
kλ + ∇lhjk

vNv
λhi

kµ)

+ ∇iT
kDjk

µλ + ∇jT
kDik

λµ mod (dφλ, dφµ) .

Substituting this result into the first term of the right hand side of (2.20) and putting Dij
uv =

hik
vhj

ku, we have

1

2
δ‖R⊥‖2 = 4∇i∇kζ

vhj
kuR⊥ij

uv + 2Pijh
ij

uζ
u

+ 2(2T k∇ihkl
vhj

lu + 2∇jT
kDik

uv − ∇iT
kR⊥

kj
uv)R⊥ij

uv .

(2.21)

The third term of the right hand side of (2.21) is equal to

2T kR⊥
iju

v∇iR⊥j
kv

u .

The second Bianchi identity for R⊥ implies that this is equal to (∇T ‖R⊥‖2)/2. It follows that

δ‖R⊥‖2 = 8∇i∇kζ
vhj

kuR⊥ij
uv + 4Pijh

ij
uζ

u + T i∇i‖R⊥‖2 .

Integrating by parts and using Stokes’ formula, we have

d

dt
R

⊥
q [φt ]

∣

∣

∣

∣

t=0

=
∫

{4q∇k∇i(‖R⊥‖q−2hj
kuR⊥ij

uv)

+ 2q‖R⊥‖q−2Pij hij
v − m‖R⊥‖qηv}ζ vdv .

Here we note that we can use Stokes’ formula under the assumption that q ≥ 2. However, if
q = 1, then

∇i(‖R⊥‖q−2hj
kuR⊥ij

uv)ζ
v and ‖R⊥‖q−2hj

kuR⊥ij
uv∇kζ

v

may not converge to 0 as a point approaches to the zeros of R⊥. Thus, when q = 1, we need
the assumption that R⊥ does not vanish. ✷

When m = 4 and q = 2, R⊥
2 [φ] is a conformal invariant and the Yang-Mills integral in

the vector bundle T ⊥M .

THEOREM 2.8. Let φ : M4 → M̃(c) be an immersion of a four-dimensional compact

oriented manifold M4 into an n-dimensional space form M̃(c). If the normal connection is

self-dual or anti-self-dual, then φ is critical for the functional R⊥
2 [φ].
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PROOF. Let ε = 1 or −1 according as the normal connection is self-dual or anti-self-
dual. Let {X1, . . . , X4} be an orthonormal basis in TpM associated with the orientation of
M4. Then the assumption that the normal connection is self-dual or anti-self-dual is equivalent
to

R⊥(X1,X2) = εR⊥(X3,X4) , R⊥(X1,X3) = εR⊥(X4,X2) ,

R⊥(X1,X4) = εR⊥(X2,X3) .
(2.22)

(cf. [3, p. 370]) Self-dual and anti-self-dual connections are Yang-Mills instanton. Thus the
normal curvature tensor R⊥ satisfies ∇iR⊥

iju
v = 0 (cf. [19, p. 21]). Thus we see from

Codazzi equation (1.7) that

�C = −∇i∇j (hi
puR⊥

jpu
v)

= −∇i(hi
pu∇jR⊥

jpu
v) = 0 .

The second term of (2.19) vanishes. In fact,
∑

i,j

P(Xi ,Xj )h(Xi ,Xj ) − ‖R⊥‖2η =
∑

i,j

P(Xi ,Xj )L(Xi,Xj ) ,

and (2.2) implies that P(Xi ,Xj ) = αδij for every i and j , for instance

P(X1,X2) = −trace(R⊥(X1,X3)R
⊥(X2,X3) + R⊥(X1,X4)R

⊥(X2,X4))

= −trace(R⊥(X4,X2)R
⊥(X1,X4) + R⊥(X1,X4)R

⊥(X2,X4))

= 0 .

✷

3. Two-dimensional cases. Let φ : M2 → Sn(c) be an immersion of an oriented
surface M2 into an n-dimensional sphere Sn(c) of constant sectional curvature c. We shall
rewrite (2.18), (2.18’) and (2.19) in terms of the isothermal coordinate z = x +

√
−1y. Since

g 11 = g 22 = 2F and g 12 = 0, Christoffel’s symbols of the Levi-Civita connection are given
by

Γ1
1

1 = −Γ2
1

2 = Γ1
2

2 = 1

2
∂1 log F , Γ1

1
2 = −Γ1

2
1 = Γ2

2
2 = 1

2
∂2 log F ,(3.1)

where ∂1 = ∂/∂x and ∂2 = ∂/∂y. The coefficients Γi
v
u of the normal connection with respect

to an orthonormal local frame field {Nu} in T ⊥M are defined by ∇⊥
∂i

Nu = Γi
v
uNv and so the

relation between ωv
u and Γi

v
u is

Γ1
v
u = ℓv

u + ℓ̄v
u , Γ2

v
u =

√
−1(ℓv

u − ℓ̄v
u) , (ωv

u = ℓv
udz) .(3.2)

Therefore, we have

∇1
⊥ξu = ∂1ξ

u + Γ1
u
vξ

v

= (∂ + ∂̄)ξu + (ℓu
v + ℓ̄u

v)ξ
v

= ′∇⊥ξu + ′′∇⊥ξu ,
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where we have put ′∇⊥ξ = ′∇⊥ξudz ⊗ Nu and ′′∇⊥ξ = ′′∇⊥ξudz̄ ⊗ Nu. Similarly, we have

∇2
⊥ξu =

√
−1(′∇⊥ξu − ′′∇⊥ξu) .

Moreover, a straightforward computation shows that

∇1∇1ξ
u = ′∇⊥′∇⊥ξu + ′∇⊥′′∇⊥ξu + ′′∇⊥′∇⊥ξu + ′′∇⊥′′∇⊥ξu ,

∇2∇2ξ
u = −′∇⊥′∇⊥ξu + ′∇⊥′′∇⊥ξu + ′′∇⊥′∇⊥ξu − ′′∇⊥′′∇⊥ξu .

It follows that


η = − 1

F
(′′∇⊥′∇⊥η + ′∇⊥′′∇⊥η) .(3.3)

The tensor field L has the components:

L11
u = γ u + γ̄ u , L22

u = −(γ u + γ̄ u) , L12
u =

√
−1(γ u − γ̄ u) .(3.4)

Therefore the components of Q⊥ are given by

Q⊥
u
v = 1

F 2
(γ uγ̄ v + γ̄ uγ v) .(3.5)

Using (1.26), (1.28), (3.3) and (3.5) we have

−
η + Q⊥η =
1

F
(′′∇⊥′∇⊥η + ′∇⊥′′∇⊥η) + Q⊥η

= 2

F

′′∇⊥′∇⊥η + 1

F 2
(〈η, γ̄ 〉γ − 〈η, γ 〉γ̄ ) + 1

F 2
(〈η, γ̄ 〉γ + 〈η, γ 〉γ̄ )

= 2

F
(′′∇⊥′∇⊥η + 1

F
〈η, γ̄ 〉γ ) .

Thus we can rewrite (2.17) as

′′∇⊥′∇⊥η + 1

F
〈η, γ̄ 〉γ = 0 ,(3.6)

or equivalently

′′∇⊥′′∇⊥γ + 〈η, γ̄ 〉γ = 0(3.7)

which is the defining equation of Willmore surfaces ([11, 25, 26]).
Next we treat (2.18), (2.18’) and (2.19) with the isothermal coordinate. First, we compute

the components of the tensor field C. Using (1.27), we have

C11
v = R⊥

1ku
vh1l

u
g

kl = 1

2F
R⊥

12u
vh12

u

= 1

F
R⊥

u
v(γ u − γ̄ u) .
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Similarly, the other components are the following:

C12
v =

√
−1

F
R⊥

u
v(γ u + γ̄ u + 2Fηu) ,

C21
v =

√
−1

F
R⊥

u
v(γ u + γ̄ u − 2Fηu) ,

C22
v = − 1

F
R⊥

u
v(γ u − γ̄ u) .

Using (3.1) and (3.2), we have

∇kCjk
v = g

lk(∂lCjk
v − Γl

i
jCik

v − Γl
i
kCji

v + Γl
v
uCjk

u)

= 1

2F
{∂1Cj1

v + ∂2Cj2
v − (Γ1

i
1 + Γ2

i
2)Cji

v − Γ1
i
jCi1

v − Γ2
i
jCi2

v

+ Γ1
v
uCj1

u + Γ2
v
uCj2

u}

= 1

2F
{(∂ + ∂̄)Cj1

v +
√

−1(∂ − ∂̄)Cj2
v

− (Γ1
1
jC11

v + Γ1
2
jC21

v + Γ2
1
jC12

v + Γ2
2
jC22

v)

+ (ℓv
u + ℓ̄v

u)Cj1
u +

√
−1(ℓv

u − ℓ̄v
u)Cj2

u}

=
1

2F
{∂(Cj1

v +
√

−1Cj2
v) + ∂̄(Cj1

v −
√

−1Cj2
v) + 4

√
−1Γ1

2
jR

⊥
u
vηu

+ ℓv
u(Cj1

u +
√

−1Cj2
u) + ℓ̄v

u(Cj1
u −

√
−1Cj2

u)} .

It follows that

∇kC1k
v =

1

F

{

−
1

F

′∇⊥(R⊥
u
v γ̄ u) +

1

F

′′∇⊥(R⊥
u
vγ u)

− ′∇⊥(R⊥
u
vηu) + ′′∇⊥(R⊥

u
vηu)

}

,

∇kC2k
v =

√
−1

F

{

1

F

′∇⊥(R⊥
u
v γ̄ u) +

1

F

′′∇⊥(R⊥
u
vγ u)

− ′∇⊥(R⊥
u
vηu) − ′′∇⊥(R⊥

u
vηu)

}

.

(3.8)

Moreover, we compute ∇j∇kCjk
v . Since

∇j∇kCjk
v = g

j l∇l∇kCjk
v

= g
j l(∂l∇kCjk

v − Γl
i
j∇kCik

v + Γl
v
u∇kCjk

u)

and from (3.8)

∇kC1k
v +

√
−1∇kC2k

v = 2

F

{

− 1

F

′∇⊥(R⊥
u
v γ̄ u) +′′ ∇⊥(R⊥

u
vηu)

}

,
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we have

∇j∇kCjk
v

= 1

2F
{∂(∇kC1k

v +
√

−1∇kC2k
v) + ∂̄(∇kC1k

v −
√

−1∇kC2k
v)

+ ℓv
u(∇kC1k

u +
√

−1∇kC2k
u) + ℓ̄v

u(∇kC1k
u −

√
−1∇kC2k

u)}

= 1

F 3
{′′∇⊥′′∇⊥(R⊥

u
vγ u) + ′∇⊥′∇⊥(R̄⊥

u
v γ̄ u)} + 1

F 2
R⊥

w
vR⊥

u
wηu.

