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The calculation of excited state energies of
electronic structure Hamiltonians has many im-
portant applications, such as the calculation of
optical spectra and reaction rates. While low-
depth quantum algorithms, such as the varia-
tional quantum eigenvalue solver (VQE), have
been used to determine ground state ener-
gies, methods for calculating excited states cur-
rently involve the implementation of high-depth
controlled-unitaries or a large number of addi-
tional samples. Here we show how overlap esti-
mation can be used to deflate eigenstates once
they are found, enabling the calculation of ex-
cited state energies and their degeneracies. We
propose an implementation that requires the
same number of qubits as VQE and at most twice
the circuit depth. Our method is robust to con-
trol errors, is compatible with error-mitigation
strategies and can be implemented on near-term
quantum computers.

1 Introduction

Eigenvalue problems are ubiquitous in almost all fields
of science and engineering. Google’s PageRank al-
gorithm alone has had a significant impact on mod-
ern society, and at its core solves an eigenvalue prob-
lem associated with a stochastic matrix describing the
World Wide Web [28]. Another important example is
Principal Component Analysis (PCA) [13, 29], which
has widespread applications in bioinformatics, neuro-
science, image processing, and quantitative finance.
The time-independent Schrödinger equation provides

yet another example of a fundamental eigenvalue prob-
lem. Its numerical solution enables properties of atoms,
molecules and materials to be predicted, with far-
reaching applications in materials design, drug discov-
ery and fundamental science [38]. Characterisation of
excited state energies of molecules is required to predict
charge and energy transfer processes in photovoltaic
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materials, or to understand some chemical reactions,
such as those that involve photodissociation. However,
classical methods such as density functional theory are
often unable to determine excited states, even for ma-
terials where ground state energy calculations are pos-
sible.

Quantum computers have the potential to solve these
and other problems significantly faster than any known
methods using classical computers [1, 11, 19, 36]. How-
ever many quantum algorithms will require quantum
error correction, limiting their usefulness in the near
future [31]. Here we study hybrid quantum-classical al-
gorithms, which dramatically reduce the required gate
depth to run and somewhat mitigate errors, by closely
integrating classical and quantum subroutines [2, 9, 14,
15, 21, 23, 26, 40].

The variational quantum eigensolver (VQE), intro-
duced in Ref. [30], is the first algorithm designed to
find the lowest eigenvalue of a Hamiltonian on a near-
term, non-fault-tolerant quantum computer. VQE is
based on the variational principle and utilises the fact
that quantum computers can store quantum states us-
ing exponentially fewer resources than required classi-
cally. VQE uses parameterised quantum circuits to pre-
pare trial wavefunctions and compute their energy, and
a classical computer to find the parameters minimising
this energy. The low circuit depth of VQE has led to the
hope that it may enable near-term quantum-enhanced
computation.

Since its introduction, modifications have been sug-
gested to enable VQE to find excited state ener-
gies: e.g. a folded spectrum method [30] which re-
quires finding the expectation of the squared Hamil-
tonian with quadratically more terms, or symmetry-
based methods which are non-systematic [23]. Such
suggestions have been more recently superseded by
two proposals: a method that minimises the von Neu-
mann entropy [35] and the quantum subspace expansion
method [5, 24]. However, the von Neumann entropy
method (“WAVES”) requires a large number of high-
depth controlled-unitaries, and the quantum subspace
expansion method requires a large number of additional

Accepted in Quantum 2019-06-14, click title to verify 1

ar
X

iv
:1

80
5.

08
13

8v
5 

 [
qu

an
t-

ph
] 

 2
8 

Ju
n 

20
19

http://quantum-journal.org/?s=Variational%20Quantum%20Computation%20of%20Excited%20States&reason=title-click
https://orcid.org/0000-0001-9880-5218


samples compared to VQE and introduces a new ap-
proximation.
Our algorithm extends VQE to systematically find

excited states at almost no extra cost. We achieve this
by adding “overlap” terms onto the optimisation func-
tion in order to exploit the fact that Hermitian ma-
trices admit a complete set of orthogonal eigenvectors.
Exploiting further the fact that VQE retains the clas-
sical parameters of ansatz states that enable their re-
preparation, low-depth quantum circuits can then be
readily used to calculate these overlap terms.

