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VARIATIONAL PROBLEMS WITH TWO PHASES
AND THEIR FREE BOUNDARIES
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HANS WILHELM ALT, LUIS A. CAFFARELLI AND AVNER FRIEDMAN1

Abstract. The problem of minimizing /[Vu|2 + q2(x)\2(v)] dx in an appropriate
class of functions v is considered. Here q(x) ¥= 0 and A2(t>) = X2 if v < 0, = X22 if
v > 0. Any minimizer u is harmonic in {u ¥= 0} and | Vu|2 has a jump

a2(x)(\]-\22)

across the free boundary [u ¥= 0). Regularity and various properties are established
for the minimizer u and for the free boundary.

Introduction. In this paper we consider the problem of minimizing

J{v) = f[\ Vv\2 + q2(x)X2(v)]dx,       vGK,

where q2(x) ¥= 0,

[a22    ifu>0,

and X2(u) is lower semicontinuous at v = 0; it is assumed that A2 > 0 and A = A2 —
A22 =£ 0. The class K consists of all functions v in L'loc(S2), with Vu G L2(Í2) such
that v — u° on a given open subset S of 3Í2, and ß is a domain in R".

The analogous problem for functions in K+ = {v Œ K, v > 0 a.e.} was studied in
[1]; in that paper it was proved that any (local) minimizer of J(v) in K+ is Lipschitz
continuous and, if n — 2, the free boundary 8{w > 0} is analytic if q(x) is analytic.

The present variational problem is motivated by applications to the now of two
liquids in models of jets and cavities; these applications will be studied in other
forthcoming papers [5,6]. The present work is aimed at extending results of [1]. In
particular, we shall establish nondegeneracy theorems, the Lipschitz continuity of
the solution, and some properties of the free boundary; for n = 2 the free boundary
is proved to be continuously differentiable.

A new and rather powerful tool introduced in this paper is the monotonicity
formula (Lemma 5.1) asserting that, for a minimizer u, if u(x0) = 0 then

r~4f      P2~"\ Vu+\2dx ■ (      p2-"\Vu-\2dx/>    if r/•.
JBjtx0) JBr(x0)
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432 H. W. ALT. L. A. CAFFARELLI AND AVNER FRIEDMAN

This is used in establishing Lipschitz continuity and in identifying blow-up limits.
The differentiability of the free boundary for n = 2 also involves a new set of ideas,
exploiting among other things, the monotonicity formula.

1. Existence. Let Í2 be a domain in R" with boundary 3Í2 which is locally a
Lipschitz graph. Let S be a nonempty open subset of 3Í2 and let m° be a given
function in L'loc(ß) with Vw° E L2(S2). Let q(x) be a strictly positive uniformly
Lipschitz continuous function in compact subsets of £2, and let A(h) be the function

(l.i) M«)
A,     ifw<0,
A2    ifw>0.

where A,, A2 3= 0, and define A(0) such that

(1.2) 0<A(0)<min{\,,A2}.
We assume that

(1.3) A = A2-A22^0.
Finally, set Q(u, x) = q(x)\(u).

We introduce the convex set

K= {u E L'loc(í2), ve E L2(Œ), v = u° on S}

and the functional

J(v) = í(\ Vt)|2 + Q2(v, x))dx,       vGK.

Problem (J). Find «Ei such that J(u) — mmceKJ(v).

Theorem 1.1. IfJ(u°) < oo then there exists a solution of Problem (J).

Proof. Take a minimizing sequence uk. Then the Vuk are uniformly bounded in
L2(fl). Since uk — u° — 0 on 5, S open and nonempty, we can estimate uk — u° in
L2(Í2 n BR) for any ball BR = {\x\< R} and deduce that, for a subsequence,

Vuk -» V«    weakly in L2]oc(Çl),

uk -> u   a.e. in S2,

Q2(uk, x)-* y   weakly star in /.^(fi),

where y = Q2{u,x)úu ^ 0, and y 3= Q2(u, x)iî u = 0 (by (1.2)). Hence,

f       (| vu\2 + Q2{u,x)) <liminf f       | Vuk\2 + lim  f       Q2(uk,x)
JQDBR A - oc    •'n n BR A - DC •'ß n BR

< liminfy(«A).
k— x

Letting R -» oo we see that u is an absolute minimum for /.
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VARIATIONAL PROBLEMS WITH TWO PHASES 433

2. Continuity, subharmonicity and the free boundary condition. We denote a
solution of Problem (J) by u.

Theorem 2.1. For any compact subset Doftl there exists a constant C such that

\u(x) - u(y)\< C\x - y\\og(\/\x - y\)

if x, y E D, \x - y\< {■

Proof. Let Br be any ball of radius r in D and denote by vr the solution of

(2.1) Vur = 0    inßr,       vr = u   ondBr.

Then, by the minimality of u,

f (| VM|2 + Q2(u, x)) < /" (| Wr\2 + Q2(vr, *)).
JBr JBr

It follows that jB(\ V«|2 - | Vur|2) *S Cr". But the left-hand side is equal to

f V{u-vr) ■ v(u + vr) = ( | V(u-vr)\2 + 2Í v(u-vr) • Vt)r
JB, JB, JBr

and the last integral vanishes, by (2.1). Consequently, fB\ v(w — ur) |2 < Cr".
Proceeding as in [11, Theorem, 5.3.6], one can establish that

f | V(u- vr)\2<C(R)r"(\ogR/r+ 1)    if 0 < r < R,
B,

so that

j | Vw|2< C(R)r"l\ogj + l),

from which the assertion follows as in [11, Theorem 3.5.2].

Theorem 2.2. The function u is harmonic in {u ¥= 0}.

Proof. For any f E C0'(ñ\{w = 0}), u ± ef is in K for any e > 0. Hence,

0 = lim ̂ -(/(k + eJ)-/(£)) = /"vf • V«.
f 10 ¿e Jq

Theorem 2.3. 7/A(0) = A, and A < 0 ( A(0) = A2 and A > 0) then u is subharmonic
(superharmonic) in Í2.

Proof. Defining v by (2.1), Br C fi, we have J(u) < J(min(u, u)), which gives, if
A(0) = A,,

I = f [| v«|2 - | vmin(u,u)|2] =£ /" [Q2(min(u,v),x) - 02(«,*)]

= / \Q2(v,x)-Q2(u,x)] = í Aq2(x).
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434 H. W. ALT. L. A. CAFFARELLI AND AVNER FRIEDMAN

But

/ = / V max(« — t>,0)-v(w + u)
B,

= I V max(« — u,0) • v(w — v) + 2 f V max(« — u,0) • Vu
JBr JBr

= f | V max(w - t>,0)|2.
Br

Hence, A < 0 implies u < v, i.e., u is subharmonic. Similarly, if A(0) = A2 and
A > 0, then u is superharmonic.

Definition 2.1. The set T = 9{h > 0} U8{w<0}is called the free boundary.
The next theorem shows that u satisfies, in a generalized sense, the equation

\Vu~\2 -\Vu+\2 = Aq2(x)    onT,

provided the set {u = 0} has zero measure.

Theorem 2.4. Suppose meas{w = 0} = 0. Then, for any tj E C0'(ñ, R"),
(2.2)

lim/" (|Vi/|2- A2<72(x))t) • p-I-lim f (| Vw|2 - \22q2(x))rj ■ v = 0
fJ0-'8{„<-e}V Si0-'3{„>«}

vv/jeve e is the outward normal.

Proof. Let jt(x) — x + er;(x), e ¥= 0, and define «f E # by me(tex) = y(x). Then

0<J(ut)-J(u)

= f{[\ Vu(Drey] |2 + Q2(u, r,(x))] det(Z)Te) - (| Vw|2 + £2(M, *))}

= eJ[jVM|2 + Ô2(w,x)]v 'I

+ e /" |-2vwDtjVm + VxQ2(u, x) ■ tj] + O(e).

The linear term in e must vanish, giving (since au — Oin {u =£ 0})

0=    lim     f V -[(| Vm|2 + Q2(u,x)h - 2tj • VwVul
fiO.SlO-'ö\{-E<«<8}

= lim /" [(| Vw|2 + ô2(w, jc))tj - 2t) • VwVw] ■ p
f10 •/3{«<-E}

+ lim f [7| Vm|2 + Q2(h, x))t/ - 2-q ■ VwVwl ■ v
«iO-'9{u>S}

= lim/ [A2^2(x)-|v«|2]t,t
f 10 Jd{u<-e)

+ limf [X22q2(x)-\Vu\2]V-v.
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VARIATIONAL PROBLEMS WITH TWO PHASES 435

Remark 2.1. If meas{t/ = 0} > 0 and if {u — 0} is a limit of increasing open sets
Dp{p J,0), then on the left-hand side of (2.2) there appears the additional term

lim/"   (\Vu\2-\2(0)q2(x))rfP
P 10 ^3Dp

3. Nondegeneracy. For any function v and a ball Br = Br(x°) with center x° and
radius r, we set

-f   v — i ÛD , /   v,       13ßr|= surface area of dBr.
JdBr \Óilr\JdBr

Let
(3.1) 0<qi^q(x)<q2<oo,        |A|>/0>0.

