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Variational quantum algorithm for estimating the quantum Fisher information
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The quantum Fisher information (QFI) quantifies the ultimate precision of estimating a parameter from a
quantum state and can be regarded as a reliability measure of a quantum system as a quantum sensor. However,
estimation of the QFI for a mixed state is in general a computationally demanding task. In this paper we present
a variational quantum algorithm called variational quantum Fisher information estimation (VQFIE) to address
this task. By estimating lower and upper bounds on the QFI, based on bounding the fidelity, VQFIE outputs a
range in which the actual QFI lies. This result can then be used to variationally prepare the state that maximizes
the QFI, for the application of quantum sensing. In contrast to previous approaches, VQFIE does not require
knowledge of the explicit form of the sensor dynamics. We simulate the algorithm for a magnetometry setup and
demonstrate the tightening of our bounds as the state purity increases. For this example, we compare our bounds
with literature bounds and show that our bounds are tighter.
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I. INTRODUCTION

The goal of quantum sensing is to utilize quantum coher-
ence or quantum entanglement to better estimate unknown
parameters of quantum systems via measurement [1–3].
This includes quantum magnetometry [4,5], quantum ther-
mometry [6–9], quantum illumination [10,11], distributed
sensing [12,13], and quantum system identification [14] for
the estimation of the Hamiltonian parameters [15–19], graph
structure [20], or system dimensions [21,22]. The methodolo-
gies developed in quantum sensing are expected to contribute
to the progress in various state-of-the-art fields of science
and technology, such as molecule structure determination
[23,24], biosensing [25,26], nanomaterial magnetism [27,28],
dark matter detection [29], and gravitational wave detection
[30,31].

Quantum Fisher information (QFI) is a fundamentally im-
portant quantity in quantum sensing because it quantifies the
ultimate precision achievable in estimating a parameter θ

from a quantum state ρθ via the quantum Cramér-Rao bound
(QCRB) [32,33]. For single-parameter estimation, QFI is as-
sociated with the standard fidelity between the true state ρθ

and an error state ρθ+δ . The intuition behind this relation
is that QFI captures the response of the quantum state to
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a small change in θ . A true state with a high QFI will be
very distinguishable from the error state, making it easier to
estimate the parameter via measurement.

While the QFI has been extensively studied for pure quan-
tum states [34,35], the case of mixed states has received
considerably less attention, with recent theoretical results
shedding light on using mixed states for metrology applica-
tions [36]. Since preparing pure quantum states is intrinsically
a difficult task (due to system-environment interactions), most
quantum states prepared in quantum hardware are mixed
states. As such, one of the main goals for state-of-the-art
technologies for quantum control is the reduction of quantum
noise to be able to prepare states with high purities.

An example of such technologies is quantum computers.
While quantum devices are expected to outperform classical
computers in many tasks such as factoring and simulating
complex systems, currently available quantum devices, known
as noisy intermediate-scale quantum (NISQ) computers [37],
are prone to hardware noise and hence prepare mixed states.
Moreover, the limited number of qubits and constrained cir-
cuit depth make it impractical to implement error correction
schemes. This does not preclude, however, the possibility of
still employing mixed states (with either high purity or high
rank) for practical applications, and this is precisely the scope
of this work.

Variational quantum algorithms (VQAs) are one of the
most promising strategies to overcome these limitations in the
NISQ era [38] and make use of near-term quantum devices.
In VQAs, a cost function C(α) is efficiently estimated with
a quantum computer, while part of the computational com-
plexity is pushed to a classical optimizer which minimizes the
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cost by adjusting the parameters α of a parametrized quan-
tum circuit. VQAs have been studied for various applications
[39–54], and the scaling of their trainability has been explored
recently [55–61].

In the past decade, there have been several proposals to
apply classical machine learning methods to the quantum
parameter estimation problem [62–64]. However, even more
recently, the prospect of instead using NISQ devices to en-
hance quantum sensing capabilities has become an exciting
research direction and is precisely the topic of our work.
State preparation for sensing via VQAs has been proposed
for phase estimation in trapped atomic arrays [65,66], noisy
magnetometry [67], and multiple-parameter estimation [68]
and for phase estimation assisted by purity-loss measurement
[69,70]. However, it is not obvious that these protocols avoid
an important practical issue known as barren plateaus in the
cost training landscape [55,56]. In addition, they can also
require detailed information about the dynamics of how the
parameter θ is encoded in the quantum system, which is not
always known in practice, and which is not needed in this
paper.

Here, we propose a VQA to estimate the QFI on mixed
states that addresses the issues previously mentioned. Namely,
our method could avoid barren plateaus and does not re-
quire information about the dynamics of interest (i.e., the
explicit mathematical form of the generator of unitary dynam-
ics is not required). We name this algorithm the variational
quantum Fisher information estimation (VQFIE) algorithm.
VQFIE computes upper and lower bounds on the QFI, and
these bounds are based on bounding the quantum fidelity. We
specifically focus on bounds obtained by truncating the spec-
trum of the exact state [45], which can be computed by taking
advantage of previous variational methods for obtaining a
quantum state’s principal components [48]. One can then use
VQFIE to variationally prepare the state that maximizes the
estimated QFI. As schematically shown in Fig. 1, we expect
applications of our proposed algorithm in various fields such
as materials science, biology, and chemistry.

The paper is organized as follows. In Sec. II, we formulate
the basic theory for VQFIE by introducing lower and upper
bounds on the QFI. Then, in Sec. III we present the structure
of the VQFIE algorithm for computing the aforementioned
bounds and for estimating the QFI. In Sec. IV, we present
numerical simulations of VQFIE for a magnetometry appli-
cation. We finally compare our bound with the literature in
Sec. V, followed by the concluding remarks in Sec. VI.

II. THEORETICAL FRAMEWORK

A. General background

Consider the scenario where an n-qubit quantum state ρ,
known as the probe state, interacts with a source that encodes
the information of a single parameter θ and maps the input
state into the so-called exact state ρθ . The QFI quantifies the
ultimate precision �θ when estimating the parameter θ from
ρθ via the quantum Cramér-Rao bound as [32,33]

(�θ )2 � 1

νI (θ ; ρθ )
, (1)
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FIG. 1. Application of the variational quantum Fisher informa-
tion estimation (VQFIE) algorithm. A quantum system ρ interacts
with a source that encodes the information of a parameter θ in the
state as ρθ . The goal of VQFIE is to estimate the quantum Fisher in-
formation (QFI), I (θ ; ρθ ), which is related to the minimal achievable
uncertainty when estimating θ from ρθ . One can then use VQFIE to
variationally prepare the state ρ that maximizes the estimated QFI.
The VQFIE algorithm can then be used in many applications related
to precision sensing, such as magnetometry and thermometry.

where ν is the number of measurement repetitions used to
estimate θ and where I (θ ; ρθ ) is the QFI which is uniquely
determined by the parameter to be estimated and the measured
quantum state. We note that the standard mathematical defi-
nition of the QFI is given in terms of a so-called symmetric
logarithmic derivative (SLD) operator, which need not be
unique in general [71]. However, here we utilize a more ex-
perimentally useful definition of the QFI for single-parameter
estimation, given as [32,33]

I (θ ; ρθ ) = −4 lim
δ→0

∂2
δ F (ρθ , ρθ+δ ), (2)

where F (ρ, σ ) = ||√ρθ
√

ρθ+δ||1 = Tr[
√√

ρθρθ+δ
√

ρθ ] is the
standard fidelity between the exact state ρθ and the error state
ρθ+δ .

