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Abstract

We discuss properties (optimal regularity, non-degeneracy, smoothness of
the free boundary...) of a variational interface problem involving the fractional
Laplacian; Due to the non-locality of the Dirichlet problem, the task is non-
trivial. This difficulty is by-passed by an extension formula, discovered by the
first author and Silvestre, which reduces the study to that of a co-dimension
2 (degenerate) free boundary.

1 Introduction

The goal of this paper is to derive local properties - optimal regularity, non-
degeneracy, smoothness - of a free boundary problem involving the fractional Lapla-
cian, generalising the classical phase transition problem for the standard Laplacian
with prescribed gradient jump [10]. Let us recall that the fractional Laplacian (−∆)α

is given by

(−∆)αu(x) = cN,αPV

∫
RN

u(x)− u(y)

|x− y|N+2α
dy, (1.1)

where PV is the Cauchy principal value and cN,α a normalisation constant. Let us
also say that a function u(x) ∈ C1,γ(RN) (with γ > α) is α-harmonic in a domain
Ω of RN if it satisfies (−∆)αu(x) = 0 for all x ∈ Ω.

The strong form - i.e. the one that assumes the unknowns to have at least
as many derivatives as those appearing in the formulation - of our problem is the
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following: given α ∈ (0, 1) and A > 0, consider a function u(x) ∈ C(RN) solving, in
a domain D of RN :

(−∆)αu(x) = 0 if x ∈ D ∩ {u > 0},

lim
y→x

u(y)

((y − x).ν(x))α
= A if x ∈ D ∩ ∂({u = 0}). (1.2)

with prescribed value f(x) outside D. Also recall that the strong form of (1.2)
for the standard Laplacian is to study a function u(x) ∈ C(RN) such that, in the
portion of the space D, one has

−∆u(x) = 0 if u(x) > 0,
uν(x) = A if x ∈ ∂({u = 0}). (1.3)

Let us immediately notice the following explicit solution to (1.2). On the line R,
the function (x+)α is a solution of (1.2) with A = 1. To see it, a quick argument

for α =
1

2
is that, in the complex plane cut along the negative axis, the function

z 7→ z1/2 is analytic, hence its real part is harmonic. Moreover, because it is even in
y, its y-derivative on the positive axis vanishes; this means that the half-Laplacian

of R(z1/2) =
√

x is zero on R+. To prove the validity of the statement for α 6= 1

2
, a

possible way goes once again through elementary complex analysis, by (after scaling
in x) noticing that ∫

{x±iε, x∈R}

1− (1 + z)1+α

z1+2α
dz = 0,

and sending ε to 0. Of course, regularity of the free boundary is rather easy to study
in this example, but (i) it proves that our problem is not void, (ii) this solution will
follow us in the whole paper. Note, moreover, that this boundary behaviour is
typical of α-harmonic functions at regular boundary points which are minima (see
the generalised Hopf lemma in Section 2 below). Once again this parallels exactly the
classical Laplacian case: the classical Hopf lemma indeed states that, at a minimum
which is a regular boundary point, a harmonic function grows linearly away from
the boundary.

The motivation for studying problems of the form (1.2) for the classical Laplacian
comes from reaction-diffusion problems in plasma physics, semi-conductor theory,
flame propagation... When turbulence or long-range interactions are present, it is
relevant to replace the Laplacian by nonlocal operators, such as (−∆)α. For further
information on the modelling, see the review papers [5] and [21]. The particular
problem we will discuss appears in flame propagation and also in the propagation
of surfaces of discontinuities, like planar crack expansion. In this context, (1.2) is
related to reaction-diffusion equations: in a companion paper to the present one
[8] we will interpret (1.2) as the singular limit of a singularly perturbed elliptic
reaction-diffusion model.

Potential theory for the fractional Laplacian is well developped: see for instance
[4], [19], [20], especially from the point of view of the boundary Harnack princi-
ple. Studying local properties of the free boundary requires, however, rescaling:
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we sometimes want to forget about what happens far away from the point under
consideration. This does not agree well with an operator which precisely takes in-
formation from the whole space. Even more basically we are not able, in general, to
prove existence theorems for (1.2) in such a strong sense.

Let us devise a weak form for (1.2). A possible way to do it (see [1]) is to try to
minimise the energy ∫

RN×RN

(u(x)− u(y))2

|x− y|N+2α
+ LN({u > 0}), (1.4)

where LN is the N -dimensional Lebesgue measure. When the first term in (1.4) is

replaced by the Dirichlet integral

∫
RN

|∇u|2, sufficiently smooth local minimisers can

be proved to satisfy (1.2) - with α = 1 - in the strong sense. This does not however
suppress the nonlocality of the Dirichlet integral appearing in (1.4), we would really
wish to use only local information on our unknown. To bypass the inconvenient,
let us make use of the extension property presented in [10], which generalises the
Poisson formula. Consider the upper half-plane RN+1

+ = {(x, y) ∈ RN × R+}, and
set β = 1− 2α. For u(x) ∈ C2(RN) solve the Dirichlet problem

−div(yβ∇v) = 0 in RN+1
+ ,

v(x, 0) = u(x).
(1.5)

This can be done by convolution with the the Poisson kernel PN,α(x, y) of the oper-
ator −div(yβ∇) in RN+1

+ , we have (see [10])

PN,α(x, y) = qN,α
y2α

(x2 + y2)
N+2α

2

, (1.6)

where qN,α ensures that

∫
PN,α(x, 1) dx = 1.

Theorem 0.1. [10] We have (−∆)αu(x) = − lim
y→0

(yβvy(x, y)).

Because of the divergence form of the elliptic operator at stake in (1.5), a Dirichlet
integral is available and we may introduce an energy to minimise. Notice also that,
if u solves (1.5), we may extend it evenly across the hyperplane {y = 0}, and the
new equation satisfied by u is

−div(|y|β∇v) = 0 in RN+1,
v(x, 0) = u(x).

(1.7)

For any open subset Ω of RN+1, let us introduce the weighted Hilbert space

H1(β, Ω) = {u(x, y) ∈ L2(Ω+) : |y|β/2∇u ∈ L2(Ω)}. (1.8)

We then set

∀v ∈ H1(β, Ω) : J (v, Ω) =

∫
Ω

|y|β|∇v|2 dxdy + LN({v > 0} ∩ RN ∩ Ω), (1.9)
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where LN still denotes the N -dimensional Lebesgue measure on the hyperplane RN .
For any r > 0 and (x, y) ∈ RN+1 let Br(x, y) be the ball of RN+1 centered at (x, y)
and radius r, and let Br+(x, y) its intersection with the upper half-plane. When
x = 0 we will simply use the notations Br and Br+. Finally, if x ∈ RN we denote
by BN

r (x) the ball of RN centred at x, with radius r.
The study of (1.2) is now replaced by the study of local minimisers of J , i.e.

functions that are in H1(β, B1) and satisfy

∀B ⊂ B1, ∀v ∈ H1(β, B) such that v = u on ∂B,
we have J (u, B) ≤ J (v, B)

(1.10)

We take the opportunity to define what a global minimiser is: it is a function
u(x, y) ∈ H1

loc(β, RN+1) which minimises J (., B) in every ball of RN+1. It is a
simple task to prove that a local minimiser u satisfies div(|y|β∇u)(x, y) = 0 for
(x, y) in any open subset of its set of positivity. If u is in C(RN+1) - the continuity
is not obvious and will have to be established - we will prove - this is not trivial - in
Section 3 below that (−∆)αu = 0 on RN ∩ {u > 0}.

The free boundary condition comes of course from the area integral, but deriving
it precisely is more delicate than in the classical (α = 1) case, and a special section
will be devoted to it.

Notice once again the analogy with the classical Laplacian. The weak form of
(1.3) is to study local minimisers of the functional

∀v ∈ H1(B) : J (v, B) =

∫
B

|∇v|2 dxdy + LN({v > 0} ∩B), (1.11)

where this time B is a ball of RN . Here are the main results that we will prove in
this paper.

Basic properties of local minimisers

Consider a local minimiser u of Problem (1.10), posed in B1.

Theorem 1.1 (Optimal regularity)We have u ∈ C0,α(K) for all compact set
K ⊂ B1.

Theorem 1.2 (Non-degeneracy) There exists a constant c0 > 0 such that for all
x ∈ BN

1/2(0) ∩ {u > 0} there holds:

u(x, 0) ≥ c0d(x, ∂ {u > 0})α.

Theorem 1.3 (Positive density) Suppose that (0, 0) is a free boundary point.
There is δ > 0 such that, for every r > 0, we have

LN({u = 0} ∩BN
r ) ≥ δrN , LN({u > 0} ∩BN

r ) ≥ δrN . (1.12)
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The free boundary condition

Here we assume that u has an actual free boundary, i.e. the set ∂
{
x ∈ RN , u(x) > 0

}
is non void. We will see that this is the case if the data are not too large.