Theorem 3.1. Suppose A < 0. For any 0 < k < 1 there is a positive constant c
depending only on k and q2l0 such that if Br E Í2 and  yf3B u+ < c,  then u+ — 0 in

Proof. Set y — \jiBu+ . The idea of this proof is to replace u in Br by a function
v satisfying

v — 0 on dBr,

v = u inBr n {u <0},

u = 0 inßKr n {«>0}(

At; = 0 in(5r\5Kr) n {w>0}

and show that J(v) < J(u) if y is sufficiently small.
For almost any e > 0 the surface {u = e) is smooth. Choose any such small e and

consider the function ve satisfying

ve — u on dBr,

ve = u in Br n [u < e},

t)£ = e inBltr n {« > e},

AUf = 0 inZ)e+=(5r\5Kr)n {M>£}.

The function ve can be obtained by minimizing the Dirichlet integral over Br subject
to the above constraints. Also ve is continuous at {u = e} n (B\BKr) and min(w,0)
< ve < w.  Since  V«e is bounded in L2(Br),  the limit v — limE-0 ve exists and
min( u, 0) < v < w; hence t> is continuous in 5r and has the desired properties.

We obtain

H\Vu\2-\Vv\2)<Jq2(X2(v)-\2(u))
JB, JBr

</ Aq\
JB.rniu>0)
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436 H. W. ALT. L. A. CAFFARELLI AND AVNER FRIEDMAN

Hence, setting D+ = (B\BKr) D {u > 0},

f {\Vu\2-Aq2)< f   (|Vü|2-|V«|2)
JB„n{u>0) JD*

=   /    v(t> — u) ■ v(w — v + 2v)
JD<

< 2 [   Vv ■ v(u - u)
JD*

< lim inf 2 /    Vu • V ( ve — u )
f-0        •'D +

= liminf2Í (u~ e)\vve\= M
F-o      •,aa«,n(u>F}

where in the last formula we have used the integration by parts

C r dv
/    Vt)f • V(uf - u) =   I     (« - e)

"'O,' 3fi.r
(3.2) 9 k

notice that dvF/di> < 0 on 3/^,.. Since 3ßKr and 3{w > e} form a corner at their
intersection, one has to justify (3.2) by approximation. We shall do this later.

To estimate M we introduce the function w:

Aw = 0    in B\BKr,

w = u    on dBr Pi {u > e},

w = e   elsewhere on 3(B\BKr).

Clearly w 3= vF and thus | Vvv|s*| v«,| on 32?Kf. n {w > e}. Since

C
Vvv|< — ¿   (w — e)    *£ Cy    ondBKr,

r JdBr

we get

(3.3)

Hence

VoJ« Cy    on35Kr D {u>e}.

M Cyf    u+<Cy\ I   |VM+| + -/  «4

■f   (lV«+f+ |A|«?V .„,)•'flu|A|'/^

|A|flfi
-|SUPM+  I  (
rx B ' -'s,,

A|<7fV>o}-
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VARIATIONAL PROBLEMS WITH TWO PHASES 437

Since u is harmonic in {« > 0}, u+ is subharmonic in £2; therefore supB   w+ < Cyr.
Hence

f (\VU\2-Aq2)^-C¿—1\ + —Y— )

•/ (\Vu\2-Aq2).

Hence if y/(| A \]/2q] ) is small enough then u < 0 in 5Kr.
It remains to justify (3.2). Approximate £>e+ by domains Dm by changing Z)f+ near

dBKr n 3{w > e} so as to form a smooth boundary there. Denote the corresponding
ve by vcm (t>f„, = e on the modified boundary dDm near dBKr n 3{« > e}). Then,

D« „, -» Z)h    on 3Ä,,, away from 3(u > e),
(     ' | Z)uf„, |< C   on 3Z)m, away from 35r

(by (3.3)). Since (3.2) holds for uf = vem, taking m -* oo and using (3.4), the assertion
(3.2) for vf follows.

Theorem 3.1 may be considered as a nondegeneracy theorem. It implies

Corollary 3.2. Suppose A < 0. // Br C Í2 with center in the free boundary
3{m > 0) then \.^B u+ > c (c > 0); c depends only on q2l0.

The analog of Theorem 3.1 and its corollary to the case A > 0 are obvious.
Remark 3.1. If A2(0) < min{A2, A22} then the proof of Theorem 3.1 applies to both

u+ and u~. Consequently, if Br E Í2 with center in the free boundary d{u > 0}
(3{w<0}), then

-/   u+ > c -/   u'^ c\
r JdBr I r V /

where c is a positive constant depending only on <72{min(A2, A22) — A2(0)}.

4. Upper estimates on the averages. Let

(4.1) max{A2,A22} </,.

Theorem 4.1. Assume that A(0) = min( A,, A 2 ). There exists a positive constant C
depending only on q2 (in (3.1)) and /, such that, if Br C Í2 with center in (u = 0}, then

(4.2) \ Jr   u C.

We shall prove the theorem in case A < 0; the proof in case A > 0 is similar.
Since A < 0, A« is a (positive) measure (by Theorem 2.3). In order to prove the
theorem we first estimate the measure Aw.

Lemma 4.2. If A < 0 and 5rc!i then

(4.3) äu{Br/2)^Cr"-\
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438 H. W. ALT. L. A. CAFFARELLI AND AVNER FRIEDMAN

Proof. Defining v as in (2.1) we have

f \Vu\2-  ( |vd|2< [ (Q2(v,x)-Q2(u,x))^Cr".
JBr JBr JBr

The left-hand side is equal to

( V(u - v) ■ \?(u + v) =  f v(m - v) • Vw=  f (v - w)Aw
JBr JBr JBr

where A« is a measure supported on {u = 0} (the continuity of v — u is used in
making sense out of the last integral); the last integral is equal to jB vAu. Since
v s* u, also uA« > mAw = 0, and thus

(4.4) f vAu^Cr".
JBr/2n[u=0)

We shall use the representation

(4.5) u(x°) = f PXyMy) - ( GXy)àu(y)
JdBr ■> Br

where Pxo and 6\o are Poisson's kernel and Green's function (in Br), respectively.
This formula can be justified by approximating u by mollifiers Jeu, applying the
formula to Jeu at x° and taking e -> 0. If x° E [u = 0} then we obtain, from (4.5),

(4.6) f GAy)àu(y) = f PXyMy)
JBr JdBr

and the right-hand side is precisely v(x°). Thus we can rewrite (4.4) in the form

/      / Gx(y)Au(y))àu(x) < Cr«.
Br/i \   Br I

Noting that Gx(y) > cr2~" if x, y E Br/2 (c > 0) we obtain cT2~"(AM(£r/2))2 ^ Cr",
and the assertion (4.3) follows.

Proof of Theorem 4.1. As before we take A < 0. We may assume that the center
of Br is in the origin. By (4.6),

(4.7) /   P0u= [ G0(y)Au(y).
JdBr JBr

Suppose first that A« is smooth. Then

/ = f G0(y)Au(y) =  ÍG(s)h(s) ds
JBr J0

with suitable functions G and h; h(r) = r""1 JSB¡ A«(r|) dH"~\£). By Lemma 4.2,

(4.8) [Sh(T)dT*zCs"-1.

Hence,

/= ('g(s)-^-Í fh(r)dT)ds=  G{s)fh{T)d7 * -  ÍG'(s) /"^(t) drds.
J0 ds \J0 I [ J0 Jo     ^o ■'o

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VARIATIONAL PROBLEMS WITH TWO PHASES 439

The expression in brackets vanishes at 5 = r (since G0 = 0 on dBr) and at s = 0 (by
(4.8) and G(s) =s Cs2~"). Hence,

(4.9) / G0(y)Au(y) < f-^Cs"-1 ds < Cr.

By using mollifiers uF = u * \pt we can establish the same estimate for the measure
Am. Here we use the estimate

[       *«,(*)=  [        f        Au(x-yHe(y)dy

= [ f       Au(x-yHf(y)dy
J{M<r)JB¿.\0)

= [       Au(Br(xQ-yM(y)dy^Cr"-1.

From (4.7) and (4.9) we see that |/aB w *£ C. Since «(0) = 0 and u is subharmonic,
the last integral is actually positive and therefore (4.2) follows.