Equation (2) quantifies the sensitivity of the state ρ to
small changes δ in the parameter as the second partial deriva-
tive of the fidelity between exact and error states. Hence the
more sensitive ρθ is to these small θ changes, the larger the
QFI is, and the more precise the estimation of the parameter
will be according to Eq. (1). Note that here no assumptions
were made regarding what θ is, or how it was encoded in
ρθ . This formalism then encompasses cases such as θ being
the magnitude of a field (magnetometry) or a temperature
(thermometry).

In practice, one approximates the QFI by

Iδ (θ ; ρθ ) = 8
1 − F (ρθ , ρθ+δ )

δ2
, (3)

where |δ| � 1. Although a smaller δ will always lead to a
better approximation, the achievable range of values will de-
pend on the experimental implementation. In the limit of the
parameter shift δ approaching zero, Eq. (3) becomes the QFI
as I (θ ; ρθ ) = limδ→0 Iδ (θ, ρθ ), because the fidelity takes its
maximum at δ = 0 [32,33]. For pure states such a quantity can
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be efficiently computed on a quantum computer, as the fidelity
between two pure states is simply given by their overlap,
i.e., F (|ψθ 〉, |ψθ+δ〉) = |〈ψθ |ψθ+δ〉|. However, for a general
mixed state there is no efficient algorithm to directly compute
the standard fidelity and the QFI in (3). This does not preclude
the possibility of estimating the QFI by calculating efficiently
computable upper and lower bounds of Iδ (θ ; ρθ ), which is
precisely the goal of VQFIE.

B. Bounds on the quantum Fisher information

There are many ways in which to bound and estimate
the QFI [66,69,70,72–74]; however, many have scaling that
precludes their implementation on near-term devices. More-
over, most known methods require detailed knowledge of how
the unknown parameter was encoded in the state, which is
certainly not always known in practice. For a VQA intended
to run on NISQ hardware, quantities of interest must be
computable with sufficiently shallow quantum circuits. In this
section we present such bounds on the QFI, which are derived
from upper and lower bounding the standard fidelity in Eq. (3).

That is, for any two functions f1(ρθ , ρθ+δ ) and f2(ρθ , ρθ+δ )
such that

f1(ρθ , ρθ+δ ) � F (ρθ , ρθ+δ ) � f2(ρθ , ρθ+δ ), (4)

we can obtain induced bounds for the QFI as

Iδ ( f2; ρθ ) � Iδ (θ ; ρθ ) � Iδ ( f1; ρθ ), (5)

where we defined the induced bound for a function
f (ρθ , ρθ+δ ) as

Iδ ( f ; ρθ ) = 8
1 − f (ρθ , ρθ+δ )

δ2
, (6)

which in turn allows us to define bounds for the QFI in the
δ → 0 limit as I ( f ; ρθ ) = limδ→0 Iδ ( f ; ρθ ).

In what follows, we first summarize our recent result of a
lower and upper bound for the QFI called the truncated QFI
(TQFI) bounds [75], which are based on truncating the exact
state ρθ to its largest m eigenvalues [45] and computing the
truncated fidelities [45]. Then, we employ the so-called sub-
and superfidelities [76] to derive the sub- and super-quantum-
Fisher-information (SSQFI) bounds. Here, we remark that, as
discussed below, the lower TQFI bound is not just a bound on
the QFI, but has additional operational meaning.

1. Truncated QFI

Let ρθ = ∑r
k=1 λk|λk〉〈λk| be the spectral decomposition of

the exact state, where λk is the kth eigenvalue of ρ and |λk〉
is its associated eigenvector. Here, 1 � r � 2n is the rank of
ρθ . Moreover, let us assume that the eigenvalues are ordered
in decreasing order such that λk � λk+1. Then, for a given
integer m such that 1 � m � r, we define the subnormalized
states

ρ
(m)
θ = �m

ρθ
ρθ�

m
ρθ

=
m∑

k=1

λk|λk〉〈λk|, (7)

ρ
(m)
θ+δ = �m

ρθ
ρθ+δ�

m
ρθ

, (8)

where �m
ρθ

= ∑m
k=1 |λk〉〈λk|. That is, ρ

(m)
θ and ρ

(m)
θ+δ are ob-

tained by projecting the exact and error states, respectively,

into the subspace generated by the m eigenvectors of ρθ asso-
ciated with its m largest eigenvalues.

As shown in Refs. [45,77], the following bounds hold ∀δ ∈
R:

F
(
ρ

(m)
θ , ρ

(m)
θ+δ

)
� F (ρθ , ρθ+δ ) � F∗

(
ρ

(m)
θ , ρ

(m)
θ+δ

)
. (9)

Here, F (ρ (m)
θ , ρ

(m)
θ+δ ) = ||

√
ρ

(m)
θ

√
ρ

(m)
θ+δ||1 is the truncated fi-

delity, and F∗(σ, τ ) denotes the truncated generalized fidelity
between two subnormalized states σ and τ , given by

F∗(σ, τ ) =||√σ
√

τ ||1 +
√

(1−Tr[σ ])(1−Tr[τ ]). (10)

Here, we remark that the bounds in (9) get monotonically
tighter as m increases, with equalities holding if m = r [45].
We note that, as discussed below, the truncated fidelity bounds
can be computed with 2n + 1 qubits. Additionally, as shown
in Ref. [45] the bounds in (9) are tight if (1) ρ is a high-purity
state or (2) ρ is a low-rank state and if m = r.

Combining Eqs. (4)–(6) with the truncated fidelity bounds
in (9) allows us to define the TQFI bounds [75]

Iδ

(
F∗; ρ (m)

θ

)
� Iδ (θ ; ρθ ) � Iδ

(
F ; ρ (m)

θ

)
, (11)

with equalities again holding if m = r. We note that the quan-
tity I (F∗; ρ (m)

θ ) was recently introduced in Ref. [75] and is
known as the truncated quantum Fisher information (TQFI).
The TQFI represents a generalization of the QFI for subnor-
malized states as it satisfies the canonical criteria of a QFI
measure. We encourage the interested reader to see Ref. [75]
for details.

2. Sub- and superbounds

As shown in Ref. [76], the following bounds hold ∀δ ∈ R:√
E (ρθ , ρθ+δ ) � F (ρθ , ρθ+δ ) �

√
R(ρθ , ρθ+δ ). (12)

Here, E (ρ, σ ) and R(ρ, σ ) are called the subfidelity and su-
perfidelity, respectively, between the quantum states ρ and σ

and are defined as

E (ρ, σ ) = Tr[ρσ ] +
√

2((Tr[ρσ ])2 − Tr[ρσρσ ]), (13)

R(ρ, σ ) = Tr[ρσ ] +
√

(1 − Tr[ρ2])(1 − Tr[σ 2]). (14)

As shown in Appendix A 3, because these quantities are ex-
pressed as traces of products of quantum states, they can be
efficiently estimated on a quantum computer requiring up to
4n + 1 qubits [45,76,78].