Theorem 1.4 Let u be a solution of (1.10). Let us define the constant Aα by

Aα =

(
c1,α

∫ 0

−1

(1 + x)α

(−x)α
dx

∫ +∞

1

(1 + x)α

x1+2α
dx

)−1

, (1.13)

where c1,α is the constant in (1.1) with N = 1. Let x0 be a free boundary point
having a measure-theoretic normal ν(x0). Then

lim
x→x0

u(x)− u(x0)

((x− x0).ν(x0))α
+

= Aα. (1.14)

Regularity of the free boundary

Finally, we are interested in proving conditional regularity properties for the free
boundary, i.e. regularity away from possible singularities - similarly to what hap-
pens in minimal surface theory [15]. Recall that singularities may occur in the min-
imisation problem for the classical Laplacian case, see [12]. The following theorem
is in the spirit of [1].

Theorem 1.5 Assume N = 2 and let u solve (1.10) in B1. Assume that the free
boundary is a Lipschitz graph in B1 ∩ R2:

∂ {u > 0} = { (x1, x2) : x2 > f(x1)} ,

where f is a Lipschitz function. Assume also that 0 is on the free boundary. Then
the free boundary is a C1 graph in B1/2 ∩ R2.

The previous theorems are the main results of this paper. We will also provide
a classification of global solutions. As for the assumption in Theorem 1.5, Lipschitz
regularity of the free boundary can be attained from scratch from some special
geometric configurations in cylinders or star-shaped domains. It has been shown (in
the Laplacian case) for some particular models of conical flames (see [16]).

Theorem 1.5 generalises to non-local operators the main theorem of [6], which
proves in the case of the Laplacian that if one starts with a Lipschitz free boundary
(as a graph) then the free boundary is locally C1,γ for some 0 < γ < 1. However, our
theorem gives a less strong result since we just obtain C1 with a non-explicit modulus
of continuity. That this modulus is actually Hölder remains an open problem. Notice
that such a result might also be accessible via “ flatness of the free boundary implies
regularity” - as in [1] - but this needs some measure-theoretic properties on the free
boundary we do not know yet.

The paper is organised as follows. In Section 2, we give some - sometimes well-
known, sometimes new - properties of the fractional Laplacian, that will be useful
in the sequel. In Section 3, we start the study of (1.10) and prove Theorems 1.1 to
1.3. Section 4 is devoted to the classification of global solutions to (1.2), resulting
in the derivation of the free boundary condition. Finally, we prove Theorem 1.5 in
Section 5.
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2 Properties of (−∆)α and its extension

The Dirichlet integral appearing in (1.10) comes from a degenerate elliptic operator
−div(|y|β∇). Because β = 1−2α we have β ∈ (−1, 1), and the weight |y|β is, to the

notable exception of α =
1

2
, singular at 0 - this is for α >

1

2
- or degenerate at 0 -

this is for α <
1

2
. One has to make sure that important properties like the Poincaré

inequality or the Harnack principle hold, and this is what the next paragraph is
devoted to. In the second paragraph, we go to the particular case of the fractional
Laplacian and prove a monotonicity formula for the Dirichlet energy.

In the particular case α =
1

2
, the function u is harmonic in the (x, y) variables

and (−∆)1/2u coincides with −uy, the normal derivative of u at y = 0. The reader
should always keep this example in mind.

2.1 Degenerate elliptic equations with A2 weights

Set Lβ = −div(|y|β∇) in RN+1. Its weight |y|β belongs to the second Mackenhoupt
class A2, that is:

Definition 2.1 A function w ∈ L1
loc(RN+1) belongs to A2 if for all ball B in RN+1

we have ∫
B

w

∫
B

w−1 < +∞. (2.1)

Clearly, |y|β falls into this class for β ∈ (−1, 1). Another interesting property of
this weight is its independence in the tangential variable x. This allows to consider
translations in x. The series of papers ([13]-[14]) develops a theory for this kind
of operator: Sobolev embeddings, Poincaré inequality, Harnack inequality, local
solvability in Hölder spaces, estimates of the Green function. In the following, we
recall some of their results which will be useful later. In the next three results we

denote w(E) =

∫
E

w.

Theorem 2.2 (Weighted Embedding theorem) Given w ∈ A2, there exist constants
C and δ > 0 such that for all balls BR, all u ∈ C∞

0 (BR) and all numbers k satisfying
1 ≤ k ≤ N

N−1
+ δ,

(
1

w(BR)

∫
BR

|u|2kw)1/2k ≤ CR[(
1

w(BR)

∫
BR

|∇u|2w)1/2].

Theorem 2.3 (Poincaré inequality) Given w ∈ A2, there exist constants C and
δ > 0 such that for all balls BR, all u Lipschitz continuous in BR and all numbers
k satisfying 1 ≤ k ≤ N

N−1
+ δ,

(
1

w(BR)

∫
BR

|u− AR|2kw)1/2k ≤ CR[(
1

w(BR)

∫
BR

|∇u|2w)1/2],

where either AR =
1

w(BR)

∫
BR

uw or AR =
1

w(BR)

∫
BR

u.
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In the next two results, we set Lw = −div(w(x, y)∇). If (x0, y0) ∈ RN+1 and if
r > 0, we call Qr(x0, y0) the cube with centre (x0, y0) and sidelength r. The set
QN

r (x0) is the cube of RN with centre x0 and sidelength r.

Theorem 2.4 (Harnack inequality) Let u ≥ 0 solve Lwu = 0 in Q1(x0, y0).
[i]. (Interior Harnack). For each compact set K ⊂ Q1(x0, y0), there exists a constant
M , independent of u, such that

max
K

u ≤ M min
K

u.

[ii]. (Boundary Harnack) Assume that u = 0 on the face Σ := QN
1/2(x0)× {y0 +

1

2
}.

Let v ≥ 0 solve Lwv = 0 and be such that u(x0, y0) = v(x0, y0). Assume also that
v = 0 on Σ. For any compact subset K of Q1(x0, y0) containing a neighbourhood of
x0, there exists a constant MK > 1, independent of u and v, such that

max
K

u

v
≤ MK min

K

u

v
.

Theorem 2.4 classically implies the

Theorem 2.5 (Oscillation lemma) [i]. Let u be a solution of Lwu = 0 in a domain
Ω. Then the oscillation of u decays geometrically in concentric balls inside Ω: if
(x0, y0) ∈ Ω, there exists λ ∈ (0, 1), depending only of w and the distance of (x0, y0)
to ∂Ω, such that we have, for small enough r > 0:

oscBr(x0,y0)u ≤ λoscB2r(x0,y0)u.

[ii]. Consider the situation of Theorem 2.4, [ii]. There exists λ ∈ (0, 1), depending
only of w, such that we have, for small enough r > 0:

oscBr(x0,y0+1/2)∩Q1(x0,y0)
u

v
≤ λoscB2r(x0,y0+1/2)∩Q1(x0,y0)

u

v
.

2.2 The particular case of (−∆)α

We specialise here the weights to those of the fractional Laplacian, i.e. we study
solutions of

−div(|y|β∇u) = 0 ((x, y) ∈ B), (2.2)

where B is some ball of RN+1. We wish to prove a monotonicity formula in the
spirit of the well-known one for the Laplacian, as well as results of the type: if u is
harmonic in, say, B1 ⊂ RN , we have

∀0 < r ≤ R < 1,

∫
Br

|∇u|2 ≤ (
r

R
)N

∫
BR

|∇u|2.

This just comes from the fact that −∆|∇u|2 ≤ 0. Coming back to (2.2), the precise
result is the following.
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Theorem 2.6 Let u be a solution of (2.2) in B1. Then, for 0 < r < R < 1:∫
Br

|y|β|∇u|2 dxdy ≤ (
r

R
)N+1+β

∫
BR

|y|β|∇u|2 dxdy. (2.3)

Proof. Denote, for all r > 0 and all v ∈ H1(β, Br):

Er[v] =

∫
Br

|y|β|∇v|2dxdy.

If u is as described above, then: for all r ∈ (0, 1),

∀v ∈ H1(β, Br) such that v = u on ∂Br, Er[u] ≤ Er[v]. (2.4)

For a small ε > 0, let us take the test function

vε(x, y) =


1

1 + ε
u((1 + ε)(x, y)) if |(x, y)| ≤ r

1 + ε
,

1 + r−1|(x, y)|ε
1 + ε

u(
(x, y)

r|(x, y)|
) if |(x, y)| ∈ (

r

1 + ε
, r].