5. Lipschitz continuity.

Lemma 5.1. Let u be any function in C{)(BR) Pi HL2(BR), where Br is a ball with
radius r and center x", u(xl)) = 0, and u is harmonic in BR\{u = 0}. Set

4>(r)= -( p2-"\Vu+\2dx- — ( p2-"\vu-\2dx
r   jb,. r~ J B,

where p =\x — x"\. Then <f>(r) < oo and <j>(r) is increasing in r. r E (0. R).

We shall refer to this result as the monotonicity lemma.
Proof. Set Sr = dBr. We first assume that

(5.1) minu<0<maxM    for all r E (0. R).
s,. sr

Notice that the distribution Aw+ is a measure. Denote by vm mollifiers of w+ .
Then A«2 = 21 Vu„, I2 4- 2« Au„, > 21 Vu„, I2, so that

2/      I Vt^rV-" < /      A(ü2 )p2"" = r2-"( ^v2, + (n- 2)r'-/ v2, - /,
JB,\B, JBr\Br JSrar JSr

■£.

Since | Dvm | is bounded, /f -» (w — 2) | S, | u2,(0) as e — 0. Hence,

2/       | Vt>jy-" < r2~"f ^-v2, + (n- 2)r^" f v2m.
JB\B, JSrör JS,
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Integrating with respect to r, r{) < r < r0 + 8, and dividing by 8, and then letting
m — oo, we obtain

¡f" + Sdrf       \Vu+\2p2-"<lfr"+Sr2-"drf2u+u;
,   n-2   rr„ + s , /• 2
+ -rlr   r   drls{u >■

Taking ô -> 0 we obtain for a.a. r0

2Í        \Vu+\2p2-"^r2-"( 2u+u; + (n-2)r(\-"[ (u+f.

Hence, for a.a. r,

(5.2) 2Í \Vu+\2p2-"^r2~"(2u+ur¥ + (n - 2)^'" [ (u+)2.
nr or Jr

Since a similar inequality holds for u~, it follows that \p(r) is finite.
Since /■ -» /si v«+ |2p2~" is in L'(0, Ä), we have

d_
dr

It follows that a.e.

f p2-"\Vu+\2 =  f r2-"\Vu+\2    a.e.
■'s •'<:

(5.3) 4>'(r) = -4/ P2~"l V«+|2 ■ f P2'"l Vwf + 4/ '2""l V«+|2
/•   ■/Br JBr r   Js,

■ ( p2-"\Vu-\2+ 4fp2""|V«+|2-   ( r2-"\vu~\2.
JBr r   JB, Js,

We shall prove that <¡>'(r) s* 0 a.e. in (0, R). By scaling, we may assume that r = 1.
Denote by v9u the gradient of a function oonS,. Denote by T, the support of u+

on 5,, and by T2 the support of u~ on 5,. By assumption,

(5.4) meas(r,)^0   tot i =1,2.
We introduce the constants

1 .  ,      /rJV^I2— =       inf-—-—.
a-       i'etfj'2(r,i      frv-

For any 0 < /3, < 1 we can write

/ ((«,+ )2 + /3fl V,«+|2) > 2  / {u- f ■ j ß2\Veu
1/2

■2 I

Va,   l s, Si J ya,  "'s.
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and

Choosing

(5.5)

/(i-^)lv9»+P>i—^/(«+)2

i - A2 _ ,      ,x A-——- -(«-2)-=

we find that

(5.6) / |vM+|2>^{/2|M+Mr+| + („-2)/(M+)2}.

The relations (5.2) and (5.6) hold also for u . Comparing with (5.3) we see that
</>'(/•) > 0 provided

(5.7) A_ +   &
a,M V"2

We easily compute that the ¿3, satisfy (5.5) if

ft _ i 0.-2)'+±

2.

1/2
(«-2)

If y, is defined by

(5.8)
then we obtain

(5.9)

y,(y, + n - 2) = 1/«,,        y, > 0,

Y,-

The set function y, as a function of T, was studied by Sperner [12] and by
Friedland and Hayman [8]. In [12] it is proved that y,(£) 3= y,(£*) where E,
E* C 5, provided E* is a spherical cap having the same (n — 1 )-dimensional
Hausdorff measure as E. In [8] it is proved that y^E) > tp(s) where s =
meas(£)/meas(5'|), and \p(s) is convex and decreasing:

*(s)

1 .       !        3      -,   ^ !2log47+2     lfi<4'

2(1 -a) if\ <s<\.4

Settings, = meas(r,)/meas(S,), we then have

V, + Y2 > *(*t) + *(í2) > ?*[(*i + ?2.)/2] > 2^(1/2) = 2;
in view of (5.9), this completes the proof of (5.7), provided (5.1) is satisfied.

If (5.1) is not satisfied, let R0 be the smallest value of r for which at least one of
the inequalities in (5.1) is invalid. Suppose for définiteness that mins   u s* 0. Then
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442 H. W. ALT. L. A. CAFFARELLI AND AVNER FRIEDMAN

u' is harmonie in D — BR n {u < 0}, vanishing on 3D; hence u'— 0 in D, which
gives <f>(r) = 0 if 0 < r < R0. Since (¿>'(r) > 0 for a.a. R0< r < R (by the previous
proof), the proof of the lemma is complete.

We shall now use Theorem 4.1 in order to establish Lipschitz continuity for any
minimizer u.

Lemma 5.2. Assume that A(0) = rnin(A,, A2). Then for any domain flgfi there
exists a positive constant C such that if BrC D with center in [u = 0} then

(5.10) -J   \u\<C.
r JdBr

Proof. By Green's formula (0 < a < 1)

(5.11) \   rau-= f G0A(p"u-) = -( VCV v(pau~)
JäBr JBr JBr

= -[ paVG0- Vu~ + cf p''"ap"-]u-=Jx +J2,
JBr JB,

and G0(p) — cp2~", c > 0 (we take for definiteness n > 3).Clearly,

1/2/ \ 1/2

<Cra{fp2-"\Vu-\2\

Introducing the function <#>E(r) = (rE/r)JäBu  (0 < e < a) we also have

J2 < cnafp«-%{p) <  1+C"a_/1+°-f sup<f> (p);
Jo i -t- a      e psSr

notice that <¡>e(p) is bounded since m" is Holder continuous with any exponent < 1.
Dividing both sides of (5.11) by r1 +a~E we then have

re I \ 1/2
(5.12) <t>e(r)^c„asup<t>e(p)+ ?-[[ p2-"\Vu-\2\     .

Similarly, if \p£r) = (re/r)fdBu+ then

r e / \'/2
*e(r) ^ c„asup*e(p) + ±-   / p2-"| V«+12       .

By Theorem 4.1 <t>£r) = \Pe(r) + 0(re). Hence,

C    E   / \   '/2
(5.13) </>E(r)<Cn«sup<f>e(p)+^-   /p2-"|V«+|2        + 0(rE).

Taking the product of the left-hand sides of (5.12) and (5.13), we obtain

(<l>Xr))2 < Ca2(sup<i»£(p))2 + Cr2* + C^ (f/~"\ V"+ |2 ■ j/'"] V«"|2)
1/2
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Using Lemma 5.1 and choosing a small enough, we obtain ((¿>e(r))2 < Cr2e, C
independent of e. Hence, 7/8bm"< C and therefore, also, 7/3B«+ < C.

Theorem 5.3. //A(0) = min(A,, A2), then u is Lipschitz continuous in any compact
subset of ß.

Proof. Let A" be a compact subset of fi and introduce d — d\si(K, 3Í2). For any
x E fi, x E {u = 0}, denote by p = p(x) the distance from x to {« = 0} and let x°
be such that p =\x — x°\, u(x°) — 0. If p > J/6 then m is harmonic in 5d/6(x),
and thus | Du(x) |< C/rf. Suppose next that p(x) < d/6.

Representing u by Poisson's formula, u(x) = /aB (^.P^y)u(y), we conclude that

(5.14) \Du(x)\<^f        My)\-
P JdBp(x)

The function \u\ is subharmonic. Representing |w(y)| (^ E 35p(x)) by Green's
function in Ba(x°) we get

\u(y)\<f        A(z)|«(z)|,        3p<a<5p;
•'s/M*0)

thus, |«(>')|< C/j^^ojImíz)!^ Cp by Lemma 5.2. Substituting this into (5.14) we
conclude that |£>m(jc)|< C if x E K, u(x) ¥= 0. Since u E H{¿(Q), Du = 0 a.e. on
{« = 0}, and thus Du E ¿"(A").

Another Proof of Theorem 5.3. We shall give another proof, also based on Theorem
4.1 and Lemma 5.1.