2 Variational quantum deflation algo-

rithm

In VQE, the real parameters λ for the ansatz state
|ψ(λ)〉 are classically optimised with respect to the ex-
pectation value:

E(λ) := 〈ψ(λ)|H |ψ(λ)〉 =
∑

j

cj 〈ψ(λ)|Pj |ψ(λ)〉 , (1)

of the Hamiltonian H =
∑

cjPj , computed using a low-
depth quantum circuit. As a result of the variational
principle, finding the global minimum of E(λ) is equiv-
alent to finding the ground state energy of H. VQE
has been implemented on many experimental platforms,
and has been shown to be more resilient to control er-
rors than the quantum phase estimation algorithm [27].

Our method extends VQE to calculate the k-th ex-
cited state by instead optimising the parameters λk for
the ansatz state |ψ(λk)〉 such that the cost function:

F (λk) := 〈ψ(λk)|H |ψ(λk)〉 +
k−1
∑

i=0

βi |〈ψ(λk)|ψ(λi)〉|2 ,

(2)
is minimised. This can be seen as minimising E(λk)
subject to the constraint that |ψ(λk)〉 is orthogonal to
the states |ψ(λ0)〉 , ..., |ψ(λk−1)〉. In the next section, we
show how choosing sufficiently large β0, ..., βk−1 means
the minimum of F (λk) is guaranteed to be the energy
of the k-th state, provided that the ansatz is sufficiently
expressive.
While the first term in Eq. (2) is E(λk), and can

be computed using the same quantum circuits as used
for VQE, the second term is a sum of overlaps of the
ansatz state with states 0 to k − 1, and can be com-
puted efficiently on a quantum computer using one of
the methods given in Section 4.

Note that evaluating Eq. (2) requires knowledge of
λ0, ..., λk−1 and so an iterative procedure is required to
calculate the k-th eigenvalue. First, λ0 is calculated
using VQE by minimising E in Eq. (1). Then, λ1 is
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Figure 1: A schematic of our variational quantum deflation
method for finding the k-th excited state of a Hamiltonian H.

calculated by minimising F in Eq. (2) for k = 1, after
which λ2 can be determined using the same procedure
with the known λ0 and λ1, and so on until λk is deter-
mined.
A schematic of our variational quantum deflation

(VQD) algorithm is shown in Fig. 1. An initial guess of
λk is used to generate a state preparation circuit R(λk)
that prepares the state |ψ(λk)〉 when applied to the fidu-
cial state |0〉. This circuit is used repeatedly to compute
each of the expectation values 〈ψ(λk)|Pj |ψ(λk)〉 (see

Refs. [30, 40]) and overlap terms |〈ψ(λk)|ψ(λi)〉|2 for
i < k. The overlap terms are computed using circuits
described in Section 4 or Appendix B or by following
the method in Ref. [17].
A classical computer then uses the results of these

quantum computations to calculate the objective func-
tion F (λk) of Eq. (2) and update λk using a classi-
cal optimiser. The new λk is then used to prepare a
new ansatz state on the quantum computer, and the
whole process is repeated until some stopping criterion
is reached.
As shown in Appendix A, the total number of samples

M (k) required to measure the VQD objective function
to precision ǫ when finding the kth excited state (as-
suming states 0 . . . k − 1 can be perfectly prepared) is
bounded above by:

M (k) ≤ 1

ǫ2





L−1
∑

j=0

|cj | +
1

2

k−1
∑

i=0

βi





2

, (3)

compared to the VQE sampling cost of M ≤
1
ǫ2

(

∑L−1
j=0 |cj |

)2

. For well-chosen βi, we expect this ad-

ditional sampling cost relative to VQE to be very small,
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as explained in more detail in Appendix A.

3 Overlap weighting

An equivalent viewpoint of our optimisation procedure
is that we are finding the ground state of the effective
Hamiltonian at stage k:

Hk := H +

k−1
∑

i=0

βi |i〉 〈i| , (4)

where |i〉 is the (previously found) i-th eigenstate of H
with energy Ei := 〈i|H |i〉 1. It can be easily verified
that for an arbitrary state |ψ〉 :=

∑

ai |i〉:

〈ψ|Hk |ψ〉 =

k−1
∑

i=0

|ai|2(Ei + βi) +

d−1
∑

i=k

|ai|2Ei,

where d is the total number of eigenvectors of H.
Therefore, if the ansatz is sufficiently powerful, then

to guarantee a minimum at Ek, it suffices to choose
βi > Ek−Ei. Since ∆ := Ed−1−E0 ≥ Ek−Ei, it suffices
to possess an accurate estimate of ∆, e.g. by using VQE
to find E0 and then Ed−1 (using the Hamiltonian −H to
find the latter). When we readily have a specification of
H =

∑

cjPj as a linear combination of Pauli matrices,
e.g. when H is the electronic structure Hamiltonian,
then we have the upper bound ∆ ≤ 2‖H‖ ≤ 2

∑|cj |.
In this case, we can readily choose βi to guarantee the
validity of our procedure.
Choosing valid βi can also be self-correcting. For ex-

ample, if we incorrectly chose βi = γ − Ei ≤ Ek − Ei
for all i, we will discover that we have set βi too small
since we will eventually find a minimum at F (λk) = γ.
However, by repeating the algorithm with a larger γ
until an energy strictly less than γ is found (doubling
γ each time, say), we can pick a large enough γ after
O(log (Ek − E0)) runs of the algorithm.