In other words, uε is an (1+ε)−1 Lipschitz dilation of u, extended in a radially linear
fashion. We claim that

lim
ε→0

Er[vε]− Er[u]

ε
= r

∫
∂Br

|y|β|∇u|2 dσ(x, y)− (N + 1 + β)Er[u],

indeed we have

Er[vε] = Er(1+ε)−1 [vε] +

∫
Br\B r

1+ε

|y|β|∇vε|2 dxdy := Iε + IIε.

And there holds

Iε = (1 + ε)−N−1−β

∫
Br

|y|β|∇u|2 dxdy

= (1− (N + 1 + β)ε)Er[u] + O(ε2).

Because vε is radially linear on the annulus Br\B r
1+ε

the term IIε is computed as
follows:

IIε = εr

∫
∂Br

|y|β|∇u|2 dxdy + O(ε2)

= ε
dEr[u]

dr
+ O(ε2).

This computation needs C1 regularity for u inside B1, which is provided in [11].
Hence

r
dEr[u]

dr
− (N + 1 + β)Er[u] ≥ 0,

which proves our theorem. 2

We end up this section by quoting the strong maximum principle for α-harmonic
functions in domains. It could be derived from the Harnack inequality, but admits
simpler proofs - either by inspection or from Riesz potentials, see [4]. Quite often it
will be sufficient to use it, therefore it is justified to present it separately.
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Proposition 2.7 [i] (Strong maximum principle). If a smooth function v(x) satis-
fies (−∆)αv = 0 in some domain Ω of RN , and if v is nonnegative and nonzero in
RN , then v > 0 in Ω.
[ii] (Generalised Hopf Lemma). If a smooth function v(x) satisfies (−∆)αv = 0
in some smooth domain Ω of RN , if v is nonnegative and nonzero in RN , and if
there is a point X0 ∈ ∂Ω for which v(X0) = 0, then there exists λ > 0 such that
v(x) ≥ λ((x−X0).ν(X0))

α, where ν(X0) is the inner normal to ∂Ω at X0.

3 Existence and general properties of local min-

imisers

After proving that Theorems 1.1 to 1.3 are not void - by explaining why the minimi-
sation (1.10) has solutions with nontrivial free boundaries - we give a proof of these
results. In passing we deduce a positive density consequence - almost enough, but
not completely - to infer that the free boundary has finite perimeter. Before that,
let us start with the

3.1 Behaviour of a minimiser in its positivity set

As is well-known, a local minimiser in the α = 1 case - i.e. a minimiser of the
functional given in (1.11) - is harmonic in its positivity set. An analogous property
is true for minimisers of (1.10). Here is the statement.

Proposition 3.1 Let u be a local minimiser in (1.10). Assume moreover that it is
continuous in B1, and let x0 ∈ RN be such that u(x0, 0) > 0. Then we have

lim
y→0

|y|βu(x0, y) = 0.

If moreover u is defined in RN+1, is positive outside the hyperplane {y = 0} and
satisfies −div(|y|β∇u) = 0 in its positivity set, together with the estimate u(x, y) =
O(|(x, y)|α), we have (−∆)αu(., 0) = 0 on RN ∩ {u > 0}.

Proof. If u ∈ C(B1), then {u > 0} is open and, because u is a local min-
imiser in H1(β, B1), it solves −div(|y|β∇u) = 0 inside {u > 0}. Assume now
u to solve −div(|y|β∇u) = 0 in its positivity set, together with the estimate
u(x, y) = O(|(x, y)|α). Then we have:

u(x, y) =

∫
RN

PN,α(x− x′, y)u(x′, 0) dx′. (3.1)

To see this, it is enough to prove that any solution v(x, y) of

−div(yβ∇v) = 0 in RN+1
+ , v(x, 0) = 0, v(x, y) = O(|(x, y)|α) (3.2)

is zero. Let therefore v(x, y) be such a solution, by scaling we have, for all integer p:

|∆p
xv(x, y)| = O(|(x, y)|α−2p).

9



Choose p ≥ 2N and set ∆p
xv := vp, its Fourier transform in x, denoted by v̂p(ξ, y)

solves

−(∂yy +
β

y
∂y − |ξ|2)v̂p = 0, (y > 0), v̂p(ξ, 0) = 0, vp(x, y) = O(y2p−α).

This implies v̂p ≡ 0, thus |ξ|2pv̂ ≡ 0, where v̂ is the Fourier transform in x of v. Thus
there exists a set of tempered distributions (aγ(y))γ, the multi-index γ = (γ1, ..., γN)
being of length less than 2Np, such that

v̂ =
∑

γ

aγ(y)⊗ ∂γδξ=0.

And thus, denoting (as usual) xγ = xγ1

1 ...xγN

N we obtain

v(x, y) =
∑

γ

aγ(y)xγ.

However, the growth condition on v imposes that only a0 is zero, but then we have

−a′′0 −
β

y
a′0 = 0,

and the growth condition once again imposes that a0 ≡ 0.
Thus u is even in y and we have (3.1). Take x0 such that u(x0) > 0. We have
−div(|y|β∇u) = 0 in a small neighbourhood of x0 and thus, from Lemma 4.2 in [10],
the quantity

lim
y→0+

yβu(x0, y)

exists. Because u is even, we have

−div(|y|β∇u) = 2 lim
y→0+

yβu(x0, y)δy=0,

therefore the RHS of the inequality vanishes. By Theorem 0.1, (−∆)αu(x0) = 0. 2

For any bounded subset Ω of RN+1, set Ω+ = RN+1
+ ∩ Ω. With this notation in

hand, let J+ defined by

∀v ∈ H1(β, B+) : J (v, B+) =

∫
B+

yβ|∇v|2 dxdy +LN({v > 0} ∩RN ∩B), (3.3)

where B is any ball centred on the hyperplane {y = 0}. If u is a local minimiser in
B1, its restriction to B1+ is a local minimum of J+ in H1(β, B1). This fact will be
used freely in the sequel.

3.2 Existence of minimisers with nontrivial free boundaries

Let us notice that we will not show the here existence of nontrivial local minimisers
defined on the whole space RN+1. This is a hard challenge, and a way to get a low-
cost result would be to add first order derivatives in the operator −div(|y|β∇). We
will not dwell on this aspect here, we rather leave it to [8]. Let f(x, y) ∈ C∞(B1).
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Proposition 3.2 Problem (1.10) has an absolute minimum u coinciding with f on
∂B1∩RN+1

+ . Moreover, we may choose f such that u has a nontrivial free boundary.

Proof. Since the functional J is non-negative, there exists a minimising sequence
(uk)k∈N. The sequence is bounded in Hα(B1) and, thanks to the compactness of the

embedding Hα ↪→ L
2N

N−2α , the sequence (uk)k converges - up to a subsequence - to a

function u strongly in L
2N

N−2α and almost everywhere in RN .
Moreover, there exists a function 0 ≤ γ ≤ 1 such that

LN(uk > 0) → γ

weakly star in L∞(RN). Using the fact that γ = 1 a.e. in {u > 0} we deduce that

J (u) ≤ lim inf
k→+∞

J (uk).

This yields the existence of the absolute minimiser. As is classical, it is also a local
minimiser.

Let us prove that, for some choices of f ≥ 0, u has a free boundary. We use
an argument that will be encountered in the next section. Set ε = ‖f‖C(B1), where
we have extended f by symmetry. Assume u has no free boundary, then we have
−div(|y|β∇u) = 0 in B1. This, by the maximum principle and Theorem 2.5, implies
‖u‖L∞(B1) ≤ C0ε for some constant C0 > 1 independent of ε. If φ0 is a C∞ function
equal to 2 on ∂B1 and 0 in B1/2, set u = min(u, εC0φ0). Then u = f on ∂B1,
therefore we have

J (u, B1) ≤ J (u, B1).

However we have ∫
B1

|y|β|∇u|2 ≤
∫

B1

|y|β|∇u|2 + O(ε),

and
LN({u > 0}) ≤ LN((B1 ∩ RN)\(B1/2 ∩ RN))

= LN({u > 0} ∩ RN)− LN(B1/2 ∩ RN).

This contradicts the minimality of u, as soon as ε > 0 is small enough. 2

3.3 Optimal regularity

We use here the characterisation of Hölder functions - Morrey [17]: given 0 < α < 1,
if B is a ball of RN+1, and if there is C > 0, p ∈ (1, N + 1) such that

∀x ∈ B, ∀r < d(x, ∂B),

∫
Br(x)

|∇u|p ≤ CrN+1−p+pα, (3.4)

then u ∈ Cα(B).
Proof of Theorem 1.1. Let u be a local minimiser in B1. For every r ∈ (0, 1)
and (x0, y0) in B1, let us consider the harmonic replacement of u in Br(x0, y0) - we
have chosen r < 1− |x0| - i.e. the solution of

−div(|y|β∇hx0,y0
r ) = 0 in Br(x0, y0), hx0,y0

r

∣∣∣∣
∂Br(x0,y0)

= u. (3.5)

11



From the translation invariance in x we may assume x0 = 0. We simply denote
by hr the solution of (3.5). Notice that, thanks to Theorems 2.2 and 2.3, u is an
admissible Dirichlet datum. For all r > 0 let us write that J (u, Br) ≤ J (hr, Br);
this implies ∫

Br

|y|β|∇u|2 ≤
∫

Br

|y|β|∇hr|2 + CrN .