Suppose 0 E ß, w(0) = M > 0, and let x° be the nearest point to 0 on {u — 0).
We assume first that |x°|= 1 and B2 E fi. By Harnack's inequality u > c0M in B3/4
(c0 > 0) and therefore fdB ,xo-.u+ > cA/ (c > 0). From Theorem 4.1 it follows that

(5.15) /      0u- > cM

with another c > 0, provided M is large enough.
Let y E dB]/2 be a point on 0x°. Then u > c0M > 0 in Bl/4(y). We shall use

polar coordinates (r, w) about >>. Denote by T the set of w's such that if (r, «) E
35,(jc°) then ii(r, w) < 0.

We integrate «;(r, w) over (r, to) E Bx(x°), a E I\ Using (5.15) and the fact that
u > 0 in ¿?1/4(>>) we obtain

r 11/2
(5.16) cM<(       u~= (du(u;*i\T\x/2\(       ivw-fr     .

•/3b,(>.)       -r    ^ rBitJt0) J

Next we integrate u? (r, w) and (r, to) E {Bx(x°)\Bl/4(y)}, u ET, and notice
that m+ (r, w) > c0Ai in B]/4(y). We obtain

f 1 1/2
(5.17) cM\T\< fdafuï<\r\l/2\[     o I Vw+

r [ s,(x )
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Taking the product of both sides of the inequalities in (5.16) and (5.17), we get

cM4< (        | V«+|2 •  f        | Vwf.
JB,(x") JB,(xn)

Using Lemma 5.1 we then obtain M < C. We have thus proved that

(5.18) u(z)^Cp(z)        (p(z) = dist(z,{M = 0}))

if z = 0, p(z) = 1, u(z) > 0, Z?2p(;)(z) E Í2. The proof for general z follows by
considering Ct(x) = u(z + p(z)x)/p(z). From (5.18) we deduce that | V«(z)|< C;
the same estimate holds if u(z) < 0. The proof that u £ C0^. now readily follows.

6. Blow-up limits. The rest of this paper is devoted to the study of the free
boundary. For definiteness we shall always assume that

(6.1) A<0,    A(0)=A,;
all the results obviously extend to the case A > 0, A(0) = A2. When (6.1) holds the
free boundary coincides with

(6.2) r+ = 3{w>0).

Indeed, for the remaining free boundary

(6.3) r-=3{u<0}\3{M>0},
we obviously have

(6.4) u<0    in a neighborhood N of T".

But since A(0) = A,, the minimizer u must be harmonic in N. Consequently, I" is
empty.

Definition 6.1. A function u is called a minimizer (of J) in R" if for any Br C R"
and for any v E Hu2(Br), v = u on dBr.

where JB[v) is the functional J( v) with Ü replaced by Br.
Suppose « is a minimizer, u(xk ) = 0, xk — x0 E ñ, pk |0, and set

(6.5) uk(x) = —u(x, + pkx).
Pk

We call {uk} a blow-up sequence with respect to Bp (xk). Since | Vuk(x)\*z C in any
bounded set and uk(0) = 0, we have, for a subsequence,

(6.6) ui<(x) -^ uo(x)    unformly in bounded sets,

\7uk ^ Vw0   weakly in Lf^R");

u0 is called a blow-up limit.

Lemma 6.1. There holds

(6.7) d{uk >0} — 3{«0 > 0}    locally in the Hausdorff metric,

(6.8) \7uk->\7u0   a.e. in R".

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VARIATIONAL PROBLEMS WITH TWO PHASES 445

Proof. Suppose a ball Br does not intersect 3{«() > 0}. Then either u() > 0 in Br or
m„ *£ 0 in Br. In the first case uk > 0 in Br if k is large enough. In the second case
j.fi)B uk<e for any e > 0 if k is large enough, so that, by nondegeneracy, uk < 0 in

Br/2'
In both cases we conclude that Br/2 does not intersect d{uk > 0} if k is large

enough.
Conversely, if Br does not intersect 3{wA > 0} for any large k then either uk > 0 in

Br or uk *E 0 in Br. In the first case uk is harmonic in #,. and then so is m(); thus either
u0 > 0 in Br or w0 = 0 in Br, so that Br does not intersect 3{«0 > 0}. In the second
case we have u0 < 0 in Br so that again Br does not intersect 3{w0 > 0}.

To prove (6.8) notice that, in every compact subset of {w0 ¥= 0}, (6.8) is certainly
valid. Next consider a density point x° of the set ("ni-*) = 0}- By the Lipschitz
continuity of u0, we then deduce that | u0\— o(r) in Br, and therefore, jr/3jB u„ = o(l)
as r -» 0.

Since uk — u0 uniformly in 5,, we get j/3fi uk<e for any small e > 0, provided k
is large enough; hence by nondegeneracy, uk *£ 0 in 5r. But then (since A(0) = A,) uk
is harmonic in Br and then so is uQ. Consequently, Vuk -> vu0 uniformly in J5r/2-
We have thus proved that almost all the set {u0 — 0} can be covered by balls Br
with suitable centers such that \7uk — Vw0 in eacn Br- ^ follows that Vuk — v«0
a.e. in the set {u0 = 0}. This completes the proof of (6.8).

Lemma 6.2. u0 is a minimizer in R" with respect to the function Qa(u, A) =
<7(x0)A(w).

Indeed, the proof is similar to the proof of Lemma 5.4 in [1]; that proof can be
slightly simplified by using (6.8).

Theorem 6.3. Suppose D E S, Br E D with center x° in 3{« > 0}. Then

(6.9) -/        ws=c,        c>0.r -Vu")
Strictly speaking, this result does not include Corollary 3.2 since the constant c in

(6.9) depends also on D and on the Lipschitz coefficient of u.
Proof. Suppose the assertion is not true. Then there exist points x° E D and

rm i0 such that

4/ M^0,       x°E3{W>0}.

Setting ujx) = u{x°m + rmx)/rm we may suppose that xGm -* 0, um -» u() uniformly
in bounded sets. Then u0 is subharmonic (since um is subharmonic) and /3Bim0 = 0
= w0(0). By the maximum principle it then follows that u0 is harmonic in 5,.

Now u0 is a local minimizer and 0 E 3{w0 > 0}, by (6.7). It follows that the free
boundary 3{w0 > 0} is nonempty; this set must be piecewise analytic since uQ is
harmonic. But then Theorem 2.4 shows that | V«0|2 has jump A^r'(O) across smooth
parts of the free boundary. Since, however, u0 is harmonic, | V«0|2 cannot have a
jump, i.e., A<72(0) = 0, a contradiction.
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Consider a blow-up family

ue(x) = -u(x° + ex),        x° E 3{w>0},e>0,

and let

/f('-)=4/p2_"IV"f+l2- ( p2-\vu;\2
r   JBr JBr

= t4?/. y-iv«+i2-/ (ip2-"ivu-i2^/fr.(er)  JBjx°) •/ä„(.v")

By Lemma 5.1, ïp is an increasing function of p. Consequently there exists a
nonnegative constant y such that

(6.10) /f(0ly    if elO.
Now take a sequence e = ek J. 0 such that

(6.11) «f (x) -» u0(x)    uniformly in bounded subsets of R".

Lemma 6.4. //(6.11) holds then, as ek |0,

(6.12) 7fi(r)^4/p2""lv4|2-/p2-"|VMo|2.
r* jb, JBr

Proof. By the Lipschitz continuity of u, | vut+ |< C, and by Lemma 6.1, VwE~ ->
V«o a-e- Hence, (6.12) follows by the Lebesgue bounded convergence theorem.

Corollary 6.5. For any blow-up limit u0 of ue there holds

(6.13) 4/V~"lv"o+|2-  f p2-"\Vu-0\2 = y
r   JBr JBr

for all r > 0.

Lemma 6.6. (i) If y = 0 then u0 3= 0 in R"; (ii) if y > 0 and n — 2 then u0(x) =
fi2(x ■ e)+ —ii\(x ■ e)~ in R" where e is a constant unit vector, ju, are positive
constants, and ¡i2 — jtt| = A^2(x°).

The function u0 in (ii) is called a 2-plane solution; if /x,= 0 or ¡x2 = 0 then we call
it a 1 -plane solution.

Proof. If y = 0 then either Mq = 0 or Uq — 0 in R". Since u0 is subharmonic and
m0(0) = 0, we conclude that u0 s= 0. To prove (ii) we check the proof of Lemma 5.1
and find that equality can hold in (6.13) only if equality holds in the various
Cauchy-Schwarz inequalities and sx = s2= 1/2. Thus, with S, replaced by Sr,

\u+\=Cu+,       u+ «+ > 0, Cconstant,

j{utf=ßij\v9u+f, /ivfl«+i2 = -^yV)2.

It follows that u* = cu+/r (c — cn> 0); a similar relation holds for u~. Thus
u — rhg(0) if u ¥= 0. Since u is bounded, b > 0. By nondegeneracy and Lipschitz
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continuity, b = 1. Thus u = rg(6) if u ^ 0 and then,

(6.14) Ag+ (n - \)g = 0   whereg(0) ^ 0,
where A is the Laplacian restricted to 35,. If « = 2 then ^4g = g" and the assertions
easily follow using Lemma 6.2 and Theorem 2.4.