By combining Eqs. (4)–(6) with the sub- and superfidelity
bounds in (12) we can define the sub- and super-quantum-
Fisher-information (SSQFI) bounds

Iδ

(√
R; ρ (m)

θ

)
� Iδ (θ ; ρθ ) � Iδ

(√
E ; ρ (m)

θ

)
. (15)

It is worth noting that it has been recently shown in
Ref. [79] that the sub-QFI bound is faithful to the QFI in the
sense that both quantities are maximized and minimized for
the same quantum states. Such a result implies that the state
found by maximizing the lower bound in (15) is optimal for
metrology and sensing applications.
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3. Dynamics-agnostic QFI bounds

One of the main advantages of the TQFI and SSQFI bounds
is that that they are dynamics agnostic, meaning that their
computation requires no knowledge about how the source en-
codes the parameter θ in ρ. This is in contrast to other known
bounds on the QFI. For instance, for phase estimation where
the state is given by (21), one can show that 4(Tr[ρ2

θ G2] −
Tr[(ρθG)2]) is a lower bound and 4(Tr[ρθG2] − (Tr[ρθG])2)
is an upper bound on I (θ ; ρθ ) [69]. However, computing these
bounds requires knowledge of the generator G, which might
not always be accessible. To avoid requiring such extra knowl-
edge, we here instead define the following dynamics-agnostic
quantities from the bounds previously presented:

Hδ (θ ; ρθ ) = max
{
Iδ

(
F∗, ρ

(m)
θ

)
, Iδ

(√
R; ρ (m)

θ

)}
, (16)

Jδ (θ ; ρθ ) = min
{
Iδ (F, ρ

(m)
θ ), Iδ

(√
E ; ρ (m)

θ

)}
. (17)

Hence the following bounds on the QFI hold:

Hδ (θ ; ρθ ) � Iδ (θ ; ρθ ) � Jδ (θ ; ρθ ). (18)

It is worth noting that as shown in Ref. [45], the TQFI
bounds are often tighter than the SSQFI bounds when
m ∈ O[poly(n)]. Hence, for large enough m, we will have
Hδ (θ ; ρθ ) = Iδ (F∗, ρ

(m)
θ ) and Jδ (θ ; ρθ ) = Iδ (F, ρ

(m)
θ ), mean-

ing that it will suffice to compute the TQFI bounds. Moreover,
as previously mentioned, the computation of the TQFI bounds
requires only 2n + 1 qubits for n-qubit states ρ, while the
computation of the SSQFI bounds (specifically the upper
bound) requires 4n + 1 qubits.

III. VARIATIONAL QUANTUM FISHER INFORMATION
ESTIMATION ALGORITHM

In this section, we present a high-level description of the
VQFIE algorithm, shown in Fig. 2. For completeness, we de-
scribe the algorithm including the optional step (dashed boxes
in Fig. 2) of variationally preparing the state that maximizes
the QFI for estimating the parameter θ .

We remark that the VQFIE algorithm is meant to address
the situation where the state of interest has a relatively high
purity. Physically speaking, this would occur if one attempts
to prepare a pure state on a noisy quantum device, which then
results in a mixed state with high purity. Low-temperature
thermal states provide another important example. Specif-
ically, in order for the bounds in VQFIE to remain tight,
the input state ρin should be approximately low rank, as
defined in Ref. [45]. We emphasize that such states are of
significant physical interest, especially in the context of quan-
tum sensing, where one aims to prepare a state with high
purity.

We also remark that the task of estimating the QFI for
such states (i.e., low-rank mixed states) is likely to be hard
for classical computers. This can be seen in a number of
ways. First, because the QFI can be expressed in terms of
the fidelity between two quantum states, hardness results that
apply to fidelity estimation (such as Ref. [45]) also apply
to QFI. Second, the standard technique for QFI estimation
using a classical computer involves posing the problem as
a semidefinite program which has computational run time

FIG. 2. Schematic diagram of the VQFIE algorithm for a unitary
sensor dynamics application. VQFIE takes as input N copies of an
n-qubit state ρin, a value of δ, and the parameters α of a parametrized
unitary Uα. The computation of the TQFI bound requires N = 2,
while that of the SSQFI requires N = 4. After the (optional) ap-
plication of Uα, half of the probe states evolve under the action of
a unitary Wθ = e−iθG as in (21), while the other half evolve under
the action of Wθ+δ , resulting in N/2 exact states ρθ and N/2 error
states ρθ+δ . Then, VQFIE computes the dynamics-agnostic bounds
Hδ and Jδ of Eqs. (16) and (17). The lower bound Hδ on the QFI
can be employed as a cost function in a quantum-classical hybrid
optimization loop to train the parameters α and variationally prepare
the state that maximizes the QFI

polynomial in the dimension of the states [74]. Because this
dimension scales exponentially with the number of qubits,
such techniques are not scalable to problem sizes of interest.
As such, a quantum computer could provide an advantage in
the task of estimating the QFI of an arbitrary mixed quantum
state.

A. Algorithm structure

1. State preparation

As schematically depicted in Fig. 2, the input to the VQFIE
algorithm consists of N copies of an n-qubit input state ρin,
a value of δ, and a set of parameters α which parametrize a
unitary Uα. When computing the TQFI bounds, we have N =
2, whereas the computation of the SSQFI bounds requires
N = 4 copies of ρin. In both cases, we can first apply the
parametrized unitary to the input state to obtain a variational
probe state

ρα = UαρinU
†
α . (19)
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The goal of Uα is to map the input state ρin to the state that
maximizes the QFI. Note that if one just wants to estimate the
QFI, and not variationally maximize it, one need not apply Uα

to the input state.
Since no knowledge about the dynamics of the source is

assumed, we employ a hardware-efficient Ansatz [80] for the
parametrized unitary Uα. This Ansatz reduces the circuit depth
overhead when implementing VQFIE on a quantum computer
by expressing Uα as a sequence of gates taken from an alpha-
bet of native gates to the specific hardware employed. Hence,
without loss of generality, we can write

Uα =
∏
μ

e−iαμVμ�μ, (20)

where �μ are unparametrized unitaries and Vμ are Hermitian
operators. For the numerical implementations in this paper
we employ a layered hardware-efficient Ansatz, where gates
are arranged in a bricklike structure acting on alternating
pairs of neighboring qubits [56]. Such an architecture can be
readily implemented in a quantum computer with local qubit
connectivity.

After the optional action of Uα, half of the states interact
with a source that encodes the information of a parameter θ as

ρθ = WθρW †
θ with Wθ = e−iθG, (21)

while the source encodes the information of θ + δ in the
remaining half. That is, we obtain N/2 exact states ρθ and N/2
error states ρθ+δ . Note that, as shown in Fig. 2, our algorithm
does not require knowledge of the generator of the interaction
between the quantum state and the source, that is, we do not
require knowledge about what the Hermitian operator G is.
At this stage, it is important to distinguish between α and θ .
The former is a set of parameters which can be variationally
updated to prepare the near-optimal state for sensing applica-
tions, while the latter is the parameter that one is attempting to
estimate (e.g., θ is the magnetic field amplitude B in the case
of magnetometry).