This, due to the identity

∫
Br

|y|β∇hr.∇(u− hr) = 0, translates into∫
Br

|y|β|∇(u− hr)|2 ≤ CrN .

Therefore, if r < ρ < 1 we have∫
Br

|y|β|∇u|2 =

∫
Br

|y|β|∇(u− hρ + hρ)|2

≤ 2

(∫
Bρ

|y|β|∇(u− hρ)|2 +

∫
Br

|y|β|∇hρ|2
)

≤ CρN + 2

∫
Br

|y|β|∇hρ|2

≤ CρN + C(
r

ρ
)N+1+β

∫
Bρ

|y|β|∇hρ|2 by Theorem 2.6

≤ CρN + C(
r

ρ
)N+1+β

∫
Bρ

|y|β|∇u|2.

(3.6)

Take now any δ <
1

2
. The last line of (3.6), with

ρ = δn, r = δn+1, µ := δN (3.7)

yields ∫
Bδn+1

|y|β|∇u|2 ≤ Cµn + Cµδ2(1−α)

∫
Bδn

|y|β|∇u|2.

Choosing δ such that q := Cδ2(1−α) < 1, we infer from the above - and an elementary
induction: ∫

Bδn

|y|β|∇u|2 ≤ C2

1− q
µn−1.

This implies in turn, for all r <
1

2
, and for a possibly different constant:∫

Br

|y|β|∇u|2 ≤ CrN . (3.8)

Case 1. α ≤ 1

2
. Then β ≥ 0 and we write

∫
Br

|∇u| ≤
(∫

Br

|y|−β

) 1
2
(∫

Br

|y|β|∇u|2
) 1

2

≤ CrN+α.
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This is (3.4), with p = 1. We have u ∈ Cα(B1/2).

Case 2. α >
1

2
. This time we have∫

Br

|∇u|2 ≤ r−β

∫
Br

|y|β|∇u|2 ≤ CrN−β = CrN−1+2α.

This is once again (3.4) with p = 2, which ends the proof of Theorem 1.1. 2

3.4 Non-degeneracy

At this point, it is convenient to define the blow-up of a local minimiser around a
free boundary point. If x0 ∈ RN is a free boundary point for u, let us define the
blow-up of u at x0 as

ur(x, y) =
1

rα
u(x0 + rx, ry). (3.9)

For every r > 0, λ > 0 and u ∈ H1(β, Br) we have

J (u, Bλ) = rNJ (ur, Bλ/r). (3.10)

Consequently, u is a local minimiser of J (., Bλ) if and only if ur is a local minimiser
of rNJ (., Bλ/r). Moreover, the family (ur) is, because each of its element is a dilation
of the unique function, equicontinuous.
Proof of Theorem 1.2. We do not lose any generality if we prove the following:
for u satisfying the assumptions of Theorem 1.3, if (x0, 0) is at distance 1 from the
free boundary, then ε := u(x0, 0) is not too small.

From the Harnack inequality in Theorem 2.4 there is C0 > 0 such that, since
u(x0, 0) = ε, we have: u ≤ C0ε in B1(x0, 0). Let γ be a smooth nonnegative function
such that

γ(x, y) = 0 in B1/2(x0, 0) and γ(x, y) = 2C0 in B7/8(x0, 0)\B3/4(x0, 0).

The function
v(x, y) = min(u(x, y), εγ(x, y))

is an admissible test function to (1.10) in B1(x0, 0): indeed, it belongs to
H1(β, B1(x0, 0)) and satisfies v = u at the boundary of the ball. We should therefore
have

J (u, B1(x0, 0)) ≤ J (v, B1(x0, 0)). (3.11)

However we have, from the very definition of v:∫
B1(x0,0)

|y|β|∇v|2 ≤
∫

B1(x0,0)

|y|β|∇u|2 + O(ε),

and, because v ≡ 0 on B1/2(x0, 0) there holds

LN({v > 0}) ≤ LN({u > 0})− LN(B1/2(x0, 0) ∩ RN).
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We have consequently J (u, B1(x0, 0)) > J (v, B1(x0, 0)), contradicting (3.11). 2

The next step to Theorem 1.3 is an improvement of Theorem 1.2, which says
that u grows like rα away from a free boundary point. From Theorem 1.3, the set
{u > 0} could have a narrow cusp going into a free boundary. Here is the precise
statement, showing that the scenario is not possible.

Proposition 3.3 If u is a local minimiser defined in B1 and (0, 0) is a free boundary

point, then there is C > 0 such that, for 0 < r <
1

2
:

sup
BN

r

u ≥ Crα. (3.12)

Proof. The proof is divided in two steps.
Step 1. Let u be a local minimiser in BN

M(0), such that

• the origin is a free boundary point,

• we have B1(e1, 0) ⊂ {u > 0},

• we have set u(e1, 0) = τ > 0.

From Theorem 1.3, the constant τ is universally bounded and bounded away from
0. We claim the existence of λ > 0 and M > 0 universal, the latter being large,
such that

sup
BN

M (0)

u ≥ (1 + λ)τ. (3.13)

Suppose not. This implies the existence of a sequence of solutions (uk)k∈N such that

lim
k→+∞

sup
BN

k (0)

u = τ.

From optimal regularity, the family (uk)k is equicontinuous in B2(0), hence it may be
assumed to converge uniformly on every compact of RN+1 to a function u∞ which,
by Proposition 3.1, is α-harmonic on its positivity set restricted to the hyperplane
{y = 0}. Moreover u∞(., 0) has a maximum at e1, thus it is constant from the strong
maximum principle - Proposition 2.7. Hence u∞ ≡ τ , a contradiction because 0 is a
free boundary point.
Step 2. Assume 0 to be a free boundary point. The argument now follows as in [3]:
starting now at the origin, we construct inductively a sequence of points (xn)n such
that

• we have u(xn+1, 0) ≥ (1 + λ)u(xn, 0),

• if rn := d(xn, {u = 0}) and x̃n is a free boundary point realising the distance,
we have xn+1 ⊂ BN

Mrn
(x̃n). This is allowed by the construction of step 1,

applied to the blow-up
1

rα
n

u(x̃n + rnx, rny).
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In particular, we have
|xn+1 − xn| ≤ (M + 1)rn.

We end the induction at the first index n0 such that xn leaves BN
1 . This is indeed

possible, since the sequence (u(xn, 0))n grows geometrically, and is controlled by
|xn|α. Let n0 be therefore the first xn leaving BN

1 , we have

u(xn0+1, 0) =
∑
n≤n0

(u(xn+1, 0)− u(xn, 0))

≥ λ
∑
n≤n0

u(xn, 0)

≥ Cλ
∑
n≤n0

d

(
xn, ({u = 0} ∩BN

1 )

)α

by non-degeneracy

≥ C ′λ
∑
n≤n0

|xn+1 − xn|α

≥ C ′′λ

n0∑
n=0

|xn+1 − xn| because |xn+1 − xn| ≤ 1

≥ C ′′′|xn0|.

The constants C to C ′′′ do not depend on n. Let us set q := C ′′′|xn0|, it is universal
from the above considerations. Our argument proves: for all r > 0 we have

sup
BN

Mr

u(., 0) ≥ qrα,

which is the sought for estimate just by replacing r by
r

M
. 2

Proof of Theorem 1.3. With the aid of the blow-up ur, the problem is now to
prove that: if 0 is a free boundary point, there is δ ∈ (0, 1) such that

LN({u > 0} ∩BN
1 ) ≥ δ, (3.14)

and
LN({u = 0} ∩BN

1 ) ≥ δ. (3.15)

Property (3.14) is readily proved by combination of Theorem 1.1 (optimal regularity)
and the just proved Proposition 3.3: indeed, it implies the existence of a ball with
radius comparable to unity, contained in {u > 0} ∩ BN

1 . Let us prove (3.15): for
this we assume the contrary, i.e. there is a sequence (un)n of minimisers, defined in
B1, such that

lim
n→+∞

LN({un = 0}) = 0.

Also assume, without loss of generality, that 0 is a common free boundary point to
all the un. The sequence (un)n may be assumed to converge to u∞, moreover we
have ∫

B1

|y|β|∇u∞|2 dxdy ≤ lim inf
n→+∞

∫
B1

|y|β|∇un|2 dxdy.
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For every v agreeing with un on ∂B1 we have J (un, B1) ≤ J (v, B1). Because the
measure of the zero set of un goes to 0 as n → +∞ the above inequality implies, for
every v in H1(β, B1) and agreeing with u∞ on ∂B1:

LN(BN
1 ) +

∫
B1

|y|β|∇u∞|2 dxdy ≤ J (v, B1)

≤ LN(BN
1 ) +

∫
B1

|y|β|∇v|2 dxdy.