Remark 6.1. We do not know whether the isoperimetric inequality y](£) > yx(E*)
used in the proof of Lemma 5.1 is a strict inequality whenever E is not a spherical
cap. If this is indeed the case then Lemma 6.6(h) is valid for any n > 2. Indeed, from
the proof of Lemma 5.1 we then conclude that, for any r, u0 — l2(x ■ e)+ —l\(x ■ e)~
on dBr where e = e(r), /, = /,(r) > 0. Setting

f(r) = lxe   if w0 > 0,
= l2e   if w0 < 0,

we have A(x ■ f(r)) = 0 on {u0 ¥= 0), which gives

2^,(/"(o + ZL4I/'(o)=o
where /= (/„... ,/„). It follows that /" + (n + \)f'/r = 0, or /(/•) = Cr~"'] + c
where C, c are constant vectors in any component of {u0 ^ 0}. Since u0 is bounded,
C = 0 and the assertions in (ii) easily follow.

7. Properties of the free boundary.

Theorem 7.1. There exists a positive constant c E (0,1) such that for any ball
Br E £2 with center in d{u > 0}

,    , £"(Brn {w>0})
(7 1) c<——-— <1—c

Proof. By nondegeneracy there exists a pointy E dBr/2 with u(y) > cr. Since u is
Lipschitz, u(x) > 0 in BKr(y), for some small enough k. This establishes the
left-hand side of (7.1). To obtain the second inequality, let

Av = 0    in Br,
v = u   on dBr.

Then v > u in Br and (cf. the proof of Theorem 2.1)

(7.2)     / \A\>j\v{u-v)\2>-( \u-v\2^-J  \u-v\2,
JBrn{u^o<v} JBr r   JBr r    BKr

for any 0 < « < 1.
If y E BKr then (we take the center of Br to be at the origin)

|»(^)-o(0)|<|^||vo|<icr^/   |«|<Cicr,
r JdBr

and t)(0) = /3B v = f3Bu, \u(y)|< Cur. It follows that | v(y) - u(y)\> JdBu - Ckt.
Recalling Theorem 6.3 we obtain

\v(y) — u(y) \s* cr — Ci<r 5= cr/2
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if k is small enough. Using this estimate in (7.2) we find that

CÊ"(Brn {W*S0})3*-^ f  c2r2^cr"        (c > 0).
r  JB,r

Since u - are continuous and subharmonic, the measures dX + = Au+ and d\~ =
Am" are Radon measures supported on ß n 3{« > 0} and ßn3{M<0}, respec-
tively.

Theorem 7.2. For any D E ß there exist positive constants c, C such that, for any
Br E D with center in 3{w > 0},

Cr"-\

d\-*Z Cr"~\
'Br

(7.3) cr"^i<fdX +
Br

(7-4) /JB,

Proof. Let x G d{u > 0}. For almost all r with Br(x) E ß,

(     dX + = f       Vm+   vdHn~x <Cr"~x

since u+ is Lipschitz continuous. This proves the second inequality in (7.3). The
proof of (7.4) is similar. The proof of the first inequality in (7.3) is similar to the
proof given in [1, Theorem 4.3], with u replaced by w+ .

Theorem 7.3 (Representative Theorem), (i) If D E ß then

H"-\D n 3{«>0}) < oo.

(ii) There exist Borel functions q„ such that

(7.5) Au± = q^H"~iLd{u>0},
that is, for every f E C0°°(fl),

(7.6) -fv«£-Vf=/ tâdH"-\
Ja -,ßn3{«>o}

(iii) For any D E ß there exist positive constants c, C depending on D, ß, the
constant c in Corollary 3.2 and any bound on | v«|¿*(0), such that for any ball
Br(x) E D with x E 3{u > 0}.

(7.7) c *£ q+u < C,

(7.8) cr""1 < H"-\Br{x) n 3{« > 0}) < O"-1,

(7.9) 0 < 9j < C.
Proof. For any compact set E E Z) n 3{w > 0} and small r choose a covering of

E with balls 5r(.y,) such mat 2/B, (v, < C. Choosing x, E Br(y,) n £ we have, by
Theorem 7.2,

2r"-]^C^X+(Br(x,-))<CX+(B4r(E))
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which gives

(7.10) //"-'(£) ^CX+(E).
Thus (i) holds and H" lL(D D d{u > 0}) is absolutely continuous with respect to
A+.

Next, the support of A+ is contained in d{u > 0} and, by Theorem 7.2,

(7.11) X+(Br)^Cr"-'    for any ball Br C D;

from this it follows that X+ (E) *£ CH"~\E). We have thus shown that the Radon
measure A+ is absolutely continuous with respect to the Radon measure

//"-'L3{w>0}

and vice versa. Setting q+ = dX +/dH"~]£(d{u > 0}) we see that (7.5) holds (for
A«+ ), and (7.10) and (7.11) establish (7.7) and (7.8).

Using the assertion (i) we can now proceed with proving (ii) and (iii) for A~ by the
same proof as for A+ .

Since 3{w > 0} has finite H"~] measure, the set A — ü O [u > 0} has finite
perimeter locally in ß, that is, ¡xu = -VlA is a Borel measure and the total variation
l/xj is a radon measure. We denote by 3red{« > 0} the reduced boundary of
3{w>0}.

Theorem 7.4 (Identification Theorem). Let x0 E 3red{w > 0} with

(7.12) e*"-](H"-lLd{u>0},x0) < 1,

(7.13) f \q?-q?(x0)\=o(l),       r - 0.
JBr(xo)nd{u>0}

(i) If y > 0 (in Corollary 6.5) and n = 2, then

u{x0 + x) = ¡i2{x ■ e(x0))+ -px(x ■ e(x0))~ + o{\x\)    as|x|- 0,

where rii > 0, ju2 — ju2 = A^2(x0), and

(p-2 - Pi)e(x0) = {q* (x0) - q~(x0))vu(x0).

(ii) If y = 0,then
u(x0 + x) = ^(x0)max{-x • »-„(x0),0} + o(|x|)

as\x\^ 0, and(q: (x0))2 = (X22 - A2(0))^2(xo).
Here vu(x0) is the outward normal to d{u > 0} at x0.

Proof. Take a blow-up sequence ue(x) = u(x0 4- ex)/e with ue -* u0 uniformly in
compact subsets. Then Auc -* Au0 as distributions, and thus also as measures. From
(7.5) we deduce that

b»T=qu(xo + ex)Hn~xLd{ut > o}.

If y > 0 and n = 2 then, by Lemma 6.6,

u0 = ju2(x • e)    —/X|(x-e) (e constant vector)
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and therefore,

AMo- - Aw0 = (p., - ri2)edH"-'LIie

where nf is the hyperplane orthogonal to e. We thus conclude that

[qXx0 + Ex) - q-(x0 + ex)] dH"~lLd{uf > 0} -^(/*, - ri2)edH"-xLIie.

Since xQ E 3red{u > 0} we have [10, Theorem 3.7]

dH"~]Ld{uF >0} ^dH"~xLIi0

where no = {x; vu(x0) • x = 0}. Recalling (7.12) we deduce that

(<?: (*o) - ?;(*<>)) ̂ ""'¿n0 = (M2 - liI)«w--»Ln,
so that

(a»2 - Mi)* = (?<T (*o) - <?«;(*o)K(*o);
also p.2 — \x\ = A^2(x0). Thus the p., and e are uniquely determined, independently
of the blow-up sequence, and assertion (i) follows.

Consider next the case y = 0. By Lemma 6.6 we then have u0 > 0 for any blow-up
limit of the ur We can then proceed as in Theorem 4.8 of [1]. Thus, taking
vu(xQ) = en, the proof that u0 > 0 if xn < 0, u0 = 0 if x„ > 0 is the same as in [1].
Next, setting

(7.14) /*»■ = -V/(ßn{lv>0})

for any function w for which 3{w > 0} has finite H"~] measure, we have, for every
compact subset E C B'r (B'r is the ball in R"~l),

H"-\E) = p„;(£x(-l, 1)) • e„ < H"-\d{ut > 0} n (£x(-l, 1)))

= //"-'(3{Mf>0} n(£x(-l,l)))

and we can again proceed as in [1], thereby establishing that u0(x) = Uq (x) =
-qu(x0)xn if x„ < 0, and the proof of (ii) thereby follows; the last assertion in (ii)
follows from Lemma 6.2 and Remark 2.1.