We thus obtain

−�C = 2

F 3
ℜ[′′∇⊥′′∇⊥(R⊥γ )] + 1

F 2
(R⊥)2η ,(3.9)

where ℜ[ ] means the real part of [ ].
The second term of (2.19) is computed as follows:

∑

i,j

P(Xi ,Xj )h(Xi ,Xj ) = R⊥
ikuvR

⊥
j
kuvhijwNw

= 1

8F 3
(4F 2|R⊥|2h11

w + 4F 2|R⊥|2h22
w)Nw

= 2|R⊥|2η .

Here we note that |R⊥|2 = F−2〈R⊥, R̄⊥〉 = ‖R⊥‖2/2. Therefore we have obtained

THEOREM 3.1. The Euler-Lagrange equation of the functional

R
⊥
2 [φ] =

∫

‖R⊥‖2dv

for immersion φ : M2 → Sn(c) of an oriented surface M2 is given by

2

F 3
ℜ[′′∇⊥′′∇⊥(R⊥γ )] + 1

F 2
(R⊥)2η + 1

2
|R⊥|2η = 0 .(3.10)

For the conformally invariant functional

R
⊥
1 [φ] =

∫

‖R⊥‖dv ,

the Euler-Lagrange equation is given by

�(‖R⊥‖−1C) = 0(3.11)

under the condition that R⊥ does not vanish anywhere on M .

COROLLARY. If the normal curvature tensor is parallel, then the immersion φ is crit-

ical for the functional R⊥
1 [φ]. Moreover, if φ is minimal, then φ is critical for the functional

R⊥
2 [φ].

PROOF. We immediately have

∇1R
⊥

12u
v = −2

√
−1(′∇⊥R⊥

u
v + ′′∇⊥R⊥

u
v) ,

∇2R
⊥

21u
v = −2 (′∇⊥R⊥

u
v − ′′∇⊥R⊥

u
v) .



226 K. SAKAMOTO

It follows that the normal curvature tensor parallel if and only if ′′∇⊥R⊥ = 0. From the
assumption, we see that ′′∇⊥R⊥ = 0 and so |R⊥| is constant. If R⊥ = 0, then it is trivial
that φ is critical. Assume that R⊥ �= 0. Then we see from (3.9) that (3.11) is equivalent to

2

F
ℜ[′′∇⊥′′∇⊥(R⊥γ )] + (R⊥)2η = 0 .(3.12)

Since

′′∇⊥′′∇⊥(R⊥γ ) + ′∇⊥′∇⊥(R̄⊥γ̄ ) = R⊥(′′∇⊥′′∇⊥γ − ′∇⊥′∇⊥γ̄ )

= FR⊥(′′∇⊥′∇⊥η − ′∇⊥′′∇⊥η)

= −FR⊥R⊥η ,

we have (3.12). ✷

The following proposition shows that (3.12) is equivalent to the defining equation (3.7)
of Willmore surfaces under appropriate assumptions.

PROPOSITION 3.2. We assume that ‖R⊥‖ is a non-zero constant and the curvature

ellipse is a circle at every point. Then (3.7) is equivalent to (3.12).

PROOF. We first note that the curvature ellipse is a circle if and only if 〈γ, γ 〉 = 0.
Thus from the assumption, we have R⊥γ = F |γ |2γ and

|R⊥|2 = F−2〈R⊥, R̄⊥〉

= F−4
∑

u,v

(γ̄ uγ v − γ uγ̄ v)(γ uγ̄ v − γ̄ uγ v)

= 2(|γ |4 − |〈γ, γ 〉|2) = 2|γ |4 ,

which is a non-zero constant. Assume that (3.7) holds. Then

′′∇⊥′′∇⊥(R⊥γ ) = F |γ |2′′∇⊥′′∇⊥γ

= −F |γ |2〈η, γ̄ 〉γ .

Therefore we have

′′∇⊥′′∇⊥(R⊥γ ) + ′∇⊥′∇⊥(R̄⊥γ̄ ) = −F |γ |2{〈η, γ̄ 〉γ + 〈η, γ 〉γ̄ } .

Since

(R⊥)2η = F−1R⊥{〈η, γ̄ 〉γ − 〈η, γ 〉γ̄ }
= 〈η, γ̄ 〉|γ |2γ + 〈η, γ 〉|γ |2γ̄ ,

we have (3.12). Conversely, assume that (3.12) holds. Then

0 = F−1{′′∇⊥′′∇⊥(R⊥γ ) + ′∇⊥′∇⊥(R̄⊥γ̄ )} + (R⊥)2η

= |γ |2(′′∇⊥′′∇⊥γ + ′∇⊥′∇⊥γ̄ ) + |γ |2{〈η, γ̄ 〉γ + 〈η, γ 〉γ̄ } .
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Since
′′∇⊥′′∇⊥γ − ′∇⊥′∇⊥γ̄ = F(′′∇⊥′∇⊥η − ′∇⊥′′∇⊥η)

= −FR⊥η

= 〈η, γ 〉γ̄ − 〈η, γ̄ 〉γ ,

we obtain (3.7). ✷

4. Critical surfaces. First, we shall study Willmore surfaces. Let φ : M → Sn(c) be
an isometric immersion of a compact oriented surface M into Sn(c). Define Ψ ∈ C∞(E3,0 ⊗
∧2

CT ⊥M) by Ψ = γ ∧ ′∇⊥η. The immersion φ : M → Sn(c) is called a S-Willmore

surface if γ ∧ γ̄ �= 0 and Ψ = 0 everywhere on M . It is known that S-Willmore surfaces
are Willmore surfaces and there exist Willmore surfaces which are not S-Willmore surfaces
([10, 11]). In the following, we shall obtain an integral formula for the sum of residues of
logarithmic singularities of log |Ψ |2. We note that the Willmore surface equation (3.6) and
Codazzi equation (1.25) imply that Ψ is a holomorphic section of E3,0 ⊗

∧2
CT ⊥M , that

is, ′′∇⊥Ψ = 0 and hence either Ψ is identically zero, or else the zeros of Ψ can be at most
isolated. Define the symmetric product of two p-vectors ξ = ξ1∧· · ·∧ξp and ζ = ζ1∧· · ·∧ζp

in
∧

CT ⊥M by

〈ξ, ζ 〉 = 1

p!
det(〈ξA, ζB〉)A,B=1,... ,p .(4.1)

Then we have

LEMMA 4.1. Let φ : M → Sn(c) be a compact oriented Willmore surface such that

Ψ �= 0 identically. Let Σ denote the set {p ∈ M|Ψ(p) = 0} and 2jp the real analytic order

of the zero of |Ψ |2 at p ∈ Σ . Set N =
∑

p∈Σ
jp. Then we have

−2πN = 6πχ(M) +
∫

{

2

|Ψ |2
(|Ψγ |2 − |Ψ γ̄ |2) + A

|Ψ |4

}

dv ,(4.2)

where Ψ γ = {〈′∇⊥η, γ 〉γ − 〈γ, γ 〉′∇⊥η}/2, Ψ γ̄ = {〈′∇⊥η, γ̄ 〉γ − 〈γ, γ̄ 〉′∇⊥η}/2 and

A = |′∇⊥Ψ |2|Ψ |2 − |〈′∇⊥Ψ, Ψ̄ 〉|2.

PROOF. On M\Σ , we have

F−1∇ ′∇ ′′ log |Ψ |2

= F−4

|Ψ |4
{

(〈′∇⊥Ψ, ′′∇⊥Ψ̄ 〉 + 〈Ψ, ′∇⊥′′∇⊥Ψ̄ 〉)|Ψ |2 − F−3〈Ψ, ′′∇⊥Ψ̄ 〉〈′∇⊥Ψ, Ψ̄ 〉}

= 1

|Ψ |2
F−4〈Ψ, ′∇⊥′′∇⊥Ψ̄ 〉 + A

|Ψ |4
.
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Using the Ricci identity (1.28), we have

3FKΨ̄ ξ + R⊥Ψ̄ ξ

= ′∇⊥′′∇⊥(Ψ̄ ξ) − ′′∇⊥′∇⊥(Ψ̄ ξ)

= (′∇⊥′′∇⊥Ψ̄ − ′′∇⊥′∇⊥Ψ̄ )ξ + Ψ̄ (′∇⊥′′∇⊥ξ − ′′∇⊥′∇⊥ξ)

= (′∇⊥′′∇⊥Ψ̄ − ′′∇⊥′∇⊥Ψ̄ )ξ + Ψ̄ R⊥ξ

for every normal vector ξ . It follows that

′∇⊥′′∇⊥Ψ̄ = 3FKΨ̄ + R⊥Ψ̄ − Ψ̄ R⊥ .

Thus we obtain

F−4〈Ψ, ′∇⊥′′∇⊥Ψ̄ 〉

= 3K|Ψ |2 + 2F−4
∑

R⊥
w

uΨ̄ wvΨ uv

= 3K|Ψ |2 + 2F−5
∑

(γ̄ wγ u − γ w γ̄ u)Ψ̄ wvΨ uv

= 3K|Ψ |2 + 2(|Ψ γ |2 − |Ψ γ̄ |2) .

(4.3)

The residue of the logarithmic singularities of log |Ψ |2 is given by

−2πN = lim
ε→0

∫

Σε

(

F−1 ∇ ′∇ ′′ log |Ψ |2
)

dv ,

where Σε denotes the complement in M of an ε-neighborhood of all points of Σ . In virtue of
the Gauss-Bonnet formula:

∫

Kdv = 2πχ(M) ,

we obtain (4.2). ✷

THEOREM 4.2. Let φ : M → Sn(c) be a compact oriented Willmore surface. Assume

that Ψ �= 0 identically. Then we have

4π(3χ(M) + N ) ≤
∫ |R⊥|2

|γ |2
dv .

The equality holds if and only if 〈Ψ γ, γ̄ 〉 = 0 and ′∇⊥Ψ is proportional to Ψ .

PROOF. We compute the first term of the integrand of (4.2) on M\Σ . Since

|Ψ γ ∧ γ |2 = 1

4
|〈γ, γ 〉|2|Ψ |2 ,

we have

|Ψγ |2|γ |2 = 1

2
|〈γ, γ 〉|2|Ψ |2 + |〈Ψ γ, γ̄ 〉|2 .
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We also have

|Ψ γ̄ |2 = 1

4
F−7〈〈′∇⊥η, γ̄ 〉γ − 〈γ, γ̄ 〉′∇⊥η, 〈′′∇⊥η, γ 〉γ̄ − 〈γ, γ̄ 〉′′∇⊥η〉

= 1

4
{|γ |4|′∇⊥η|2 − |〈′∇⊥η, γ̄ 〉|2|γ |2} = 1

2
|γ |2|Ψ |2 .