Consequently, u∞ minimises the Dirichlet integral over the unit ball of RN+1 and, as
such, satisfies div(|y|β∇u∞) = 0 in B1. By nondegeneracy, it cannot be uniformly 0
(recall that 0 is a free boundary point). But the interior Harnack inequality implies
u∞ > 0 in B1, a contradiction. 2

We notice that we have proved in fact that the set {u∞ = 0} is the a.e.-limit of
{un = 0}. Theorems 1.1 and 1.3 imply the following important corollary.

Corollary 3.4 (Sequences of minimisers converge to minimisers) [i]. Let (un)n be
a sequence of minimisers of J , bounded in H1(β, B1). Then any (weakly) converging
subsequence of (un)n converges to a minimiser of J in B1.
[ii] (The particular case of blow-ups). Let u solve (1.10), and let x0 ∈ RN be a free
boundary point. For r ∈ (0, 1) consider the blow-up ur given by (3.9). Then ur is
a local minimiser of J in B1/r, moreover any uniform limit of the family (ur)r is a
global minimiser of J .

Proof. Part [ii] is just a consequence of [i] and the fact that all the blow-ups ur

are rescalings of the same function. As for Part [i], consider an H1(β, B1)-bounded
sequence of local minimisers (un)n, from optimal regularity there is a uniformly (and
also H1(β, B1)-weakly) converging subsequence to some u∞ ∈ Cα(B1) ∩H1(β, B1).
From the lower semicontinuity of the Dirichlet integral in the weak H1

β topology, we
have ∫

B1

|y|β∇u∞ dxdy + lim sup
n→+∞

LN({un = 0}) ≤ J (v, B1).

the inequality being valid for all v ∈ H1(β, B1) coinciding with u∞ on ∂B1. The
issue is now to prove that

{u∞ = 0} ⊂
⋂
p

⋃
n≥p

{un = 0} := lim sup
n→+∞

{un = 0},

to the possible exception of a set with zero measure. Now, by Lebesgue’s differen-
tiability theorem, almost every point of B1 is a differentiability point of 1{u∞}=0,
which implies

lim
r→0

LN({u∞ = 0} ∩BN
r (x0))

LN(BN
r (x0))

= 1

if x0 is such a point. But, from Theorem 1.3, x0 has to be an interior point of
{u = 0}: otherwise, the quantity

LN({u∞ > 0} ∩BN
r (x0))

LN(BN
r (x0))
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would be bounded from below. In other words there is δ > 0 such that B2δ(x0) ⊂
{u∞ = 0}, and thus, by uniform convergence, Bδ(x0) ⊂ {un = 0} for large n. 2

4 Regular points, free boundary relation

In this section we start the study of the free boundary of a local minimiser, i.e.
a solution of (1.10). Let u be such a minimiser; denote by Γ(u) ⊂ RN its free
boundary, Ω−(u) ⊂ RN the set where it is 0, and Ω+(u) ⊂ RN its positivity set.
Let x0 be a free boundary point, we now know from the preceding section that u
is Cα and nondegenerate. Hence any blow-up limit of u centred at x0 - i.e. any
limit of blow-ups ur - defined by (3.9) - is a nontrivial Cα function. We want
to prove Theorem 1.4, i.e. the existence of A∗ > 0 such that, for each regular
point x0 of Γ(u), each blow-up limit of u around x0 satisfies, in some coordinate
system: u(x′, xN , 0) = A∗(xN)α

+. By regularity we mean the existence of a measure
theoretical normal or, as we shall see later, a tangent ball from inside or outside.

Definition 4.1 The reduced part Γ∗(u) of the free boundary Γ(u) is the set of points
x0 at which the following holds: given the half ball (BN

r )+(x0) := {(x − x0).ν ≥
0} ∩BN

r (x0), we have

lim
r→0

LN((BN
r )+(x0)∆Ω+(u))

LN(Br(x0))
= 0.

The definition means - see [15] - that the vector measure ∇1Ω(BN
r (x0)) has a density

at the point, in other words there is ν(x0) (with |ν(x0)| = 1) such that the quantity

lim
r→0

∇1Ω(BN
r (x0))

|∇1Ω(BN
r (x0))|

(4.1)

exists and is equal to ν(x0). Note that, from the uniform density of Ω± we have, as
r → 0 and at the free boundary point x0:

BN
r (x0) ∩ Γ∗(u) ⊂ {|(x− x0).ν(x0)| ≤ o(r)}. (4.2)

Indeed, if u(x) = 0 for (x−x0).ν(x0) ≥ δr, there is q > 0 such that LN(BN
δr(x)∩{u =

0}) ≥ qδrN , implying

lim inf
r→0

LN((BN
r )+(x0)∆Ω+(u))

LN(Br(x0))
≥ qδ,

a contradiction to the definition. The same argument is valid if x ∈ Ω− with
(x− x0).ν(x0) ≤ −δr.

In the first paragraph, we prove that blow-up limits at regular points are one-
dimensional. In the second one, we prove the free boundary relation at different
kinds of regular points.
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4.1 Blow-up limits

The main result of the paragraph is the following.

Proposition 4.2 Consider x0 ∈ Γ∗(u). Then, for any blow-up limit u∞(x, y) of u
about x0, there exist A > 0 and a coordinate system (x′, xN) ∈ RN centred at 0 such
that u(x, 0) = A(xN)α

+.

Proof. Consider u∞ such a blow-up limit. There exists a coordinate system (x′, xN)
centred at 0 such that:

• we have Ω+(u∞) = RN
+ (this is due to (4.2)),

• we have (−∆)αu∞ = 0 in Ω+(u).

Set u0(x) = (xN)α
+; by optimal regularity and nondegeneracy there are constants

0 < C1u0 ≤ u∞ ≤ C2u0. On the other hand, the Harnack constants are invariant
under the scaling (3.9). Thus, the oscillation lemma (Theorem 2.5, [ii]) takes place
at every scale, the solutions being global. Thus we may apply it all the way down

from a ball of radius 2nr (n arbitrarily large) to a ball of radius r. And so,
u∞
u0

is

constant. 2

4.2 The free boundary condition

Since the blow-up profile depends on the subsequence extraction, the constant A
exhibited in the first step is a priori not universal, and this is what we are going to
fix now. Let PN,α(x, y) be the Poisson kernel of the operator −div(|y|β∇) in RN+1,
we have

P1,α(x, y) = q1,α
y2α

(x2 + y2)
1+2α

2

. (4.3)

Set u0(x) = (x+)α, by Corollary 3.4, the function

U0(x, y) = A

∫
x∈R, y>0

P1,α(x̄, y)u0(x− x̄) dx̄ (4.4)

is a global minimiser in R2
+. As a preliminary step we want to see which A allow

the function U0 given by (4.4) to be a local minimum; a suitable choice of the test
function in the general space RN+1 will conclude the proof. The argument as a whole
is classical: it consists in perturbing the free boundary of u0 along its normal, but
the calculations are more involved than in the classical case due to the nonlocality
of the fractional Laplacian.

Proposition 4.3 If AU0 is a global minimiser in R2
+, then A = Aα, given in (1.13).

Proof. For all small ε - no sign condition on ε - let us define uε as

uε(x) =
(x + ε)α

+

(1 + ε)α
, (4.5)
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and ũε as
ũε(x) = uε(x) if |x| ≤ 1, ũε(x) = xα

+ if |x| ≥ 1. (4.6)

In particular, we may take ε = 0 and we have

u0(x) = ũ0(x) = (x+)α. (4.7)

This time we use the fact that a minimiser in B1 can be viewed as a minimiser in
B1+. Define Uε as

−div(yβ∇Uε) = 0 in B1+,
Uε(x, 0) = uε(x) in (−1, 1),

Uε(x) = U0(x) in {|(x, y)| = 1, y > 0}
(4.8)

and write
E[AU0] + L1({U0 > 0}) ≤ E[AUε] + L1({Uε > 0}). (4.9)

Here we have denoted by E[.] the Dirichlet integral

∀v ∈ H1(β, B1+), E[v] =

∫
B1+

yβ|∇v|2 dxdy.

Obviously we have

L1({Uε > 0})− L1({U0 > 0}) = L1({(x + ε)α
+ > 0})− L1({xα

+ > 0}) = ε.