Remark 7.1. From Theorem 7.1 it follows (by [7,4.5.6(3)]) that

//"-'(3{M>0}\3red{M>0}) = 0.
From [7,4.5.6(2), 2.9.8 and 2.9.9] applied to H"~lLd{u > 0} and the Vitali relation
{(x, Br(x))\ xE3{m>0} and Br(x) C ß} it follows that for H"~] a.a. x0 E
3red{M > 0} the assumptions (7.12) and (7.13) are satisfied. Thus Theorem 7.4 shows
that for H" ' a.a. x E d{u > 0} the free boundary in a neighborhood of x0 is
approximately a hyperplane.

Remark 7.2. In special models arising in jet flows [5,6] it has been shown that the
free boundary is a continuous graph. In the next section we prove, more generally,
that the free boundary is C1 if n = 2.

8. Differentiability of the free boundary (n = 2). In this section we prove that, in
case n = 2, the free boundary is continuously differentiable. The first lemma is valid
for any n s* 2. In proving it we shall use the fact that

(8.1)       the sets {u > 0} and {u < 0} are connected to the boundary of ß.
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To show this, suppose A is a component of {u > 0} which is not connected to the
boundary. Then, by replacing u in A by 0 we obtain a new function w with smaller
functional J(ü), which is a contradiction.

Lemma 8.1. If u and ü are both minimizers of J in a bounded domain D, and if ü> u
on dD, then ü > u in {«^ 0}.

Proof. Set vx = min{w, ü} and v2 = max{«, «}. Then vx = u on dD and there-
fore, J(vx)^ J(u). Similarly, v2 = ü on dD and therefore, J(v2) s* J(u). However,
J(vx) + J(v2) = J(u) + J(ü) as seen by writing explicitly the terms in each J. It
follows thaty(t>,) = J(u).

Suppose u(x°) = ü(x°) ¥= 0 and u — ü changes sign in any neighborhood of x°.
Then vx is not harmonic in any neighborhood of x°. We introduce the function w
defined by

Aw = 0   inBr{x°),

w — vx    on dBr(x°)

for some small r > 0, and w = vx in D\Br(x°). By the Dirichlet principle we find
that J(w) < J(vx) = J(u), contradicting the minimality of u. Thus we conclude that
either ü s* u or u > ü in some neighborhood of x°. Starting with x° near dD and
recalling (8.1), we deduce that ü > u on the set {u ¥= 0}; furthermore, by the strong
maximum principle, ü > u in this set.

From now on we make the assumptions

(8.2) « = 2,    q(x) = l.
For définiteness we shall also assume that A < 0. We denote points in R2 by X or

(x, y). Set ex = (1,0) and e2 = (0,1).

Lemma 8.2. For any e0 > 0, tj > 0 there is a 8 — 8(e0, tj) > 0 such that for any
minimizer u in the rectangle I — {-3 < x < 3, -1 < y < 1} satisfying

(i) the free boundary contains (0,0) and lies in the strip [\y |< 8},
(ii) u(A)< -r¡ where A - (0, - ^),

the free boundary in I0 — {-1 < x < 1,  -1 <_y < 1}  is a graph in any direction
ee2 ±ex,e>e0.

Proof. Take a circle Aj: (x + 2)2 + (y - p)2 < 5_3/2 with center (-2, p) and
radius rj"3/4 and increase p from -oo until, at p = p,, 3A^ touches the free
boundary of « for the first time. Since SA^ D {x = -2} lies in {y < Ô},

3A;, n |-3<jc< —|J    and   3^^ n i-| < x < 3 j

both lie below y = 8 — Cô3/4 and thus, also below y — -8 if 8 is small enough.
Consequently, SA^ n 3{w > 0} lies in{-f<x<-3;} and contains a point £, =
(x,, j,)with-f <'x, < -h-8<yx <8.

Similarly, we construct a circle A^2 whose closure intersects the free boundary
only at points of 3AM2 lying in {§ < x < f}, and a point £2 = (x2, y2) on dK22 n
d{u > 0}, with | < x2 < |, -5 <y2 < ô; further, A¿ n {|^|< 0} and Ap22 n {^^
5} are disjoint. We denote by a the curve consisting of (i) three line segments on
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y = -8, from (-3,-8) to the left endpoint of {y = -8} n 3A^, from the right
endpoint of {y = -8} Pi A^ to the left endpoint of {y = -8} n 3-A"2 and from the
right endpoint of (y = -8) n 3A^ to (3,-5), and (ii) the arcs of dKp  lying in
{\y\<S}.

Denote by 2_ the part of / lying below a. Notice that u < 0 in 2_.
From assumption (ii) and Harnack's inequality we get

(8.3) u(X)<* -CTjdist(X.o)    if *E2_(c>0).

We next claim

there exists a C1 curve a¡: y = f(x) in / such that E¡ E a¡ and
(8.4) u> 0 above a, (in /), for ;' = 1,2; furthermore, f,'(x) — f¡(x¡)

-* 0  as x — x, -» 0, uniformly with respect to u.

Notice that a and E¡ depend on u and so does/. To prove (8.4) suppose first that
there exist sequences Ex = Ex(m) — (xx(m), yx(m)), u = um and Zm = (xm, ym)
with um(Zm) < 0, such that \Zm — £,(m)|-> 0 and the angle between Ex(m)Zm and
the tangent to a at Ex(m) does not converge to zero as m -> oo. Set rm —\Zm — Ex(m)\
and consider a blow-up sequence of um with respect to Br(Ex(m)). Let w be a
blow-up limit. We can rotate the coordinates in such a way that

(8.5) w(x, y)<0   if>"S0,

and then w(x0, y0) < 0 for some point (x0, y0) with j^ > 0. Consequently,

(8.6) w is not a 2-plane solution.

In view of (8.3) and the assumption A < 0, w does have two phases.
By Corollary 6.5 and Lemma 6.6,

(8.7) w(X) = ay + o(\X\)    ity < 0, |X\- 0

where a is determined by a2(a2 + | A |) = y, y = limrJ() 4>(r), where

*(>•)= 4í  IVw+|2-   Í  |VW-|2.
r   ■'s, -'s.

Similarly, working with blow-up sequences ^w(mX) (m -* oo) we find that

(8.8) w(X)= ßy + o{\X\)    úy<0, |A"|- oo

where /32(/32 + |A|) = y0, y0 = lim^^^/-). Since, by (8.6), w is not a 2-plane
solution, Lemma 6.6 shows that y0 > y and, consequently,

(8.9) ß>a.

Let QR = {w < 0} H BR. If we formally apply Green's formula to w and G =
y/(x2 + y2) - y/R2 in tiR\Be, we obtain

(8.10) f        [Gwv-wGv)+ f (Gwv-wGv) = 0
JdüR\B, •/3B„n{»<0}
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where v is the inner normal. In order to justify (8.10) and make sense of the integrals
over the free boundary we apply (7.6) with u'= w~ and f = r\G where t/ = t](r) is
given by

1 iir*ZR,

ri(r) = \\ - (r- R)2/82     if R < r < R + 8,
ß iîr>R + 8,

and then let 0^0. We then obtain (8.10) with ¡Gvw = 0 on the free boundary and
\Gwv = -jq~GdH] on the free boundary. By (8.5), G > 0 on the free boundary and
therefore the last integral is nonnegative. We thus conclude from (8.10) that

(8.11) [ wG„< ( (Gwp-wGv).
JdB,n{w<0} •,3B„n{H><0}

Using (8.8) we compute that

f wGv= [2^-(ßy + o(R)) = 2ß (sin2 6 d6 + -n(R)
JSBRn{w<0} J      R J

where r}(R) — 0 if R -> oo. Similarly,

- f wGv = a (un2 0 dO + rj0(e)

where Tj0(e) -» 0 if e — 0. Finally, for a sequence e, ^ 0 we have

/ Gw„ = a f sin2 0dd + T/,(e,)
'dBtn{w<0)

with T/|(e,.) —► 0 if e, -» 0. Indeed, this follows from

±rde(Gwvds=±f-»<i
e J0      J e

o(i)

- fdE¡Gwvds = - fsin0[w]r=- dO

a j sin2 0 d6 +

Using the preceding estimates in (8.11) we get

/27T + 0(1) -,    „ „    /*2t7 -    ä .      .sin2 6>2ß      sin2e + o(l)
■a + o(\) Jtt

where o(\) -> 0 if e — 0, R -» oo; this contradicts (8.9).
We have thus proved that there cannot exist sequences Ex(m), Zm, um as above. It

follows that, for each u, {u < 0} D {x>x,} lies below a polygonal curve w0 with
sides ZmZm+x having slope <¡>m which decreases to the slope ^ of a at £,, uniformly
with respect to m, as | Zm — £, |^ 0. We modify w0 near its vertices so as to obtain a
C1 curves = /,(x) lying above w0 with slope converging to <px as x 1 x,. Similarly, we
can construct y — fx(x) for x < x2, and this completes the construction of a, as
asserted in (8.4). a2 is constructed similarly.