It follows that

1

|Ψ |2
(|Ψ γ |2 − |Ψ γ̄ |2) = −

|R⊥|2

4|γ |2
+

|〈Ψ γ, γ̄ 〉|2

|Ψ |2|γ |2
,(4.4)

where we have used

|R⊥|2 = 2(|γ |4 − |〈γ, γ 〉|2) .

Therefore we see from (4.4) and the non-negativity of A that

F−1 ∇ ′∇ ′′ log |Ψ |2 = 3K − |R⊥|2

2|γ |2
+ 2

|〈Ψ γ, γ̄ 〉|2

|Ψ |2|γ |2
+ A

|Ψ |4

≥ 3K − |R⊥|2

2|γ |2
.

(4.5)

Integrating (4.5), we have the desired inequality. ✷

Surfaces with isotropic γ in S4(c) are S-Willmore surfaces, because γ and γ̄ form an
orthogonal basis of CT ⊥M and

F 〈′∇⊥η, γ 〉 = 〈′′∇⊥γ, γ 〉 = 0 .

This fact was proved in [11]. We also have

THEOREM 4.3. Let φ : M → S5(c) be a Willmore surface whose curvature ellipse is

a circle everywhere. Then it is a S-Willmore surface.

This is immediately derived from the following lemma.

LEMMA 4.4. Let φ : M → S6(c) be a Willmore surface whose curvature ellipse is a

circle everywhere. If Ψ �= 0 identically, then γ , γ̄ , ′∇⊥η and ′′∇⊥η form a basis of CT ⊥M

on M\Σ and satisfy

〈′∇⊥η, γ 〉 = 0 , 〈′∇⊥γ, γ 〉 = 0 , 〈′∇⊥η,′ ∇⊥η〉 = 0 .(4.6)

PROOF. Since 〈γ, γ 〉 = 0, we get

〈′∇⊥η, γ 〉 = 0 , 〈′∇⊥γ, γ 〉 = 0 ,

and so, using (3.6),

0 = ∇ ′′〈′∇⊥η, γ 〉 = 〈′′∇⊥′∇⊥η, γ 〉 + 〈′∇⊥η, F ′∇⊥η〉
= F 〈′∇⊥η, ′∇⊥η〉 .
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Therefore we see that the subspace spanned by γ and ′∇⊥η in CT ⊥M is isotropic. Since
Ψ = γ ∧ ′∇⊥η �= 0, vectors γ , γ̄ , ′∇⊥η and ′′∇⊥η form a basis of CT ⊥M on M\Σ . ✷

THEOREM 4.5. Let φ : M → S6(1) be a compact oriented Willmore surface. Assume

that Ψ �= 0 identically and the curvature ellipse is a circle everywhere. Then we have

−2πN = 6πχ(M) −
∫

|γ |2dv +
∫ |α|2

|Ψ |2
dv ,(4.7)

where α = 〈′∇⊥′∇⊥η, γ 〉 = −〈′∇⊥η, ′∇⊥γ 〉. In particular, if M is a topological sphere,

then we have

∫

|γ |2dv = 12π + 2πN .(4.8)

PROOF. By Lemma 4.4, we can set

′∇⊥′∇⊥η = aγ + bγ̄ + c ′∇⊥η + d ′′∇⊥η ,

′∇⊥γ = a′γ + b′γ̄ + c′ ′∇⊥η + d ′ ′′∇⊥η .

Taking the symmetric product of the both hand sides of the above equation and γ (′∇⊥η), we
obtain

F 2b = α|′∇⊥η|2

2|Ψ |2
, F 3d = −α〈′∇⊥η, γ̄ 〉

2|Ψ |2
,

F 3b′ = α〈′′∇⊥η, γ 〉
2|Ψ |2

, Fd ′ = −α|γ |2

2|Ψ |2
.

It follows that

′∇⊥′∇⊥η ∧ Ψ = αF−3

2|Ψ |2
{F |′∇⊥η|2γ̄ ∧ Ψ − 〈′∇⊥η, γ̄ 〉′′∇⊥η ∧ Ψ } ,

′∇⊥γ ∧ Ψ =
αF−3

2|Ψ |2
{〈′′∇⊥η, γ 〉γ̄ ∧ Ψ − F 2|γ |2 ′′∇⊥η ∧ Ψ } .

(4.9)

The following general formula for decomposable 2-vectors are easily proved:

〈p ∧ s1, q̄ ∧ t̄1〉〈p ∧ s2, q̄ ∧ t̄2〉 − 〈p ∧ s1, q̄ ∧ t̄2〉〈p ∧ s2, q̄ ∧ t̄1〉

=
3

2
〈p, q̄〉〈p ∧ s1 ∧ s2, q̄ ∧ t̄1 ∧ t̄2〉 .

(4.10)

Using this formula, we compute A defined in Lemma 4.1. We have

′∇⊥Ψ = θ ∧ δ + γ ∧ ω ,
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where we have put θ = ′∇⊥γ , δ = ′∇⊥η and ω = ′∇⊥′∇⊥η. Then A is computed as follows:

A = |θ ∧ δ + γ ∧ ω|2|γ ∧ δ|2 − |〈θ ∧ δ + γ ∧ ω, γ̄ ∧ δ̄〉|2

= |θ ∧ δ|2|γ ∧ δ|2 − |〈θ ∧ δ, γ̄ ∧ δ̄〉|2

+ |γ ∧ ω|2|γ ∧ δ|2 − |〈γ ∧ ω, γ̄ ∧ δ̄〉|2

+ F−4〈θ ∧ δ, γ̄ ∧ ω̄〉|γ ∧ δ|2 − F−7〈θ ∧ δ, γ̄ ∧ δ̄〉〈γ̄ ∧ ω̄, γ ∧ δ〉
+ F−4〈γ ∧ ω, θ̄ ∧ δ̄〉|γ ∧ δ|2 − F−7〈γ ∧ ω, γ̄ ∧ δ̄〉〈θ̄ ∧ δ̄, γ ∧ δ〉

= 3

2
{|δ|2|δ ∧ θ ∧ γ |2 + |γ |2|γ ∧ ω ∧ δ|2

− 2ℜ[F−7〈δ̄, γ 〉〈ω ∧ γ ∧ δ, θ̄ ∧ γ̄ ∧ δ̄〉]} .

Thus we have

A = 3

2
{|γ |2|′∇⊥′∇⊥η ∧ Ψ |2 + |′∇⊥η|2|′∇⊥γ ∧ Ψ |2

− 2ℜ[F−7〈γ, ′′∇⊥η〉〈′∇⊥′∇⊥η ∧ Ψ, ′′∇⊥γ̄ ∧ Ψ̄ 〉]} .

(4.11)

To compute three terms of the right hand side of (4.11), we use (4.1) and (4.9). The first term
is computed as follows:

|γ |2|′∇⊥′∇⊥η ∧ Ψ |2

= |γ |2|α|2

4|Ψ |4
〈|′∇⊥η|2γ̄ ∧ ′∇⊥η ∧ γ − 〈′∇⊥η, γ̄ 〉′′∇⊥η ∧ ′∇⊥η ∧ γ,

|′∇⊥η|2γ ∧ ′′∇⊥η ∧ γ̄ − 〈′′∇⊥η, γ 〉′∇⊥η ∧ ′′∇⊥η ∧ γ̄ 〉

= |γ |2|α|2

12|Ψ |4
{|′∇⊥η|4|γ |2|Ψ |2 − |′∇⊥η|2|〈′∇⊥η, γ̄ 〉|2|Ψ |2}

=
|γ |2|α|2

12|Ψ |2
|′∇⊥η|2{|′∇⊥η|2|γ |2 − |〈′∇⊥η, γ̄ 〉|2}

= 1

6
|γ |2|α|2|′∇⊥η|2 .

Similarly, the second and third terms become

|′∇⊥η|2|′∇⊥γ ∧ Ψ |2 = 1

6
|′∇⊥η|2|γ |2|α|2 ,

2ℜ[F−7〈γ, ′′∇⊥η〉〈′∇⊥′∇⊥η ∧ Ψ, ′′∇⊥γ̄ ∧ Ψ̄ 〉] = 1

3
|α|2|〈′∇⊥η, γ̄ 〉|2 .

Substituting these equations into (4.11), we get A = |α|2|Ψ |2. Since Ψ γ = 0, (4.2) reduces
to (4.7).
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Furthermore, if M is a topological sphere, then α vanishes. To prove this result, we have
only to show that α is a holomorphic differential of degree 4. By (3.6), we obtain

∇ ′′〈′∇⊥η, ′∇⊥γ 〉
= 〈′′∇⊥′∇⊥η, ′∇⊥γ 〉 + 〈′∇⊥η, ′′∇⊥′∇⊥γ 〉
= −F−1〈γ̄ , η〉〈γ, ′∇⊥γ 〉 + 〈′∇⊥η, F ′∇⊥′∇⊥η + 2KFγ − R⊥γ 〉

= 1

2
F∇ ′〈′∇⊥η, ′∇⊥η〉 = 0 .

✷

Second, we study surfaces satisfying (3.10). If the normal connection is flat, then (3.10)
trivially holds. By the same proof as that of Proposition 3.2, we obtain

LEMMA 4.6. Under the assumption that the curvature ellipses are circles of constant

radius on M , (3.10) is equivalent to

′′∇⊥′∇⊥η + F−1〈η, γ̄ 〉γ + F

2
|γ |2η = 0 .(4.12)

PROOF. Since R⊥γ = F |γ |2γ and |γ | is constant, we have
′′∇⊥′′∇⊥(R⊥γ ) = F |γ |2 ′′∇⊥′′∇⊥γ .

Using

(R⊥)2η = |γ |2(〈γ̄ , η〉γ + 〈γ, η〉γ̄ ) ,

we obtain
1

F
{′′∇⊥′′∇⊥(R⊥γ ) + ′∇⊥′∇⊥(R̄⊥γ̄ )} + (R⊥)2η

= |γ |2(′′∇⊥′′∇⊥γ + ′∇⊥′∇⊥γ̄ + 〈γ̄ , η〉γ + 〈γ, η〉γ̄ )

= |γ |2{F(′′∇⊥′∇⊥η + ′∇⊥′′∇⊥η) + 〈γ̄ , η〉γ + 〈γ, η〉γ̄ } .