The difference in the Dirichlet integrals is

E[Uε]− E[U0] = −2

∫
B1+

yβ∇U0.∇(Uε − U0) dxdy +

∫
B1+

yβ|∇(Uε − U0)|2 dxdy

:= −2× I + II

Integrating by parts, we compute the term I as

I = −
∫ 1

−1

(uε(x)− xα
+) lim

y→0
(yβ∂yU0(x, y)) dx

= −
∫ 0

−ε

uε(x)(−∂xx)
αxα

+ dx because (−∂xx)
αxα

+ = 0 if x > 0

=
c1,α

(1 + ε)α

∫ 0

−ε

(x + ε)α

(−x)α

(∫ +∞

x

(x + y)α
+

y1+2α
dy

)
dx

= εc1,α

∫ 0

−1

(x + 1)α
+

(−x)α
dx

∫ +∞

1

(1 + y)α
+

y1+2α
dy

= εAα + O(ε2).

Arguing in a similar fashion we have

II = −
∫ 0

−ε

ũε(x).(−∂xx)
α(ũε − xα

+) dx

= −
∫ 0

−ε

ũε(x).(−∂xx)
α(ũε − uε(x)) dx−

∫ 0

−ε

ũε(x).(−∂xx)
α(uε − uε(x)) dx

= −
∫ 0

−ε

ũε(x).(−∂xx)
α(uε − uε(x)) dx + O(|ε|1+α)

because (−∂xx)
α(ũε − uε(x)) = O(1) on (−1, 1)

= I + O(|ε|1+α).
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Gathering everything, we obtain −εAαA + ε + O(|ε|1+α) ≥ 0 which, letting ε go to
0+ or 0−, yields the sought for value of A. 2

Now, we may complete this section by giving the
Proof of Theorem 1.4. It remains to prove that, if AU0 is a solution of the
minimisation problem (1.10) (i.e. this time in N + 1 space dimensions), defined in
the whole space RN+1, then we still have A = Aα. In this proof only, let B̃2

r be the
two-dimensional ball having one direction in the plane and one in the extension:

B̃2
r = {(x, y) ∈ R× R : |(x, y)| ≤ r} (and x ∈ RN , the reference hyperplane).

A p-dimensional ball with radius r, included in the reference hyperplane RN , and
centred at 0 will be denoted by Bp

r .
These notations in hand, let us consider a smooth, nonnegative function ϕ(x′)

such that ϕ is identically equal to 1 in BN−1
R , and to 0 outside BN−1

R+1 ; we may require

‖∇ϕ‖∞ ≤ 1. Let w ∈ H1(β, B̃2
1+) be such that w = AU0 on {y > 0, |(x, y)| = 1};

consider
v(x′, xN , y) = ϕ(x′)w(xN , y) + A(1− ϕ(x′))U0(xN , y).

This is is an admissible test function on BN−1
R+1 × B̃2

1+, coinciding with AU0 on

∂(BN−1
R+1 × B̃2

1+). Hence

J (AU0, B
N−1
R+1 × B̃2

1+)) ≤ J (v, BN−1
R+1 × B̃2

1+)).

We have

J (AU0, B
N−1
R+1 × B̃2

1+)) = LN−1(B
N−1
R+1 )J (AU0, B̃

2
1+)),

J (v, BN−1
R+1 × B̃2

1+)) = LN−1(B
N−1
R+1 )

(
J (w, B̃2

1+)) + O(
1

R
)

)
.

Letting R → +∞ yields

J (AU0, B̃
2
1+)) ≤ J (w, B̃2

1+)).

Because w is an arbitrary admissible test function, AU0 is a 2D minimiser, and we
may apply Proposition 4.3. 2

4.3 Tangent balls froms one side

We show in this part that points at which the free boundary has a tangent ball are
regular points. First, recall the definition.

Definition 4.4 A point x0 ∈ Γ(u) has a tangent ball from outside if there is a ball
B ⊂ Ω−(u) such that x0 ∈ B ∩ Γ(u). A point x0 ∈ Γ(u) has a tangent ball from
inside if there is a ball B ⊂ Ω+(u) such that x0 ∈ B ∩ Γ(u). A point x0 ∈ Γ(u) is
regular if Γ(u) has a tangent hyperplane at x0.

The additional information is the following:
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Proposition 4.5 A point x0 ∈ Γ(u) which has a tangent ball from outside or from
inside is regular.

Proof. It is enough to prove that, if Γ(u) has a tangent ball from one of the sides
at a point x0, it has a tangent plane from the other side at x0. The proof follows the
lines of Lemma 11.17 of [9], and we will only stress what modifications need to be
done. If BN

1 (x1) is tangent to Γ(u) at x0, we use as a lower barrier the fundamental
solution u∗ with pole at x1 - see [4] for instance - vanishing at ∂BN

1 (x1), and work
with its extension in B1(x1, 0) (the (N +1)-dimensional ball). From nondegeneracy,
some small multiple q0u

∗ is a lower barrier of u in B1(x1, 0). Let qr > 0 be the
supremum of all q′s such that u ≥ qu∗ in Br(x1, 0); clearly qr increases with r and,
by optimal regularity, converges to some constant q∞ as r → 0. As in [9], this forces
the asymptotic behaviour

u(x, 0) = q∞((x− x0).ν(x0))
α + o(((x− x0).ν(x0))

α)

with ν(x0) = x1 − x0. Thus the plane orthogonal to ν(x0) is tangent to Γ(u).
If instead BN

1 (y1) is tangent from the {u = 0} ∩BN
1 ) side, we use as an exterior

barrier the inversion of the fundamental solution - see [10]. 2

5 The planar case: Lipschitz implies C1

In this final section we assume that N = 2; in this section only a point in the plane
R2 will be denoted by X = (x1, x2) and the ball of R2 with centre X and radius r

will be denoted by B2
r (X). For every θ ∈ (0,

π

2
] and every unit vector ν, the planar

cone of centre 0, direction ν and opening θ will be denoted by C(ν, θ). The situation
is the following: we are given

• a function u(X, y) ∈ Cα(B1), nondegenerate - i.e. satisfying the conclusion of
Theorem 1.3,

• a Lipschitz graph in B1 ∩RN : Ω+(u)∩B2
1(0) = { (x1, x2) : x2 > f(x1)} where

f is a Lipschitz function and f(0) = 0,

such that

−div(|y|β∇u) = 0 in B1,
u(x1, x2, 0) = 0 in {x2 < f(x1)},

lim
y→0

(yβuy)(x1, x2, y) = 0 in {x2 < f(x1)},
u(X, 0) ∼X→X̄ Aα((X − X̄).ν(X̄))α

if X̄ ∈ Γ(u) is regular and X ∈ Ω+(u).

(5.1)

In (5.1), a regular point of Γ(u) is a point X̄ = (x̄1, x̄2) such that f ′(x̄1) exists. The
vector ν(X̄) is the normal to Γ(u) at X̄ pointing into Ω+(u):

ν(X̄) =
1√

1 + f ′(x̄1)2
(f ′(x̄1),−1).
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The constant Aα is given by (1.13) in Theorem 1.4.
We will prove that f is necessarily C1 in a neighbourhood of 0, and the strategy

is in the spirit of [6], [9]. We prove that, in a nested sequence of balls centred at 0,
the Lipschitz constant of the graph - modulo rotations - goes to 0. What we will not
be able to retrieve is a control on how the Lipschitz constant of f goes to 0 - were
it the case, we would obtain that the free boundary is C1,γ in the vicinity of 0. The
argument is inductive, and the idea is to substitute the ’iterative’ hypothesis: ’the
free boundary is a Lipschitz graph with smaller and smaller Lipschitz constant’ by
the richer hypothesis: ’the function u is, in smaller and smaller balls, monotone in
a larger and larger cone of directions’. In other words, that all level sets of u - and
not only the zero level set - are Lipschitz with smaller and smaller constants.

5.1 More on regular points

The 1D solution (x+)α is from now on - as in (4.7) - denoted by u0(x). The following
two corollaries that follow from Proposition 4.5 quantify how fast u converges to te
global profile at a boundary point.

Corollary 5.1 Assume u(x1, x2, y) to satisfy the assumptions of this section, be
defined in B2M (M > 0 large), and such that B2

M(0) is tangent at Γ(u) from one
side. For every ε > 0, there is Mε > 0 such that, if M ≥ Mε, we have, up to a
rotation of the coordinates:

|u(x1, x2, 0)− Aαu0(x2)| ≤ ε in B2
1(0).

Proof. Assume the contrary. Let uM the blow-down

uM(X, y) =
1

Mα
u(

X

M
,

y

M
).

Once again it is an equicontinuous family of local minimisers, which therefore may
be assumed to converge to u∞ ∈ Cα(B1), local minimiser in B1, having 0 as a free
boundary point, and such that B2

1(0) is tangent to the free boundary from one side.
From Proposition 4.5, 0 is a regular point, and so:

u∞(x1, x2, 0) ∼ Aα(x2)
α
+ as |(x1, x2)| → 0.