2. Computation of bounds

The next step in VQFIE is the computation of the QFI
bounds. As indicated in (16) and (17), one needs to compute
the TQFI and the SSQFI bounds. Here, we briefly describe
how each one of those quantities can be estimated on a quan-
tum computer.

The SSQFI bounds are obtained by computing the sub-
and superfidelities of Eqs. (13) and (14). The terms in
E (ρθ , ρθ+δ ) and R(ρθ , ρθ+δ ) of the form Tr[ρ2

θ ] or Tr[ρθρθ+δ]
can be computed with 2n qubits by means of the destruc-
tive SWAP test [81]. The destructive SWAP test employs a
constant-depth quantum circuit with classical postprocessing
that scales linearly in the number of qubits [81]. For the
Tr[ρθρθ+δρθρθ+δ] term, one can employ a generalized SWAP

test (e.g., Refs. [78,82]) involving a controlled permutation
gate, whose circuit depth scales linearly in the number of
qubits. For completeness, we show how the generalized SWAP

test can be used to estimate these functionals in Appendix A 3.
As shown there, these circuits are efficient in the problem
size. Finally, we remark that one can also compute the SSQFI
bounds via the circuits introduced in Ref. [76].

Computing the TQFI bounds is a more involved proce-
dure and requires a variational subroutine. Specifically, we
will need to obtain the m largest eigenvalues and associated
eigenvectors of ρθ . These are obtained using the variational
quantum state eigensolver algorithm [48], which variationally
diagonalizes the state ρθ over the subspace of its m princi-
pal components. Specifically, one trains a parametrized gate
sequence to achieve this subspace diagonalization task. The
subroutine then returns estimates of the m largest eigenval-
ues and their associated eigenvectors, denoted {λ̃i}m

i=1 and
{|λ̃i〉}m

i=1, respectively. We refer the reader to Appendix A for
additional details of these subroutines.

After this variational subroutine, one then runs several non-
variational quantum circuits to compute the overlap between
ρθ+δ and the estimates of the principal components of ρθ , i.e.,
the states in the set {|λ̃i〉}m

i=1. These overlaps are then com-
bined with classical postprocessing as described in Ref. [45],
in order to compute the upper and lower bounds on the fidelity
appearing in (9). We remark that Ref. [45] showed that this
procedure scales efficiently with problem size. Here, we re-
mark that the efficiency in estimating the TQFI bounds relies
on the efficiency of the variational diagonalization subroutine
[48].

3. Classical parameter update

When preparing the optimal probe state ρα, the final step
of each VQFIE iteration is a classical parameter update. Here,
our algorithm learns the parameters α that approximately
maximize the cost function

Cα = Hδ (θ ; ρθ ), (22)

where we note that the dependence on α that arises from
the preparation unitary is left implicit to simplify the nota-
tion. Here, a hybrid quantum-classical optimizer employs the
value of the cost (or its gradient) to update the preparation
parameters α. The whole algorithm then repeats until stopping
criteria are met. The probe state from the final iteration, which
approximately maximizes Eq. (22), is then used to calculate
the upper bounds. The estimation of the QFI is then between
Hδ and Jδ .

B. Gradient scaling

Significant progress has recently been made on studying
the scaling of gradients in VQAs [55–60]. This includes iden-
tifying some conditions under which the gradient vanishes
exponentially in n, known as a barren plateau landscape.

We now proceed to argue that VQFIE does not exhibit a
barren plateau landscape when a shallow-depth Ansatz is em-
ployed. In particular, here we will use the results in Ref. [56]
that connect the existence of barren plateaus in VQAs to the
locality of the cost function. Specifically, it was shown that
global cost functions, i.e., cost functions where one computes
the expectation value of operators acting nontrivially on all
qubits, lead to barren plateaus. On the other hand, local cost
functions, i.e., cost functions where one computes the expec-
tation value of operators acting nontrivially on a small subset
of qubits, do not exhibit barren plateaus for shallow Ansätze
[56]. Hence we aim to argue that the cost functions employed
in VQFIE are local, rather than global, in nature.
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First, we consider the variational subroutine used to com-
pute the TQFI bounds. This is the variational quantum state
eigensolver, proposed in Ref. [48], and therein a local cost
function was proposed for the diagonalization task of interest.
We refer the reader to Ref. [48] for details of this local cost
function. However, it suffices to say that the cost landscape
would not have a barren plateau so long as the Ansatz depth is
sufficiently shallow, i.e., O[log2(n)] depth [56].

Second, we consider the variational optimization of the α

parameters in the state preparation unitary. This involves the
cost function in (22), which takes the maximum between the
lower bounds provided by the TQFI and the SSQFI. In our
implementation of VQFIE, we found the TQFI to typically
provide a tighter bound [45], so we focus our discussion here
on the TQFI. From Ref. [75], we can write the TQFI lower
bound in the limit δ → 0 as

I
(
F∗; ρ (m)

θ

) = 4Tr
[
ρ

(m)
θ G2

] −
m∑

i, j=1

8λiλ j

λi + λ j
|Gi j |2

− 4Tr
[
�m

ρθ
Gρ

(m)
θ G

]
, (23)

with Gi j = 〈λi |G|λ j〉, and where �m
ρθ

+ �m
ρθ

= 1.
In this form, we see that the first term is a local cost

function [56], so long as G is local, and hence its gra-
dient should remain large for a shallow-depth Ansatz. For
instance, for a magnetometry application (see below), one
has G = ∑n

i=1 Zi, and hence G2 = n1 + ∑
i 
= j ZiZ j contains

terms that act nontrivially on at most two qubits. In con-
trast, the last term is a global cost function. Recalling that
�m

ρθ
= ∑d

k=m+1 |λk〉〈λk|, the final term in (23) is of the form∑d
k=m+1 Tr[G|λk〉〈λk|Gρ

(m)
θ ], and one computes the expecta-

tion value of the global operators G|λk〉〈λk|G. (Note that this
term is global regardless of the locality of G.) Hence the
contribution to the cost function gradient associated with this
final term will be exponentially suppressed. Finally, we note
that the middle term is likely to have a smaller gradient than
the first term even though it is not a fully global term. Hence
we expect that the first term in this expression will have the
largest gradient magnitude, and as a result the overall gradient
magnitude will not vanish exponentially for an O[log2(n)]-
depth Ansatz.

To further support the claims that our algorithm has a local
cost function, and hence does not exhibit a barren plateau for
shallow Ansätze, we refer the reader to Sec. IV. Therein we
numerically analyze the trainability of our cost function.

IV. NUMERICAL SIMULATION

In this section, we present our numerical results obtained
from simulating the VQFIE algorithm. Specifically, we train
the parameters in Uα in order to prepare the probe state that
maximizes the QFI for a magnetometry application. Hence we
consider a system of n spin-1/2 particles (n qubits) interacting
with a uniform magnetic field. The Hamiltonian is modeled as

G =
n∑

i=1

Zi, (24)

with Zi being the Pauli z operator on qubit i. The parameter
θ appearing in Eq. (21) is the phase acquired by spins, after

precessing for some time under the action of the magnetic
field.