4 Low-depth implementations

A low-depth method for overlap estimation, proposed
in Ref. [12], can be seen by writing the overlap
| 〈ψ(λi)|ψ(λk)〉 |2 as | 〈0|R(λi)

†R(λk) |0〉 |2. We can pre-
pare the state R(λi)

†R(λk) |0〉 using the trial state
preparation circuit followed by the inverse of the prepa-
ration circuit for the i-th previously-computed state.
The overlap is then estimated to precision ǫ by the
fraction of all-zero bitstrings when measuring this state
O(1/ǫ2) times in the computational basis.

1We assume these are true eigenstates with possibly non-

distinct energies.

This method requires knowing the inverse of the
preparation circuit for each previously-computed state,
R(λi)

†. While this inverse is often known in theory
by inverting gates in a decomposition of the original
preparation circuit, device errors may mean that the
implementation is inaccurate in practice. If we define
λ∗
i to be the optimal parameters originally found to pre-

pare the i-th state R(λ∗
i ) |0〉 using VQD, then its inverse

can be found by fixing λ∗
i and varying the trial state pa-

rameters λi such that the overlap | 〈0|R(λi)
†R(λ∗

i ) |0〉 |2
is maximised. This technique enables VQD to retain
the robustness to control errors that is characteristic of
VQE [27].
This implementation of VQD requires the same num-

ber of qubits as VQE and around twice the circuit
depth. In Appendix B, we describe an alternative
method which uses the destructive SWAP test and re-
quires almost the same circuit depth as VQE but twice
the number of qubits. If a larger gate-depth is avail-
able, then α-QPE [40] can be used to reduce the total
runtime of overlap estimation from O( 1

ǫ2 ) up to O( 1
ǫ
).
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Figure 2: All ground and excited state energy levels of H2 in the
STO-3G basis, calculated using exact diagonalisation (blue dot-
ted line) and our variational quantum deflation (VQD) method
(red filled circles) over a range of internuclear separations.

5 Numerical simulation: H2

We simulated VQD on H2 in the STO-3G basis for a
range of internuclear separations and compared it to
exact diagonalisation, as shown in Fig. 2. Using βi = 3
Ha for all i and a generalised unitary coupled cluster sin-
gles and doubles (UCCGSD) ansatz, the median error of
our method relative to exact diagonalisation is less than
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4×10−6 Ha for all energy levels, significantly better than
chemical accuracy of 1.6 × 10−3 Ha (the precision re-
quired to determine reaction rates to within an order of
magnitude at room temperature using the Eyring equa-
tion [8]). Our method finds all 6 eigenstates systemat-
ically, including all those in the 3-dimensional degener-
ate subspace spanned by the 1st, 2nd and 3rd excited
states. The ability to find degenerate states is another
key advantage of our method; the folded spectrum and
WAVES methods rely on the energies of states to dif-
ferentiate between them and have no systematic way of
determining the degeneracy of the eigenvalues. Further
discussion of our simulation, including optimiser and
ansatz used, can be found in Appendix C.

6 Error accumulation

In general, we cannot assume perfect state preparation
for states i < k. Suppose a state |ψ̃0〉 (with energy
Ẽ0) is prepared instead of the true ground state |ψ0〉
such that

∣

∣〈ψ̃0|ψ0〉
∣

∣

2
= 1 − ǫ0, leading to an error in

the ground state energy ǫ′0 = Ẽ0 − E0 = O(2ǫ0||H||).
If we now use this ground state estimate along with
VQD to find the first excited state |ψ1〉 using a new
trial state |ψ̃1〉, the lowest-energy state of the deflated
Hamiltonian no longer corresponds to the exact excited
state energy E1.
The inexact deflated Hamiltonian is now given by

H̃1 = H + β0 |ψ̃0〉 〈ψ̃0| and, to assess the accumulation
of errors, we wish to find upper and lower bounds for
minψ̃1