However, (a subsequence of) the sequence (uM)M converges uniformly to u∞ in B1/2,
and this entails a contradiction with the assumption. 2

Corollary 5.2 Let X0 ∈ Γ(u) have a tangent ball from one side, of radius 1. There
exist r0 > 0, independent of X0 and a function ω(ρ) defined in [0, r0], such that

lim
ρ→0+

ω(ρ)

ρα
= 0, (5.2)

and such that, for every r ∈ (0, r0) we have:

|u(X0 + rν(X0), 0)− Aαu0(r)| ≤ ω(r),

|∇u(X0 + rν(X0), 0)− Aαu′0(r)ν(X0)| ≤
ω(r)

r
,

(5.3)
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where ν(X0) is the inner normal to Γ(u) at X0. The function ω can be chosen
independently of X0. More generally, for every δ ∈ [0, 1), there exists ωδ(ρ) and rδ

such that:
- for every δ′ ∈ [0, 1− δ], ωδ′ satisfies (5.2) uniformly with respect to δ′ ∈ [0, 1− δ],
- for every r ∈ (0, r0) and for every e on the unit sphere such that e.ν(X0) ≥ 1− δ
we have:

|u(X0 + re, 0)− Aαu0(re.ν(X0))| ≤ ωδ(r),

|∇u(X0 + re, 0)− Aαu′0(re.ν(X0))ν(X0)| ≤
ωδ(r)

r
.

(5.4)

This is just Corollary 5.1, made uniform in a small ball around (X0, 0). Therefore a
standard compactness argument works. Notice that, in the notations of the corollary,
we have ω = ω0. The final corollary of this section then shows how monotonicity in
a cone of directions at the free boundary propagates to the neighbouring level lines
of u.

Corollary 5.3 Let X0 ∈ Γ(u) have a tangent ball from one side, and let ν(X0) be the

normal to Γ(u) at X0. For every θ ∈ (0,
π

2
], there exists rθ > 0 and εθ > 0 such that,

for every ε ∈ [0, εθ] and X ∈ B2
rθ

(X0), every ε ∈ [0, εθ] and every e ∈ C(±ν(X0), θ)
we have:

u(X + εe, 0)− u(X, 0) ≥ 0 (resp. ≤ 0). (5.5)

Proof. Let (Xn)n, (en)n and εn a sequence contradicting (5.5) with, for instance,

the ’plus’ sign. If lim
n→+∞

εn

x2n

= +∞, then we have, from nondegeneracy:

u(Xn + εnen, 0) ≥ Cen.ν(X0)ε
α
n,

and the constant C is universal. By optimal regularity, we have

u(Xn, 0) ≤ C ′(x2n)α
+.

Thus there holds

u(Xn + εnen, 0) ≥ Cen.ν(X0)(εn)α −O((x2n)α) ≥ 0 for n large,

a contradiction. If the sequence (
εn

x2n

)n is bounded, then we contradict Corollary

5.2. The ’minus’ sign case is treated similarly. 2

5.2 Initial configuration (monotonicity in a cone of direc-
tions)

We start by showing that the free boundary being Lipschitz implies that all level
surfaces of u nearby are Lipschitz in the X variables. The function f being Lipschitz
implies that, for each (x1, f(x1)) which is a differentiability point of Γ(u), we have

angle(ν((x1, f(x1)), Ox1) ⊂ [
π

2
− ArctgL0,

π

2
]. (5.6)

And the lemma is
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Lemma 5.4 Set θµ =
π

2
− (1 + µ)ArctgL0. For every µ ∈ (0,

π

2ArctgL0
), there is

ρµ > 0 and δµ > 0 such that, in the vertical cylinder B2
ρµ

(0)× (−δµ, δµ), the function
u is increasing in every direction of C(e2, θµ), and decreasing in every direction of
C(−e2, θµ).

Proof. Let us consider such a µ, and take r0 =
1

10
. Choose a direction e on the

unit sphere, such that

angle(e, e2) ≤
π

2
− (1 + µ)ArctgL0.

In other words, the direction ε lies within the complementary cone of all possible
directions of the normals to Γ(u).

For all X in the set B2
1(0)∩{d(X, Γ(u)) = r0}, denote by π(X) its projection on

Γ(u); we have |X − π(X)| = r0. Moreover there is δ0 > 0 such that we have

e.ν(π(X)) ≥ δ0µ. (5.7)

From Corollary 5.2 and, in particular, property (5.3), we may find a universal t0 > 0
such that

∂eu(π(X) + t0ν(π(X)), 0) ≥ 0.

This property, applied to all the blow-ups ur/r0 with r ≤ r0, implies: for all r < r0,
for all X such that d(X, Γ(u)) = t0r, we have

for all direction e in C(e2, θµ), ∂eu(X, 0) ≥ 0. (5.8)

In particular, (5.8) is true in B2
t0r0

(0). In the same fashion we have

for all direction e in C(−e2, θµ), ∂eu(X, 0) ≤ 0. (5.9)

Equations (5.8) and (5.9) are trivially true in Ω−(u) ∩B2
r0

(0).
Let us now go to the extension, and more precisely look at the restriction of u

to the (narrow) box B2
r0

(0) × [−d, d]. We want to prove that equations (5.8) and
(5.9) are true for all direction e ∈ C(e2, θµ0)∪C(−e2, θµ0). For this let us once again
consider the sequences of blow-ups

ud(X, y) =
1

dα
u(dX, dy), defined in B2

r0/d(0)× [1, 1].

By optimal regularity and non-degeneracy, a subsequence of (ud)d converges, as
d → 0+, to a solution u∞ of (5.1), but this time posed in R3. Moreover let P2,α(X, y)
be the Poisson kernel of the operator −divyβ∇ in R3

+, we have

∂eu∞(X, 1) =

∫
R2

P2,α(X − X̄, y)∂eu∞(X̄, 0) dX̄.

By non-degeneracy this quantity - or its opposite - is uniformly controlled from
below, independently of the limit u∞. This proves

for all direction e in C(e2, θµ) and (X, y) ∈ B2
r0

(0)× [−d, d], ∂eu(X, y) ≥ 0.
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In particular, (5.8) is true in B2
t0r0

(0). In the same fashion we have

for all direction e in C(−e2, θµ) and (X, y) ∈ B2
r0

(0)× [−d, d], ∂eu(X, 0) ≤ 0.

This is exactly what is claimed by the lemma. 2

Choose now µ0 ≤
θ0

100
and rename θ0 the new quantity θ0 =

π

2
−(1+µ0)ArctgL0.

Rescale the picture of Lemma 5.4 into the unit ball by setting, for instance

u(X, y) :=
1

(r0/10)α
u(

r0

10
X,

r0

10
y), and considering only what happens in the new

cylinder B2
1(0) × [−dµ0

10
,
dµ0

10
]. Set d0 =

dµ0

10
. The situation is now as follows: in

the cylinder B2
1(0) × [−d0, d0], Γ(u) is a Lipschitz planar graph, still denoted by

{x2 = f(x1)}. Moreover, u is monotone in every direction e ∈ C(e2, θ0)∪C(−e2, θ0).
This is our starting point.

5.3 Improvement of monotonicity at two points

The idea comes from [1]. We start by finding two free boundary points of R2, on each
side of and at distance of order one from the origin, in such a way that, at these two
points (i) we have tangent discs of radius of order one, (ii) the corresponding normal
vectors form with each other an angle better than what the Lipschitz constant of
f would dictate. The argument is an estimate on how the free boundary separates
both from the cone and its opposite.

Lemma 5.5 There exists M > 0 and δM ∈ (0,
π

2
− θ0), depending on θ0 and M

such that, if u(., 0) is defined in B2
M(0), then: for every unit vector ν, we have

sup
X∈Γ(u)∩B2

1(0)

d(X, C(±ν, θ0)) ≥ δM .

In other words, as soon as we are close enough from the origin, the free boundary
is δM -away from every cone.
Proof. Assume the lemma to be false: there is a sequence (Mn)n going to infinity,

a sequence (νn)n of unit vectors, with ±νn ∈ C(e2,
π

2
− θ0), as well as a sequence of

solutions (un)n having 0 as a free boundary point, such that un(., 0) is defined in
B2

Mn
(0), and such that

lim
n→+∞

d(Γ(un) ∩B2
1(0), C(νn, θ0)) = 0.

In the limit (along a subsequence) n → +∞, there is a unit vector ν∞ and a solution
u∞ whose free boundary coincides with C(ν∞, θ0) in B2

1(0). There is obviously a
tangent ball at 0 from one side, but then 0 has to be a regular point of Γ(u∞): a
contradiction. 2

Corollary 5.6 There are x− < 0 < x+, three real numbers: γ > 0, r1 > 0, d1 ∈
(0, d0], and a direction ν1, all depending on θ0, such that
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• the points X± = (x±, f(x±)) are in B2
r0

and are regular points of Γ(u),

• for all y ∈ [−δ1, δ1], the function (X, y) ∈ B2
r1

(X±) 7→ u(X, y) is increasing in
every direction of C(ν1, θ0 +γ) and decreasing in every direction of C(−ν1, θ0 +
γ).