Here, we recall that if the probe state is pure ρα =
|ψα〉〈ψα|, then it is well known that the optimal probe state
corresponds to the GHz state |GHz〉 = (|0〉⊗n + eiϕ |1〉⊗n)/

√
2

with ϕ ∈ R, and the QFI reaches the Heisenberg limit

max
|ψα〉

I (θ, |ψθ 〉〈ψθ |) = 4n2. (25)

Here, |ψθ 〉 = Wθ |ψα〉. Moreover, if the probe state ρα is
mixed, then the optimal state can be obtained from Ref. [36],
and its associated QFI is

max
ρα

I (θ, ρθ ) = 1

2

d∑
k=1

λk,d−k+1(gk − gd−k+1)2, (26)

where gk are the eigenvalues of G ordered in decreasing
order and where d = 2n. Here, λk,l = 0 if λk = λl = 0 and
λk,l = (λk − λl )2/(λk + λl ) otherwise [36], and we recall that
λk is the kth eigenvalue of the probe state ρα. Note that in
order to compute (26), one must have perfect knowledge of
all the eigenvalues of ρα and of the generator G. Hence such
a quantity is not efficiently computable in practice. However,
here we employ Eqs. (25) and (26) to benchmark the maxi-
mum QFI obtained by training the parameters in Uα.

A. Performance of VQFIE in experimentally relevant regimes

For our heuristics we simulated the VQFIE algorithm with-
out sampling noise. Moreover, the cost function optimization
was performed by employing the constrained optimization by
linear approximation (COBYLA) algorithm [83]. For each
case analyzed we ran 30 instances of VQFIE, each with 200
cost optimization iterations, and we present the results of the
run that achieved the largest final cost function value. We
remark that for Uα we employed a layered hardware-efficient
Ansatz with three layers composed of single-qubit rotations
and CNOT gates.

In Fig. 3(a) we show results for an n = 4 qubit implementa-
tion of the VQFIE algorithm for a randomly generated mixed
state with a purity of 0.95 and for different values of m in
the truncated state ρ

(m)
θ . In all cases, the TQFI lower bound

was tighter than the SSQFI lower bound so that Hδ (θ ; ρθ ) =
Iδ (F∗, ρ

(m)
θ ). Here, we can verify that the TQFI lower bound

becomes tighter with increasing m. Note that the improvement
in the m = 4 case is not as significant due to the fact that
smaller eigenvalues give rise to smaller improvements. This
is due to the fact that most of the information in the state is
encoded in the subspace spanned by the eigenvectors associ-
ated with the largest eigenvalues [45].

Let us now analyze the performance of VQFIE for different
purities. In Fig. 3(b) we present results for randomly generated
n = 4 input states with purities of 0.75, 0.8, . . . , 0.95. Let
us first remark that the maximum QFI achievable increases
with the purity, as shown by the vertical lines obtained from
Eq. (26). In all cases we chose m = 4, and for all purities we
found that the TQFI lower bound is tighter than the SSQFI
lower bound. Moreover, we can also see that, as expected,
VQFIE has a better performance for high-purity states, as
the final cost value is larger for higher purities. This again
can be explained from the fact that in low-purity states, more
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FIG. 3. Cost function value vs iteration for an n = 4 implementation of VQFIE. (a) Panels correspond to a different value of m for the
TQFI lower bound. The input state was randomly generated with a purity of 0.95, and the error state was created with δ = 0.1. In all cases
the TQFI is tighter than the SSQFI. The plots show that the performance of VQFIE improves as m increases since VQFIE reaches higher cost
values. (b) Panels correspond to randomly generated states with different purities. In all cases the error state was created with δ = 0.1. We
see that VQFIE reaches higher cost values for higher-purity states. Horizontal lines depict the maximal QFI for pure states [Eq. (25)] and for
mixed states [Eq. (26)].

information is encoded in a larger number of eigenvalues
and the subspace generated by their associated eigenvectors.
Hence truncating the state to m = 4 leads to information loss
and to looser truncated bounds. Similarly, the SSQFI bounds
are also loose for low purities due to the looseness of the sub-
and superfidelities in this case [45].

We note that, for quantum metrology applications, one
wishes to prepare probe states that are typically low rank (high
purity), as states that are close to being maximally mixed are
not good candidates for quantum sensors [36]. Hence it is
fortunate that our algorithm has a better performance in this
high-purity regime.

B. Scaling of the cost function landscape for VQFIE

In this section we numerically analyze the presence or
absence of barren plateaus in the VQFIE cost function land-
scape. Specifically, we consider here the case when one trains
the parameters α via the TQFI lower bound. In Sec. III B, we
argued that in this case the cost function is local and hence
that no barren plateau arises for shallow hardware-efficient
Ansätze (i.e., with O[log2(n)] depth). Here, we recall that the
standard way to numerically analyze the existence of barren
plateaus is by computing the variance of the cost function
partial derivative, leading to the following definition.

Definition 1. A cost function Cα exhibits a barren plateau if
Eα[∂μCα/n2] = 0 and if

Varα[∂μCα/n2] ∈ O(1/2n), (27)

where ∂μCα ≡ ∂Cα/∂αμ for some αμ ∈ α.
Here, the expectation values are taken over the parameters

α, and we divided the cost function by the normalization factor
n2. Note that (27) implies that the cost function gradients are

(on average) exponentially suppressed across the landscape
and hence that the landscape is essentially flat for large prob-
lem sizes.

Recently, it was shown in Ref. [84] that the presence of
barren plateaus can also be diagnosed via the variance of dif-
ference in cost function values, i.e., by analyzing the scaling of
Varα,α′[�Cα,α′/n2], where �C = Cα − Cα′ . The main advan-
tage here is that Varα,α′[�Cα,α′/n2] is computationally cheaper
to compute, as it requires fewer quantum circuit evaluations
[84]. Hence we have the following alternative definition.

Definition 2. A cost function Cα exhibits a barren plateau if
Eα[∂μCα/n2] = 0 and if

Varα,α′[�Cα,α′/n2] ∈ O(1/2n). (28)

In Fig. 4, we show numerical results for Varα,α′[�Cα,α′/n2]
versus the number of qubits (n = 2, 3, . . . , 13) for the
VQFIE cost function defined in Eq. (22). We employ a
hardware-efficient Ansatz with log2(n) layers for the magne-
tometry application of Eq. (24), with different values of δ =
0.1, 0.5, 1. For n = 2, . . . , 11 we computed by variance by
averaging over 1000 random parameter initializations, while
for n = 12, 13 we averaged over 100 initializations. Here,
we can we see that for δ = 1 the variance of cost function
differences vanishes exponentially with the system size (as
noted by a straight line in the log-linear plot). In this case,
the cost function is clearly global as one compares two states
in an exponentially large Hilbert space whose fidelity is (on
average) exponentially small. Such a case is similar to that
analyzed in Ref. [56], where a cost function defined as the
overlap between two quantum states that are not necessarily
close exhibits a barren plateau.