[〈ψ̃1| H̃1 |ψ̃1〉].
In Appendix D we show that, provided we set β0 >

E1−E0

1−ǫ0

, the ground state energy of the inexact deflated
Hamiltonian is bounded by terms linear in ǫ0:

E1 −O((E1 −E0)ǫ0) ≤ min
ψ

〈ψ| H̃1 |ψ〉 ≤ E1 +β0ǫ0. (5)

In reality we will not find the exact ground state of the
deflated Hamiltonian H̃1 and will incur an additional
error ǫ1 as was the case for the ground state of the
original Hamiltonian H. However, provided ǫ1 ≈ ǫ0,
our total error ǫ′1 = O(ǫ0β0 + 2ǫ1||H||) in the energy
is still linear in our original ground state error. An
alternative analysis of error accumulation is provided
by Lee et al. [18].
We analysed this accumulation of errors further

through numerical simulations of VQD in the presence
of sampling error, shown in Fig. 3. We analysed three
different sampling rates: M = 106, 107 and 108 sam-
ples per Hamiltonian subterm and overlap term, run-
ning 225 simulations of VQD (with random initial pa-
rameters) for each of these three scenarios. Of these
runs, ∼ 20% of the simulations found the eigenstates in
the incorrect order and were discarded for consistency

0 1 2 3 4 5
State (k)

10−4

10−3

M
ed

ia
n 

er
ro

r (
Ha

)

Chemical accuracy
108

107

106

Figure 3: Median error using VQD to determine each energy
level k in the spectrum of H2 at bond distance (0.7414 Å) in
the STO-3G basis. Red, blue and green lines show results using
106, 107 and 108 samples (per Hamiltonian subterm and over-
lap term) respectively. For the solid lines, the standard VQD
algorithm was used, whereas for dashed lines states i < k in
Hk were computed exactly for comparison. Chemical accuracy
(1.6 × 10−3 Ha) is also shown for reference (black solid line).
Error bars show 1σ standard errors for the median estimates
(calculated using bootstrap resampling [6]).

in the analysis. The median errors for the remaining
∼ 180 runs for each state k are shown in Fig. 3. For
comparison, we also simulated 130 runs (dashed lines)
using ‘exact‘ states i < k in Hk (< 10−7 energy error
in each state i < k). For all three sampling rates, the
median error in the first excited state is similar in mag-
nitude to the error in the ground state, as expected from
our analysis earlier in this section and in Appendix D.
Furthermore, the median errors for all states k < 4 are
very similar (for a givenM) to the errors when using an
exact Hk, and are all below chemical accuracy, demon-
strating that error accumulation is negligible for these
states. For k = 4 and k = 5 the accumulated error is
substantially higher than the error using an exact Hk,
however, showing that VQD is most effective for low-
lying states. Achieving chemical accuracy for k = 5
requires 107 samples, instead of 106 for 0 < k < 4.

One way to address this accumulation of errors within
VQD to find higher excited states may be to use the al-
ternative effective Hamiltonians discussed in Section 7.
Another solution is to use a hybrid approach, using
VQD instead of excitation operators in the WAVES pro-
tocol [35]. Here, VQD may provide a more effective
method of approximating excited states than the exci-
tation operators proposed in WAVES, whereas the von-
Neumann entropy “eigenstate witness” used in WAVES
does not have the same problem of error accumulation,
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and could help refine the energy estimate. Both of these
alternative approaches require a larger gate depth than
the version of VQD we have studied here, but may be
a good approach to finding higher excited states in the
era of fault-tolerant quantum computing.

7 Choice of effective Hamiltonian

The form of our effective Hamiltonian in Eq. (4) is only
one choice within the broad category of deflation meth-
ods. Such methods are typically employed to find eigen-
values and eigenvectors of positive semi-definite matri-
ces, often covariance matrices in the context of PCA,
starting from the largest eigenvalues.

To make direct use of deflation methods for posi-
tive semi-definite matrices, note that the Hamiltonian
H ′ := −H + E′ for some E′ ≥ Ed−1, e.g. E

′ = ‖H‖,
is positive semi-definite. Under this transformation,
we find that Hotelling’s deflation corresponds to our
method and would set βi = E′ − Ei in Eq. (4).

Other deflation methods exist such as projection de-
flation or Schur complement deflation which are de-
signed to address the problem of not obtaining true
eigenstates at each stage. These two methods, in con-
trast to Hotelling’s, ensure that the true ground state of
the effective Hamiltonian at each stage does not overlap
with the previously found eigenstate estimate irrespec-
tive of its accuracy. Empirically, these two methods
have been found to perform better than Hotelling’s in
the context of PCA on some datasets [20].