It follows from the Ricci identity (1.28) that

2

F
ℜ[′′∇⊥′′∇⊥(R⊥γ )] + (R⊥)2η + F 2

2
|R⊥|2η

= |γ |2{F(2′′∇⊥′∇⊥η + R⊥η) + 〈γ̄ , η〉γ + 〈γ, η〉γ̄ + F 2|γ |2η}

= 2F |γ |2
(

′′∇⊥′∇⊥η + F−1〈γ̄ , η〉γ + F

2
|γ |2η

)

.

When γ = 0, φ is totally umbilical and hence (4.12) holds. Thus (3.10) is equivalent to
(4.12). ✷

An isometric immersion φ : M → M̃ is said to be constant isotropic if ‖H(X,X)‖2 is
constant on the unit tangent bundle of M . In the case that M is a surface, we easily see that φ is
constant isotropic if and only if it is pseudo-umbilical (〈γ, η〉 = 0), the curvature ellipses are
circles (〈γ, γ 〉 = 0) and ‖η‖2 + |γ |2/2 is constant. In [23], we determined constant isotropic
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surfaces in S5(c). All of them are of constant Gauss curvature. In connection with this result,
we state

THEOREM 4.7. Let φ : M → Sn(c) be a pseudo-umbilical immersion of a surface M .

If the curvature ellipses are circles of constant radius on M and φ satisfies (3.10), then M is

of constant Gauss curvature.

PROOF. Since 〈′∇⊥η, γ 〉 = 0, we have, from (4.12),

0 = ∇ ′′〈′∇⊥η, γ 〉
= 〈′′∇⊥′∇⊥η, γ 〉 + 〈′∇⊥η, F ′∇⊥η〉

= −F

2
|γ |2〈η, γ 〉 + F 〈′∇⊥η, ′∇⊥η〉

= F 〈′∇⊥η, ′∇⊥η〉 .

Thus we see that

0 = ∇ ′′〈′∇⊥η, ′∇⊥η〉

= −|γ |2〈η, ′∇⊥η〉 = −1

2
|γ |2∇ ′‖η‖2 .

If γ = 0, then φ is totally umbilical. If ‖η‖2 is constant, then K is constant because of the
Gauss equation (1.24). ✷

REMARK. If φ : M → Sn(c) is a constant isotropic minimal immersion, then the
assumption that φ is pseudo-umbilical and satisfies (3.10) is trivially satisfied (cf. (4.12)).
Minimal surfaces of constant Gauss curvature in Sn(c) were determined in [6].

In the next theorem, we characterize a part of minimal surfaces of constant Gauss curva-
ture in Sn(c) by the conditions that M is compact, φ is critical for the functional R⊥

2 and the
curvature ellipses are circles everywhere.

THEOREM 4.8. Let φ : M → Sn(c) be a minimal immersion of compact surface M . If

φ satisfies (3.10) and the curvature ellipses are circles everywhere, then the Gauss curvature

of M is constant and the immersion is a standard minimal immersion of a sphere or a constant

isotropic minimal immersion of a flat torus (cf. [6, 17, 23]).

PROOF. If R⊥ ≡ 0, then γ = 0 and so φ is totally umbilical. Assume that R⊥ does
not vanish identically. Equation (3.10) reduces to

ℜ[′′∇⊥′′∇⊥(R⊥γ )] = 0 .

It follows that

(∇ ′′∇ ′′|γ |2)γ + (∇ ′∇ ′|γ |2)γ̄ = 0 .

Vectors γ and γ̄ are linearly independent on Σ ′ = {p ∈ M|R⊥(p) �= 0}. Thus ∇ ′∇ ′|γ |2 = 0
on Σ ′. Since φ is real analytic, M\Σ ′ is discrete in M . Hence ∇ ′∇ ′|γ |2 = 0 on M . It
follows that ∇ ′∇ ′K = 0 on M in virtue of the Gauss equation (1.24). In the subsequent
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sections, we study a two-dimensional Riemannian manifold (M, g ) which admits a function
satisfying ∇∇f = τg . In Section 6, we prove that if the Gauss curvature K of a compact
two-dimensional Riemannian manifold satisfies ∇ ′∇ ′K = 0, then K is constant. From this
and the result of [6], we have the assertion. ✷

REMARK. For any standard minimal immersion of a sphere, the curvature ellipses are
circles. On the other hand, there are minimal immersions of flat tori such that curvature
ellipses are not circles (cf. [6]).

Next, let us assume that the mean curvature vector of the immersion φ : M → Sn(c) is
parallel. Chen [9] and Yau [27] proved that if the mean curvature vector of φ is parallel, then
M is one of the following surfaces:

(1) a minimal surface in Sn(c),
(2) a minimal surface of a small hypersphere of Sn(c),
(3) a surface with constant mean curvature in a three-dimensional sphere of Sn(c).

In the following collorary, we show that if φ is not totally umbilical, then the conditon for the
curvature ellipses excludes the case (3) and the equation (3.10) excludes the case (2) from our
conclusion.

COROLLARY. Let φ : M → Sn(c) be an immersion of a compact surface M . If φ

satisfies (3.10), the mean curvature vector is parallel and the curvature ellipses are circles

everywhere, then the Gauss curvature of M is constant and the immersion is a standard mini-

mal immersion of a sphere, a constant isotropic minimal immersion of a flat torus or a totally

umbilical immersion.

PROOF. In the case (3), the normal connection is flat (cf. [9, p. 106]). Since 〈γ, γ 〉 = 0,
we have γ = 0. Thus φ is totally umbilical in the case (3). If R⊥ = 0 in the case (2), then
γ = 0 and hence φ is totally umbilical. Assume that R⊥ does not vanish identically in the
case (2). Take the symmetric product of both hand sides of (3.10) and η. Then we have

2ℜ[F−3∇ ′′∇ ′′〈R⊥γ, η〉] + F−2〈(R⊥)2η, η〉 + 1

2
|R⊥|2‖η‖2 = 0 .

Since

R⊥η = ′∇⊥′′∇⊥η − ′′∇⊥′∇⊥η = 0 ,

we see that η = 0 on the open dense set Σ ′, where we note that φ is real analytic. Therefore
we have η = 0 on M . ✷

5. Equation ∇∇f = τg . In the proof of Theorem 4.8, we used the result that a
compact surface whose Gauss curvature satisfies ∇ ′∇ ′K = 0 is of constant curvature. The
equation ∇ ′∇ ′K = 0 can be rewritten as a tensor equation ∇∇K = τg , τ being a C∞

function on M . In the present and next sections, we shall study a complete two-dimensional
Riemannian manifold M which admits a function f satisfying ∇∇f = τg (cf. [4, 15, 18,
24]).
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Let M be a two-dimensional C∞ manifold. We assume that M is compact and orientable.
Let M denote the set of Riemannian metrics on M . Furthermore, let M1 denote the subset
{g ∈ M|

∫

M dvg = 1} and M2 the subset {g ∈ M1|dvg = µ}, where µ is a positive density
on M with total volume

∫

M µ = 1 (cf. [3]). In the compact open C∞ topology, M is an
open convex cone in the set C∞(S2T ∗M) of all C∞ sections of S2T ∗M . We consider the
following functional FJ from M to R:

FJ [g ] =
∫

M

J (K)dvg ,

where J = J (x) is a function defined on R, J (K) the composition J ◦ K and dvg the area
element of g ∈ M. The Euler-Lagrange equation is given by

∇∇J̇ (K) + {△J̇ (K) − KJ̇ (K) + J (K)}g = 0(5.1)

for a critical point g ∈ M, where ∇ denotes the covariant derivative with respect to g , the
Laplace operator is defined by 
 = −g

ij ∇i∇j and J̇ (K) the composite J̇ ◦ K . The equation
(5.1) for the case J (x) = x2 is well-known (cf. [3], Chapter 4). However, for the sake of
completeness, we give the proof in the following.

Let g (t) be a smooth curve (−ε, ε) → M such that g (0) = g . We compute F ′
J [g ] :=

(d/dtFJ [g (t)])(0). Since

F
′
J [g ] =

∫

M

J̇ (K)
∂K

∂t
(0)dvg +

∫

M

J (K)(dvg (t))
′(0) ,

we have to compute (∂K/∂t)(0) and (dvg (t))
′(0). Let k ∈ TgM be defined by k = g

′(0).
Then it is easy to show that

(

∂

∂t
g

ij

)

(0) = −kij

and hence

g′(0) = (trk)g ,

where g(t) = det(g ij (t)), g = g(0) and trk = kij g
ij . Therefore we have

(dvg (t))
′(0) = g′(0)

2
√

g
dx1 ∧ dx2 = 1

2
trkdvg .

The derivative (∂Γj
i
k/∂t)(0) of the coefficients of Riemannian connection ∇ is given by
(

∂

∂t
Γj

i
k

)

(0) = 1

2
g

ip(∇jkpk + ∇kkjp − ∇pkjk) .

Using this equation in the derivation of the Rimannian curvature tensor Rijk
l :

∂

∂t
{K(g jkδ

l
i − g ikδ

l
j )} =

(

∂

∂t
Rijk

l

)

(0)

=
{

∂

∂t

(

∂

∂xi
Γj

l
k −

∂

∂xj
Γi

l
k + Γi

l
pΓj

p
k − Γj

l
pΓi

p
k

)}

(0) ,
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we get

2

(

∂

∂t
K

)

(0) = ∇i∇jk
ij + 
trk − Ktrk .

By integration by parts, we have

2F ′
J [g ] =

∫

M

{J̇ (K)(∇i∇j k
ij + 
trk − Ktrk) + J (K)trk}dvg

=
∫

M

[∇i∇j J̇ (K) + {
J̇(K) − KJ̇(K) + J (K)}g ij ]kijdvg .

(5.2)

The equation (5.1) is the necessary and sufficient condition for that F ′
J [g ] = 0 for

arbitrary k ∈ TgM. The equation (5.1) implies that


J̇(K) = 2{KJ̇(K) − J (K)}

and hence is rewritten as

∇∇J̇ (K) = {J (K) − KJ̇ (K)}g .(5.3)

We now introduce C∞ functions on M

f = J̇ (K) , τ = J (K) − KJ̇ (K) .

Then (5.3) becomes

∇∇f = τg ,(5.4)

which shows that f is a concircular scalar field on M (cf. [24]).
Recall that TgM1 = {k ∈ TgM|

∫

trkdvg = 0} and TgM2 = {k ∈ TgM|trk = 0}.
Thus g is a critical point of FJ |M1 (resp. FJ |M2) if and only if the orthogonal projection
of the left hand side of (5.1) onto TgM1 (resp. TgM2) is zero. Thus if g is a critical point
for the functionals FJ ,FJ |M1 or FJ |M2 , then we have a concircular scalar field on M . The
function τ , called the characteristic function of f , can be considered as a function τ (f ) of
f if J̇ is strictly monotone, i.e., J̈ �= 0 anywhere on R. In fact, we have τ = −
f/2 and
covariantly differentiating the both hand sides of (5.4) and using the Ricci identity, we obtain

∇
f = 2K∇f .

