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VARIATIONAL PROBLEMS OF NORMAL CURVATURE TENSOR
AND CONCIRCULAR SCALAR FIELDS
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Abstract. We consider the integral of (the square of) the length of the normal curva-
ture tensor for immersions of manifolds into real space forms, especially into spheres. The
first variation formula is given and the Euler-Lagrange equation is expressed in terms of the
isothermal coordinates when the submanifold is two-dimensional. The relations between the
critical surfaces and Willmore surfaces are discussed. We also give formulas concerning the
residue of logarithmic singularities of S-Willmore points or estimate it by a conformal invari-
ant.

‘We show that if a compact critical surface satisfies certain conditions and the immersion
is minimal, then the Gauss curvature is a non-negative constant and the immersion is a stan-
dard minimal immersion of a sphere or a constant isotropic minimal immersion of a flat torus.
To prove this result, we study two-dimensional Riemannian manifolds admitting concircular
scalar fields whose characteristic functions are polynomials of degree 2. Moreover, the case
that the characteristic functions are polynomials of degree 3 is studied.

Introduction. In the 1960’s, Willmore proposed studying the functional
Llg] = f (= K)dv
M

on the space of immersions ¢ : M — R3 of a compact orientable surface M into a three-
dimensional Euclidean space R3, where 7 is the mean curvature of ¢, K the Gauss curvature
of the induced metric and dv the volume element. The functional L[¢] is called the Willmore
functional and a critical surface is called a Willmore surface.

Around 1980, Bryant [5] studied Willmore surfaces in a three-dimensional sphere S°
and contributed to the subject. He defined a conformal Gauss map of a surface M in $3
into the de Sitter space of all oriented small spheres of $3 and showed that M is a Willmore
surface if and only if the conformal Gauss map is harmonic. Furthermore, he obtained a
duality theorem for Willmore surfaces in S3. Ejiri [11] introduced the notion of S-Willmore
surfaces and generalized Bryant’s duality theorem to S-Willmore surfaces in S”. He also
proved that Willmore surfaces of genus O in S$4(1) are S-Willmore surfaces and classified
them. Recently, Hélein [13] constructed a Weierstrass type representation of all Willmore
immersions in terms of closed one-forms. In the studies mentioned above, the most important
fact about Willmore surfaces is that £[¢] is invariant under conformal transformations of the
ambient space. The Willmore functional is generalized to submanifolds in a Euclidean space
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or a sphere. One is Pinkall’s conformal invariant ([20]) and the other is given in Rigoli [21].
The generalized Willmore functional dealt with in this paper coincides with the latter. For a
general presentation of the problem, see [26].

It is well-known that, for a submanifold M"™ in a space form, the normal curvature tensor
R € C®(N* T*M ® (T+M)* ® T+ M) is invariant under conformal transformations of the
ambient space. Therefore the functional

REl9) = f IR 17dv
M

on the space of immersions ¢ : M”™ — M(c) is also a conformal invariant if ¢ = m/2.
However, for the most part, we shall deal with the functional Rzl [¢], because it is the Yang-
Mills integral of the normal bundle. We shall also deal with the case that ¢ = 1 when M
is a surface. We here note that the geometric meaning of L£[¢] and Rj‘ [¢] for surfaces is as
follows: The integrand of L[¢] is equal, up to a constant factor, to the sum of the square of
lengths of major and minor axes of the curvature ellipse in the normal space at each point. On
the other hand, the integrand || R+ || of Rj‘ [¢] is equal to the square of the area encircled by
the curvature ellipse up to a constant factor.

Guadalupe and Rodriguez [12] studied the integral of the normal curvature and obtained
some inequalities relating the area of the surface and the integral of the square of the length of
the mean curvature vector with topological invariants. Their integral of the normal curvature
is different from ours. We should note that Rf‘ [¢] (resp. Rj‘ [¢]) is the integral of the absolute
value (resp. the square of the length) of the normal curvaure.

In Section 1, we give the fundamental formulas in the theory of submanifolds in a real
space form. We also rewrite the corresponding formulas in terms of isothermal coordinates
when the submanifold is two-dimensional.

In Section 2, we obtain the first variation formulas of L[¢] and R(Ji- [¢]. The Euler-
Lagrange equation of £[¢] has already known as mentioned above. However, the computation
in this paper seems to be briefer than that of [22]. The Euler-Lagrange equation of Ré‘ [¢]
is given in Theorem 2.7. The functional 722L [¢] is a conformal invariant if the submanifold
is of dimension 4 and is the Yang-Mills integral. We shall prove in Theorem 2.8 that if
¢ M* — M (c) is an immersion of a 4-dimensional compact oriented manifold M* into an
n-dimensional space form M (c) and the normal connection is self-dual or anti-self-dual, then
¢ is a critical immersion of 732l [¢]. We should note that since 732l [¢] is a functional defined
on a space of immersions, the normal bundle and the induced metric vary with ¢.

In Section 3, we reduce the Euler-Lagrange equation of qu [¢] (g = 1 and 2) to the
situation that the submanifold is a surface. The result is given in Theorem 3.1.

In Section 4, we shall study critical surfaces of L[¢] and RzL [¢]. We give formulas
relating the sum of residues of logarithmic singularities of S-Willmore points in a compact
oriented Willmore surface with conformal invariants. In particular, the conformal invariant
appeared in the formula (4.8) is the Willmore integral. We conclude this section by showing
Theorem 4.8 that is stated as follows:
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Let¢ : M?> — §"(c) be aminimal immersion of compact surface M2 into S*(c). If p is a
critical immersion of Rj‘ [¢] and the curvature ellipses are circles, then the Gauss curvature is
constant and the immersion is a standard minimal immersion of a sphere, a constant isotropic
minimal immersion of a flat torus.

To complete the proof of Theorem 4.8, we need to study concircular scalar fields in
Section 6.

In Section 5, we shall consider the equation satisfied by concircular scalar fields on a
two-dimensional manifold M as the Euler-Lagrange equation of the functional

Filgl = / J(K)dvg
M

where J is a function on R. Moreover, we shall introduce Tashiro’s work concerning concir-
cular scalar fields.

In Section 6, by making use of elliptic functions, we classify complete two-dimensional
manifolds admitting concircular scalar fields whose characteristic functions are polynomials
of the scalar field which are of degree 2 or 3. The classification is given in Theorem 6.3. The
proof of Theorem 4.8 is completed by using Theorem 6.4.

The author would like to express his hearty thanks to Professor M. Okumura who in-
troduced to him the results by Tashiro [24] explained in Section 5 and to the referee for his
valuable comments.

1. Submanifolds in a space form. Let ¢ : M — M be an immersion of an m-
dimensional C*° manifold M into an n-dimensional Riemannian manifold M. We shall de-
note the Riemannian metric on M by g and the induced metric on M by g. Indices i, j, k, [ run

over the range {1, ... ,m}, A, u, v, x therange {1, ... ,n}and u, v therange {m + 1, ... , n}.
The differential d¢ of the map ¢ can be regarded as a C* section of the bundle T* M Q¢*T M,
namely d¢p € C®°(T*M ® ¢*T M) and, in terms of local coordinates {x!, ..., x"} (resp.
{y',...,y"})in M (resp. in M), it is represented as
A
(1.1) dp = 9 v g 2, Or =t x™y),
oxi ay*

where we use the so-called Einstein summantion convention. The induced metric g is given
by

(1.2) 9(X,Y) = g((dp(X),dp(Y))

for any vector fields X and Y tangent to M.

Let N : T1M — ¢*T M be the inclusion map of the normal bundle 7 M into ¢*T M.
Then it is regarded as a C® section of Hom(T+M, ¢*T M). The connection on ¢*T M in-
duced from the Levi-Civita connection on M and the normal connection on T+M induce a
connection V on Hom(T+ M, ¢*T M). Then the Weingarten equation for ¢ becomes

(1.3) VN = —d¢oA,
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where A € C®(T*M @ TM ® (T+M)*) and, for a normal vector field £, A e C¥(T*"M ®
T M) is the shape operator correspnding to &. The relation between Ag and the second funda-
mental form & € C®(S*T*M ® T+-M) is given by

(1.4) g(AeX,Y) = g(h(X,Y),§)

for vector fields X and Y tangent to M. We shall put H = N o h, which belongs to
C®(S2T*M, ¢*T M). The Gauss equation is given by

(1.5) Vd¢ = H ,

V being the induced connection on the bundle T*M ® ¢*T M.

Let M be a space form M (c) of constant sectional curvature c. Then the structure equa-
tions of Gauss, Codazzi, Ricci are given, respectively, by

gRX,Y)Z, W) =c{g(X,W)g(Y,Z) — g(X, Z)g (Y, W)}

(10 +gHX, W), HY,Z) — g(H(X,Z), HY,W)),
(1.7) (Vh)(X, Y, Z) = (Vh)(Y, X, Z),
(1.8) RH(X,Y)E = (X, A:Y) — h(Y, A¢ X)

for X,Y,Z,W € TM and & € T+M (cf. [9]), where R+ € CX(N\*T*M @ (T-M)* ®
TL M) is the normal curvature tensor. We note that V in (1.7) is the induced connection
on (T*M)*> @ T-M. In the sequel, we shall use the same notation V for each connection
induced on various vector bundles constructed from TM, T+M and ¢*T]\7I except for the
two-dimensional case, and shall not state to which vector bundle various tensors belong. From
(1.6), we have formulas for Ricci tensor Ric and scalar curvature p:

(1.9)  Rie(X,Y) =cm—1g(X,Y)+mgh(X,Y),n) — Z g(h(X, Xi), h(Y, Xi)),

1

(1.10) p=cm(m—1)+m?n|> = IH|?,

where 7 is the mean curvature vector field defined by
1
n=—3 h(Xi, Xi),
i

{X1, ..., Xin} being an orthonormal frame tangent to M.

Next, we deal with oriented C* surfaces differentiably immersed in a sphere S (c) =
{p € R" || pll = 1/4/c}. Using isothermal coordinates z = x++/—1y, we write the induced
metric g as

(1.11) g =2F(z D)ldz],
where F is a positive C* function. We note that F becomes real analytic if the immersion

¢ is minimal, has parallel mean curvature vector or makes M to be a Willmore surface (cf.
[11]). The area element is given by
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(1.12) dv =2Fdx Ady = ~/—1Fdz A d7.

For integers p and ¢, let EP-9 be the complex line bundle over M whose elements are
equivalence classes of (U, z, P, w), where
(@) U isanopendomainin M and P € U,
(b) zis alocal isothermal parameter defined in U and w € C,
© W,z,P,w)~ U, 7, P, w)if and only if
i) P=P cUNU, and
(i) w' = w((dz/02)(P))P((8z/0)(P))”.
See [8] for details. We shall sometimes use the complex conjugation E7*9 — E9-? in our
computation. If « = & for o € EP-9, then it is said to be real. For instance, F (= F(z,7)dz ®
d?) is in E! and real. The Gauss curvature K of g is given by

1 - 1
1.13 K=——00logF =—-AlogF
(1.13) 7 00log yAlogF,

where d = 3/8z, 3 = 3/d7 and A = —2F~19d. The metric g induces Levi-Civita connec-
tion V on the bigraded algebra E = ) ra E P-4 with tensor product. The covariant differential
operator V decomposes into V' and V", where V' (resp. V") is a differential operator of bide-
gree (1, 0) (resp. (0, 1)). The operators V' and V" are defined by

Vi = (da(z,z) — pdlog F - a(z, 2)(dz)" ' ® dz)?,
Vo = (dau(z, 2) — gdlog F - a(z, 2))(dz)P ® (7)™

fora = a(z,2)(dz)? ® (d7)? € C*°(EP?). In particular, we have V'F = 0 = V”F. For the
Ricci identity, we have

(1.14)

(1.15) [V, V'le=(q—-pKF®a.
All higher order derivatives of ¢ will be considered as functions with values in C"*! =
R Qg C. Let the symmetric producta = (ay, ... ,a,+1) andb = (by, ..., by41) in crt!
be defined by

n+1
(1.16) (a,b) = Zahbh.

h=1

Then the Hermitian product on C"*! is given by (a, b). The norm of & € EP4 ® C"*! is
defined as

(1.17) la|> = F- P, a).
We immediately have
(1.18) (Vig,V'g) =0, (V'¢,V'$p)=0, (V$,V'¢)=F.