For example, in projection deflation, the effective
Hamiltonian at stage k is defined as:

Hk = A†
k(H − E′)Ak, (6)

where:

Ak :=

k−1
∏

i=0

(1 − |i〉 〈i|) ≈ 1 −
k−1
∑

i=0

|i〉 〈i| , (7)

and the last approximation holds when the previously
found eigenvectors |i〉 are truly orthogonal.

With this approximation, writing H again as a lin-
ear combination of Pauli matrices Pj , the value of
〈ψ|Hk |ψ〉 for an ansatz |ψ〉 is a linear combination of
terms of forms: 〈ψ|Pj |ψ〉, |〈ψ | i〉|2 as in Hotelling’s
deflation, but now additionally 〈ψ | i〉, 〈ψ|Pj |i〉 and
〈i|Pj |l〉 (for i, l < k). Without this approximation, we
also need to calculate 〈i | l〉. The important point now
is that all these additional terms can still be quantum
computed, e.g. following the method in Ref. [17].

8 Discussion

We have introduced a new method–variational quan-
tum deflation (VQD)–for calculating low-lying excited
state energies of quantum systems using a quantum
computer. Our method requires the same number of
qubits as the variational quantum eigensolver (VQE)
for ground state methods, at most twice the maximum
circuit depth (for any given ansatz) and a negligible in-
crease in the number of required measurements. By con-
trast, existing methods for quantum computing excited
states require a large overhead in resources compared
to ground state methods.

While we used a Nelder-Mead optimiser and UCCSD
ansatz in our simulation of molecular Hydrogen here,
we note that many other optimisers and ansatz circuits
can also be used for VQD. After the first version of
this paper was released, interesting work by Jones et al.
compared the use of two different optimisation methods
as applied to our protocol to calculate the spectrum of a
Lithium Hydride molecule [15]. More recently, work by
Lee et al. showed that using a multi-determinental ref-
erence state or their k-UpCCGSD ansatz can improve
the precision of finding the first excited state of N2 us-
ing VQD [18]. Further work could include numerical
analysis of different optimisers and ansatz circuits for
use within VQD in the presence of noise, as well as
the effectiveness of the alternative effective Hamiltoni-
ans presented in Section 7.

Given its low resource requirements and compatibil-
ity with error-mitigation techniques, we hope that VQD
may enable the quantum-enhanced computation of ex-
cited state energies in the near-future.

A Sampling cost

In VQE, the variance ǫ2 in the energy expectation value
〈H〉 after using Mj samples for the measurement of
each subterm 〈Pj〉 in the Hamiltonian H =

∑

cjPj is
bounded by [30, 33]:

ǫ2 =

L−1
∑

j=0

c2
jσ

2
j

Mj

(8)

=

L−1
∑

j=0

c2
j (1 − 〈Pj〉2

)

Mj

≤
L−1
∑

j=0

c2
j

Mj

. (9)

where σ2
j = Var [〈Pj〉] = 〈P 2

j 〉 − 〈Pj〉2
is the intrinsic

variance of the projective measurement of 〈Pj〉. Using
the method of Lagrange multipliers, Rubin et al. [33]
showed that the optimal choice of Mj to minimise the
total number of samples M =

∑

jMj used to achieve
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precision ǫ is:

Mj =
1

ǫ2
|cj |σj

L−1
∑

i=0

|ci|σi, (10)

which leads to a total number of samples

M =
1

ǫ2





L−1
∑

j=0

|cj |σj





2

≤ 1

ǫ2





L−1
∑

j=0

|cj |





2

. (11)

Assuming perfect state preparation for states i < k in
VQD, we find that the variance of the energy expecta-
tion value 〈Hk〉 of the deflated Hamiltonian Hk is in-
stead given by:

ǫ2 =

L−1
∑

j=0

c2
jσ

2
j

Mk
j

+

k−1
∑

i=0

β2
i σ̃i

2

M̃k
i

(12)

≤
L−1
∑

j=0

c2
j

Mk
j

+

k−1
∑

i=0

β2
i

4M̃k
i

(13)

where Mk
j is the number of samples used for measuring

〈Pj〉, M̃k
i is the number of samples used to estimate the

overlap of the ansatz with the ith previously found state
and σ̃i

2 = |〈i|k〉|2 (1 − |〈i|k〉|2) is the intrinsic variance
of this overlap measurement. From a straightforward
extension of the Lagrange multiplier approach used by
Rubin et al. [33], we now find the optimal Mk

j and M̃k
i

for the deflated Hamiltonian Hk to be:

Mk
j =

1

ǫ2
|cj |σj

(

L−1
∑

l=0

|cl|σl +

k−1
∑

i=0

βiσ̃i

)

, (14)

M̃k
i =

1

ǫ2
βiσ̃i





L−1
∑

j=0

|cj |σj +
k−1
∑

l=0

βlσ̃l



 . (15)

This leads to a total number of samples M (k) given by:

M (k) =

L−1
∑

j=0

Mk
j +

k−1
∑

i=0

M̃k
i (16)

=
1

ǫ2





L−1
∑

j=0

|cj |σj +

k−1
∑

i=0

βiσ̃i





2

(17)

≤ 1

ǫ2





L−1
∑

j=0

|cj | +
1

2

k−1
∑

i=0

βi





2

. (18)

From a comparison of M (k) with M we expect the
sampling overhead of VQD relative to VQE to be very
small, since the sum of the L = O(N4) Hamiltonian co-
efficients will likely be far larger than the sum of well-
chosen weights βi for low-lying excited states in prac-
tice. Furthermore, the variances σ̃i

2 tend to zero at con-
vergence. However, if we require precision ǫ throughout

the optimisation rather than just at convergence, and
if we choose βi = 2

∑L−1
j=0 |cj | since this always guaran-

tees βi is large enough, then we find M (k) = (1 + k)2M
(where we have used the upper bounds for both M (k)

and M).

B Destructive SWAP test

The SWAP test enables the overlap |〈φ|ψ〉|2 of two
states |ψ〉 and |φ〉 to be determined to precision ǫ us-
ing O(1/ǫ2) repeated measurements after applying a
circuit to a quantum register in the state |ψ〉 ⊗ |φ〉.
While the original SWAP test acting on two N -qubit
states required an ancilla and a controlled-SWAP gate,
leading to a 2N + 1-qubit circuit with depth O(N),
it was shown in Refs. [4, 10] that the same outcome
distribution can be attained more efficiently without
an ancilla, using parallel Bell-basis measurements and
classical logic. This so-called “destructive SWAP test”
(shown in Fig. 4) requires just 2N qubits and depth
O(1), achieving significant savings compared to the
original SWAP test.
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Figure 4: The N -qubit generalisation of the destructive SWAP
test as applied to two ansatz states |ψ(λi)〉 and |ψ(λk)〉, pre-
pared using state preparation circuits R(λi) and R(λk) respec-
tively.

If the ansatz used can be implemented on a linear
chain of qubits with nearest neighbour connectivity,
e.g. parameterised adiabatic state preparation using the
fermionic SWAP network Trotter step [16], then the
SWAP test to compare two ansatz states can be im-
plemented on a N × 2 nearest-neighbour grid quantum
computer architecture with a depth-one circuit that is
subgraph isomorphic to the architecture (i.e. no routing
of quantum information required). This implementa-
tion makes the assumption that the same ansatz state
can be prepared with the same parameters on two sepa-
rate registers of qubits. If this cannot be assumed (e.g. if
qubit errors are inhomogeneous), then the SWAP test
can be used to “copy” the state from the first register
to the second register, by maximising the overlap of the
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two states, with the parameters of the state on the sec-
ond register allowed to vary. This technique allows the
SWAP test implementation of VQD to maintain robust-
ness to control errors.

C Methods for numerical simulation

The standard UCCSD ansatz [32] is defined relative to
a reference state |ψ0〉 by:

|ψ〉 = eT−T † |ψ0〉 ,

where T := T1 + T2 with:

T1 :=
∑

i∈occ

l∈vir

tlia
†
mai,

T2 :=
∑

i,j∈occ

l,k∈vir

tlkija
†
l a

†
kaiaj ,

for some parameters tli, t
lk
ij ∈ R and occ and vir are the

sets of occupied and virtual orbitals of |ψ0〉.
We instead use a generalised unitary coupled cluster

ansatz (UCCGSD) with |ψ0〉 = |HF〉 set to the Hartree-
Fock state but with the cluster operator T = T1 + T2

now using the definitions:

T1 :=
∑

pq

tqpa
†
qap,

T2 :=
∑

pqrs

trspqa
†
ra

†
sapaq,

where p, q, r, s can now index any orbital (irrespective
of its occupation in the reference state). A variant of
this ansatz was suggested by McClean et al. [23] in the
context of VQE, and UCCGSD has since been investi-
gated numerically [18, 41]. Lee et al. found UCCGSD
to perform significantly better than UCCSD in VQE for
a number of small molecules [18].