Under the assumption that J̈ �= 0, K is represented as K = U(f ) with U = J̇−1. Thus τ is
given by

τ = −
∫

U(f )df ,(5.5)

where the integral constant is chosen in such away that
∫

M
τdvg = 0. Since

∇‖∇f ‖2 = 2τ (f )∇f ,

the length of ∇f is given by

‖∇f ‖2 = 2
∫

τ (f )df .(5.6)
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We have shown the following.

THEOREM 5.1. The critical point g ∈ M of the functional FJ is characterized by

(5.3). If g is a critical point for FJ ,FJ |M1, or FJ |M2 , then the function f := J̇ (K) is a

concircular scalar field on M . If J̈ �= 0, then the characteristic function τ and the length of

∇f are given by (5.5) and (5.6), respectively.

Next, let M be a complete two-dimensional Riemannian manifold with a metric g . We
assume that M admits a C∞ function f satisfying (5.4), namely a concircular scalar field with
the characteristic function τ . Let m denote the number of the isolated stationary points of the
gradient field gradf . Tashiro proved the following results (cf. [24, pp. 251–257]):

(1) The stationary points are isolated and m ≤ 2.
(2) According to m = 0, 1 and 2, M is diffeomorphic to the direct product of a

complete one-dimensional Riemannian manifold Z and R, a Euclidean space R
2 and a two-

dimensional sphere S2.
(3) The integral curves of gradf are geodesics. Denoting by W the set of the stationary

points, we can take a local coordinates {u, θ} on M\W such that u-curves coincide with the
integral curves and θ is a local coordinate on Z (m = 0) or the unit circle in the tangent space
at P ∈ W (m = 1, 2); in other words, {u, θ} is the geodesic polar coordinates around P .
Moreover, in terms of {u, θ}, f is represented as a function f (u) of only u, and g has the
form

g = du2 + a(u)2dθ2 , a(u) = cf ′(u) > 0 ,

where c is some constant.

REMARK. Tashiro obtained stronger results than those stated above for n(≥ 2)-dimen-
sional Riemannian manifolds.

In (3), the domain I of a is (−∞,∞), [0,∞) and [0, L], respectively, if m = 0, 1 and
2, where L = dist(P,Q) and W = {P,Q}. Since f ′(u) �= 0 on the interior of I , we have the
inverse function u = u(f ) of f , defined on f (I). The equation (5.4) implies that τ depends
only on u. Therefore, by taking the composition of τ (u) and u(f ), we see that τ can be
regarded as a function of f . Since

dτ

df
∇f = ∇τ = −1

2
∇△f = −K∇f ,

the curvature K is given by

K = −a′′

a
= U(f ) ,(5.7)

where U(f ) := −dτ/df .
We want to compute ∇∇K under the assumption that d2τ/df 2 �= 0 everywhere on f (I).

Let ˙ denote differentiation with respect to f . Since

∇K = U̇(f )∇f ,
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we have, from (5.4),

∇∇K = Ü(f )∇f ⊗ ∇f + U̇∇∇f

= Ü(f )

U̇(f )2
∇K ⊗ ∇K + U̇(f )τ (f )g .

Our assumption implies that there exists the inverse function of U(f ), denoted by v, and
hence f = v(K). It is easily shown that

Ü(f )

U̇(f )2
= −d2v/dK2

dv/dK
.

By using v, we have

U̇(f )τ (f ) = − 1

dv/dK

∫

U(f )df = − 1

dv/dK

∫

K
dv

dK
dK

= 1

dv/dK

{
∫

v(K)dK − Kv(K)

}

.

Define ϕ and ψ on the range of K by

ϕ(K) = 1

d2J/dK2

{

J (K) − K
dJ

dK

}

, ψ(K) = −d3J/dK3

d2J/dK2
,

where J (K) =
∫

v(K)dK and the indefinite constant of the integral is chosen in such a way
that τ (f ) =

∫

v(K)dK − Kv(K). Then K satisfies

∇∇K = ϕ(K)g + ψ(K)∇K ⊗ ∇K .(5.8)

We have shown the following.

THEOREM 5.2. If M admits a concircular scalar field f with the characteristic func-

tion τ and d2τ/df 2 �= 0 anywhere on f (I), then the curvature K satisfies (5.8).

We finally start from the assumption that K satisfies (5.8). Substituting (5.8) into the
Ricci identity:

∇h∇i∇jK = ∇i∇h∇jK − K(δ
p
h g ij − δ

p
i g hj )∇pK ,

we easily obtain

ϕ̇(K)∇hKg ij + ψ̇(K)∇hK∇iK∇jK + ψ(K)∇iK∇h∇jK

= ϕ̇(K)∇iKg hj + ψ̇(K)∇iK∇hK∇jK + ψ(K)∇hK∇i∇jK

− K(δ
p

h g ij − δ
p

i g hj )∇pK ,

where ˙ denotes differentiation with respect to K . Transvecting with g
hj and using (5.8)

again, we have

{ϕ̇(K) + K + ψ(K)
K + ϕ(K)ψ(K) + ψ2(K)‖∇K‖2}∇K = 0 .

Substituting


K = −2ϕ(K) − ψ(K)‖∇K‖2
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into this, we obtain

ϕ̇(K) + K − ϕ(K)ψ(K) = 0(5.9)

on the set of non-critical points of K .
Assume that ϕ(K) �= 0 at an arbitrary critical point of K . Then the critical points are

isolated and (5.9) holds on M . Consider a nontrivial function v = v(K) satisfying

d2v

dK2
+ ψ(K)

dv

dK
= 0 .

Define J (K) by

J (K) = Kv(K) + v̇(K)ϕ(K) .(5.10)

Then, in virtue of (5.9),

J̇ (K) = v(K) + {K − ϕ(K)ψ(K) + ϕ̇(K)} v̇(K)

= v(K) .

Therefore, if we set

v(K) = C

∫

e−Ψ (K)dK , Ψ (K) =
∫

ψ(K)dK(5.11)

with some non-zero constant C, then J (K) defined by (5.10) satisfies J̇ (K) = v(K) and
hence

∇∇J̇ (K) = v̈(K)∇K ⊗ ∇K + v̇(K)∇∇K

= {J (K) − KJ̇(K)}g ,

because of (5.8) and (5.10).

THEOREM 5.3. If the Gauss curvature K of a compact, orientable, two-dimensional

Riemannian manifold M satisfies (5.8) and ϕ(K) �= 0 at any critical point of K, then the

metric of M is a critical point of the functional FJ where J̇ = v and v is defined by (5.11).

6. Surfaces admitting a concircular scalar field. All facts in this section about el-
liptic functions are well-known; for instance, see [1, 7, 14].

If the equation ∇∇f = τg is restricted to a geodesic, then it reduces to an ordinary
differential equation f ′′ = τ (f ). When τ is a linear function of f , then the Riemannian
manifold which admits the concircular scalar field f was determined in [18, 24]. So we
study the cases that τ is a polynomial of degree 2 or 3 with constant coefficients under the
assumption that M is a complete two-dimensional Riemannian manifold, although the results
are easily generalized to the case that the dimension is not restricted.

We consider real solutions of the following differential equations with constant real co-
efficients:

f ′′ = 6f 2 − 1

2
g 2 ,(6.1)

f ′′ = ε(2f 3 + 6a2f + 2a3) ,(6.2)
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where ε = ±1. Since, making use of solutions of (6.1), we can obtain those of (6.2), we first
deal with (6.1). We have from (6.1)

(f ′)2 = 4f 3 − g 2f − g 3 ,(6.3)

where g 3 is a constant real number. The roots of the polynomial

p(x) = 4x3 − g 2x − g 3

will be denoted by e1, e2 and e3. The discriminant D is given by

D = 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2

= g 2
3 − 27g 3

2 .

We have the relations:

e1 + e2 + e3 = 0 , e1e2 + e2e3 + e3e1 = −1

4
g 2 , e1e2e3 = 1

4
g 3 .(6.4)

Since f is a function defined on M , f restricted to a geodesic is defined on R. So we
have to exclude solutions which diverge at a finite number t0 ∈ R from nontrivial solutions of
(6.1). We shall set the initial conditions for solutions in the most suitable ones in each case,
so that every solution is obtained by the change of variable: t → t + d .

In the case that D > 0, the roots are real numbers. First, we assume that D > 0 and
e3 < e2 < e1. Clearly, the real solution f satifies e3 ≤ f ≤ e2 or e1 ≤ f . In the case that
e3 ≤ f ≤ e2, the solution with initial conditions f (0) = e3 and f ′(0) = 0 is given by

f (t) = ℘(t + ω′) ,(6.5)

where ℘ is the Weierstrass elliptic function with periods 2ω ∈ R and 2ω′ ∈
√

−1R (cf. [1, p.
105]):

ω =
∫ ∞

e1

dx
√

4x3 − g 2x − g 3

, ω′ =
√

−1
∫ ∞

−e3

dx
√

4x3 − g 2x + g 3

.(6.6)

We note that ℘(ω) = e1, ℘ (ω + ω′) = e2 and ℘(ω′) = e3. Using the Jacobi elliptic
functions, (6.5) becomes

f (t) = e3 + (e2 − e3)sn2(
√

e1 − e3t) ,(6.7)

where the modulus κ is given by κ2 = (e2 − e3)/(e1 − e3).
In the case that e1 ≤ f , the solution with initial conditions f (0) = e1 and f ′(0) = 0 is

given by

f (t) = ℘(t + ω) .(6.8)

In this case, we have limt→−ω f (t) = ∞.
Second, we consider the case that D = 0. Assume that e3 < e2 = e1. Then the real

solution f satisfies e3 ≤ f < e1 or f ≥ e1. In the case that e3 ≤ f < e1, the solution with
initial condition f (0) = e3 and f ′(0) = 0 is given by

f (t) = e3 + (e1 − e3) tanh2(
√

e1 − e3t) ,(6.9)
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which is the limit solution of (6.7) as κ2 → 1. We note that limt→∞ f (t) = e1. If f ≥ e1,
then the solution with limt→∞ f (t) = e1 and limt→∞ f ′(t) = 0 (ω = ∞) is given by

f (t) = e1 + (e1 − e3)
1

sinh2(
√

e1 − e3t)
,(6.10)

which shows that limt→0 f (t) = ∞. Next, assume that e3 = e2 < e1. In this case, κ = 0 and√
e1 − e3ω = π/2. The real solution f satisfies f ≥ e1. The solution with initial condition

f (0) = e1 and f ′(0) = 0 is given by

f (t) = e1 + (e1 − e3) tan2(
√

e1 − e3t) .(6.11)

Thus limt→t0 f (t) = ∞, where t0 = π/(2
√

e1 − e3). Assume that e1 = e2 = e3. From (6.4),
we see that e1 = e2 = e3 = 0. Therefore the solution is

f (t) = 1

t2
,(6.12)

for which we have limt→0 f (t) = ∞.
Third, let us assume that D < 0. One of the roots, say e2, is real and the others are

conjugate complex numbers. We also see that the periods 2ω and 2ω′ are conjugate complex
numbers and so ω + ω′ is real, which is given by

ω + ω′ = −
∫ ∞

e2

dx
√

4x3 − g 2x − g 3

(6.13)

(cf. [1]). In this case, the real solution with f (0) = e2 and f ′(0) = 0 is given by

f (t) = ℘(t + ω + ω′) .(6.14)

Thus we have limt→−(ω+ω′) f (t) = ∞. In consequence, we have

LEMMA 6.1. Among the nonconstant solutions of (6.1), the solutions which are de-

fined on the whole line R are (6.7) in the case (D > 0, e3 < e2 < e1), and (6.9) in the case

(D = 0, e3 < e2 = e1), up to a change of variable : t �→ t + d and a scalar multiple of f .