Let x! = x and x> = y. We put Hij = H(d/dx',8/9x7), where H is the second
fundamental form of the immersion ¢ : M — S"(c). If we consider H;; as a vector in C ntl
then we see that the Gauss equation (1.5) becomes
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/ 1
(1.19) v ¢=4_1(HH — Hy — 2+/—1H2)(d2)*.

The right hand side is a vector normal to M in S”(c), which we shall denote by y. The mean
curvature vector field 7 satisfies

1
(1.20) 77=C¢—5A¢,

because A¢p = —(2/F)V'V"¢. Taking a local orthonormal cross sections {N3, ..., Ny} in
T M and regarding them as C"*+!-valued functions, we have

1 _
(1.21) <8Nu+n“a¢+Fy“8¢)dz =w, Ny,

where n = n'N,, y = y"N, and o, is the components of the normal connection extended
to the complexification C T M of the normal bundle. For & € C*®(EPY @ CT+M), we may
define the covariant differentiation of £ by

(1.22) Vs = (VE" + @lE)N., "V = ("VE" + &E" )Ny,

where & = £¥N,, = £"(z, 2)(dz)? ® (dz)? N,. Then the Weingarten equation (1.3) becomes
1

(1.23) Ve =V = —(£, )V — F(é, V',

in virtue of (1.21).
The structure equation (1.6) through (1.8) of Gauss, Codazzi and Ricci are the following:

(1.24) K=c+Inl*—1yP,
(1.25) "ty =F'viy,
1
(1.26) Rg = = &7y = €7l

for& € C®(EP4 ® CT+M), where
RE=Vo—-V'o+[w o] e C°(E" @ Hom(CT+M,CT+M)) .

We note that the components of 98- are given by

=1
(1.27) RV = TRHZM”dz ®dz,
and hence it is pure imaginary. We finally note that Ricci identity for € € C®(EP1QCT+M)

1S

(1.28) V1"V E = (g - pKF®&+R1e.

2. Variation of the length of normal curvature tensor. Let ¢ be an immersion of
an oriented m-dimensional manifold M into an n-dimensional Riemannian manifold M. We
shall assume that m > 2.
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DEFINITION. By a compactly supported variation of ¢, we mean a C* map @ :
(—e,e) x M — M, (where ¢ > 0), such that

(a) eachmap¢; = @(t,:) : M — M is an immersion and ¢ = oo,

(b) the closure of the set {p € M | ¢:(p) # ¢(p) for some t € (—¢, €)} is compact.

The variation vector V of @ is a vector field along ¢ which is defined by

a
v =dq§<—>
/|,

Thus, if we put W = d®(9/91t), then W (0, p) = V(p) for every p € M. We decompose W
into the tangential and normal components:

2.1 W =d¢«(T) + Ni¢

where N; is the inclusion map of the normal bundle (7 M), into ¢;"TM with respect to the
immersion ¢;. We note that 7" and ¢ depend on ¢, but we omit # from them. On (—¢, &) X M,
we define an operator §; by

d d ~ d d
(2.2 & f = 8_]:’ 51( ) = WMFMUA< ) , 0 =0
@ @

B_y)‘ ayV Toxi

for every A and i, where f is a C* function on (—¢, &) x M, I:M” » are Christoffel’s symbols
of the Levi-Civita connection of M and (3/3y*)¢ is the natural local frame in ®*T M. We
extend §; as a derivation to the tensor bundle > 7} (M) ® @*qu (M).

LEMMA 2.1. Let g, be the induced metric ¢;g on {t} x M for each t € (—¢,z¢).
Let £t denote the Lie derivative with respect to T and (Hy); be defined by (Hy):(X,Y) =
g(H (X, Y),N¢) for X, Y € TM, where H; is the second fundamental form of the immer-
sion ¢;. Then we have

(2.3) 819y = ZLrg, —2(Hp)e -
PROOF. We first note that
(2.4) 8:g =0,

since

J .
dyv Jrpdy* ® dy"
— D WAL vdy” @ dy! — §,, WK T dy* @ dy”

= W'V, §,,dy" ®@dy" =0.

8:(3,dy* ® dy")y = W"

It follows from (2.4) that

(819 )(X,Y) = 8:(9,(X, Y)) = 8:(9(dp: (X), dp (Y)))
= g ((8:dp1)(X), dp: (Y)) + g (dpr (X)), (6:dpr)(Y))
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forevery X,Y € TM. Since

apr . 9
wan =550 e (57), )

AW L, QDM . 9
= — + W'D, _ |dx —
(axl R ) * ®<ayk>¢

=VW,

we have, from (1.5),
(6:9) (X, Y) = g(VxW,d¢:(Y)) + g(de:(X), Vy W)
=X -G(W,dg,(Y)) — (W, (Vidd)(Y)) — G(W,dg:(VyY))
+Y - §(dg(X), W) — §((Vydd)(X), W) — §(d¢(Vy X), W)
=X g,(T,Y)— g, (T, VsY)+Y - g,(X,T)— g,(Vy X, T)
—g(N:ig, Hi (X, Y)) — g(H (Y, X), Ni Q)
= (L 9)(X.Y) —2(H) (X, Y),
where V' is the induced connection on the bundle T*M ® ¢z*M over {t} x M. O

LEMMA 2.2. Let gfl be the inverse matrix of the metric g, and dv; be the volume
form on M with respect to g,. Then we have

(2.5) 897 =97 {Lrg: —2(H)lgr
(2.6) S¢tdvy = {divT —mg(n, £)}dvy,
divT denoting the divergence of the vector field T .
PROOF. Since
0=3(9,97) =gy +9:Grgr .

substituting (2.3) into the first term, we obtain (2.5). We denote the determinant of g, by g,
and (i, k)-cofactor by A;x. Then 9./g,/0t = (3g;/9t)/2.,/9: and

m
(g )1k 0(g )2k (g mk
dg; /0t = A A cee A
g/ ];{ o7 1+ o o+t o mk

=YY Giging)™ e = 0:(Lpg, — 2(H)in(g )™

ki
=2{divT —mg(n, {)}g: -
Thus we have (2.6). O
LEMMA 2.3. The variation &; H; of the second fundamental form H; is given by
Q7 G H)X,Y) = (V'VW)(X,Y) + RW, dg(X)de;(Y) — d((8: T) (X, Y))

for every X,Y € TM, where ;' = 3Tk ())/dt)dx’) ® dx* ® 3/dx', I'ji(t) being
Christoffel’s symbols of the Levi-Civita connection of q,.
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PROOF. From (1.5), we have
(OH)(X,Y) = (8:V'dp)(X,Y)
for X, Y € T M, where we note that

32 o 4 AP -, IPH
axidx/ axi " M axi

dPp* . 4
Vide, = ( - n"j(r>m>dx’ ®dx’ ® (0/0y")e .

Therefore, using the Ricci formula
[8:, V'1dey = R(W, dgy(X))dg;(Y) — de (8, T)(X, Y))

and §;d¢; = VW, we obtain (2.7).

REMARK. In our later computation, we shall take an inner product of §; H; with normal
vectors and so we need not compute 8;I". Here, we only note that §, I is a tensor field given
by

29,8 )X, Y), Z) = (VX Y, Z) + (V'IO(Y, Z, X) — (V'E)NZ, X, Y),
where k = £ g,—2 (H;),. This will be necessary for the computation of the second variation

formula.

We next compute the first and second terms of the right hand side of (2.7). Hereafter, we
assume that M is a Riemannian manifold M (c¢) of constant sectional curvature c.

LEMMA 2.4. Forevery X,Y € TM, we have

(2.8) R(W,d¢:(X))d¢y(Y) = cg,(X,Y)N,;¢ mod de,(TM),
(V'VW)Y(X,Y) = NV h) (X, Y, T) + h (VYT Y) + h(X, Vi T)

(2-9) txot t
+(V'VIO(X,Y) — (X, ALY)}  mod de (T M) .

PROOF. Since M = M(c), we have

R(W, dgy (X))dep (Y) = ¢ (depy(X), dps (Y)W — G(W, dp (Y))d; (X)
=cg,X,Y)N;¢, modde¢;(TM).

Equation (2.9) is proved as follows:

VYW = Vy(d¢:(T) + Ni$)
= H,(Y,T) +d¢,(VyT) — dgy (A Y) + N, Vy( .
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Therefore, if X € T, M and Y is a vector field on M such that VxY = 0 at p, then

(VIVW)(X,Y) = Vi Vy W
= VN (Y, T) +ddp;(VyT) — dgy(ALY) + N, Vy ¢}
= Ni(V'h)(X,Y,T)+ Neh (Y, V4T)
+ H(X,VyT) — H/(X, ALY) + N, Vi Vi ¢
= NA(V'h)(X, Y, T) + he (X, Vy,T) + he (Y, V4 T)
— hi(X, AZY) +(V'VIO(X,Y)} moddg(T,M),

where Aé is the shape operator of ¢, with respect to ¢. O
It follows from (2.7) through (2.9) that

BH)(X,Y)=N{(VVO)(X,Y)+cg(X,Y) +(VR)T, X,Y)

(2.10) —h(X,AY)+h(VxT,Y)+h(X,VyT)} modd¢(TM),

where we have put § = §;|;—0 and so on. For the mean curvature vector n, we have
1
2.11) 5(N77)EN{E(—A§+SLC)+C§+VT77} mod d¢p(TM) ,

S+ being the symmetric transformation T+M — T-M defined by
G(STE, &) = trace(Ag Ag) .

Here we take an orthonormal local frame field {N,} in 7M. The equation (2.11) is proved
as follows:

1 ij 1y A ad
§(Nm) = —é19" Hij"| =
m dy o

1 - 3 - 3
=169 HHM — U(SH) M —
m{( 9 ) ij (3y)‘)¢+g ( )l] <8y)‘>¢}

1 o . . 9
E{—(V’Tf +V1T’)+2h’/u§”}H,~A< )
¢

By
1 1 2 i a0
+ —N(=A¢ =S¢ +cm¢ +mV,n) + —(V'T/)H;; —
m m dy ¢
1
= —N(=AZ+St0)+¢Ne + NV, mod dp(T M),
m
because of (2.5) and (2.10). Let {X;}i=1,... ,m be an orthonormal base in 7, M.

LEMMA 2.5. Let S be the symmetric transformation of T M defined by g(SX,Y) =
Zi g(H(X, X;), H(Y, X;)). Then the variation of the length of the second fundamental form
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and the mean curvature vector are given by

SIHI® =2 §(H(Xi, X)), (VVO)(Xi, X)) +2 ) He (SXi, X))
(2.12) ij i

+2mej(n. ) +d|H|*(T),
2 2 - 2 ~ ol ~ 2
(2.13) 3linll =—E9(A§, n)+;g(5 ¢&m +2cg&,m +dlnll~(T),
respectively.
PROOF. Since

IH|* = Hij* Hi* g™ g7'§,,, and |InlI* = §(Nn, Nn),

217

equations (2.12) and (2.13) are derived from (2.4), (2.5), (2.10) and (2.11) by a routine calcu-

lation.

a

Next, we shall compute the variation of the length of the tensor field L, which we define
by L = h—ng, and the normal curvature tensor R-. We note that N L and R are conformally
invariant, that is, N*L* = NL and (R+)* = R under the change §* = ¢>/§. This fact is
well-known. However, for reader’s convenience, we give the proof. By a straightforward

computation, we have

H*(X,Y)=HX.,Y)+g(X, V)&,

where £ is the normal component of the gradient vector of f. Hence the mean curvature

vector satisfies
N*n* = e 2/ (Nn+&f),
from which it follows that
N*L*(X,Y) = H*(X,Y) — ¢*(X, Y)N*n*
=HX,Y)—g(X,Y)Nn
=NL(X,Y).
Define L¢ by
g(LeX,Y)=g(L(X,Y),§).
Then we can easily show that
LiX = A}X — 5" (", §)X
=A: X+ 96X —gm+§r,6X
=L:X
Since
NR(X,Y)E = H(X, A¢Y) — H(Y, A¢X)
= NL(X,L¢Y) — NL(Y, L X)
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we have (R1)* = R-. Since

(2.14) ILI? = 1 HI? = mlln]®,
equations (2.12) and (2.13) imply that

SILIP =2 §(L(Xi, X)), (VVO(Xi, X)) +2 ) §(h(SXi, Xi), ©)
(2.15) i,j i

—2§(S%n, &) +dIILIAT).