Since we are only interested in the parameterisa-
tion of T − T †, and fermionic operators obey the anti-
commutation relations:

{aj , ak} = 0, {a†
j , a

†
k} = 0, {aj , a†

k} = δkj ,

it can be directly verified that there are only 6 and 3 in-
dependent parameters for T1 (e.g. t10, t

2
0, t

3
0, t

2
1, t

3
1, t

3
2)

and T2 (e.g. t23
01, t

13
02, t

12
03) respectively.

The results in Fig. 2 were simulated using ProjectQ
and FermiLib [25, 37]. A tolerance of 10−2 was used
with a Nelder-Mead optimiser (xatol=fatol=10−2, as
implemented in the scipy Python scientific library), and
the best of two consecutive (randomly initialised) runs
was used for each bond length and energy level. We note

that other optimisers, such as LGO, have been shown to
offer improved performance in VQE [23], and possible
further work includes analysis of alternative optimisa-
tion strategies in the context VQD.

While we initialised the UCCGSD parameters ran-
domly in this work, choosing a good initial guess for the
parameters can significantly reduce the number of itera-
tions required for the optimiser to converge. For ground
state VQE problems, second order Møller-Plesset per-
turbation theory (MP2) has previously been proposed
as a UCC ansatz initialisation method [32]. Another
method, for either ground or excited states, initialises
a UCC ansatz with optimised expectation values that
are classically estimated using a truncated BCH expan-
sion [18].

We also note that the overlap terms | 〈ψ(λk)|ψ(λi)〉 |2
in Eq. (2) of the state k with a known state i are sim-
ilar to the overlap terms | 〈ψ(λts)|ψ(λi)〉 |2 of the same
known state i with another previously-computed state
s (where i < s < k) in the t-th iteration of the VQD
optimisation procedure used to compute that state. It
may therefore be advantageous to cache the outputs of
these | 〈ψ(λts)|ψ(λi)〉 |2 terms, and use them to inform
and improve the optimisation procedure for the k-th
state, hopefully reducing the number of optimisation
steps and quantum circuits required.

D Bounds for error accumulation

In Section 6 we stated that, to assess the accumulation
of errors, we would like to find upper and lower bounds
for the ground state energy minψ[〈ψ| H̃1 |ψ〉] of the inex-
act deflated Hamiltonian H̃1 = H + β0 |ψ̃0〉 〈ψ̃0|, where
ψ̃0 is the (inexact) estimate of the ground state found
in the first iteration of VQD.
Using the same notation as in Section 6, and writ-

ing states in the eigenbasis of the Hamiltonian, |ψ̃0〉 =
∑d−1
i=0 ai |ψi〉 and |ψ̃1〉 =

∑d−1
i=0 bi |ψi〉, an O(β0ǫ0) up-

per bound is given straightforwardly by 〈ψ1| H̃1 |ψ1〉 ≤
E1 + β0ǫ0. Writing a→

1 := (a1, . . . , ad−1) and b→
1 :=

(b1, . . . , bd−1) for compactness, we find the lower bound
to be:

〈ψ̃1| H̃1 |ψ̃1〉 (19)

= |b0|2E0 +

d−1
∑

i=1

|bi|2Ei + β0|a∗
0b0 + 〈a→

1 , b
→
1 〉|2 (20)

= |b0|2(E0 + β0|a0|2) +
d−1
∑

i=1

|bi|2Ei

+ β0(2ℜ(a∗
0b0〈a→

1 , b
→
1 〉∗) + |〈a→

1 , b
→
1 〉|2) (21)

≥ |b0|2(E0 + β0(1 − ǫ0)) − |b0|(2β0
√
ǫ0)
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+ min
b→

1

d−1
∑

i=1

|bi|2Ei (22)

≥ |b0|2(β0(1 − ǫ0) − (E1 − E0))

− |b0|(2β0
√
ǫ0) + E1 (23)

≥ E1 − ǫ0
β2

0

β0(1 − ǫ0) − (E1 − E0)
. (24)

where the first inequality is Cauchy-Schwarz, the sec-
ond inequality follows from

∑d−1
i=0 |bi|2 = 1, and the

third inequality follows by minimising a quadratic over
|b0| (assuming β0 > E1−E0

1−ǫ0

). From the Taylor series
expansion in ǫ0 of the second inequality we find:

〈ψ̃1| H̃1 |ψ̃1〉 ≥ E1 − β0(E1 − E0)

β0 − (E1 − E0)
ǫ0 +O(ǫ20), (25)

from which it is clear that, for any fixed β0 >
E1−E0

1−ǫ0

,
we have a lower bound of:

min
ψ̃1

〈ψ̃1| H̃1 |ψ̃1〉 ≥ E1 −O((E1 − E0)ǫ0). (26)