Remark 8.1. The assertion (8.4) remains valid also if condition (ii) is dropped.
Indeed, if in the previous proof w is a 2-phase solution, then the proof is the same.
If, on the other hand, w is a 1-phase solution (and then w > 0 since A < 0) then we
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get a contradiction to Lemma 8.4 below; Lemma 8.4 is proved independently of
Lemmas 8.1-8.3. This remark will be used in proving Lemma 8.11 (which is an
extension of Lemma 8.2 to the case where condition (ii) is dropped).

Now consider in the strip Is = I n {|^|< JS} n (x, < x < x2} the quotient
difference Ah ,u of u in the direction / of ee2±ex, with increment h, where
0 < h< 28, i.e.,

Ahlu(X) = (u(X+ hi) - u(X))/h.

We claim that
(8.12) Ahlu>c>0

in Is. We first prove (8.12) on y — </8 . If the assertion is not true then for sequences
"„,< *m = (**, *,!,/2) with 8m - 0 there holds Ah^um(Xm) - 0, with 0 < hm < 28m
and lm -» I, I in direction ee2 ± ex, e > e0. Take a blow-up about free boundary
points of um on (x = xm} with radii < 2ôy2. Since the free boundary of um lies in
(|>'|<ôm}, the blow-up limit w is a 2-plane solution (we use here (8.3) and the
assumption A < 0) and its free boundary is the x-axis. Since

*kmJMxm) - Mx0)/<n
where X0 = (0,1) and e =£ 0, we get a contradiction.

Similarly, we can establish (8.12) on y = -1/8. Consider now the quotient
difference on the vertical line Vx of 37s passing through £,. If (8.12) does not hold
on Vx, say

AhmJum{Xm)^Q       (XmŒVx),

then we make a blow-up about £, with radii rm = max{hm,\Xm — Ex |}. Recalling
that near £, the free boundary lies between a and a, and using (8.4), we again
deduce that the blow-up limit w is a 2-plane solution, with the x-axis as the free
boundary; Further,

^¡-(Xo) = 0      iihm = o(\Xm-Ex\),

K4Xo) = °    H\hm\^co\Xm-El\(co>0)

for some h0, X0 and some / in direction ee2 ± ex, e 3* e0. But this is impossible since
w is a function of y only.

Having proved (8.12) on dls we now translate u in the direction / by considering

ut{X) = u(X+tI),       t>0.
In view of (8.12), «T > u on dls if 0 < t < 25. Since q(x) = 1, uT is a minimizer for
the same functional J as u. Appealing to Lemma 8.1 we conclude that uT > u in
(u^O), from which the assertion follows.

Lemma 8.3. Any global minimizer u with two phases must be a 2-plane solution.

Proof. For a sequence m -» oo we have um(X) = u(mX)/m -> v(X) where v(X)
is a 2-plane solution. Indeed,

li-(r) = — /  | vw'l2 /   | Vw+ |2 î y    as r Î oo,
r   JBr JB,
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and since \p(r0) > 0 for some r0 > 0 (since u has two phases) it follows that y > 0.
On the other hand, v satisfies (6.13) and, by Lemma 6.6(h),

v{x'y) = U2y   «y«),

where p, > 0, p2 > 0, ii2Xri22 = y.
Given e0 > 0 and tj = p2/2, if m is large enough then the um restricted to I satisfy

the conditions of Lemma 8.2 (recall that the lemma is valid uniformly with respect to
the class of all minimizers u). Hence, the free boundary d{um > 0} (for m > m(e0))
in I0 is a graph in the direction (± 1, e) for any £ > e0. It follows that 3{m > 0} n
{| x |< m, \y |< m) is a graph in any direction (± 1, e) where e > e0. Since e0 can be
chosen arbitrarily small (and m > m(e0)), d{u > 0} must coincide with the x-axis.
By uniqueness for the Cauchy-Kowalewski theorem u is thus linear in y for y > 0
and for y < 0.

Lemma 8.4. Any global minimizer u with one phase must be a l-plane solution.

Naturally, to exclude a trivial case we assume that u > 0 in R2 with (say)
0 E 3{w > 0} and with A > 0, where/(«) = /(| Vw|2 + A2/{u>0}).

Proof. The function | vw | is subharmonic and |Vtt|=Aon3{w>0}. Proceeding
as in [2] (see also [9, p. 327]) we deduce that | V u | takes its maximum on the free
boundary and, consequently, the free boundary is convex to {u > 0}. If 3{w > 0} is
not a straight line then the blow-up limit of a subsequence of um(X) — u(mX)/m
converges to a minimizer v whose free boundary includes two rays forming an angle
^ff at the origin; this contradicts the Cauchy-Kowalewski theorem since u — 0,
du/dv = 0 on each of these rays.

Lemma 8.5. For any y > 0 and C0 > 0 there is a 8 — 8(y, C0) such that if u is a
minimizer in Bx with | Vw|^ C0 then for any ball BS(X°) E Bx/2 with center in the free
boundary, the y-flatness condition holds, i.e., the free boundary of u in BS(X°) lies in a
strip with center Xo and width 2y.

Proof. If the assertion is not true then there is a sequence Bs (.Xm) E Bx/2 with
8m -» 0 such that the flatness condition does not hold for some um; Xm G d{um> 0}.
A blow-up sequence with respect to Bs(Xm) is convergent to a minimizer v in R2
and the free boundary of v in 5,(0) does not lie in a (2y)-strip with 0 in the
centerline of the strip. If v has two phases, this contradicts Lemma 8.3, whereas if v
has one phase, Lemma 8.4 is contradicted.

Lemma 8.6. If u satisfies the y-flatness condition in Bx = Bx(0) in direction (0,1) and

if
(8.13) u(A)> Mu(P)    where A = (0,i),P6 {" > 0} n Bx/2,

then, for some absolute constant C, dist(£, d{u > 0}) < 2y + C/M.

Proof. By the flatness assumption u > 0 in Bx n [y > e/2} for any e > 2y.
Suppose dist(P, 3{« > 0}) > e; then also dist(P, {y < e/2}) > e/2. Applying
Harnack's inequality in Bx n {y > e/2} we get u(P) > ceu(A). Hence, by (8.13),
\/M > ce, i.e., e < \/cM.
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Lemma 8.7. For y sufficiently small let 8 = 8(y, C0) be as in Lemma 8.5, and let
BS(X0) be any ball in Bx/2 with X0for which the y-flatness holds in the direction (0, 1),
say, and u(A) > 0 where A = X0 + (0, 8/2). Then

(8.14) u(A)>y   sup   u.
Bs/i(xo)

Proof. Take, for simplicity, X0 = 0 and normalize by taking 5=1. Set A0 — A. If
the assertion (8.14) is not true then there exists a point P0 E B]/2 n [u > 0} such
that

(8.15) u(P0)>^u(A0).

By Lemma 8.6

(8.16) dist(P0,{y>y})<C0y.

Let £ be a point on the free boundary with

(8.17) |£-£0|<(C0 + 2)y.
By the y-flatness about £, the direction of flatness vE at £ differs from the direction
(0,1) by at most Cy.

We fix T) small, to be determined later (independently of y) and take y « tj. By
Harnack's inequality in Bx D {y > tj/2} we have

(8.18) j¡u(A0)<u(X)^Nu(A0)    if X E Bx/2 D {y > t,}

where N = N(t]). Denoting by G the Green function for -A in B = BX/4(E) n {y >
-2y}, we can represent the subharmonic function «+ at P0 in the form

«V'-lM*-I.-fT
where S= dBx/4(E) n {y > tj} and T= dBx/4(E) n {y < tj} n {( X - E) ■ vE >
y} (notice that u+ — 0 on dB D {(X - E) ■ vE < y) and, in particular, on dB (1 {y
= -2y}). Setting o-(tj) = meas(£), we have a(Tj) — 0 if tj —« 0.

By   (8.17),    -3G(£0, X)/dv =£ Cy   ifX E S U  T.   Consequently,    -fT <
Cy5(T))sup7.«+ and (using (8.18))

f <Nu(A0)(\ -a(v))Cy.
Js

Recalling (8.15) we conclude that

-u(A0) ^ Cu(P0) < NCyu(A0) + Cya(r))supu+ .
y t

Choosing tj such that 2Ca(îi) < 1 we find that, provided NCy/2y, there holds
u(A0)/y2 < supr w+ . Thus, there is a point Px E Tsuch that

(8.19) u(Px)>-2u(A0).
y
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Let Ax be the point in BX/2(E) such that AXE is in the direction -vE, with
\AX — E\= 1/8. Then, by Harnack's inequality,

(8.20) u(Ax)^Nu(A0)<^u(A0)

with the same N as before (if tj is small enough). The previous setting for A0, P0
occurs also for^,, Px since, by (8.19) and (8.20),

u(Px)>-^u(Ax)>-u(Ax).
y N y

We can now repeat the previous proof with 0, A0, P0 replaced by £, Ax, Px and
51/2(0) replaced by BX/4(E). Thus there is a triple E2,A2,P2 such that

y y2N

and u(P2) > u(A2)/y > 0, £2 E d{u > 0}, E2A2 is in the direction vE of y-flatness
at£2,L42-£2|= { ■ ¿.