Let us turn to the differential equation (6.2). We assume that the polynomial

q(x) = x4 + 6a2x
2 + 4a3x + a4

has at least a real root. We denote the minimum of the real roots by x4. The nontrivial
solutions of (6.2) satisfy

(f ′)2 = εq(f ) .(6.15)

First, assume that x4 is a simple root. Let x1, . . . , x4 be the roots of q(x). Put f =
x4 + 1/z. Then we have

(z′)2 = −εα(z − α1)(z − α2)(z − α3) ,
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where α = (x1 − x4)(x2 − x4)(x3 − x4) > 0 and αi = (xi − x4)
−1 (i = 1, 2, 3). Furthermore

we put z = Ay + B. Then

(y ′)2 = −εαA

(

y + B − α1

A

)(

y + B − α2

A

)(

y + B − α3

A

)

.(6.16)

So if we define A and B by A = −4ε/α and B = (α1 + α2 + α3)/3, respectively, then we
can rewrite (6.16) as

(y ′)2 = 4(y − e1)(y − e2)(y − e3) ,(6.17)

where

ei = αi − B

A
(i = 1, 2, 3) if ε = 1 ,

e1 = α3 − B

A
, e2 = α2 − B

A
, e3 = α1 − B

A
if ε = −1 .

This means that a part of real solutions of (6.15) can be obtained by setting f = x4 +1/(Ay+
B) for a real solutions y of (6.17). We note that A,B ∈ R and

e1 = 1

4
(2a2 − x1x4 − x2x3) , e2 = 1

4
(2a2 − x2x4 − x1x3) ,

e3 = 1

4
(2a2 − x3x4 − x1x2) if ε = 1 ,

(6.18+)

e1 = −
1

4
(2a2 − x3x4 − x1x2) , e2 = −

1

4
(2a2 − x2x4 − x1x3) ,

e3 = −1

4
(2a2 − x1x4 − x2x3) if ε = −1 .

(6.18−)

Let us consider the case that x4 < x3 < x2 < x1 (real). By (6.18) we see that e3 < e2 <

e1. The solutions of (6.15) corresponding to (6.7) are

f +(t) =
x3(x2 − x4) − x4(x2 − x3)sn2(

√
e1 − e3t)

(x2 − x4) − (x2 − x3)sn2(
√

e1 − e3t)
,(6.19+)

f −(t) =
x1(x2 − x4) + x4(x1 − x2)sn2(

√
e1 − e3t)

(x2 − x4) + (x1 − x2)sn2(
√

e1 − e3t)
,(6.19−)

according as ε = ±1. The solution f + (resp. f −) attains the minimum x3 (resp. x2) at t = 0
(resp. t = ω ), the maximum x2 (resp. x1) at t = ω (resp. t = 0) and is a periodic function
with period 2ω. The solutions corresponding to (6.8) are

f +(t) = x1(x2 − x4) − x2(x1 − x4)sn2(
√

e1 − e3t)

(x2 − x4) − (x1 − x4)sn2(
√

e1 − e3t)
,(6.20+)

f −(t) = x3(x2 − x4) − x2(x3 − x4)sn2(
√

e1 − e3t)

(x2 − x4) − (x3 − x4)sn2(
√

e1 − e3t)
.(6.20−)

The solution (6.20+) diverges at t = t0 such that sn2(
√

e1 − e3t0) = (x2 − x4)/(x1 − x4).
The solution (6.20−) attains the maximum x3 at t = 0, the minimum x4 at t = ω and is a
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peiodic function with period 2ω. The function ℘(t) is certainly a real solution of (6.3) which
coincides with (6.8) up to a change of variable : t �→ t + ω. The solutions corresponding to
℘(t) are

f +(t) = x4(x1 − x3) − x3(x1 − x4)sn2(
√

e1 − e3t)

(x1 − x3) − (x1 − x4)sn2(
√

e1 − e3t)
,(6.21+)

f −(t) = x4(x1 − x3) + x1(x3 − x4)sn2(
√

e1 − e3t)

(x1 − x3) + (x3 − x4)sn2(
√

e1 − e3t)
.(6.21−)

The solution (6.21+) attains the maximum x4 at t = 0 and limt→t0 f +(t) = −∞, where
sn2(

√
e1 − e3t0) = (x1 − x3)/(x1 − x4). The solution (6.21−) coincides with (6.20−) up to a

change of variable : t �→ t + ω.
Next, we consider the case x4 < x3 < x2 = x1. We have e3 < e2 = e1 if ε = 1 and

e3 = e2 < e1 if ε = −1. The solutions corresponding to (6.9) (i.e., the limit of (6.19+) as
κ2 → 1) and (6.11) (the limit of (6.20−) as κ → 0) are

f +(t) = x3(x1 − x4) − x4(x1 − x3) tanh2(
√

e1 − e3t)

(x1 − x4) − (x1 − x3) tanh2(
√

e1 − e3t)
,(6.22+)

f −(t) =
x3(x1 − x4) − x1(x3 − x4) sin2(

√
e1 − e3t)

(x1 − x4) − (x3 − x4) sin2(
√

e1 − e3t)
,(6.22−)

respectively. The function (6.22+) satisfies f +(0) = x3, which is the minimum, and
limt→±∞ f +(t) = x1. For (6.10), we can show that if ε = 1, there exists t0 such that
Ay(t0) + B = 0. Indeed, the range of the function (6.10) is [e1,∞) and −B/A = (a2 +
x4

2)/2 > (a2 + x1
2)/2 = e1 if ε = 1. Thus we have limt→t0 |f +(t)| = ∞ for the limit solu-

tion of (6.20+) as κ2 → 1. Since 0 < (x1 − x3)/(x1 − x4) < 1, we also see that there exists
t0 such that limt→t0 |f +(t)| = ∞ for the limit solution of (6.21+) as κ2 → 1. On the other
hand, (6.22−) attains the maximum x3 at t = 0 and the minimum x4 at t = π/(2

√
e1 − e3).

The limit solution of (6.21−) as κ → 0 coincides with (6.22−) up to a change of variable :
t �→ t + π/(2

√
e1 − e3).

Consider the case that x4 < x3 = x2 < x1. Then we have e3 = e2 < e1 (ε = 1) and
e3 < e2 = e1 (ε = −1). Thus the solutions corresponding to (6.11) and (6.9) are

f +(t) = x1(x2 − x4) − x2(x1 − x4) sin2(
√

e1 − e3t)

(x2 − x4) − (x1 − x4) sin2(
√

e1 − e3t)
,(6.23+)

f −(t) =
x1(x2 − x4) + x4(x1 − x2) tanh2(

√
e1 − e3t)

(x2 − x4) + (x1 − x2) tanh2(
√

e1 − e3t)
,(6.23−)

respectively. The solution (6.23+) is the limit of (6.20+) as κ → 0. Since 0 < (x2 −
x4)/(x1 − x4) < 1, there exists t0 such that limt→t0 |f +(t)| = ∞. For (6.23+), the func-
tion f +(t + π/(2

√
e1 − e3)) is the real solution which is the limit of (6.21+) and satisfies

f +(0 + π/(2
√

e1 − e3)) = x4. For this solution, there exists t0 such that limt→t0 |f +(t +
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π/(2
√

e1 − e3))| = ∞. The solution (6.23−), which is the limit of (6.19−) as κ2 → 1, attains
the maximum x1 at t = 0 and limt→±∞ f −(t) = x2, which is the infimum. The solution f −

which attains the minimum x4 at t = 0 and satisfies limt→±∞ f −(t) = x3 is given by

f −(t) = x4(x1 − x3) + x1(x3 − x4) tanh2(
√

e1 − e3t)

(x1 − x3) + (x3 − x4) tanh2(
√

e1 − e3t)
,(6.24−)

which is the limit of (6.21−) as κ2 → 1.
In the case that x4 < x3 = x2 = x1, we have e1 = e2 = e3 and hence the solutions

corresponding to (6.12) are

f +(t) = x4 − 4x1
3t2

1 − 4x1
2t2

,(6.25+)

f −(t) =
x4 + 4x1

3t2

1 + 4x1
2t2

.(6.25−)

We have limt→±1/(2x1) |f +(t)| = ∞ for (6.25+). We note that f +(t) > x1 (resp. < x4) if
|t| > 1/(2x1) (resp. |t| < 1/(2x1)). The solution (6.25−) attains the minimum x4 at t = 0
and limt→±∞ f −(t) = x1, which is the infimum.

In the case that x4 < x2 and x3 = x̄1 /∈ R, we see that e2 is real and e3(= ē1) is not
real. The real solution with f ±(0) = x2 corresponds to (6.14) and that with f +(0) = x4 to
y(t) = ℘(t). The range of (6.14) and ℘ is [e2, ∞) and −B/A > e2 if ε = 1. Thus we see
that f +(t) = x4 + 1/(Ay(t) + B) diverges at some t0. The solution f − corresponding to
(6.14) is given by

f −(t) = x4 + 1

A℘(t + ω + ω′) + B

=
x2|x1 − x4| + x4|x1 − x2| + (x2|x1 − x4| − x4|x1 − x2|)cn(γ t)

|x1 − x4| + |x1 − x2| + (|x1 − x4| − |x1 − x2|)cn(γ t)
,

(6.26−)

(cf. [7, p. 86]), where γ =
√

|x1 − x2||x3 − x4| and the square of the modulus κ of cn(γ t) is
equal to (|e1 − e2| + ℜ[e1 − e2])/(2|e1 − e2|). The solution f − attains the minimum x4 at
t = ω + ω′ and the maximum x2 at t = 0. The period is equal to 2(ω + ω′). We shall make
use of the following equation:

A = 4

|x1 − x4|2(x2 − x4)
, Ae2 + B = 1

x2 − x4
.(6.27)

Next, assume that x4 is a real double root (x4 = x3). Consider the case that x4 = x3 <

x2 < x1. Set f̃ (t) = −f (t). Then f̃ satisfies

(f̃ ′)2 = ε(f̃ 4 + 6a2f̃
2 − 4a3f̃ + a4) .