On the other hand, as δ decreases, the scaling of
Varα,α′[�Cα,α′/n2] drastically improves since the cost
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FIG. 4. Normalized variance of the VQFIE cost function differ-
ence vs number of qubits. As shown in Ref. [84], the y axis can
be viewed as a proxy for the trainability of the cost function. If
the variance of the cost difference vanishes exponentially with the
number of qubits, the cost exhibits a barren plateau. However, for
δ = 0.1 we see that this variance does not decrease exponentially
with problem size. Namely, since the y axis is presented in a log
scale and since the green curve deviates significantly from a straight
line, the scaling is nonexponential.

becomes local and Eq. (23) holds. Specifically, for δ = 0.1
the variance Varα,α′[�Cα,α′/n2] clearly does not vanish expo-
nentially with n, which means that the cost function does not
exhibit a barren plateau. This nonexponential scaling is char-
acteristic of local cost functions [56]. Moreover, one can see
that Varα,α′[�Cα,α′/n2] is increased by orders of magnitude
by reducing the value of δ. Taken together, these results show
that in the small-delta limit, the cost function trainability is
improved as the cost function becomes local.

V. COMPARISON WITH LITERATURE

In this section we heuristically compare the TQFI and the
SSQFI lower bounds with the so-called purity-loss bound,
a dynamics-agnostic lower bound for the QFI [69,70]. As
shown below, the bounds presented in this paper are tighter
than the purity-loss bound for all cases considered.

As shown in Refs. [69,70], the following lower bound on
the QFI holds:

L(θ ; ρθ ) � I
(
F∗; ρ (m∗ )

θ

)
, (29)

where L(θ ; ρθ ) = 4(Tr[ρ2G2] − Tr[ρGρG]). However, this
quantity can also be expressed as [69]

L(θ ; ρθ ) ≈ 2
�ν

(�x)2
, (30)

where �ν is the purity loss given by

�ν = Tr[ρ2] − Tr
[
ρ2

ave

]
. (31)

Here, ρave is the the ensemble-averaged state obtained by
considering that the parameter θ is not stable during an ex-
periment but rather is subject to statistical fluctuations. Hence
each time the probe state interacts with the source, the unitary
Wθ (x) is applied with some probability px. Finally, θ (x) is
a random variable normally distributed about θ with some

variance (�x)2 � 1, and we define ρave = ∑
x pxρθ (x) [69].

Hence L(θ ; ρθ ) quantifies how fragile the probe state is to
stochastic fluctuations in the parameter θ .

In Fig. 5 we compare the TQFI and the SSQFI bounds
with the purity-loss bound of (30) for different system sizes
(n = 4, 6, 8) and for states with purities in the range (1/n, 1).
In all cases, the probe state was the mixed state that leads
to the maximized QFI of (26) from Ref. [36]. Just as with
the shift parameter δ in Eq. (3), one would ideally minimize
(�x)2; however, achievable ranges depend on experimental
capabilities. So, to fairly compare with Ref. [70], we set
δ = (�x)2 = 0.1, as this was the value used in their experi-
ment. Here, we remark that the TQFI bounds were computed
with m = 4, while the purity of the average state ρave was
obtained by stratified sampling from a discretized Gaussian
distribution with K samples (or strata) [70]. We refer the
reader to Appendix B for a detailed discussion of how the
number of strata was obtained for a fair comparison between
bounds.

As shown in Fig. 5, the VQFIE lower bound of (16) is
tighter than the purity-loss bound for all values of n and
purities considered. In fact, both the TQFI and the SSQFI
lower bounds are individually tighter than the purity-loss
bound, with the only exception being n = 4. Here, L(θ ; ρθ )
is larger than the TQFI lower bound for purities smaller than
1/2. As previously mentioned, this is expected due to the fact
that the TQFI bounds are loose for low-purity states. More-
over, we can also see that for n = 6 and n = 8 the VQFIE
bounds are noticeably better than the purity-loss bounds. This
can be due to the fact that for (30) to hold, one requires
(�x)2 � 1, which is not always the case [70].

Finally, let us remark that Fig. 5 also shows that the VQFIE
upper and lower bounds can be very tight for high purities.
This means that Jδ − Hδ will give a small interval where the
QFI actually lies, and hence VQFIE outputs a precise estimate
of the QFI in this purity range.

VI. CONCLUSION

In this paper, we presented an algorithm designed for
NISQ devices to estimate the quantum Fisher information
(QFI), called variational quantum Fisher information estima-
tion (VQFIE). For this purpose, we introduced upper and
lower bounds on the QFI that are based on bounding the
fidelity. These bounds are then efficiently computed on a
quantum computer, as part of our proposed algorithm.

Specifically, we presented two types of bounds on the
QFI that are conceptually distinct, in that while both attempt
to tackle the problem of computing the quantum fidelity (a
nonlinear function of quantum states), the approach used
is different in each case. One of our bounds is based on
truncating the spectrum of the exact state and reducing the
complexity of computing the nonlinear function on (sub-
normalized) quantum states. These are called the truncated
quantum Fisher information (TQFI) bounds. Our other bounds
are based on bounds for the quantum fidelity known as the
sub- and superfidelity, which replace the nonlinear function
in the fidelity by linear or quadratic functions. In this case,
the bounds are called the sub- and super-quantum-Fisher-
information (SSQFI) bounds.
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FIG. 5. VQFIE and purity-loss bounds. Here, we present the TQFI, the SSQFI, and the purity-loss bounds on the QFI for different system
sizes (n = 4, 6, 8) and for purities in (1/n, 1). For each value of the purity the bounds were evaluated at the optimal probe state of Ref. [36],
which maximizes the mixed-state QFI in Eq. (26). Here, we can see that in all cases considered the VQFIE lower bounds of (16) are tighter
than the purity-loss bound in (30). Moreover, the plots also show that the VQFIE bounds in Eq. (18) are tighter for high purities, i.e., in the
range of purities for which VQFIE is aimed.

We especially focused on the TQFI bounds. Our previous
work established the TQFI lower bound as being operationally
meaningful [75]. The present paper focuses on computing the
TQFI bounds using a variational quantum algorithm, and we
show how the maximization of the lower bound over state
preparations can be used to enhance quantum sensing capa-
bilities.

Although we found the TQFI to be tighter for the magne-
tometry Hamiltonian considered, in general this may not be
the case. As such, we include the possibility in our algorithm
to include both TQFI and SSQFI bounds, keeping only the
tightest in the end. Although the TQFI bounds were tighter in
our specific implementation, there were two distinct benefits
to investigating the SSQFI bounds. First, in a companion pa-
per [79], we proved that the sub-QFI is a faithful lower bound,
meaning that the state that maximizes the sub-QFI is the same
state that maximizes the QFI. Second, the SSQFI bounds do
not require the variational quantum subroutine to truncate the
state to the principal components.

In addition to introducing the general algorithm, we pro-
vided qualitative and quantitative arguments as to why our
algorithm avoids barren plateaus for shallow-depth Ansätze
and for small δ values, suggesting a favorable scaling for the
gradient magnitude and hence a favorable scaling for training.

While trainability is a crucial consideration when propos-
ing lower bounds for use in VQA cost functions, so too is the
tightness of the proposed bounds. As illustrated in our numer-
ical results, we expect our bounds to be tighter as the purity
of the state increases. This is also true for other bounds on
the QFI in the literature. For the magnetometry example that
we considered, we found that our bounds were tighter than
recently proposed literature bounds, over a range of different
purity values.

In addition to tightness and trainability, another key
aspect of VQFIE is the fact that our bounds are agnos-
tic to the underlying dynamics. Computing our bounds
does not require knowledge of the generator of the dy-
namics. This is useful for quantum sensing tasks for
systems that are either complicated or not fully charac-
terized. Hence this makes the VQFIE algorithm broadly
applicable.