Therefore we have the following result which was obtained in [21] and [22].

THEOREM 2.6 ([21, 22, 26]). The Euler-Lagrange equation of the conformally in-
variant functional

Llg] = / IL||"dv
M
is
@.16)  O(IL|"*L) — ||L||m‘2{<m — Q0 — ) Ric(X;, X)L(X;, Xj)} =0,
ij
where Q+ : TYM — T+M is the symmetric transformation defined by
G(OYEE) =) GL(Xi, X)), )G (L(Xi, X)), &)
and OB = —(V'V/ B;j*)N, for any section B of T*M @ T*M ® T+ M.
PROOF. We see from (2.6) that
oo = [ 501 av)
dt

m m—2 2 mqi a
2/{3”1,” SIL|I- + |IL] (dlvT—mg(n,C))}d“-

Using (2.15), we have

%nLn'"—zauLu2 = m||L||m—2{ Y G, X)), (VYO (Xi, X))
iJ

- ey Ay sel LT
+Zg(h(SX,,X,),§) g(S 77,§)+2d||L|| (T)}~

1
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Hence

%nan‘zanan + LI (divT = m§ (. ¢))
=m Y GULI"*L(Xi, X)), VV¢(Xi, X))
+ml|LI" G (D h(SXi, Xi) — Sty = 1L, ¢))

m .
+ 5||L||’“*2d||L||2(T> + |IL|I"™divT

=m Y GULI"*L(Xi, X)), VV¢(Xi, X))
+ml L1725 ( = Y Rie(X;, X )L(X;, X)) + (m — D QY. ¢) +div(ILI™ T),
where we have used
Sty =0 n +minl*n,
g(SX,Y)=—-Ric(X,Y)+cim—1)gX,Y)+mgh(X,Y),n).

Integrating by parts and using Stokes’ formura, we obtain (2.16). O

Thus if the Ricci tensor is proportional to the metric tensor, then (2.16) reduces to

OAILI"2L) = (m — DL 2@ n = 0.

In particular, we have the following result obtained in [21, 25].

COROLLARY. [Ifm =2, then (2.16) reduces to
(2.17) An—Qtn=0.

PROOF. We have only to show LJL = (m — 1)An. We can easily show that by using
the Codazzi equation (1.7). O

DEFINITION. Willmore surface is a surface satisfying (2.17) immersed in a space form.

Let us consider a variational problem for another conformal invariant R+. We shall
compute the Euler-Lagrange equation for the functional

Ri¢] = f IR [9dv.

We note that if ¢ = m/2, then Rnﬁ /2[¢] is a conformal invariant. However we are also
interested in the case g = 2 for any dimension m, because the right hand side of the definition
of RzL [¢] is a Yang-Mills integral.

Here we explain the geometric meaning of || Rl in the case that ¢ = 1 and m = 2 (cf.
[12]). For arbitrarily fixed point p € M, the curvature ellipse £, at p is defined as the set
{h(X, X)|X € T,M, || X|| = 1}. This is an ellipse lying on the plane IT, which pass through
n and is spanned by the normal vectors a = (k1] — hp3)/4F and b = h13/2F in the normal
space Tle. We easily see that 4|y |>(= 2||L||?) is equal to 4(||a]|> + ||b]|*) and hence is
equal to the sum of the square of lengths of major and minor axes. The square of the area
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surrounded by E, in I, is equal to 72(||lall?|b]|I> — (a, b)?). It follows that it is equal to
m2(ly1* = [y, y)»)/4 at p. Since |RH)2 = F2)", R, RL,Y, we see from (1.26) that
(area)? = w2 |R1|2/8 = w2||RL||2/16 at p.

THEOREM 2.7. LetC € C®(T*M ® T*M ® T+M) be defined by
m
CX,Y) =Y R“(Y,Xh(X,X;).
i=1
If g = 2, then the Euler-Lagrange equation of the functional
Rilg] = / IR 4dv
is given by
_ 1 _ m

2.18)  O(IR72C) = SR 2{ D P(Xi, Xph(Xi, X ;) — ZIIRLIIZn} =0,

ij
where P is defined by

P(X,Y)=— Ztrace(RL(X, X)HRE(Y, X)) .
In particular, if g = 2, then (2.18) becomes
1 m. o5
(2.19) Dc—E{Zp(xi,xj)h(xi,xj)—znze I n}:o.
L]
Ifq = 1 and Rt # 0 anywhere on M, then we have
_ 1 _ m

218)  OURTT'C) = SR ‘{ZP(X,-, X)h(Xi, X)) — EnRinzn} =0.

i.j

PROOF. Since

d
SRy 191]

= /HRHW‘Z{%SHRHF + IR A(VT —mG (n, c»}dv,
t=0

we need to compute § | R+ ||2. Define D, by
. . 9 ad
D; = (Ht)iku(Ht)le(gz)kldxl ®dx! ® (ﬂ) ® <8—“) .
Y/ @ YW
Then, from (1.8), we have
IR P = (D)™ = (Do) ji™* HD)™™ = (D" g )™ (97 30 -

Therefore

1 e~
(2.20) EfsnRLu2 = {(6D)ij™" — D) ;" HDu"™ — Dik"}9™ 971 5307 e

+ (D™ = D) (D™ — D™ )89 * 97 5307 e -
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Next we compute § D:

_ , d d
8D =8| Hu"Hy'gMdx' @dx/ @ | — ) ® | —
' 0 )y N0/,

= {SH)u" Hji* g + Hy" S H) ji* g™ + Hy Hy™ (89~ H)

_ 4 9 9
dx'Qdx’ | — ) ®(— ) .
ay* )y Nyt /

Using (2.5) and (2.10), we obtain
(D)™ = ViVig "N H* + Vi PN H
+ c(Hij* No" ¢V + Hij* Np¢V)
+ TH(Vihie" N 4 Vih i Ny i)
+ ViT*D " 4+ v;T* Dy mod (d¢p*, dp™) .
Substituting this result into the first term of the right hand side of (2.20) and putting D;;"’ =

h,-k”hjk”, we have

221 %anRHP = 4ViVil h M Ry 4+ 2P 0"
+ 2T Vb h ™ + 2V, T* Dy — V; T*R* ;") R .
The third term of the right hand side of (2.21) is equal to
2TkRLl_juvviRijvu )
The second Bianchi identity for R implies that this is equal to (V7 || R*||%)/2. It follows that
SIRYI? = 8V, Vi Vh M Ry + 4P h" " + TV | R

Integrating by parts and using Stokes’ formula, we have

d
Ry 19]

= / {4gViVi (IR 19720 5 RYT )
t=0

+ 2 (IR 1972 Pk — m| R, )¢ .
Here we note that we can use Stokes’ formula under the assumption that ¢ > 2. However, if
q = 1, then
Vil RH972h ;M R p)¢? and [ R[4 20 M R, Vi
may not converge to 0 as a point approaches to the zeros of R*. Thus, when g = 1, we need

the assumption that R* does not vanish. a

Whenm =4 andg = 2, 722L [¢] is a conformal invariant and the Yang-Mills integral in
the vector bundle 7M.

THEOREM 2.8. Let¢ : M* — M(c) be an immersion of a four-dimensional compact
oriented manifold M* into an n-dimensional space form M(c). If the normal connection is
self-dual or anti-self-dual, then ¢ is critical for the functional Ré‘ [p].
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PROOF. Lete = 1 or —1 according as the normal connection is self-dual or anti-self-
dual. Let {Xy, ..., X4} be an orthonormal basis in T, M associated with the orientation of
M*. Then the assumption that the normal connection is self-dual or anti-self-dual is equivalent

to
RY (X1, X2) = eRM (X3, X4),  RY(Xy, X3) = eRT (X4, X2),
(2.22) N N
RY(X1, X4) = eRY (X2, X3) .

(cf. [3, p. 370]) Self-dual and anti-self-dual connections are Yang-Mills instanton. Thus the
normal curvature tensor R satisfies V"Rli.,'u” = 0 (cf. [19, p. 21]). Thus we see from
Codazzi equation (1.7) that

0OC = —VIV/ (PR jpu®)
= —Vi(h"VIRY ") =0.
The second term of (2.19) vanishes. In fact,
> P(Xi, Xh(Xi, X)) — IRM 1P =Y P(Xi, X)L(Xi, X)),
ij ij
and (2.2) implies that P(X;, X ;) = ad;; for every i and j, for instance
P(X1, X) = —trace(R* (X1, X3)R™ (X2, X3) + R (X1, X9) R* (X2, X4))
= —trace(R™(Xa, X2) R-(X1, X4) + RE (X1, X)R* (X2, X4))
=0.
O
3. Two-dimensional cases. Let¢ : M? — S"(c) be an immersion of an oriented
surface M2 into an n-dimensional sphere S”(c¢) of constant sectional curvature c. We shall
rewrite (2.18), (2.18”) and (2.19) in terms of the isothermal coordinate z = x + +/—1y. Since
g11 = gop = 2F and g, = 0, Christoffel’s symbols of the Levi-Civita connection are given
by
1__1_2_1 1__2_2_1
B nhhi=-Ira=NI"= 23110gF, Noy=-"1=1n 2—23210gF,

where 91 = 9/dx and d, = 9/9y. The coefficients I}, of the normal connection with respect
to an orthonormal local frame field {N,} in T M are defined by VaLl_Nu = I} N, and so the
relation between w,, and I} is

(3.2) Nl=0 40, DY=yv—10 -0, (o) =~0d7).
Therefore, we have
1
ViTE" = 016" + Iyg"
= (0 + DE" + (£ + £)E”
— /VLéu + //Visu
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where we have put'V+& = 'V41£4dz ® N, and"V+& ="V41£4dz @ N,,. Similarly, we have
VatEt = V1V - Vg

Moreover, a straightforward computation shows that
Vi Vgt = 'viivign poylrglen  rgliglen frglrglen
VaVath = —Iviigten prylryglen Lrgliglen _nglrglen
It follows that
(3.3) An = —%(”VL/VH; +'v'viy).
The tensor field L has the components:
(34 Li"=y"+7", Ln"=-@"+7")., Lp“=v-10"-7").
Therefore the components of Q= are given by
(35) L= 0 Y.
Using (1.26), (1.28), (3.3) and (3.5) we have
1

—An + QLn — F(//VL/VLU + /Vi//VLn) + Qin

2 olioL 1 - - 1 _ _
=7 V= Vo + ﬁ((% vy —myy)+ ﬁ((n, vy +mv)v)

2 AVANE T AR 1 -
=—("V-'V —(n, .
F( n+F(n YY)

Thus we can rewrite (2.17) as

1 _
(3.6) vty + =7y =0,

or equivalently
3.7) "V 4 (n, 7y =0

which is the defining equation of Willmore surfaces ([11, 25, 26]).
Next we treat (2.18), (2.18”) and (2.19) with the isothermal coordinate. First, we compute
the components of the tensor field C. Using (1.27), we have

1
Ci’ = R hy gt = ﬁRllzuvhlzu
1

_ —opl veu _ su
—F%u(y Y.