The roots of the polynomial q̃(x) = x4 + 6a2x
2 − 4a3x + a4 are x̃4 = −x1, x̃3 = −x2, x̃2 =

x̃1 = −x4. We note that ei (i = 1, 2, 3) does not change. Therefore the real solutions with



VARIATIONAL PROBLEMS OF NORMAL CURVATURE TENSOR 245

initial condition f ±(0) = x2 can be obtained by making use of (6.22+) and (6.22−):

f +(t) =
x2(x1 − x4) − x1(x2 − x4) tanh2(

√
e1 − e3t)

(x1 − x4) − (x2 − x4) tanh2(
√

e1 − e3t)
,(6.28+)

f −(t) = x2(x1 − x4) − x4(x1 − x2) sin2(
√

e1 − e3t)

(x1 − x4) − (x1 − x2) sin2(
√

e1 − e3t)
,(6.28−)

respectively. We note that f + attains the maximum x2 at t = 0 and limt→±∞ f +(t) = x4.
The solution (6.28−) attains the maximum x1 at t = π/(2

√
e1 − e3) and the minimum x2 at

t = 0. The other real solution in this case with initial condition f +(0) = x1 (or x4) satisfies
limt→t0 |f (t)| = ∞ for some t0 ∈ R.

In the case that x4 = x3 < x2 = x1, we directly solve (6.15). Since q(f ) ≥ 0, there does
not exist a nontrivial solution if ε = −1. Using the relation x1 + x4 = 0, we have the solution
with initial condition f +(0) = 0:

f +(t) = ±x1 tanh(x1t) ,(6.29+)

which satisfies x4 < f +(t) < x1. Moreover, we have the solution such that limt→0 |f +(t)| =
∞:

f +(t) = ±x1 coth(x1t) .(6.30+)

We consider the case that x4 = x3 and x2 (= x̄1) is not real. In this case, there is not a
nontrivial solution if ε = −1. We put f = x4 +2/(y +α1 +α2), where αi = 1/(xi −x4) (i =
1, 2). We note that α2 = ᾱ1 and so α1 + α2 is real. Then we have

(y ′)2 = α{y2 − (α2 − α1)
2} , (α = (x1 − x4)(x2 − x4) > 0) .(6.31)

It is easy to solve (6.31). If we put α2 − α1 =
√

−1b, then the solution is

y = ±b sinh(
√

αt) .

Thus we have

f +(t) = x4 + 2

±b sinh(
√

αt) + α1 + α2
,(6.32+)

and hence there exists t0 ∈ R such that f (t) diverges as t → t0.
If x4 is a triple root, then the solutions of (6.15) are given by

f +(t) = x1 − 4x4
3t2

1 − 4x4
2t2

,(6.33+)

f −(t) = x1 + 4x4
3t2

1 + 4x4
2t2

,(6.33−)

We obtain these solutions by setting f̃ (t) = −f (t) in (6.25).
If x4 is a real quadruple root, then

f +(t) = x4 ± 1

t
,
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and hence limt→∓0 |f +(t)| = ∞.
The remainding case is that the polynomial q has not a real root. Since q(f ) > 0, (6.15)

has no solutions if ε = −1. If x4 = x̄3 = x̄2 = x1, then (f ′)2 = (f − x1)
2(f − x̄1)

2 and
hence f +(t) = ℜx1 ± (ℑx1) tan{(ℑx1)t + c}, which shows that there exists t0 such that f +(t)

diverges as t → t0.
Finally, we deal with the case that x4 = x̄3, x̄2 = x1 and x1 �= x4. We reduce

∫

df
√

|f − x4|2|f − x1|2
= ±t(6.34)

to a Jacobi normal form (cf. [1, pp. 106–109]). If ℜx1 = ℜx4, then ℜx1 = 0, so that (6.34)
becomes

∫

df
√

(f 2 + b1
2)(f 2 + b4

2)
= ±t ,(6.35)

where bi = ℑxi (i = 1, 4). Suppose that ℜx1 �= ℜx4. We put ci = ℜxi (i = 1, 4). Let us set
f = (py + q)/(y + 1), where p and q (p > q) are roots of the equation:

X2 + 1

2c1

(

b4
2 − b1

2)X − 1

2

(

2c1
2 + b1

2 + b4
2) = 0 .

Then the integral of (6.34) becomes

p − q

|p − x1||p − x4|

∫

dy
√

(y2 + α2)(y2 + β2)
(

α =
∣

∣

∣

∣

q − x1

p − x1

∣

∣

∣

∣

, β =
∣

∣

∣

∣

q − x4

p − x4

∣

∣

∣

∣

)

.

(6.36)

Since the integrals of (6.35) and (6.36) reduce to the normal form:
∫

du
√

(1 − u2)(1 − κ2u2)
(κ2 = (α2 − β2)/α2)

by putting y2 = β2u2/(1 − u2), a straightforward computation shows that

f +(t) = q + pβtn(γ t)

1 + βtn(γ t)

(

γ 2 = 1

4
(|x4 − x1| + |x4 − x2|)2

)

.(6.37+)

In particular, there exists t0 such that f (t) diverges as t → t0.
Summing up, we obtain

LEMMA 6.2. Among the nonconstant solutions of (6.2), the solutions which are de-

fined on the whole line R are, up to a change of variable : t �→ t + d and a scalar multiple of

f , (6.19+), (6.19−) and (6.21−) in the case (x4 < x3 < x2 < x1), (6.22+) and (6.22−) in the

case (x4 < x3 < x2 = x1), (6.23−) and (6.24−) in the case (x4 < x3 = x2 < x1), (6.25−)
in the case (x4 < x3 = x2 = x1), (6.26−) in the case (x4 < x2, x3 = x̄1 /∈ R), (6.28+) and

(6.28−) in the case (x4 = x3 < x2 < x1), (6.29+) in the case (x4 = x3 < x2 = x1) and

(6.33−) in the case (x4 = x3 = x2 < x1).
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REMARK: All solutions given in Lemmas 6.1 and 6.2 are characterized by the property
that their ranges coincide with open, open half or closed bounded intervals I such that the
infimum and supremum are real roots of the polynomial p(x) or q(x) and there are no real
roots in the interior I .

Let us return to the study of the manifold M admitting a concircular scalar field f .
Tashiro [24] determined M when the polynomial is of degree ≤ 1. We consider the case that
the characteristic function τ is a polynomial of f whose degree is less than 3 in the following
theorem.

THEOREM 6.3. Let M be a complete two-dimensional Riemannian manifold, and sup-

pose that it admits a nontrivial concircular scalar field f whose characteristic function is a

polynomial of f . If the degree is 2 or 3, then M is homothetic to one of the following man-

ifolds. The function f given in the list coincides with the concircular scalar field f up to a

linear transformation : f �→ λf + µ.

[I] (deg = 2). R
2 with a metric:

ds2 = du2 + 1

e1 − e3
tanh2(

√
e1 − e3u)sech4(

√
e1 − e3u)dθ2

in terms of the geodesic polar coordinates {u, θ} in R
2, where e1 > e3 and 2e1 + e3 = 0. It

is isometric to the surface of revolution which is obtained by rotating the unit speed curve:

x(u) =
1

√
e1 − e3

tanh(
√

e1 − e3u)sech2(
√

e1 − e3u) ,

z(u) = 1

6e1
2

∫ f (u)

e3

1

e1 − ξ

√

(2e1 − ξ)(2e1
2 + ξ2)dξ

in the x-z plane around the z-axis in R
3, where f (u) = e3 + (e1 − e3) tanh2(

√
e1 − e3u).

[II] (deg = 3). (1) R × Z with a warped product metric:

ds2 = du2 + x1
4sech4(x1u)dθ2 ,

where θ is a local coordinate in a complete one-dimensional manifold Z, x1 is a positive

constant and f +(u) = x1 tanh(x1u).

(2) R
2 with a metric:

ds2 = du2 + a(u)2dθ2 ,

where {u, θ} is the geodesic polar coordinates in R
2. The function a is one of the following:

(i)

a(u) = 2(f +)′(u)

(x3 − x1)2(x3 − x4)
,

f +(u) = x3(x1 − x4) − x4(x1 − x3) tanh2(γ u)

(x1 − x4) − (x1 − x3) tanh2(γ u)
,

γ =
√

e1 − e3 = 1

2

√

(x1 − x3)(x1 − x4) ,
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where x1, x3, x4 are constants satisfying x4 < x3 < x1 and 2x1 + x3 + x4 = 0,

(ii)

a(u) = −2(f −)′(u)

(x3 − x1)2(x1 − x4)
,

f −(u) = x1(x3 − x4) + x4(x1 − x3) tanh2(γ u)

(x3 − x4) + (x1 − x3) tanh2(γ u)
,

γ =
√

e1 − e3 = 1

2

√

(x1 − x3)(x3 − x4) ,

where x1, x3, x4 are constants satisfying x4 < x3 < x1 and x1 + 2x3 + x4 = 0,

(iii)

a(u) = 2(f −)′(u)

(x1 − x4)3
,

f −(u) = x4 + 4x1
3u2

1 + 4x1
2u2

,

where x1, x4 are constants satisfying x4 < x1 and 3x1 + x4 = 0.

(3) S2 with a metric:

ds2 = du2 + a(u)2dθ2 ,

in terms of the geodesic polar coordinates {u, θ} whose center is a critical point of f . The

function a is one of the following:
(i)

a(u) = (f +)′(u)

x2(x1
2 − x2

2)
,

f +(u) = x4 +
1

A℘(u + ω′) + B
=

−x2
{

x1 + x2 − 2x1sn2(γ u)
}

(x1 + x2) − 2x2sn2(γ u)
,

γ = 1

2
(x1 + x2) ,

where 0 < x2 < x1, A = −2/{x1(x1
2 − x2

2)}, B = (5x1
2 − x2

2)/{6x1(x1
2 − x2

2)} and the

modulus of the Jacobi elliptic function sn is equal to 2x1x2/(x1 + x2).