VQFIE is a promising algorithm for implementation in the
NISQ era. Because the quantum Cramér-Rao bound (QCRB)
is ubiquitously used as a figure of merit in experiments, ef-
ficiently and accurately estimating the QFI (upon which the
QCRB directly depends) is a crucially important task in quan-
tum sensing. As such, we expect that our algorithm will find
broad applicability in evaluating the performance of quantum
sensors in the fields of chemistry, biology, materials science,
and cosmology.
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APPENDIX A: DETAILS OF THE VQFIE ALGORITHM

This Appendix aims to make our paper more self-contained
by providing additional details of the different VQFIE subrou-
tines employed to compute the TQFI bounds. However, we
also refer the reader to the original papers on state diagonal-
ization [48] and fidelity estimation [45].

1. State diagonalization

Let us here describe the variational quantum state eigen-
solver (VQSE) algorithm of Ref. [48]. As described in the
main text, the VQSE is employed to obtain approximations
of the m largest eigenvalues of a state and to prepare their
associated approximated eigenvectors. Here, we recall that we
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use this algorithm as a subroutine to compute the TQFI as
schematically shown in Fig. 2.

The VQSE algorithm takes in as input an integer m, a
quantum state ρ, and a set of parameters β used to parametrize
a diagonalizing gate sequence which we denote as Vβ. Then,
the output consists of estimates of the m largest eigenvalues
and their associated eigenvectors. Here, the algorithm aims to
minimize a cost function of the form

Cβ = Tr[HVβρV †
β

], (A1)

for some Hamiltonian H diagonal in the computational basis
such that its m lowest eigenenergies are nondegenerate. This
cost function exploits the close connection between majoriza-
tion and diagonalization, as the cost is minimized if Vβ maps
the kth-largest eigenvector of ρ to the kth-smallest energy
eigenstate of H .

The parameters in β are trained in a hybrid quantum-
classical optimization loop whose trainability is guaranteed
from the fact that one can always choose H to be a local
Hamiltonian [56]. Once the optimal parameters β have been
obtained, it is then straightforward to extract approximations
of the largest eigenvalues {̃λi}m

i=1 and their associated eigen-
vectors {|̃λi〉}m

i=1. To estimate the m largest eigenvalues, one
simply performs the optimal gate sequence, Vβ, on ρθ and then
measures in the computational basis. Mathematically, we have

λ̃i = 〈zi|Vβopt
ρθV †

βopt
|zi〉, (A2)

and in practice, one simply measures the approximately diag-
onalized state a finite number of times. We denote this number
as Nruns. Then, for a bit string zi with frequency of occurrence
fi, the eigenvalues are estimated as

λ̃i ≈ fi

Nruns
. (A3)

Once the m largest eigenvalues are approximated, the associ-
ated eigenvectors can be obtained via

|λ̃i〉 = V †
βopt

|zi〉, (A4)

where |zi〉 = X zi ⊗ · · · ⊗ X zn |0〉⊗n and where zi ∈ {0, 1}.

2. Computing TQFI bounds

In this section we describe the variational quantum fidelity
estimation (VQFE) algorithm of Ref. [45]. This algorithm is
employed as a subroutine in VQFIE to estimate the TQFI
bounds.

The input to VQFE is an n-qubit state ρθ+δ and the es-
timates of the m largest eigenvalues ({λ̃i}m

i=1) and associated
eigenvectors ({|λ̃i〉}m

i=1) of ρθ , both of which are obtained
from VQSE. The goal of VQFE is to compute the generalized
fidelity, which we recall for convenience:

F∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

) = ∣∣∣∣√ρ
(m)
θ

√
ρ

(m)
θ+δ

∣∣∣∣
1

+
√(

1 − Tr
[
ρ

(m)
θ

])(
1 − Tr

[
ρ

(m)
θ+δ

])
. (A5)

Here, we define the so-called T matrix, whose elements are
given by

Ti j =
√

λ̃iλ̃ j
(
ρ

(m)
θ+δ

)
i j, (A6)

|0
ρ

ρ
σ

σ

H H

Sn

FIG. 6. The generalized SWAP test. Using one ancillary qubit
to control a cyclic permutation gate, one can estimate linear and
nonlinear functionals of a quantum state [78,82].

where (
ρ

(m)
θ+δ

)
i j = 〈λ̃i|ρ (m)

θ+δ|λ̃ j〉. (A7)

Note that the first term in the generalized fidelity can be
expressed as∣∣∣∣√ρ

(m)
θ

√
ρ

(m)
θ+δ

∣∣∣∣
1 = Tr

√∑
i, j

Ti j |λ̃i〉〈λ̃ j |. (A8)

As described in Ref. [45], since we have access to the cir-
cuit V †

β
that prepares the estimated eigenvectors |̃λi〉, then

the matrix elements (ρ (m)
θ+δ )i j can be efficiently estimated in

a quantum computer via a nonvariational algorithm. Hence,
with postprocessing, one can always classically create and
diagonalize the m × m T matrix to obtain (A8). This step is
efficient as we assume that m ∈ O[poly(n)]. Similarly, it is
straightforward to see that the second term in the general-
ized fidelity is also completely determined by {λ̃i}m

i=1 and by
(ρ (m)

θ+δ )i j (both of which are known ∀i, j = 1, . . . , m) as

F∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

) = Tr
√∑

i, j

Ti j |λ̃i〉〈λ̃ j |

+
√√√√(

1 −
∑

i

λ̃i

)(
1 −

∑
i

(
ρ

(m)
θ+δ

)
ii

)
.

(A9)

Hence both TQFI bounds can be obtained from the (known)
terms in (A9).

3. Computing SSQFI bounds

Here, we show how to estimate functionals of the form
Tr[ρσρσ ], which are needed to compute the SSQFI bounds.
The circuit in Fig. 6 can be used to estimate this quantity for n-
qubit quantum states ρ and σ . In general, linear and nonlinear
functionals of quantum states can be directly estimated using
what we refer to as the generalized SWAP test [78,82].

Let ρ and σ be n-qubit quantum states. Then in the standard
orthonormal basis for n qubits, we can write the first and
second copies of the states as

ρ =
∑

i

ai|i〉〈i|, σ =
∑

j

b j | j〉〈 j|,
(A10)

ρ =
∑

k

ck|k〉〈k|, σ =
∑

l

dl |l〉〈l |,
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where the boldface indices are bit strings of the form i =
i1i2 · · · in with i1, i2, . . . , in ∈ {0, 1}. Thus the initial state in
Fig. 6 is given as

ρin =
∑

i, j,k,l

aib jckdl |0, i, j, k, l〉〈0, i, j, k, l |. (A11)

The Hadamard gate transforms the standard basis vectors as

H |0〉 = 1√
2

(|0〉 + |1〉), (A12)

H |1〉 = 1√
2

(|0〉 − |1〉). (A13)

The cyclic shift operator (referred to as a permutation gate in
the main text), Sn, is defined by its action on a tensor product
basis for n-qubits:

Sn|ψ1, ψ2, . . . , ψn−1, ψn〉 = |ψn, ψ1, ψ2, . . . , ψn−1〉. (A14)