224 K. SAKAMOTO

Similarly, the other components are the following:

=1

Cpp' = TmLuU(J/” + " +2Fn"Y),
V=1

C' = Tmﬂ”(y" +y" —2Fn"),

Cn' = —%fﬁLuv(V" -7
Using (3.1) and (3.2), we have
VECY = g™ @Cu" = IV jCuk? = Ik Cji® + T C ")
= %{316}'1” +0Cp" — (N + D) Cjit — I jCit " — I Cin?
+ I, Cit" + ) Cj"}
= %{(a +Cj1" + V=10 —9)Cjr"
— (N 4 M0+ DRt + D2 )
+ () + E)C" + V=1 — 1) C 2"
= %{a(cﬂv +V/=1Cp") +3(CjY — V=1C)jp") + 4/ =11 /L, "
+(Cj" +V=1Cp") + £, (Cji" = V=1C ")}
It follows that

1 1 1
chlkv — F{ _ F /VL(%iuv);u) + F //Vl(mLquu)

_ /Vi(miuvnu) + //Vi(mLuvnu)}’

(3.8) | .
VkCZkU — {_ /VL(ERLMU);M) + . //Vl(mLquu)
F F
_ /Vi(miuvnu) _ //Vi(mLuvnu)} )
Moreover, we compute Vivkce k. Since
VIVEC Y = gl vEC Y
=gl @VrCi — 0 VR eyt + Vi Cit)

and from (3.8)

2 1
vkclkv + \/__1ka2]<’£) — F{ _ F /Vi(%iuv?u) +// Vl(mLuUr}u)} ,
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we have
VIvkC
1 _
= ﬁ{a(vkclk” + V=IVECyY) 4+ 3(VEC1 — V=1VECyY)
+ L (VEC" + V=IVECu™) + (VRO — V=TVECy™))
1 - 1
— ﬁ{//VL//VL(mLMUyu) _i_/vL/vi(mLqu;u)} + ﬁmemeuwnu.
‘We thus obtain
2 1
(3.9) -0c = ﬁm[”v“v%%iy)] + ﬁ(%l)zn,

where [ ] means the real partof [ ].
The second term of (2.19) is computed as follows:

> P(Xi, X)h(Xi, X)) = RY g R FU RV N,
LJ
1
T 8F3
=2|% %y,

Here we note that |R1|2 = F~2(RL, RL) = |RE)? /2. Therefore we have obtained

@GF2R12h11 " + 4F2 R Phos™ )Ny,

THEOREM 3.1. The Euler-Lagrange equation of the functional
Ryl¢] = f IR*|2dv
for immersion ¢ : M* — S™(c) of an oriented surface M? is given by

2 1 1
(3.10) —AVEVESR) 4 (R0 + SR =0,
For the conformally invariant functional

Rilg] = f IR [ldv,
the Euler-Lagrange equation is given by
(3.11) O3IR-I7'C) =0
under the condition that R* does not vanish anywhere on M.

COROLLARY. If the normal curvature tensor is parallel, then the immersion ¢ is crit-
ical for the functional 721L [@¢]. Moreover, if ¢ is minimal, then ¢ is critical for the functional
Ry (¢l

PROOF. We immediately have

ViR 12" = =2v/=1(V*RE" + VIR,
Vle21uv =2 (/Vimiuv _ //VLmiuv) .
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It follows that the normal curvature tensor parallel if and only if "V9%+ = 0. From the
assumption, we see that ”V-91- = 0 and so |93 is constant. If AL = 0, then it is trivial
that ¢ is critical. Assume that &1 £ 0. Then we see from (3.9) that (3.11) is equivalent to
2
(3.12) Fm[”v“vL(sRiy)] +®RHn=0.
Since
//VJ_//VJ_(ERJ_)/) + ,VJ‘,VJ‘(%J‘);) — mJ_(//VJ_//VJ_y _ /VJ_/VJ_J;)

— FSRJ'(”VJJVJ‘U _ /VJ_//VJ_n)

= —FRR1y,
we have (3.12). O

The following proposition shows that (3.12) is equivalent to the defining equation (3.7)
of Willmore surfaces under appropriate assumptions.

PROPOSITION 3.2. We assume that |R"| is a non-zero constant and the curvature
ellipse is a circle at every point. Then (3.7) is equivalent to (3.12).

PROOF. We first note that the curvature ellipse is a circle if and only if (y, y) = 0.
Thus from the assumption, we have ®+y = F|y|?y and

|SRJ_|2 — F_2<ERJ_, %l)
=F* Y G =y v = 7yY)

=2(yI* = . »)1») =2ly[*,
which is a non-zero constant. Assume that (3.7) holds. Then
IVHIVE@Ry) = FlyPIVEVy
=—FlyFn. 7).
Therefore we have
"VEHVE@RLY) + VY VIR D) = —Fly . 7)Y + i, v) 7}
Since
R = F'RY (. vy — (. v)7}
=Dy + 0. )y ly.
we have (3.12). Conversely, assume that (3.12) holds. Then
0=FI{'VH'VE@Ry) +'VHVE@R D)) + D
=y POVYVEy £ VEVED + Iy Pln 7)Y + (. v) 7}
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Since
rgtrgly, _igligly = VYV — vty
= —FRy
=YY —m7Vy,
we obtain (3.7). O

4. Critical surfaces. First, we shall study Willmore surfaces. Let ¢ : M — S"(c) be
an isometric immersion of a compact oriented surface M into S (c). Define ¥ € C*°(E 30g
/\ZCTLM) by ¥ = y A 'V1y. The immersion ¢ : M — S"(c) is called a S-Willmore
surface if y Ay # 0and ¥ = 0 everywhere on M. It is known that S-Willmore surfaces
are Willmore surfaces and there exist Willmore surfaces which are not S-Willmore surfaces
([10, 11]). In the following, we shall obtain an integral formula for the sum of residues of
logarithmic singularities of log |¥|>. We note that the Willmore surface equation (3.6) and
Codazzi equation (1.25) imply that ¥ is a holomorphic section of E30 ® /\2 CT+M, that
is, ”VL+w = 0 and hence either ¥ is identically zero, or else the zeros of ¥ can be at most
isolated. Define the symmetric product of two p-vectors§ = &1 A---Aépand & = {1 A---ALp
in A CT+M by

1
4.1) (6.0) = ;det(@Av{B))A,B:l,...,p'

Then we have

LEMMA 4.1. Let¢ : M — S§"(c) be a compact oriented Willmore surface such that
V¥ # 0 identically. Let X denote the set {p € M|¥ (p) = 0} and 2, the real analytic order
of the zero of W |*>at p € X. Set N = Zpd Jp- Then we have

2 )
4.2) —271JV=671)((M)+/{W(Illly|2—|l1/y|2)+—}dv,
where Wy = {(Vin,y)y —_(%W’Vln}/l vy = {(Vin, )y — (v, 7)'Vin}/2 and
A=|VIwPRwR — (Vg )2
PROOF. On M\ X, we have
F~I'V'V" log |¥|?
F74
L
1

- A
— _F—4 q/’ /VJ_/le_lI/ + -
w2 < ) W

[V V) (VYR - F V) (VL §))
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Using the Ricci identity (1.28), we have
3FKVE +RIPE
= VIV (WE) - VIV ()
= (VV'VEe VYV E 4 o (vEVEiE v VL)
= (VY'Vhe vV E + omte
for every normal vector &. It follows that
VYV = 3FKY + Rt — gRt.
Thus we obtain
4.3) F~4w, ' vV
=3K|W[ +2F 7Y RE et
=3K|WPH2F 77 ) Uyt -yttt
= 3KV + 20y — w7,

The residue of the logarithmic singularities of log |¥|? is given by

27 4 = lim (F’l V'V’ log |q/|2) dv,
e—>0 e

where X; denotes the complement in M of an e-neighborhood of all points of X'. In virtue of
the Gauss-Bonnet formula:

/Kdv =2nx(M),

we obtain (4.2). O

THEOREM 4.2. Let¢ : M — S§"(c) be a compact oriented Willmore surface. Assume
that ¥ # 0 identically. Then we have
il

ME dv.

4Gy (M) + N) < /

The equality holds if and only if (¥'y, 7) = 0 and 'V is proportional to ¥.

PROOF. We compute the first term of the integrand of (4.2) on M\ X'. Since

1
Wy Ayl = k2 VP2,

we have

1 _
1wy Plyl)? = 51, VPP + 1wy, 712
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We also have

1 _ _ _ _
Wy =-F (Vi )y =, YV, (Vi )y — (v, 1)V )

4
1 _ 1
= Z“V""'VL”'Z Vi P)PlyP = 5|y|2|sv|2.
It follows that
1 ) IRL? [y, )P
(4.4) —— Wy =¥y =~ ,
w2 4ly2 T W Ry R

where we have used

R =20y 1" = 1, ).
Therefore we see from (4.4) and the non-negativity of A that
R Iy P A

F V'V log|¥|> =3K —

2|y ? wRly e
4.5) Lo
IR~
> 3K — 5 -
20y|
Integrating (4.5), we have the desired inequality. O

Surfaces with isotropic y in S*(c) are S-Willmore surfaces, because y and 7 form an
orthogonal basis of CT+M and

F(Vin,y)={"V'y,y)=0.
This fact was proved in [11]. We also have

THEOREM 4.3. Let¢ : M — S°(c) be a Willmore surface whose curvature ellipse is
a circle everywhere. Then it is a S-Willmore surface.

This is immediately derived from the following lemma.

LEMMA 4.4. Let¢ : M — S%(c) be a Willmore surface whose curvature ellipse is a
circle everywhere. If W # 0 identically, then y, ¥, 'V+n and "~V *n form a basis of CT+M
on M\ X and satisfy

(4.6) (Vin,yy=0, (Viy,y)=0, (Vi vip =0.

PROOFE. Since (y, y) = 0, we get
(Vin,y)=0, (Viy,y)=0,
and so, using (3.6),
0= V"(VEn.y) = ("VE'VE ) + (V. F'VEn)
= F(Viy, 'vip).
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Therefore we see that the subspace spanned by y and 'V-15 in CT+M is isotropic. Since
¥ =y A'VEy #£0, vectors y, 7, 'V and V4 form a basis of CT+M on M\ X. O
THEOREM 4.5. Let ¢ : M — S°(1) be a compact oriented Willmore surface. Assume

that W # 0 identically and the curvature ellipse is a circle everywhere. Then we have

2
(4.7) 27 N = 6wy (M) — / ly|2dv + %dv,

where a = (VY'VLy, y) = —(V+y,'VLy). In particular, if M is a topological sphere,
then we have

(4.8) / ly|?dv = 127 + 274 .

PROOF. By Lemma 4.4, we can set
/Vi/vin =ay +b]7 +C/Vl7]+d//vl7],
/Vl)/ =a’y+b/37 +C/ /VLn_i_d/ //an'

Taking the symmetric product of the both hand sides of the above equation and y ('V17), we
obtain

le_ 2 _ /VJ_ =
2 :Ol| nl ’ F3d= af TI7J/>,
21¥)2 2w 2
pry = Vo) Fa - 7
2|¥|? 2|¥|2
It follows that
F73
4.9) ViAW = ‘;'w'z (FIVE127 AW — (VEn, 9)'VEig A vy,
oL O[F_3 oL - 2 2 el
Viy A = 2|l11|2{< Vo vy AV = Foly|" Vg A,

The following general formula for decomposable 2-vectors are easily proved:

(PASL, @A P A2, GAD)—(pASLGARNP AS2, G Al)
(4.10) 3

= E(P@)(PAsl NSy, AT AD).

Using this formula, we compute A defined in Lemma 4.1. We have

VAU =0AS+y Aw,
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where we have put ='V+y, 8 ='V1yand w = 'V’ V1y. Then A is computed as follows:
A=10AS+y APy ASP =[O AS+y Aw, 7 AS)?
=10 A8y ASIP— (0 A8 7 AB)I
+ly rolly AP =y Aw. 7 A8
+ FHONS, 7 AD)Ny ASP—F T ONS, 7 ASYT Ad, ¥ AS)
+ F Ny A0, 0 A8y ASP—F (y Aw, 7 ASYO NS,y AS)

3
= 5{|6|2|6 NOAYP+IyPly Ao ns?
—2R[F78, y oAy AS, O AT AS].
Thus we have
3
(4.11) A= 5{|y|2|/vi/vin AV +VEPIVEy A w)?
—2R[F(y, "V (V' VI A,V AW

To compute three terms of the right hand side of (4.11), we use (4.1) and (4.9). The first term
is computed as follows:

|y|zlle/vJ_n A w|2

|V|2|05|2/J_2— = e ey 2=
=———('Vl'y AV Ay =(Von,y) Vg A’V Ay,

4|yt
IVEnlPy ATV AT = (V)Y Vi ATV A )
P S T A S
= T UV A PP = VPV ) P
|y [ ]er|? i
= vamzwwzw — (V0. 7)1

1
= g|y|2|a|2|/an|2.
Similarly, the second and third terms become
1
Vi 'VEiy Aw P = 6|’vin|2|y|2|a|2,
_ o 1 )
QRIF(y, "V VYV A"V Ad)] = §|a|2|</vin, "2

Substituting these equations into (4.11), we get A = |«|*|¥|?. Since ¥y = 0, (4.2) reduces
to (4.7).
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Furthermore, if M is a topological sphere, then « vanishes. To prove this result, we have
only to show that « is a holomorphic differential of degree 4. By (3.6), we obtain
V”(,VJ‘U, ,VJ')/)
— (//Vi/vin’ /VL]/) + </VL777 //VL/VLJ/)
= —F 7.y, 'VIy) +(Vin, F VYV + 2K Fy —R'y)
1
= EFv’(vin, 'Vip) =0.
O

Second, we study surfaces satisfying (3.10). If the normal connection is flat, then (3.10)
trivially holds. By the same proof as that of Proposition 3.2, we obtain

LEMMA 4.6. Under the assumption that the curvature ellipses are circles of constant

radius on M, (3.10) is equivalent to

_ B F
(4.12) "VEvin+ F 1<n,y>y+5|y|2n=0.