Proof. First, rescale the picture at the end of Section 5.2 so that our function u is
now defined in B2

M(0)× [−d0, d0], with a value of M to which we may apply Lemma

5.5. Let δM := δ (recall that δ <
π

2
− θ0) be such that Γ(u) is δ-away from every

cone with vertex 0 and opening θ0. Subsequently, consider a point on C(e2, θ0) at
distance exactly δ from Γ(u). We always may assume that its projection on e1 is
negative; call this point X̃− = (x̃1−, x̃2−). We wish to find a point at the other side
of the origin, at a controlled distance from the free boundary. Let q0 ∈ (0, 1) be

small enough so that, for every δ ∈ (0,
π

2
) and q ≤ q0 we have Arctg(qδ) ∼ qδ. Now,

• either there is X̃+ = (x̃1+, x̃2+ > 0) ∈ C(e2, θ0) at distance
q0δ

1000
from Γ(u) -

and we are done,

• or every point of C(e2, θ0) ∩ B2
1(0) is at distance less than

q0δ

1000
from Γ(u) ∩

B2
1(0).

Assume the second case to hold. Denote by νδ the image of e2 by the rotation of

angle −Arctg
q0δ

10
; then

• we have d(X̃−, Γ(u)) ≥ δ

2
,

• moreover there is X̃+ ∈ X0 + C(νδ, θ0) such that x̃1+ > 0 and such that

d((X̃+, Γ(u)) ≥ δ

100
.

If the first case holds let us set ν1 = e2, if the second case holds we set ν1 := νδ. In

both cases, set 2γ =
q0δ

1000
.

Consider now X± = (x±, f(x±)) the projections of X̃± onto Γ(u). We have

ν(X±) ∈ C(±ν1,
π

2
− θ0 − δ); consequently, by Corollary 5.3 with this time θ =

Arctg
δ

106
, there exists r1 < r0 such that, in B2

r1
(X±):

for all direction e in C(±ν1, θ0 + γ), ∂eu(X, 0) ≥ 0 (resp. ≤ 0). (5.10)

This ends the proof of the corollary. 2
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5.4 Improvement of monotonicity in a whole ball, iteration

These two points being found, we prove that the Lipschitz constant improvement
propagates inwards, thus implying a better monotonicity cone in a smaller ball. And
here is the main lemma.

Lemma 5.7 There are r1 > 0, d1 > 0 and θ1 > θ0 - possibly smaller than the ones
of Corollary 5.6 - and a unit vector ν1 - once again possibly different from the one
of Corollary 5.6 - such that:

• the quantity θ1 is bounded away from 0 if θ0 is bounded away from
π

2
,

• for every y in [−d1, d1], for every e ∈ C(ν1, θ1), the function X ∈ B2
r1

(0) 7→
u(X, y) is increasing in the direction e. For every e ∈ C(−ν1, θ1) the function
is decreasing.

Proof. If X± = (xi±, f(xi±) are given by Corollary 5.6, let us set

Ω =

( ⋃
X∈Γ(u), x1−<x1<x1+

B2
r1

(X)

)
×(−d1, d1). (5.11)

We are going to propagate the monotonicity inside this cylinder. We first deal
with the directions inside C(e2, θ0); the whole argument is then repeated in the new,
smaller ball in order to get the monotonicity improvement in the negative directions.
1. On the line Ω+(u) ∩ {d(X, Γ(u)) = r1}, we use a (by now classical: see for
instance [6], [9]) Harnack inequality argument. Let c0 the non-degeneracy constant
in Theorem 1.2, there is q0 > 0, universal, and a point X̄ ∈ Ω+(u) ∩ {d(X, Γ(u)) =

(
r1

10c0

)
1
α} such that |∇u(X̄, 0)| ≤ q0. Now, recall that ∇u(X̄, 0) ⊂ C(e2,

π

2
− θ0)

and set ν2 =
∇u(X̄, 0)

|∇u(X̄, 0)|
. Let Rθ be the rotation of angle θ, then either ν2.Rθ0e2 or

ν2.R−θ0e2 is nonzero. Assume the former to hold. For commodity let here d(X,B)
the signed distance from the point X to the set B; by the Harnack inequality we
have:

∀(X, y) ∈ ∂Ω∩
(
{d(X, Γ(u)) = r1} × [−d1, d1] ∪ {|d(X, Γ(u))| ≤ r1} × {−d1, d1}}

)
,

∂Rθ0
u(X, y) ≥ Cq0ν2.R−θ0e2.

(5.12)
We also have to treat the part of ∂Ω hitting Ω−(u), recall that the function y 7→ y2α

solves −div(yβ∇u) = 0 in R3
+, is positive and vanishes for y = 0. From the boundary

Harnack inequality we have

∀(X, y) ∈ ∂Ω ∩ {d(X, Γ(u)) = −r1} × [−d1, d1],
∂Rθ0

u(X, y) ≥ Cq0ν2.R−θ0e2|y|2α.
(5.13)

Inequalities (5.12) and (5.13) imply the existence of γ̄ such that, on all ∂Ω except
the lateral sides, i.e. the rectangles [X± − r1ν(X±), X± + r1ν(X±)]× [−d1, d1], and
for all e such that −θ0 ≤ angle(e, e2) ≤ θ0 + γ̄, we have ∂eu ≥ 0. To retrieve the
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lateral sides, we just have to apply corollary 5.6 at X± and use the same argument
as in Lemma 5.4 to propagate the extra monotonicity into the extension.

As a conclusion, there is d1 > 0, an angle - renamed θ1 - strictly larger than
θ0 and a unit vector ν1 ∈ C(e2, θ0) such that: for every y in [−d1, d1], for every
e ∈ C(ν1, θ1), the function X ∈ B2

r1
(X±) 7→ u(X, y) is increasing in the direction e.

2. Let us finally prove that u is increasing in every direction of C(ν1, θ1) in the
whole Ω. For this we consider, for every ε > 0 small enough and every θ ∈ [θ0, θ1] -
following once again [6], [9] - the function

u(X, y) = sup
e∈C(0,θ)

u(X − εe, y) = sup
X′∈Bsin θ

u(X − εX ′, y).

The family (uθ)θ is a continuous family of sub-solutions of −div(yβ∇u) = 0 in
Ω\Ω−(u). If we prove that uθ1 ≤ u we are done; to do so let θ̄ be the last θ ≥ θ0 -
possibly equal to θ0 - such that we have uθ ≤ u. The only possibility is a contact
point between uθ and u, by the strong maximum principle this point - denote it by
(X̄, 0) - can only be on Γ(u), and strictly between X− and X+. By the definition of
uθ, there is - provided ε > 0 is small enough - Xθ ∈ Γ(u) such that:

• there is an outside ball of radius ε sin θ touching Γ(u) at Xθ,

• there is an inside ball of radius
ε

2
sin θ touching Γ(u) at X̄, and such that

ν(X̄) = ν(Xθ).

From Theorem 1.4, we have u(X, 0) ∼ Aα((X − X̄).ν(X̄))α in a neighbourhood of
X̄. In the same fashion we have u(X, 0) ∼ Aα((X−Xθ).ν(Xθ))

α in a neighbourhood
of Xθ. Hence uθ(X, 0) ≥ Aα((X − X̄).ν(X̄))α in a neighbourhood of X̄. From the
generalised Hopf Lemma there is δ > 0 such that u(X, 0) ∼ (Aα+δ)((X−X̄).ν(X̄))α

in a vicinity of X̄. This is a contradiction, hence θ̄ = θ1. 2

Remark.We have not been here very careful in making explicit the respective de-
pendence of r1, θ1... with respect to θ0. The only useful information is that θ1 is

bounded away from 0 if θ0 is bounded away from
π

2
. It would, on the other hand,

have been crucial to have a more explicit control on θ1 as θ0 →
π

2
in order to prove

a C1,γ property - that we do not have at the moment.
Proof of Theorem 1.5. Iterate Lemma 5.7: at each step we obtain a ball of

radius rn with lim
n→+∞

(rn)n = 0, an angle θn with lim
n→+∞

(
π

2
−θn) = 0 and a unit vector

νn such that u is increasing (resp. decreasing) in C(νn, θn) (resp. C(−νn, θn). This
implies the differentiability of the free boundary at 0 and, because the estimates
in Lemmas 5.4 to 5.7 only depend on the initial Lipschitz constant of the free
boundary, the differentiability of the free boundary at every point in B2

1/2(0). The

C1 character also follows, because the iteration process implies that normal vectors
at neighbouring points are close from each other. 2
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