Note that in the case of n = 2, the cyclic shift operator is
simply the familiar SWAP operator [85]. Thus the action of the
gate sequence in Fig. 6 is

|0, i, j, k, l〉, (A15)

Hadamard−−−−−→ 1√
2

(|0, i, j, k, l〉 + |1, i, j, k, l〉), (A16)

controlled-Sn−−−−−−→ 1√
2

(|0, i, j, k, l〉 + |1, j, k, l, i, 〉), (A17)

Hadamard−−−−−→ 1

2
(|0, i, j, k, l〉 + |0, j, k, l, i, 〉). (A18)

Recalling Eq. (A11), one can see that the probability of mea-
suring the ancilla qubit in the |0〉 state is

p(0) = 1

2
+ 1

2

∑
i, j,k,l

aib jckdl 〈0, i, j, k, l |0, j, k, l, i〉 (A19)

= 1

2
+ 1

2

∑
i, j,k,l

aib jckdlδi jδ jkδklδl i (A20)

= 1

2
+ 1

2

∑
i

aibicidi, (A21)

p(0) = 1

2
+ 1

2
Tr[ρσρσ ]. (A22)

So, using a quantum computer with 4n + 1 qubits, one can di-
rectly estimate the functional Tr[ρσρσ ] using the probability
of measuring the ancillary qubit in the zero state. Moreover,
removing the second copies of ρ and σ , one is able to estimate
functionals of the form Tr[ρσ ] using the same method. In
that case, only 2n + 1 qubits are needed, and the cyclic shift
operator simply becomes the SWAP operator.

APPENDIX B: LOWER BOUND COMPARISON

In this Appendix, we first compare the conditions under
which the TQFI lower bound and the purity-loss bound of
Refs. [69,70] can saturate their inequalities and be equal to
the QFI. Then we present details of how the purity-loss bound
was computed in our heuristics.

1. Bound saturation

As shown below, while the TQFI bounds can always sat-
urate the bounds (and be efficiently computable) for states
with low rank r, the purity-loss bounds can never saturate the
inequality for r � 3. This implies that the VQFIE bounds can
always be tighter for low-rank states with r � 3.

First, let us recall that the TQFI bounds can be saturated
if m is equal to the rank r of the probe state. Moreover, since
one can estimate the truncated fidelities for m ∈ O[poly(n)],
this means that the TQFI bounds can be saturated for low-rank
states with r ∈ O[poly(n)].

Let us now analyze the purity-loss bound. In the main text
we defined the quantity

L(θ ; ρθ ) = 4(Tr[ρ2G2] − Tr[ρGρG])

= 2
∑
i, j

(λi − λ j )
2|〈λi|G|λ j〉|2, (B1)

which is a lower bound on the QFI as L(θ ; ρθ ) � I (θ ; ρθ ).
Then, from the definition of the quantum Fisher information
[32,33], we have

I (θ ; ρθ ) = 2
∑
i, j

(λi − λ j )2

λi + λ j
|〈λi|G|λ j〉|2. (B2)

From the fact that

1

λi + λ j
� 1, (B3)

it is easy to see that I (θ ; ρθ ) takes its minimum when

λi + λ j = 1. (B4)

The condition in (B4) implies that the QFI reaches its minima
when ρθ is either a rank-1 or a rank-2 state. Hence it is
straightforward to see that if (B4) holds, we have

I (θ ; ρθ ) = L(θ ; ρθ ). (B5)

However, for r � 3, the lower bound cannot saturate the in-
equality, so that we have the following strict inequality:

I (θ ; ρθ ) > L(θ ; ρθ ) when r � 3. (B6)

2. Heuristical computation of the purity loss

In this section we describe additional details of how ρave

was computed. As shown in Ref. [69] and as described in the
main text, the lower bound in (B1) can be approximated by

L(θ ; ρθ ) ≈ 2
�ν

(�x)2
, (B7)

where

�ν = Tr[ρ2] − Tr
[
ρ2

ave

]
(B8)

is the purity loss and where (�x)2 is the variance of the
random variable θ (x), which defines the statistical fluctuation
in the source. In Ref. [70], the authors proposed computing the
state ρave by using a stratified sampling technique. Namely,
they assumed that θ (x) is drawn from a discretized Gaussian
distribution G with K samples (or strata) and a variance (�x)2.
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That is,

ρave ≈ 1

K

K∑
j=1

ρθ j , (B9)

where ρθ j = Wθ j ρW †
θ j

and where θ j is taken from G. Hence the
purity of ρave can be expressed as

Tr
[
ρ2

ave

] ≈ 1

K2

K∑
j=1

Tr
[
ρ2

θ j

] + 2

K2

K∑
j<m

Tr
[
ρθ j ρθm

]
(B10)

and can be efficiently computed via (K2 + K )/2 destructive
SWAP tests [81] between the states ρθ j and ρθm for j � m.

As discussed in Ref. [70], the higher the number of strata
K , the better the approximation in (B7). Hence in order to
determine how many strata we use in our numerics, we here
propose to determine K so that the number of calls to a quan-
tum computer is the same when computing the TQFI lower
bound as that when computing the purity-loss bound.

First, let us determine how many calls to a quantum com-
puter are necessary when computing the TQFI. As previously
outlined, each iteration of VQFIE variationally diagonalizes
the probe state and usually requires the use of a gradient
descent algorithm over p parameters in Vβ. By employing
the parameter shift rule [86,87], this requires us to run 2p
quantum circuits. Moreover, the estimation of each gradient
to a precision of 1/

√
s requires s shots. In our numerical

implementation, the training algorithm in VQSE took t =
200. Hence, in each iteration of VQFIE where the subroutine
VQSE is run, we require 2st p calls to a quantum computer.
Finally, we remark that to guarantee the trainability of VQSE,
we assume a hardware-efficient Ansatz with log2(n) layers,

meaning that p = n log2(n). Then, as outlined in Ref. [45], the
fidelity computation requires one to estimate m eigenvalues up
to a precision of 1/

√
s. A conservative estimate assumes that

m = n eigenvalues are kept in the truncated state. Finally, as
described in the previous section, computing the TQFI bounds
requires the estimation of the matrix elements of the m × m
symmetric matrix T of Eq. (A6) up to a precision of 1/

√
s.

Here, we recall that there are (m2 + m)/2 independent matrix
elements in a symmetric matrix of size m × m. Hence, in total,
VQFIE requires

TQFI bound calls to quantum computer

= s

(
2tn log2(n) + n + n + n2

2

)
. (B11)

We turn now to the purity-loss bound. This bound requires
the estimation of Tr[ρ2] to a precision of 1/

√
s and also

implies the computation of Tr[ρ2
ave]. As previously discussed,

computing the purity of ρave requires estimating (K2 + K )/2
state overlaps up to precision 1/

√
s, where K is the number

of strata used for ρave. Hence the total number of calls to the
quantum computer will be

Purity bound calls to quantum computer = s

(
K2 + K

2
+ 1

)
.

(B12)

Finally, the number of strata K which leads to a fair com-
parison between the TQFI bound and the purity-loss bound
can be found by numerically solving

K2 + K

2
+ 1 = 2tn log2(n) + n + n + n2

2
. (B13)
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