PROOF. Since 1y = F|y|*y and |y| is constant, we have
”VJ'NVJ‘(ERJ')/) — F|J/|2 //VJ_//VJ_V .
Using
D20 =y PU7, my + (v, m7).,
we obtain
1 S
F{//VJ_//VJ_(ERJ_V) +,VJJVJ_(ERJ_)/)} + (SRJ_)ZU
= [y POVY'VEy £ VYV o)y + o))
= [y HF(OVEYVE VYV + (7o m)y + (v )7 )
It follows from the Ricci identity (1.28) that
2 ivaR/Avan 1 1.2 F2 12
ZROVEVERE )]+ R0+ IR
= [y HFQ'VYVig+ R’ + (7. n)y + (v.m7 + FyPn)
o F
= 2F|y|2<”vi/an + F Xy, my + 5|y|2n) :

When y = 0, ¢ is totally umbilical and hence (4.12) holds. Thus (3.10) is equivalent to
(4.12). O

An isometric immersion ¢ : M — M is said to be constant isotropic if |H(X, X)||* is
constant on the unit tangent bundle of M. In the case that M is a surface, we easily see that ¢ is
constant isotropic if and only if it is pseudo-umbilical ({y, n) = 0), the curvature ellipses are
circles ((y, y) = 0) and ||n]|*> + |y|?>/2 is constant. In [23], we determined constant isotropic
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surfaces in S°(c). All of them are of constant Gauss curvature. In connection with this result,
we state

THEOREM 4.7. Let¢ : M — S"(c) be a pseudo-umbilical immersion of a surface M.
If the curvature ellipses are circles of constant radius on M and ¢ satisfies (3.10), then M is
of constant Gauss curvature.

PROOF. Since ('V17, y) = 0, we have, from (4.12),
0=V"(Viny)
= ("VEVEn, y) + (Vi F V)
= Pl y) + FOV v )
= F(Vty,'Vip).
Thus we see that
0=V"(VEy, Vi)
=~y Vi) = —%WV’unuz.
If y = 0, then ¢ is totally umbilical. If In|1? is constant, then K is constant because of the
Gauss equation (1.24). O

REMARK. If ¢ : M — S"(c) is a constant isotropic minimal immersion, then the
assumption that ¢ is pseudo-umbilical and satisfies (3.10) is trivially satisfied (cf. (4.12)).
Minimal surfaces of constant Gauss curvature in S” (¢) were determined in [6].

In the next theorem, we characterize a part of minimal surfaces of constant Gauss curva-
ture in S” (c) by the conditions that M is compact, ¢ is critical for the functional Ri‘ and the
curvature ellipses are circles everywhere.

THEOREM 4.8. Let¢ : M — S"(c) be a minimal immersion of compact surface M. If
¢ satisfies (3.10) and the curvature ellipses are circles everywhere, then the Gauss curvature
of M is constant and the immersion is a standard minimal immersion of a sphere or a constant
isotropic minimal immersion of a flat torus (cf. [6, 17, 23]).

PROOF. If A1 = 0, then y = 0 and so ¢ is totally umbilical. Assume that 93 does
not vanish identically. Equation (3.10) reduces to

m[//vi//vi(mLy)] =0.
1t follows that
V'V'y Py + V'V yHy =0.

Vectors y and y are linearly independent on X’ = {p € M|R*(p) # 0}. Thus V'V'|y|?> =0
on X’. Since ¢ is real analytic, M\ X’ is discrete in M. Hence V'V'|y|> = 0 on M. It
follows that V/'V'K = 0 on M in virtue of the Gauss equation (1.24). In the subsequent
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sections, we study a two-dimensional Riemannian manifold (M, g) which admits a function
satisfying VV f = tg. In Section 6, we prove that if the Gauss curvature K of a compact
two-dimensional Riemannian manifold satisfies V/'V'K = 0, then K is constant. From this
and the result of [6], we have the assertion. O

REMARK. For any standard minimal immersion of a sphere, the curvature ellipses are
circles. On the other hand, there are minimal immersions of flat tori such that curvature
ellipses are not circles (cf. [6]).

Next, let us assume that the mean curvature vector of the immersion ¢ : M — S"(c) is
parallel. Chen [9] and Yau [27] proved that if the mean curvature vector of ¢ is parallel, then
M is one of the following surfaces:

(1) a minimal surface in §"(c),

(2) aminimal surface of a small hypersphere of S (c),

(3) asurface with constant mean curvature in a three-dimensional sphere of S”(c).

In the following collorary, we show that if ¢ is not totally umbilical, then the conditon for the
curvature ellipses excludes the case (3) and the equation (3.10) excludes the case (2) from our
conclusion.

COROLLARY. Let ¢ : M — S"(c) be an immersion of a compact surface M. If ¢
satisfies (3.10), the mean curvature vector is parallel and the curvature ellipses are circles
everywhere, then the Gauss curvature of M is constant and the immersion is a standard mini-
mal immersion of a sphere, a constant isotropic minimal immersion of a flat torus or a totally
umbilical immersion.

PROOF. In the case (3), the normal connection is flat (cf. [9, p. 106]). Since (y, y) = 0,
we have y = 0. Thus ¢ is totally umbilical in the case (3). If R+ = 0 in the case (2), then
y = 0 and hence ¢ is totally umbilical. Assume that 93 does not vanish identically in the
case (2). Take the symmetric product of both hand sides of (3.10) and 1. Then we have

1
QRIF V'V Ry, 1+ F7HOR5%n, n) + 5|9%L|2||n||2 =0.
Since
SRJ_” — /VJ_//VJ_n _ //VJ_/VJ_n =0,

we see that 7 = 0 on the open dense set X/, where we note that ¢ is real analytic. Therefore
we have n = 0on M. O

5. Equation VV f = 7g. In the proof of Theorem 4.8, we used the result that a
compact surface whose Gauss curvature satisfies V'V'K = 0 is of constant curvature. The
equation V'V'K = 0 can be rewritten as a tensor equation VVK = tg, T being a C®
function on M. In the present and next sections, we shall study a complete two-dimensional
Riemannian manifold M which admits a function f satisfying VV f = tg (cf. [4, 15, 18,
24]).
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Let M be a two-dimensional C® manifold. We assume that M is compact and orientable.
Let M denote the set of Riemannian metrics on M. Furthermore, let M denote the subset
{g € M| fM dvy = 1} and M the subset {g € M|dvy = u}, where u is a positive density
on M with total volume [,, u = 1 (cf. [3]). In the compact open C* topology, M is an
open convex cone in the set C*®(S2T*M) of all C* sections of S?T*M. We consider the
following functional F; from M to R:

Filgl = / J(K)dvg
M

where J = J(x) is a function defined on R, J(K') the composition J o K and dv, the area
element of ¢ € M. The Euler-Lagrange equation is given by

(5.1) VVJ(K)+ {AJ(K)—KJ(K)+ J(K)}g =0

for a critical point ¢ € M, where V denotes the covariant derivative with respect to g, the
Laplace operator is defined by A = —¢'/ V;V j and J(K) the composite J o K. The equation
(5.1) for the case J(x) = x2 is well-known (cf. [3], Chapter 4). However, for the sake of
completeness, we give the proof in the following.

Let g () be a smooth curve (—¢, €) — M such that g(0) = g. We compute .7-"][9] =
(d/dtF;lg(t)])(0). Since

. K
Filg] =/ J(K)a—(O)dvg +/ J(K)(dvg(,))’(O),
M t M

we have to compute (3K /91)(0) and (dvg))'(0). Let k € Ty M be defined by k = ¢'(0).

Then it is easy to show that
d .
— a7 Y (0) = —Ki
<8tg )()

g'(0) = (trk)g,
where g(t) = det(g,-j (), 8 = 9(0) and trk = k,'jg"j. Therefore we have
g'(0)
ENG
The derivative (0 Fji x/091)(0) of the coefficients of Riemannian connection V is given by

9 . 1 .
— 1'% )(0) = =g"P(Vjkp + Vikjp — Vpkii) .
ot

and hence

(dvg ) (0) =

1
dx' A dx* = ~trkdvg .
2

2

Using this equation in the derivation of the Rimannian curvature tensor R; jkl:

ad ad
K (g u8; = giud))} = (51?,-]-;(’)(0)

0 d 1 0 l I p I )4
=13 8xifjk—mﬂk+ﬂpfjk—Fjpﬂk 0,
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we get

2(%1()(0) = V;V;kV + Atrk — K'trk .
By integration by parts, we have

2F gl = / {J(K)(V; VK + Atrk — Ktrk) 4+ J (K)trk}dvg

(5.2) M

Z/ [ViV;J(K) +{AJ(K) — KJ(K) + J(K)}g,;1k" dvg .
M

The equation (5.1) is the necessary and sufficient condition for that F)[g] = 0 for
arbitrary k € Ty M. The equation (5.1) implies that
AJ(K) =2(KJ(K)— J(K)}
and hence is rewritten as
(5.3) VVJ(K)={J(K)—KJ(K)}g.
We now introduce C* functions on M
f=J(K), 1=J(K)—KJ(K).
Then (5.3) becomes
5.4 VVf=r1g,

which shows that f is a concircular scalar field on M (cf. [24]).

Recall that TyM| = {k € Ty M| [trkdvg = 0} and Ty My = {k € Ty M|tk = 0}.
Thus g is a critical point of F;|aq, (resp. Flam,) if and only if the orthogonal projection
of the left hand side of (5.1) onto Ty M (resp. Ty M>) is zero. Thus if g is a critical point
for the functionals F;, F;|pm, or Fy|am,, then we have a concircular scalar field on M. The
function 7, called the characteristic function of f, can be considered as a function t(f) of

fif J is strictly monotone, i.e., J # 0 anywhere on R. In fact, we have T = —Af/2 and
covariantly differentiating the both hand sides of (5.4) and using the Ricci identity, we obtain
VAf =2KVf.

Under the assumption that J # 0, K is represented as K = U(f) with U = J~1. Thus 7 is
given by

(5.5 T= —/U(f)df,

where the integral constant is chosen in such away that | y Tdvg = 0. Since

VIV =20V,
the length of V f is given by

(5.6) IV£I? = 2/t(f)df-
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We have shown the following.

THEOREM 5.1. The critical point g € M of the functional Fj is characterized by
(5.3). If g is a critical point for Fj, Fy|pm,, or Film,, then the function f := J(K)isa
concircular scalar field on M. If J # 0, then the characteristic function t and the length of
V f are given by (5.5) and (5.6), respectively.

Next, let M be a complete two-dimensional Riemannian manifold with a metric g. We
assume that M admits a C* function f satisfying (5.4), namely a concircular scalar field with
the characteristic function 7. Let m denote the number of the isolated stationary points of the
gradient field grad /. Tashiro proved the following results (cf. [24, pp. 251-257]):

(1) The stationary points are isolated and m < 2.

(2) According to m = 0,1 and 2, M is diffeomorphic to the direct product of a
complete one-dimensional Riemannian manifold Z and R, a Euclidean space R? and a two-
dimensional sphere S2.