E Symmetry constraints

It is often the case that the Hilbert space of the Hamil-
tonian being considered is larger than the Hilbert space
relevant to the particular problem of interest. For ex-
ample, consider the electronic structure Hamiltonian in
second quantised form:

H =
∑

ij

hija
†
iaj +

∑

ijkl

hijkla
†
ia

†
jakal, (27)

where a†
i and ai are the fermionic creation and anni-

hilation operators for an electron in the i-th spin or-
bital, and where the coefficients hij and hijkl denote the
one- and two-electron integrals, respectively. After the
Hamiltonian is transformed through the Jordan-Wigner
or Bravyi-Kitaev transformation, converting creation
and annihilation operators into qubit operators, the di-
mension of the Hilbert space remains 2N , whereN is the
number of spin orbitals. However, if one is interested
only in states with a particular symmetry, the dimen-
sion of the Hilbert space restricted only to these states
can be much smaller, e.g.

(

N
η

)

= O(Nη) instead of 2N

if only η-electron states are of interest.

If we wish to apply VQD to find excited states of a
molecular Hamiltonian with a particular symmetry, it
is necessary that the ansatz state for a desired excited
state, at the global minimum of Eq. (2), be contained
entirely within the restricted Hilbert space of interest.
One way of ensuring this is to use an ansatz that al-
ways conserves the correct symmetry. For example, the

fermionic unitary coupled cluster ansatz we use in Sec-
tion 5 conserves the desired number of electrons (η = 2)
of neutral molecular Hydrogen for all input parameters.

Alternatively, penalty terms can be included in the
objective function such that the ansatz state has the
desired symmetry at the global minimum of the objec-
tive function [23, 34]. This leads to a modified objective
function:

FC(λk) := F (λk) +
∑

i

µi
[

〈ψ(λk)| Ĉi |ψ(λk)〉 − ci
]2
,

(28)
where Ĉi are symmetry constraining operators (e.g. N̂e,

Ŝ2, Ŝz) and ci are constants corresponding to their de-
sired expectation values.

Clearly, by incorporating any of these techniques, we
can find the excited states of a Hamiltonian constrained
to any particular symmetry of interest.

F Error mitigation

In Refs. [3, 22, 34], an error-mitigating post-processing
procedure was introduced that uses the operators Ĉi
(defined in Appendix E) to detect and discard all mea-
surements that violate a required symmetry for energy
expectation circuits in VQE-type algorithms. This pro-
cedure can produce more accurate expectation values in
the presence of bit-flip errors and some combinations of
two-qubit errors.

After the first version of this paper was released,
Ref. [15] incorporated our VQD technique to calcu-
late excited states using imaginary time evolution. The
authors also proposed a method to detect symmetry-
breaking errors when using the ancilla-based SWAP-
test, by performing symmetry measurements on the
ansatz registers while measuring the overlap with the
ancilla. However, using the low-depth overlap estima-
tion circuit given in Section 4, we can detect and dis-
card any error that does not commute with a symmetry
operator Ĉi using classical post-processing alone, pro-
vided that Ĉi is diagonal in the computational basis and
commutes with the ansatz. In the Jordan-Wigner and
Bravyi-Kitaev encodings, the operators for the num-
ber of electrons N̂e, spin up electrons N̂↑ and spin

down electrons N̂↓ are diagonal in the computational
basis, allowing these quantities to be computed classi-
cally in post-processing for both encodings. For exam-
ple, starting from |0〉, the UCC ansatz is prepared by
RUCC(λ) = V (λ)RHF, where RHF prepares the Hartree-

Fock state |HF〉 and V := eT−T †

is the UCC opera-
tor. Now, rather than measuring the fraction of all-zero
bitstrings after performing RUCC(λi)

†RUCC(λk) |0〉 =

R†
HF
V (λi)

†V (λk)RHF |0〉, we can instead measure the
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fraction of bitstrings corresponding to |HF〉 after per-
forming V (λi)

†V (λk)RHF |0〉. Since V conserves elec-
tron number, we know that all measured bitstrings that
do not correspond to the correct electron number can be
discarded as per the post-processing procedure. There-
fore, this method for error-mitigated overlap estimation
is more efficient than the ancilla-based method proposed
in Ref. [15] if Ĉi is diagonal in the computational ba-
sis. We also note that the error-mitigation techniques
proposed in Refs. [7, 39] can be readily applied to our
algorithm.
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