Continuing in this way, step by step, we construct a sequence (£„, An, Pn) such
that

and u(Pn) > u(An)/y > 0, «(£„) = 0, EnAn is in the direction vE of y-flatness
about £„, \An - £„|= \2~". Recall that, by Harnack's inequality, u(Ax) > u(AQ)/N.
Since the configuration of each pair An, An_x, with respect to the free boundary, is
similar (after scaling) to that of Ax, A0 (using the y-flatness in each ball B2„(En) and
the fact that the directions vE vE differ by at most Cy/2"), we also have, by
Harnack's inequality, u(An) > u(An_x)/N (with N independent of n). Recalling
(8.21) we obtain

«CJ>-^-T-4r-^-7«Mo)= 4-"(A).V    n) N»-i   r+]   N„-X     y     0/ y2   (yiV2)«-'     V      '

Choosing y < N2 we conclude that u(Pn) -* oo if n -» oo, which is impossible. This
completes the proof of (8.14).

Lemma 8.7 extends to u~, that is, if A^ — X0 — (0, 5/2) then

(8.22) u(A,)<0,    u-(A,)>y   sup   «".

Corollary 8.8. If y is small enough, say y < y0, then

(8.23) f        \Vu+\2^C(u+(A)f,    f        |VM-|2<c(M-(/lJ)2
•'««(Xo) •/BR(^0)

where C = C(y0) and R = 5(y0)/4.
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Indeed, introducing G(X) — \og2R/\X — X0\ in B2R(X0), we have, by Green's
formula,

:dG
3B2R(X0) B2R(X0)

= 2   //    \vu±\2G>c  ff   IVi^l2,
B2r(X0) BR(X0)

and the left-hand side is estimated by (8.14) and (8.22).

Lemma 8.9. IfX0 E 3{w > 0} and
lim sup | V«"(A")|= a,    lim sup | v«+ (A")| = ß,

X—* X0 X— X0

then

(8.24) a2(a2 + \A\)<±(        | V«f ■ f        \vu+ \2,
R*JBR(X0) JBR(X0)

(8.25) ß2{ß2-\A\)^±f        \Vu~\2-f        \vu+\2;
R    JBR(X0) JBR(X0)

here u is any minimizer in BR(X0).

Proof. It suffices to prove (8.24). We take X0 = 0 and X„ - 0 with | v«"(X„)\-> a;
we may suppose that a > 0. Let Yn be the nearest point to Xn on the free boundary.
Consider a blow-up sequence with respect to Br(Yn), rn=\Xn — Yn\. Since a > 0
and A < 0, the blow-up limit has two phases and, by Lemma 8.3, it is a 2-plane
solution with slopes a and ¿* satisfying a2 — a2 — A. It easily follows that, as e -» 0,

i/iVM-i2^«2, 4/iv«+i2-«2.
e  JBt e  JBf

The assertion (8.24) now follows using the monotonicity lemma.

Lemma 8.10. Under the conditions of Corollary 8.8 (with y < y0),

(8.26) \vu-(X)\^Cu-{A,)(u+(A)+\)    inBR/2(X0),

where C is a constant (depending on y0).

Proof. The function w =| v«"| is subharmonic. By Lemma 8.9 and Corollary 8.8,

limsupw(A-) ^c\u+(A)u-(Ai):)V/2

where A — A( X0), A^ — At( X0). If y is small enough then by Harnack's inequality

(8.27) u+(A(X0))^Cu+(A),    U-{a,(X0)) < Cu~{a,)

where A, At correspond to the free boundary point 0 and X0 E BR. Hence,

(8.28) limsup w(X)^c\u+(A)u-(aJY/2.
XeB„,dist(X, 3{«>0})-0 J
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On the other hand, by Corollary 8.8 and (8.27),

/ w2^c(u~(A,)f.
JBRn{u<0}

Set W = max(w, C[u+(A)u'(AJ],/2} in BR. By (8.28), IF is a continuous sub-
harmonic function and, therefore, by elliptic estimates,

W2(X) « CJ  W2^ Cu+ (A)u-(aJ + c(u-{A*)f,
Br

and (8.26) follows.

Lemma 8.11. Lemma 8.2 remains true without the assumption (ii).

Proof. It suffices to establish that

(8.29) Ahlu > 0    on 37s

for all h, l,u. Suppose this is not true for a sequence um with X = Xm, h = hm,
I = lm. If the intervals ím: (Xm, Xm + hmlm) lie in {um > 0} then we can proceed as
before. Indeed, the blow-up limit w with respect to Bs\/i(Xm) (or Br(E¡), E¡ depends
on m) is either a 1-plane solution with w > 0 (since A < 0) or a 2-plane solution and
its free boundary is {y — 0} (here we use Remark 8.1); thus we get a contradiction
as before.

If lm lies in {um < 0} and if a blow-up limit w turns out to be a 1-plane solution
with w = 0 if {y < 0}, we do not get a contradiction. In order to derive a
contradiction we shall work with Um — um/u^,(A^) instead of um, where A^ is
chosen as in Lemma 8.10 (At depends on m). Then UJ^AJ = -1 and U^ is
uniformly Lipschitz continuous (by Lemma (8.10)). Taking a blow-up limit W of C/m"
with respect to Bswi(Xm) (or Br(E¡)) we find that the free boundary of W is
{y — 0}; hence, by Liouville's theorem (reflecting first W across {y — 0}) W = cy if
y < 0 (c > 0), and therefore, Ah ¡ Um^ c uniformly with respect to lm in [um < 0),
that is,

(8.30) AhmJmum>cum{A,)>0

uniformly with respect to hm, lm, Xm.
It remains to establish uniform positivity (in the sense of (8.30)) in case lm lies

partially in {um > 0} and partially in {um < 0}. In this case we can write it as a
disjoint union of intervals !m = lxm + /2 + l3m where lxm E {um > 0), l2m E {um < 0}
and Pm is an interval with endpoints on a and a,. By Remark 8.1, meas(/^) = o(hm)
and thus either meas(/^) > chm, or meas(/2 ) > ch, or both inequalities hold. By the
previous arguments for lm in {um > 0} and for ïm in {um < 0} we deduce that the
incremental quotients A/f u with respect to l'm satisfy

A,.« ^ cmeas(/^)/meas(/m),

A/>" > ™„,(/lJmeas(/;21)/meas(/m).

Since also Atvu > 0, the assertion (8.29) holds. We can now proceed as in Lemma 8.2
to complete the proof of Lemma 8.11.
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Theorem 8.12. The free boundary 3{w > 0} D ß is continuously differentiable.

Proof. By Lemma 8.5, for any small y > 0 there is a 5 = 5(y) > 0 (5 |0 if y 10)
such that the y-flatness condition holds in every ball Bs with center in the free
boundary. Take such a ball Bs and suppose for simplicity that its center is at the
origin and that the flatness direction is (0,1). By Lemma 8.11 the free boundary in
Bs/2 has the form^ = f(x) with/(x) Lipschitz continuous.

Denote by y = y(5) the inverse of the function 5 = 5(y).
Take x,, x2 in (-5/4, 5/4) and set

r=!*|-*2l.    X,= {x„f(x,)),    B, = B2r(X,).
Each Xj must lie in the flatness strip of the disc Bj (j^i ). Therefore, the angles
between the directions of flatness at Xx and X2 are bounded by Cy(r). It follows
that |/'(x,) — /'(x2)|< Cy(r) for any two points x,, x2 where/(x) is differentiable.
Thus/'(x) has a continuous version.

The next result is concerned with the continuity of the normal derivative of u.
Letting

y= lim 4/"        |V«12-  [        \Vu+\2
/•Too  r    JBr(X0) JB¿XIÍ)

where X0 is a free boundary point, we define /3 = /3(y)>0 by /32(/32 — |A|) = y
and denote by v — vx the normal to the free boundary at X0 (pointing into

{">0}).

Theorem 8.13. For any sector

2, = {X;(X- X0) ■ v>c\X- X0\},       c> 0,

there holds up( X) - ß if X E 2,, X -» X0.

Proof. Let Xm E 2C, Xm -* X0 and take a blow-up sequence um with respect to
B\xm-x¿X0). Then um(X) - v(X) = ßy (y > 0) and dum(Xm)/dv - dv(Y0)/dy
since Y0 lies in {y > 0}. Since dv(Y0)/dy = ß, the assertion follows.
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