(3) The integral curves of grad f are geodesics. Denoting by W the set of the stationary
points, we can take a local coordinates {u, 8} on M\ W such that u-curves coincide with the
integral curves and 6 is a local coordinate on Z (m = 0) or the unit circle in the tangent space
at P € W (m = 1, 2); in other words, {u, 8} is the geodesic polar coordinates around P.
Moreover, in terms of {u, 8}, f is represented as a function f(u) of only u, and g has the
form

g =du®>+aw)?de?, a)=cf ) >0,
where ¢ is some constant.

REMARK. Tashiro obtained stronger results than those stated above for n(> 2)-dimen-
sional Riemannian manifolds.

In (3), the domain [ of a is (—00, 00), [0, o0) and [0, L], respectively, if m = 0, 1 and
2, where L = dist(P, Q) and W = {P, Q}. Since f'(u) # 0 on the interior of I, we have the
inverse function u = u(f) of f, defined on f (7). The equation (5.4) implies that T depends
only on u. Therefore, by taking the composition of 7(u) and u(f), we see that t can be
regarded as a function of f. Since

ooy LoAf=—kvy
—_— = T = —— = — ,
df 2

the curvature K is given by

1

(5.7) K = —% —U(f),

where U(f) := —dt/df.
We want to compute VV K under the assumption that d*t/df* +0 everywhere on f(1).
Let * denote differentiation with respect to f. Since

VK =U()VS,
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we have, from (5.4),
VVK =U(f/)Vf®Vf+UVVS

u) :
==—=-VKQVK+U(f)t(f)g.
Uf)?
Our assumption implies that there exists the inverse function of U (f), denoted by v, and
hence f = v(K). Itis easily shown that

u) _d*v/dK?

U(f)?  dv/dK

By using v, we have

Ot =~ g [Udr = - [k ax

dv/dK dv/dK dK
1
= dv/dK {/v(K)dK — KU(K)}.
Define ¢ and v on the range of K by
1 dJ d3J/dK3
p(K) = W{J(K)_Kﬁ}’ Y(K) = _Wv

where J(K) = f v(K)dK and the indefinite constant of the integral is chosen in such a way
that t(f) = [v(K)dK — Kv(K). Then K satisfies

(5.8) VVK = ¢(K)g + ¥ (K)VK @ VK .
We have shown the following.

THEOREM 5.2. If M admits a concircular scalar field f with the characteristic func-
tion T and d*t/df? # 0 anywhere on f(I), then the curvature K satisfies (5.8).

We finally start from the assumption that K satisfies (5.8). Substituting (5.8) into the
Ricci identity:
VaViViK = ViViViK — K8} g;j — 87 g ) VK
we easily obtain
Q(K)ViK g;; + ¥ (K)VaKV;KV;K + ¥(K)Vi KV, V;K
= ¢(K)ViK gy; + ¥ (K)ViKV4KV;K + Y (K)ViKViV; K
— K891 =8 91)VpK .
where " denotes differentiation with respect to K. Transvecting with ¢"/ and using (5.8)
again, we have
(@(K) + K + Y (K)AK + oK)y (K) + ¥ (K| VK|*) VK =0.
Substituting
AK = —2¢(K) — ¢(K)| VK|
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into this, we obtain
(5.9 O(K)+ K —p(K)Yy(K) =0

on the set of non-critical points of K.
Assume that ¢ (K) # 0 at an arbitrary critical point of K. Then the critical points are
isolated and (5.9) holds on M. Consider a nontrivial function v = v(K) satisfying

d*v

G
dK? dK

Define J(K) by
(5.10) J(K)=Kv(K)+v(K)p(K).
Then, in virtue of (5.9),

J(K) = v(K) + {K — p(K)¥(K) + ¢(K)} b(K)
=v(K).

Therefore, if we set
(5.11) v(K) =c/e—V’<K>d1<, ¥ (K) =/w(K)dK

with some non-zero constant C, then J(K) defined by (5.10) satisfies J(K) = v(K) and
hence

VVJ(K) = (K)VK ® VK + 0(K)VVK
={J(K)— KJ(K)}g .
because of (5.8) and (5.10).

THEOREM 5.3. Ifthe Gauss curvature K of a compact, orientable, two-dimensional
Riemannian manifold M satisfies (5.8) and ¢(K) # 0 at any critical point of K, then the
metric of M is a critical point of the functional Fj where J=vandvis defined by (5.11).

6. Surfaces admitting a concircular scalar field. All facts in this section about el-
liptic functions are well-known; for instance, see [1, 7, 14].

If the equation VV f = tg is restricted to a geodesic, then it reduces to an ordinary
differential equation f” = =(f). When 7 is a linear function of f, then the Riemannian
manifold which admits the concircular scalar field f was determined in [18, 24]. So we
study the cases that 7 is a polynomial of degree 2 or 3 with constant coefficients under the
assumption that M is a complete two-dimensional Riemannian manifold, although the results
are easily generalized to the case that the dimension is not restricted.

We consider real solutions of the following differential equations with constant real co-
efficients:

1
©6.1) f'=6f*=2g,,

(6.2) " =eQf+6arf +2a3),
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where ¢ = £1. Since, making use of solutions of (6.1), we can obtain those of (6.2), we first
deal with (6.1). We have from (6.1)

(6.3) (f)=4f—g,f — g3,

where g5 is a constant real number. The roots of the polynomial
p() =4x* = gox — g3
will be denoted by e1, ez and e3. The discriminant D is given by
D = 16(e1 — e2)*(e2 — €3)*(e3 — €1)”
=g2° —27g5°.

We have the relations:
1 1

(6.4) el t+ex+e3=0, ejex+erez+eze = 792 Q3= g3,

Since f is a function defined on M, f restricted to a geodesic is defined on R. So we
have to exclude solutions which diverge at a finite number #y € R from nontrivial solutions of
(6.1). We shall set the initial conditions for solutions in the most suitable ones in each case,
so that every solution is obtained by the change of variable: t — ¢ + d.

In the case that D > 0, the roots are real numbers. First, we assume that D > 0 and
e3 < ey < eq. Clearly, the real solution f satifies e3 < f < es ore; < f. In the case that
e3 < [ < e, the solution with initial conditions f(0) = e3 and f'(0) = 0 is given by

(6.5) fO=pi+ao),

where p is the Weierstrass elliptic function with periods 2w € R and 20’ € /—1R (cf. [1, p.
105)):

a)=/ a , o =v-1 2 :
e V4xP—gox — g3 —e3 V/4x3 — gox + g3

We note that p (w) = e], p(w + ') = e; and p (') = e3. Using the Jacobi elliptic
functions, (6.5) becomes

(6.7) (1) = e3 + (e — e3)sn’ (Ve — e31)

where the modulus « is given by k= (e2 — e3)/(e1 — e3).
In the case that e; < f, the solution with initial conditions f(0) = e and f'(0) = 0 is
given by

(6.8) JO=plt+o).

In this case, we have lim;_, _, f(¢) = oo.

Second, we consider the case that D = 0. Assume that e3 < e¢p = e1. Then the real
solution f satisfies e3 < f < ej or f > ej1. In the case that e3 < f < e1, the solution with
initial condition f(0) = e3 and f'(0) = 0 is given by

(6.9) f(1) = e3 + (e1 — e3) tanh®(Jey — e31)

(6.6)
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which is the limit solution of (6.7) as k2 — 1. We note that lim;_, oo f@) =e. If f > ey,
then the solution with lim;_, o f () = €1 and lim;—, o, f'(f) = 0 (w = 0) is given by

1
6.10 - e — ,
(6.10) f@) =e1+ (e e3)sinh2( Frp——

which shows that lim;_,¢ f(#) = oco. Next, assume that e3 = e3 < e1. In this case, x = 0 and
Je1 —e3w = m/2. The real solution f satisfies f > e;. The solution with initial condition
f(0) = ey and f'(0) = 0 is given by

(6.11) F) = ey + (e1 — e3) tan>(e| — e3t) .

Thus lim;_;, f(t) = oo, where tp = /(2./e1 — e3). Assume that e; = ex = e3. From (6.4),

we see that e; = ep = e3 = 0. Therefore the solution is

1
(6.12) f0 =3,

for which we have lim;_.o f(t) = co.

Third, let us assume that D < 0. One of the roots, say e, is real and the others are
conjugate complex numbers. We also see that the periods 2w and 2w’ are conjugate complex
numbers and so w + «’ is real, which is given by

(6.13)

, /OO dx
w+ow =—
e VA4x3 — gox — g3
(cf. [1]). In this case, the real solution with f(0) = e; and f/(0) = 0 is given by
(6.14) fO=pt+o+do).
Thus we have lim;_, _ (4,14 f () = oo. In consequence, we have

LEMMA 6.1. Among the nonconstant solutions of (6.1), the solutions which are de-
fined on the whole line R are (6.7) in the case (D > 0,e3 < e2» < e1), and (6.9) in the case
(D =0, e3 < ey =ey), up to a change of variable : t — t + d and a scalar multiple of f.

Let us turn to the differential equation (6.2). We assume that the polynomial
q(x) = x4+ 6a2x2 + 4azx + ay

has at least a real root. We denote the minimum of the real roots by x4. The nontrivial
solutions of (6.2) satisfy

(6.15) (f)? =eq(f).

First, assume that x4 is a simple root. Let x1, ..., x4 be the roots of g(x). Put f =
x4 + 1/z. Then we have

() = —ea(z —a)(z —a2)(z — a3),
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where @ = (x] — x4)(x2 — x4)(x3 — x4) > Oand o; = (x; —x4)~! (i = 1, 2, 3). Furthermore
we put z = Ay + B. Then

B — B — B —
(6.16) (y/)2=—8ozA<y+ A“‘)(y+ A‘”)(w A°‘3>.

So if we define A and B by A = —4¢/a and B = (a1 + a2 + «3)/3, respectively, then we
can rewrite (6.16) as

(6.17) O =40 — ey —e)(y — e3),
where
. — B
e,-:a’A (i=123) ife=1,
a3 — B o — B o1 — B .
el = , ey = , e3= if e=-—1.
A A A

This means that a part of real solutions of (6.15) can be obtained by setting f = x4+ 1/(Ay+
B) for a real solutions y of (6.17). We note that A, B € R and

1 1
el = —(2az — x1x4 — x2X3), ex = Z(Zaz — X2X4 — X1X3),

(6.18") 4
eg:Z(Zaz—x3x4—x1x2) if e=1,
1 1
el = —Z(Zaz — X3X4 —X1X2), €= —Z(Zaz — X2X4 — X1X3) ,
(6.187) X
€3=—Z(2a2—X1X4—x2x3) if e=-—1.

Let us consider the case that x4 < x3 < x < x1 (real). By (6.18) we see that e3 < ex <
e1. The solutions of (6.15) corresponding to (6.7) are

x3(x2 — x4) — xa(x2 — x3)sn>( /ey — e3t)

6.19+ 0=
( ) f (t) (x2 _ x4) — (x2 — x3)sn2(mt)
(6.197) = x1(x2 — x4) + xa(x1 — x2)sn’(Jer — e3t)

(x2 — x4) + (x1 — x2)sn?(/ey — e31)

according as ¢ = +1. The solution £ (resp. f7) attains the minimum x3 (resp. xp) att = 0
(resp. t = w ), the maximum x; (resp. x1) att = w (resp. t = 0) and is a periodic function
with period 2w. The solutions corresponding to (6.8) are

x1(x2 — x4) — x2(x1 — x4)sn%( /ey — e3t)

6.20+ HOE
( ) ST @) (x2 —x4) — (x1 — x4)sn2(mt)
(6.207) = x3(x2 — x4) — x2(x3 — x4)3n° (Ve — e30)

(x2 — x4) — (x3 — xa)sn?(/e1 — e3t)
The solution (6.207) diverges at t = fy such that sn?(Jer — e3tg) = (x2 — x4)/(x1 — x4).
The solution (6.207) attains the maximum x3 at + = 0, the minimum x4 at f = w and is a
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peiodic function with period 2w. The function g (¢) is certainly a real solution of (6.3) which
coincides with (6.8) up to a change of variable : ¢ +— ¢ 4+ w. The solutions corresponding to
g (t) are

x4(x1 — x3) — x3(x1 — x4)sn>( /ey — e3t)

6.217F ) =
( ) S o (x1 — x3) — (x1 — x4)sn?(Jer — e3t)
6.21°) ) = xa(x1 — x3) + x1(x3 — xa)sn>(Jer — e3t)

(x1 — x3) + (x3 — x4)sn%(/e; — e31)
The solution (6.217) attains the maximum x4 at ¢ = 0 and lim,—,, f(t) = —oco, where
sn?(y/e] — e3tg) = (x1 — x3)/(x1 — x4). The solution (6.217) coincides with (6.207) up to a
change of variable : t — ¢ + w.