(ii)

a(u) = −(f −)′(u)

x2|x1 − x2|2
,

f −(u) = x4 + 1

A℘(u + ω + ω′) + B
= x2cn(γ u) ,

γ = |x1 − x2| ,

where x2 > 0, x1( �= 0) is a pure imaginary, A = 2/(x2|x1+x2|2), B = (5x2
2−x1

2)/(6x2|x1+
x2|2) and the modulus of the Jacobi elliptic function cn is equal to x2/|x1 + x2|.
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PROOF. Recall the results proved by Tashiro ((1) through (3) in Section 5). The integral
curves of grad f are geodesics. When the concircular scalar field f is restricted to a geodesic,
it satisfies (6.1) (resp. (6.2)), after a suitable linear transformation f �→ λf + µ, if the degree
of the polynomial τ (f ) is 2 (resp. 3). Thus f restricted to a geodesic is one of the solutions
given in Lemmas 6.1 and 6.2.

Suppose that the degree of τ (f ) is equal to 2. Then we see from Lemma 6.1 that the
number m of the critical points of the concircular scalar field f is 1 or 2. If m = 1, then f

restricted to the geodesic γ which coincides with the integral curve of gradf is given by (6.9).
If m = 2, then f |γ is given by (6.7). Since ds2 = du2 + a(u)2dθ2 (see (3) in Section 5)
and the metric ds2(= g ) is smooth at the critical point P ∈ W , we require the function a to
satisfy

a(0) = 0, a′(0) = 1 , a(2k)(0) = 0 (k = 1, 2, . . . ) ,(6.38)

(see [2, p. 96] and [16, Proposition 2.7]). If f |γ is given by (6.9), then a = cf ′ is an odd
function and satisfies the condition a′(0) = 1 by setting c = 1/{2(e1 − e3)

2}. Let f |γ be
given by (6.7). Since we have from (6.4)

a′(0) = c℘ ′′(ω′) = c

(

6℘(ω′)2 − 1

2
g 2

)

= 2c(e1 − e3)(e2 − e3) ,

we have to put c = 1/{2(e1 − e3)(e2 − e3)}. Furthermore, since ds2 gives the smooth metric
g at another critical point Q ∈ W , we also require a to satisfy

a(ω) = 0 , a′(ω) = −1 , a(2k)(ω) = 0 (k = 1, 2, . . . ) .

However we have

℘ ′′(ω + ω′) = 2(e2 − e3)(e2 − e1)

and hence

a′(ω) = cf ′′(ω)

= −e1 − e2

e1 − e3
= κ2 − 1 > −1 .

We conclude that the case m = 2 does not occur if the degree is equal to 2. It is easy to see
that R

2 with metric given in [I] is isometric to a surface of revolution.
Suppose that the degree of τ (f ) is equal to 3. If m = 0, then f |γ is the function given

in (6.29+) and M is isometric to R × Z with warped product metric given in [II](1)(i).
Assume that m = 1. Then f |γ is one of the functions given by (6.22+), (6.23−),

(6.24−), (6.25−), (6.28+) and (6.33−). By replacing f with −f , we see that the solutions
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(6.28+), (6.24−) and (6.33−) are essentially the same as (6.22+), (6.23−), (6.25−), respec-
tively. Therefore, if we set

c =











2/{(x3 − x1)
2(x3 − x4)} for (6.22+) ,

−2/{(x1 − x3)
2(x1 − x4)} for (6.23−) ,

−2/(x4 − x1)
3 for (6.25−) ,

so that a satisfies (6.38), we obtain the cases [II](2)(i), (ii) and (iii).
Next, assume that m = 2. The function f |γ is one of the functions given by (6.19+),

(6.19−), (6.21−), (6.22−), (6.26−) and (6.28−). By replacing f with −f , we see that the
solutions (6.21−) and (6.28−) are essentially the same as (6.19−) and (6.22−), respectively.
In order that a satisfies (6.38), it is necessary that the constant c satisfies

c =



















2/{(x1 − x3)(x2 − x3)(x3 − x4)} for (6.19+) ,

−2/{(x1 − x2)(x1 − x3)(x1 − x4)} for (6.19−) ,

−2/{(x1 − x3)
2(x3 − x4)} for (6.22−) ,

−2/{(x2 − x4)|x1 − x2|2} for (6.26−) .

We denote by 2L the period of the even functions (6.19+), (6.19−), (6.22−) and (6.26−). At
another critical point where u = L, we require

a(L) = 0 , a′(L) = −1 , a(2k)(L) = 0 (k = 1, 2, . . . ) ,(6.39)

(see [2, p. 96]). We can easily show that the above four solutions satisfy (6.39) except for
a′(L) = −1. We first consider (6.19+). Noting that L = ω, x1 + x2 + x3 + x4 = 0 and

a′(ω) = cf ′′(ω) = − (x2 − x1)(x2 − x4)

(x3 − x1)(x3 − x4)
,

we see that a′(L) = −1 if and only if x3 = −x2. Thus M is diffeomorphic to S2 and

a(u) = (f +)′(u)

x2(x1
2 − x2

2)
,

f +(u) =
−x2

{

x1 + x2 − 2x1sn2((x1 + x2)u/2)
}

(x1 + x2) − 2x2sn2((x1 + x2)u/2)
,

where we note that
√

e1 − e3 = (x1 + x2)/2. We have obtained the case [II](3)(i). We then
consider (6.19−). Noting that L = ω and

a′(ω) = cf ′′(ω) = − (x2 − x3)(x2 − x4)

(x1 − x3)(x1 − x4)
,

we have x2 = −x1 and x4 = −x3 from the equation a′(L) = −1. However, since x4 < x3 <

x2 < x1, this case does not occur. We now consider (6.22−). Noting that L = π/(2
√

e1 − e3)

and

a′(L) = cf ′′(L) = − (x1 − x4)
2

(x1 − x3)2
,
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we see that x4 + x3 = 2x1 if and only if a′(L) = −1. Since 2x1 + x3 + x4 = 0 and
x4 < x3 < x2 = x1, this case deos not occur. Finally, we consider (6.26−). Noting that
L = ω + ω′ and using (6.27), we have

a′(L) = cf ′′(L) = −|x1 − x4|2

|x1 − x2|2
.

Thus a′(L) = −1 if and only if x4 = −x2( �= 0). Since x3 = x̄1 and x1 +x2 +x3 +x4 = 0, we
see that x1(= −x3) is a pure imaginary. Thus M is diffeomorphic to S2 and (6.26−) becomes

f −(u) = x4 + 1

A℘(u + ω + ω′) + B
= x2cn(γ u) .

This case is [II](3)(ii).
We have completed to examine all cases. ✷

COROLLARY. Let M be a complete two-dimensional Riemannian manifold. If the

Gauss curvature K satisfies ∇∇K = τg , then K is constant or M is isometric to R
2 with the

metric whose curvature is given by K = −x ′′/x, x being the function given in [I] of Theorem

6.3.

PROOF. Since ∇∇K = τg , we have −
K = 2τ and ∇
K = 2K∇K = ∇K2. It
follows that −2τ = K2 − λ, where λ is a constant. Thus we have

∇∇K = −1

2
(K2 − λ)g .(6.40)

We put f = −K/12 and g 2 = λ/12. Then (6.40) becomes

∇∇f =
(

6f 2 − 1

2
g 2

)

g .(6.41)

The characteristic function τ (f ) is a polynomial of f of degree 2. Thus the assertion is
obtained from Theorem 6.3. ✷

Now we consider the functional on M1:

F2[g ] = c

∫

M

(δ − K)2dvg (c �= 0) ,(6.42)

δ being a constant. Suppose that g is a critical point of F2. Then f = J̇ (K) = 2c(K − δ) is
a concircular scalar field if K is not constant. Thus, from the above Corollary, we conclude
the following:

THEOREM 6.4. Let M be a compact orientable two-dimensional Riemannian mani-

fold. If the metric g of M is critical with respect to F2, then the Gauss curvature is constant.

Next for a given real number δ, we consider the functional on Mε
K,δ = {g ∈ M|0 ≤

δ − εK on M}:

F
ε
3/2[g ] = c

∫

M

(δ − εK)3/2dvg (c �= 0) .(6.43)
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If the metric g is critical for the functional Fε
3/2, then f = J̇ (K) satisfies (5.3) and hence

∇∇f = ε

(

4

27c2
f 3 − δf

)

g .(6.44)

Thus it is convenient to put c =
√

2/(3
√

3). If the metric g is critical for the functional
F

ε
3/2|M1 , then

∇∇f = ε(2f 3 − δf + 2a3)g ,(6.45)

where the constant a3 is chosen in such a way that
∫

M
(2f 3 − δf + 2a3)dvg = 0.

THEOREM 6.5. Let M be a manifold diffeomorphic to S2. Let δ be a real number such

that δ ≥ 4π if ε = 1 and |δ| < 4π if ε = −1. If a metric g on M is critical with respect

to F
ε
3/2|M1, then the Gauss curvature of g is equal to 4π (constant), g is the metric given

in [II](3)(i) of Theorem 6.3, where x1 =
√

δ + 4π/
√

2 and x2 =
√

δ − 4π/2, or the metric

given in [II](3)(ii), where x1 =
√

−1
√

4π − δ/
√

2 and x2 =
√

4π + δ/
√

2. They are on the

boundary of Mε
K,δ ∩ M1.

PROOF. Since M is diffeomorphic to S2, it suffies for the proof to consider the solu-
tions, f + in [II](3)(i) and f − in [II](3)(ii), of the equation (6.45). In both cases, we have
a3 = 0, δ = x1

2 + x2
2. Using K = f ′′′/f ′, we also have 6f 2 = δ − εK . Since the metric is

normalized as Vol(M) = 1, we have, by the equation a = cf ′,

1 = Vol(M) =
∫ 2π

0

∫ L

0
a(u)dudθ

=
{

4π/(x1
2 − x2

2) (ε = 1) ,

4π/(|x1 − x2|2) (ε = −1) .

It follows that x1 and x2 are equal to the values in the assertion. Since the maximum of K is
equal to δ in the case [II](3)(i) and the minimum of K is equal to −δ in the case [II](3)(ii), the
metrics are on the boundary of Mε

K,δ ∩ M1. ✷

Since J (K) = c(δ − εK)3/2, K satisfies

∇∇K =
2

3
(δ − εK)(2δ + εK)g −

ε

2(δ − εK)
∇K ⊗ ∇K ,(6.46)

(cf. (5.8)). However, the coefficient of ∇K ⊗ ∇K has a singular point where K = εδ and
K is critical. The coefficient(= ϕ(K) in (5.8)) of g vanishes at the critical point. It seems
to be interesting that we determine complete two-dimensional Riemannian manifolds whose
Gauss curvature K satisfies (6.46), or, more generally, complete Riemannian manifolds which
admit a function satisfying the equation of the type (5.8), (where we should assume that ψ(f )

possesses a singular point).
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