Next, we consider the case x4 < x3 < x2 = x;. We haveez < ep) = e;if ¢ = 1 and
e3 = ey < ey if ¢ = —1. The solutions corresponding to (6.9) (i.e., the limit of (6.197) as
x2 — 1) and (6.11) (the limit of (6.207) as k — 0) are

x3(x1 — x4) — x4(x1 — x3) tanh?(\/e] — e3t)

(6.221) @) =
/ (x1 — x4) — (x1 — x3) tanh?(/e1 — e31)
6.22°) ) = x3(x1 — x4) — x1(x3 — x4) sin?(Jer — e3t)

(x1 — x4) — (x3 — x4) sin?(/e1 — e31)

respectively. The function (6.22%) satisfies f7(0) = x3, which is the minimum, and
lim; 400 fT(t) = x1. For (6.10), we can show that if &¢ = 1, there exists #y such that
Ay(tp) + B = 0. Indeed, the range of the function (6.10) is [e;, o0) and —B/A = (a> +
x42)/2 > (a2 + x1%)/2 = ey if & = 1. Thus we have lim,_, | f*(¢)| = oo for the limit solu-
tion of (6.207) as x2 — 1. Since 0 < (x] — x3)/(x1 — x4) < 1, we also see that there exists
to such that lim;_,, | f*(¢)| = oo for the limit solution of (6.217) as k> — 1. On the other
hand, (6.227) attains the maximum x3 at ¢ = 0 and the minimum x4 at t = 7/(2/e] — e3).
The limit solution of (6.217) as k — 0 coincides with (6.227) up to a change of variable :

t—t+m/(2e1 —e3).
Consider the case that x4 < x3 = x» < x1. Thenwe havee; = ¢y <e; (¢ = 1) and
e3 <ep =e1 (¢ =—1). Thus the solutions corresponding to (6.11) and (6.9) are
623 ey = 102 = %) —xa(e1 — xa) sin’ (Ver —est)
(x2 — x4) — (x1 — x4) sin? (/e — e3t)
_ _ x1(x2 — x4) + x4(x] — x2) tanh*(/e; — e31)
(6.237) @)=

(x2 — x4) + (x1 — x2) tanh? (er — e31)

respectively. The solution (6.23%) is the limit of (6.20%) as ¥k — 0. Since 0 < (x; —
x4)/(x1 — x4) < 1, there exists 7y such that lim;—, | f7(t)| = oo. For (6.23%), the func-
tion fT(t + m/(2/e] — e3)) is the real solution which is the limit of (6.217") and satisfies
fT(0 4+ m/(2/e] — e3)) = x4. For this solution, there exists 7y such that lim; _, 4, | fr@ +
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w/(24/e1 — e3))| = oo. The solution (6.237), which is the limit of (6.197) as k2 — 1, attains
the maximum xj at# = 0 and lim;— 400 f~ (f) = X2, which is the infimum. The solution f~
which attains the minimum x4 at t = 0 and satisfies lim;_, 1, f~ (#) = x3 is given by

x4(x1 — x3) + x1(x3 — x4) tanh? (/e — e3t)
(x1 — x3) + (x3 — x4) tanh?(\/e1 — e31)
which is the limit of (6.217) as k2 — 1.

In the case that x4 < x3 = x = x1, we have e; = e = e3 and hence the solutions
corresponding to (6.12) are

(6.247) o=

—4X13t2

6.25% ty =22
( ) @ [ dx 22
_ X4+4X13t2

6.25~ Hn=—"-"_
( ) o 1 4 4x,212

We have limy 41 /2x,) | fT(1)] = oo for (6.257). We note that f (1) > xj (resp. < x4) if
[t] > 1/(2x1) (resp. |t| < 1/(2x1)). The solution (6.257) attains the minimum x4 att = 0
and lim;—, 100 f~ (t) = x1, which is the infimum.

In the case that x4 < x and x3 = X1 ¢ R, we see that e; is real and e3(= e1) is not
real. The real solution with f £0) = x, corresponds to (6.14) and that with f*(0) = x4 to
y(t) = e (¢). The range of (6.14) and g is [e2, 00) and —B/A > ey if ¢ = 1. Thus we see
that f*(t) = x4 + 1/(Ay(t) + B) diverges at some fy. The solution f~ corresponding to
(6.14) is given by

1
Ap(t+w+o)+ B
_xolxr — x4l + xglxr — xof + (2lxr — xa| — xax1 — xaf)en(y)
T = xal e = xal (X — xal =[x — xel)en(y o)

@) =x4+
(6.267)

’

(cf. [7, p. 86]), where y = /|x] — x2]|x3 — x4] and the square of the modulus « of cn(y7) is
equal to (Je; — ez2| + N[e1 — e2])/(2ler — e2]). The solution f~ attains the minimum x4 at
t =  + ' and the maximum x; at t = 0. The period is equal to 2(w + «’). We shall make
use of the following equation:

4
Ix1 — x4/>(x2 — x4)

(6.27) A Aer; + B =

xz—X4'

Next, assume that x4 is a real double root (x4 = x3). Consider the case that x4 = x3 <
X3 < x1. Set f(t) = — f(¢). Then f satisfies

(/N =e(f* +6arf? —4az f +as) .

The roots of the polynomial G (x) = x* 4 6arx* — 4a3x +ayg are ¥4 = —x1, X3 = —xp, Xr =
X1 = —x4. We note that ¢; (i = 1, 2, 3) does not change. Therefore the real solutions with
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initial condition fi(O) = x, can be obtained by making use of (6.227%) and (6.227):
x2(x1 — X4) — x1(x2 — x4) tanh?(\/e] — e3t)

6.281 @) =
( ) 7o (x1 — x4) — (x2 — x4) tanh?(\/e1 — e31)
(6.287) £ = x2(x1 — x4) — xa(x1 — x2) sin’(Jer — e3t)

(x1 — x4) — (x1 — x2) sin®(/e1 — e3t)
respectively. We note that £ attains the maximum x, at ¢ = 0 and limy s +o0 f(t) = x4.
The solution (6.28 ) attains the maximum x; at 7 = 7/(2./e] — e3) and the minimum x; at
t = 0. The other real solution in this case with initial condition f*(0) = x| (or x4) satisfies
lim; 4, | f(t)| = oo for some #y € R.

In the case that x4 = x3 < x2 = x1, we directly solve (6.15). Since g (f) > 0, there does

not exist a nontrivial solution if ¢ = —1. Using the relation x; + x4 = 0, we have the solution
with initial condition f*(0) = 0:
(6.291) fT(t) = £x; tanh(x;1) ,

which satisfies x4 < fT(¢) < x;. Moreover, we have the solution such that lim; o | f(£)| =
o0
(6.301) FT(t) = £x1 coth(x1) .

We consider the case that x4 = x3 and x, (= X) is not real. In this case, there is not a
nontrivial solutionife = —1. Weput f = x4+2/(y+ o1 +a2), whereo; = 1/(x; —x4) (i =
1, 2). We note that oy = @ and so «; + a5 is real. Then we have
(6.31) O =aly’ —(@—a)?}, (@=(x1—x)0x2—x1)>0).

It is easy to solve (6.31). If we put oo — a1 = +/—1b, then the solution is

y = +bsinh(Jat) .

Thus we have

2
6.327 ) =x4 + )
( ) Fr0 =x +bsinh(y/at) + o + an
and hence there exists 7y € R such that f(¢) diverges as t — 1.

If x4 is a triple root, then the solutions of (6.15) are given by

— 4)643t2

6.33% +iy = ’
(6.33%) o =T
_ x1 + 4x4312

6.33~ n=2= ’
( ) A 1+ 4)642t2

We obtain these solutions by setting f (t) = — f(t) in (6.25).
If x4 is a real quadruple root, then

f+(r>=x4i},
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and hence lim;_, o | f T (1)| = oco.

The remainding case is that the polynomial g has not a real root. Since g(f) > 0, (6.15)
has no solutions if ¢ = —1. If x4 = X3 = x» = x1, then (f’)2 =(f - x1)2(f — %)? and
hence 1 (1) = Nx; £+ (Jx1) tan{(Ix1)t + ¢}, which shows that there exists 7o such that £ (¢)
diverges as t — fp.

Finally, we deal with the case that x4 = X3, X = x1 and x1 # x4. We reduce

(6.34)

[ =
VIf = xal21f — x1]?

to a Jacobi normal form (cf. [1, pp. 106-109]). If Rx; = Nx4, then Rx; = 0, so that (6.34)
becomes

|
=+t
V2 +bD)(f2 +b4?)
where b; = Jx; (i = 1,4). Suppose that Rx; # NRxg. We putc; = Rx; (( = 1,4). Letus set
f=(py+q)/(y+1),where pand g (p > g) are roots of the equation:

(6.35)

1 1
x>+ 2_c1(b42 —b?)X - 5(2612 +b12 4+ b4?) =0.

Then the integral of (6.34) becomes
P—q dy
lp—xillp —xal J /(2 4+ a?)(y% + B2)
( ‘t] — X1
o =
P —Xx1

Since the integrals of (6.35) and (6.36) reduce to the normal form:

(6.36)

_‘CI—M
P — X4

).

3

(6 = (@ — p*) /o)

/ du
VA= u?)(1 = k2u?)
by putting y> = p2u?/(1 — u?), a straightforward computation shows that

q + ppin(y?)
1 + Btn(y1)
In particular, there exists fo such that f(¢) diverges as t — fy.

Summing up, we obtain

1
6.37) @) = <y2 = g (ke —xil+ |xa = le)z) .

LEMMA 6.2. Among the nonconstant solutions of (6.2), the solutions which are de-
fined on the whole line R are, up to a change of variable : t +— t 4+ d and a scalar multiple of
£, (6.19%), (6.197) and (6.217) in the case (x4 < x3 < X3 < x1), (6.227) and (6.227) in the
case (x4 < x3 < X2 = x1), (6.237) and (6.247) in the case (x4 < x3 = x2 < x1), (6.257)
in the case (x4 < x3 = x3 = x1), (6.267) in the case (x4 < x2, x3 = x1 ¢ R), (6.28") and
(6.287) in the case (x4 = x3 < x2 < x1), (6.297) in the case (x4 = x3 < x2 = x1) and
(6.337) in the case (x4 = x3 = X3 < X1).
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REMARK: All solutions given in Lemmas 6.1 and 6.2 are characterized by the property
that their ranges coincide with open, open half or closed bounded intervals I such that the
infimum and supremum are real roots of the polynomial p(x) or g(x) and there are no real
roots in the interior /.

Let us return to the study of the manifold M admitting a concircular scalar field f.
Tashiro [24] determined M when the polynomial is of degree < 1. We consider the case that
the characteristic function t is a polynomial of f whose degree is less than 3 in the following
theorem.

THEOREM 6.3. Let M be a complete two-dimensional Riemannian manifold, and sup-
pose that it admits a nontrivial concircular scalar field f whose characteristic function is a
polynomial of f. If the degree is 2 or 3, then M is homothetic to one of the following man-
ifolds. The function f given in the list coincides with the concircular scalar field f up to a
linear transformation : f +— Af + u.

[I] (deg=2). R? with a metric:

1
tanhz(«/el — e3u)sech4(\/e1 — e3u)dG2

€] —e3
in terms of the geodesic polar coordinates {u, 6} in Rz, where e; > ez and 2e1 +e3 = 0. It
is isometric to the surface of revolution which is obtained by rotating the unit speed curve:

1
x(u) = Noers tanh(v/e] — e3u)sech’(Ve] — esu),
1 S )

) =—
6e12 Je, e

ds? = du* +

1
Qe —6)@e? + £2)ds

in the x-z plane around the z-axis in R3, where fu) =e3+ (e1 —e3) tanhz(«/el — e3u).

[II] (deg=3). (1) R x Z with a warped product metric:

ds* = du? + x14sech4(x1u)dQ2 ,

where 0 is a local coordinate in a complete one-dimensional manifold Z, x| is a positive
constant and ¥ (u) = x1 tanh(xqu).

) R? with a metric:

ds? = du® + a(u)®de?,

where {u, 0} is the geodesic polar coordinates in R>. The function a is one of the following:

®

) = 201 (w)
(x3 = x1)%(x3 — x4)
) = x3(x1 — x4) — xa(x1 — x3) tanh? (yu)

(x1 — x4) — (x1 — x3) tanh®(yu)

1
y =4+e —e3 = 5\/(161 —x3)(x1 — x4),
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where x1, X3, X4 are constants satisfying x4 < x3 < x1 and 2x1 + x3 + x4 = 0,

(ii)

() = —2(f7) ()
(x3 = x1)%(x1 — x4)
_ x1(x3 — x4) + xa(x1 — x3) tanh? (yu)
f =

(x3 — x4) + (x1 — x3) tanh? (yu)
1
y =+el —e3 = 5\/(161 —x3)(x3 — x4) ,

where x1, X3, X4 are constants satisfying x4 < x3 < x1 and x1 + 2x3 + x4 =0,

(iii)

oy = 2@
(x1 —x4)3°
_ x4 + 4x13u?
/= 1+ 4x12u?

where x1, x4 are constants satisfying x4 < x1 and 3x1 + x4 = 0.
3 S2 with a metric:

ds* = du®* + a(u)*do?,

in terms of the geodesic polar coordinates {u, 8} whose center is a critical point of f. The
function a is one of the following:

(1)
U w
a(u) = ————-,
x2(x1% — x2?)
1 —x21x1 +x2 —2x Sl’lz( u)
FHu =+ R L)
Apu+o')+ B (x1 + x2) — 2x280*(yu)
1
Yy = E(xl +x2),
where 0 < xp < x1, A = —2/{)61()612 — xzz)}, B = (5x12 — xzz)/{6x1(x12 — xzz)} and the
modulus of the Jacobi elliptic function sn is equal to 2x1x2/(x1 + Xx2).
(D)
_ —\/
aty = =YW@
x2]x1 — x2]
1
S =x4+ = xocn(yu) ,

Apu+w+ o)+ B
Yy =Ix1 —x2f,

where xo > 0, x1 (5 0) is a pure imaginary, A = 2/(x2|x1+x2|2), B = (szz—x12)/(6x2|x1+
x2|%) and the modulus of the Jacobi elliptic function cn is equal to x2/|x1 + x2|.
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PROOF. Recall the results proved by Tashiro ((1) through (3) in Section 5). The integral
curves of grad f are geodesics. When the concircular scalar field f is restricted to a geodesic,
it satisfies (6.1) (resp. (6.2)), after a suitable linear transformation f +— Af + u, if the degree
of the polynomial t(f) is 2 (resp. 3). Thus f restricted to a geodesic is one of the solutions
given in Lemmas 6.1 and 6.2.

Suppose that the degree of 7(f) is equal to 2. Then we see from Lemma 6.1 that the
number m of the critical points of the concircular scalar field f is 1 or 2. If m = 1, then f
restricted to the geodesic y which coincides with the integral curve of grad f is given by (6.9).
If m = 2, then f|, is given by (6.7). Since ds*> = du® + a(u)>d6> (see (3) in Section 5)
and the metric ds*(= g¢) is smooth at the critical point P € W, we require the function a to
satisfy

(6.38) a0)=0, dO)=1, a*®O)=0 *k=1,2,...),

(see [2, p. 96] and [16, Proposition 2.7]). If f|, is given by (6.9), then a = ¢f’ is an odd
function and satisfies the condition a’(0) = 1 by setting ¢ = 1/{2(e] — e3)2}. Let f|, be
given by (6.7). Since we have from (6.4)

1
d'(0) = cp" (o) = c<6so (@) - 592)
= 2c(e; —e3)(ex — e3),

we have to put ¢ = 1/{2(e1 — e3)(e2 — e3)}. Furthermore, since ds? gives the smooth metric
¢ at another critical point Q € W, we also require a to satisfy

aw)=0, d@=-1, a®=0 k=12..).
However we have
9" (0 + ) =2(ex — e3)(e2 — e1)
and hence

d'(w) = cf"(w)
:—61_62 =K2—1>—1
€] —e3

We conclude that the case m = 2 does not occur if the degree is equal to 2. It is easy to see
that R? with metric given in [I] is isometric to a surface of revolution.
Suppose that the degree of T(f) is equal to 3. If m = 0, then f,, is the function given
in (6.297) and M is isometric to R x Z with warped product metric given in [II](1)(i).
Assume that m = 1. Then f|, is one of the functions given by (6.227), (6.237),
(6.247), (6.257), (6.28™) and (6.337). By replacing f with — f, we see that the solutions
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(6.28™), (6.247) and (6.337) are essentially the same as (6.227), (6.237), (6.257), respec-
tively. Therefore, if we set

2/{(x3 —x1)*(x3 —xg)}  for (6.227),
¢ =1-2/{(x1 = x3)*(x1 —xa)} for (6.237),
—2/(x4 — x1)° for (6.257),
so that a satisfies (6.38), we obtain the cases [II](2)(i), (ii) and (iii).

Next, assume that m = 2. The function f|, is one of the functions given by (6.197),
(6.197), (6.217), (6.227), (6.267) and (6.287). By replacing f with — f, we see that the
solutions (6.217) and (6.287) are essentially the same as (6.197) and (6.227), respectively.
In order that a satisfies (6.38), it is necessary that the constant c satisfies

2/{(x1 — x3)(x2 — x3)(x3 — x4)} for (6.197),
—2/{(x1 — x2)(x1 — x3)(x1 —x4)} for (6.197),
=2/{(x1 — x3)%(x3 — x4)} for (6.227),
—2/{(x2 — x4)|x1 — x2|%} for (6.267).

We denote by 2L the period of the even functions (6.197), (6.197), (6.227) and (6.267). At
another critical point where u = L, we require

(6.39) a(L)=0, d@L)y=-1, a®™@L)y=0 (k=12,...),
(see [2, p. 96]). We can easily show that the above four solutions satisfy (6.39) except for
a’(L) = —1. We first consider (6.197). Noting that L = w, x| + x + x3 + x4 = 0 and

(2 = x)(x2 — x4)
(x3 — x1)(x3 — x4)

d'(w) =cf(w) =

we see that a’(L) = —1 if and only if x3 = —x;. Thus M is diffeomorphic to $2 and
(f ) ()

x2(x12 —x22)

—X3 {xl +x2 — 2xlsn2((x1 + xz)u/Z)}
(x1 + x2) — 2x2s02((x1 + x2)u/2)

where we note that \/e; — e3 = (x1 + x2)/2. We have obtained the case [II](3)(i). We then
consider (6.197). Noting that L = w and

a(u) =

ffw =

(2 —x3)(x2 — x4)
(x1 — x3)(x1 — x4)

d (@) =cf"(w) =

we have x; = —x| and x4 = —x3 from the equation a’(L) = —1. However, since x4 < x3 <
X3 < X1, this case does not occur. We now consider (6.227). Noting that L = 7/(2./e1 — €3)
and

(x1 — x4)?

L) = "Ly = — ,
a(L)=cf"(L) e
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we see that x4 + x3 = 2x; if and only if a’(L) = —1. Since 2x; + x3 + x4 = 0 and
X4 < X3 < x3 = X1, this case deos not occur. Finally, we consider (6.267). Noting that
L = w + ' and using (6.27), we have

a'(L) = cf"(L) = _bm
Ix1 — x2|?
Thus a’(L) = —1 if and only if x4 = —x2(% 0). Since x3 = x] and x| +x2 +x3+x4 = 0, we
see that x1 (= —x3) is a pure imaginary. Thus M is diffeomorphic to S and (6.26~) becomes

_ 1
Fr@0 = x4 e = men(r).

This case is [11](3)(ii).
We have completed to examine all cases. O

COROLLARY. Let M be a complete two-dimensional Riemannian manifold. If the
Gauss curvature K satisfies VVK = g, then K is constant or M is isometric to R* with the
metric whose curvature is given by K = —x" /x, x being the function given in [I] of Theorem
6.3.

PROOF. Since VVK = tg, we have —AK = 27t and VAK = 2KVK = VK2 1t
follows that —27 = K2 — A, where A is a constant. Thus we have

1

(6.40) VVK = _5(1{2 —N)g.

We put f = —K /12 and g, = 1/12. Then (6.40) becomes
1

(6.41) VVf = <6f2— 5gz)g.

The characteristic function t(f) is a polynomial of f of degree 2. Thus the assertion is
obtained from Theorem 6.3. a

Now we consider the functional on M:
(6.42) Flgl=c [ 6-KPdy, (©#0).
M

8 being a constant. Suppose that g is a critical point of /. Then f = J(K) = 2c(K — §) is
a concircular scalar field if K is not constant. Thus, from the above Corollary, we conclude
the following:

THEOREM 6.4. Let M be a compact orientable two-dimensional Riemannian mani-
fold. If the metric g of M is critical with respect to J», then the Gauss curvature is constant.

Next for a given real number §, we consider the functional on Mi( s =19 € M|0 <
§—¢eK on M}:

(6.43) 5nlgl = c/ (6 —eK)?dvy (¢ #0).
M
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If the metric ¢ is critical for the functional .7-'§ /20 then f = J (K) satisfies (5.3) and hence

4
(6.44) VVf:s(mf3—8f>g.

Thus it is convenient to put ¢ = +/2/(3+/3). If the metric ¢ is critical for the functional
j:_§/2|/\/11’ then

(6.45) VVf=eQf—58f +2a3)g,
where the constant a3 is chosen in such a way that fM Qf3—8f + 2a3)dvg = 0.

THEOREM 6.5. Let M be a manifold diffeomorphic to S?. Let 8 be a real number such
that 8 > 4w ife = 1 and |8] < 4w if e = —1. If a metric g on M is critical with respect
to F5 /2| M, then the Gauss curvature of g is equal to 4w (constant), g is the metric given
in [II](3) (1) of Theorem 6.3, where x1 = /8 + 471/«/5 and xy = /8 — 4w /2, or the metric
given in [I1)(3)(ii), where x1 = ~/—1/4 — 8//2 and x» = /4w + 8 /N/2. They are on the
boundary of Mf s N M.

PROOF. Since M is diffeomorphic to Sz, it suffies for the proof to consider the solu-
tions, fT in [I](3)(i) and £~ in [II](3)(ii), of the equation (6.45). In both cases, we have
a3 =0, 8§ =x1% 4 x22. Using K = f”/f’, we also have 6 f2> = § — K. Since the metric is
normalized as Vol(M) = 1, we have, by the equation a = cf’,

2 L
1 = Vol(M) =/ / a(u)dud6
0 0

dr/(xi?—x?) (e=1),
4/ ) (e=-1).
It follows that x| and x; are equal to the values in the assertion. Since the maximum of K is

equal to § in the case [II](3)(i) and the minimum of K is equal to —§ in the case [II](3)(ii), the
metrics are on the boundary of Mi( s N Mi. O
Since J(K) = ¢(8 — ¢K)3/%, K satisfies

(6.46) VVK = %(5 —eK)(28 +eK)g — ﬁVK ® VK,

(cf. (5.8)). However, the coefficient of VK ® VK has a singular point where K = ¢4 and
K is critical. The coefficient(= ¢(K) in (5.8)) of g vanishes at the critical point. It seems
to be interesting that we determine complete two-dimensional Riemannian manifolds whose
Gauss curvature K satisfies (6.46), or, more generally, complete Riemannian manifolds which
admit a function satisfying the equation of the type (5.8), (where we should assume that ¥ ( f)
possesses a singular point).
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