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We show that the formalism of tensor-network states, such as the matrix-product states (MPS), can be
used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method,
we demonstrate the potential of this approach by explicit MPS calculations for the transverse Ising chain
with up to N = 256 spins at criticality, using periodic boundary conditions and D X D matrices with D up
to 48. The computational cost of our scheme formally scales as ND*, whereas standard MPS approaches
and the related density matrix renormalization group method scale as ND> and ND°®, respectively, for

periodic systems.
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Devising unbiased computational methods for corre-
lated quantum many-body systems remains one of the
greatest challenges in theoretical physics. Considerable
progress has been made in recent years. Quantum
Monte Carlo (QMC) methods with efficient loop-cluster
updates [1-3] now enable simulations of certain classes of
spin and boson Hamiltonians on very large lattices—up to
>10* sites essentially in the ground state and considerably
more at elevated temperatures. Modern projector QMC
methods [4] can also access large lattices. Both approaches
are already contributing significantly to forefront areas of
condensed matter physics, e.g., studies of exotic quantum
phase transitions in antiferromagnets [5]. However, be-
cause of ‘“‘sign problems” [6,7], most fermion systems in
more than one dimension and spin models with frustrated
interactions are intractable to QMC simulations. The den-
sity matrix renormalization group (DMRG) method [8,9],
on the other hand, can produce essentially exact results for
one-dimensional fermion systems and frustrated spins, in-
cluding systems of a few coupled chains (ladders) [10].
These calculations are often restricted to open boundary
conditions, however, which sometimes can be problematic.
A more severe limitation is the exponential scaling in the
computational complexity for systems with two or more
dimensions [11].

The underlying reason for the problems with DMRG in
higher dimensions has recently been identified as the in-
ability of matrix-product states (MPS), which are produced
by the DMRG method [12], to properly account for en-
tanglement in dimensions higher than one [13]. In order to
overcome this limitation, a generalization of the MPS was
proposed—the projected-entangled pair states (PEPS)
[14]. These states are based on tensor-product networks
[15], which are contracted using an approximate scheme.
While this approach is very promising, practical applica-
tions are still hampered by the severe increase of the
computational effort with the size D of the tensors in two
dimensions. The scaling is typically ~D'?, and calcula-
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tions are therefore currently restricted to very small D ~
2-5 [16-18]. Developing schemes with a more favorable
D scaling is therefore a high priority.

In principle, MPS and PEPS can be used in variational
QMC calculations. Sampling the physical states, instead of
contracting the tensor network over those indices, formally
reduces the scaling in D [19]. In practice, it is not clear how
much can be achieved this way, however. An efficient
method is required to optimize tensors with hundreds or
thousands of independent parameters, based on noisy
Monte Carlo estimates of the energy and its derivatives.
In this Letter we demonstrate that such a program is
actually feasible. We develop a method based on a stochas-
tic optimization scheme [21], which requires only the first
energy derivatives. Here we focus on MPS for simplicity,
but the scheme can be applied to more generic tensor
networks, e.g., PEPS, as well. We test the method on the
Ising chain in a transverse external field,

L
H ==Y (dio},, + hoy), (1)
i=1

where o} and o7 are the standard Pauli matrices. This
system undergoes a quantum phase transition from a
ground state with long-range Ising order in the z direction
for h <1 to a state with disordered z components when
h > 1. We here consider exclusively the computationally
most challenging 2 = 1 critical point.

For a periodic chain, a translationally invariant matrix-

product state with momentum k = 0 is of the form [12]

W) = ZTY{A(Sl)A(Sz) o Alsy)Ylsy, so, e sy, (2
{s}

where the spins s; = *1 are the eigenvalues of o¢ and
A(*1) are two D X D matrices (for a nontranslationally
invariant system the matrices would be site dependent). We
here take the matrices to be real and symmetric, which,
from properties of the trace, corresponds to a s; — Sy—;+1
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reflection symmetric state. The ground state should also be
invariant with respect to spin inversion; s; — —s; for all i.
A sufficient condition for this is that A(*1) are related by a
transformation U such that U 'A(1)U = A(—1) and
U~ 'A(—1)U = A(1), which implies U?> = I (the identity
matrix). For simplicity, and because of indications that a
greater flexibility of the matrices is advantageous for the
optimization, we here only enforce the weaker condition
that A(1) and A(—1) have identical eigenvalues, using a
scheme discussed below.

Our goal is to find the matrix elements a} s == 1, that
minimize the MPS energy E = (H). Denoting the wave
function coefficient for state |S) = |sq, ..., Sy)

W(S) = Tr{A(s))A(s) - - - Alsy)}, 3)

the energy, for given matrices A(*1), can be written in the
form appropriate for Monte Carlo sampling:

E= SWASES),  Z=3WAS), @
N N

where E(S) is the estimator

ZCEDY VVVV((‘;)) (S'IHIS). 5)

The energy can be evaluated using importance sampling of
the spin configurations according to the weight W?(S); E =
(E(S)). Our scheme also requires the derivatives of the
energy with respect to the matrix elements:

E
day, — AAL(S)E(S)) — 2(AL(SINES),  (6)

where we have defined

AS = — . 7

J
=
—~
9%)
~
o1}
Q
>

Introducing the matrices
B(m) = A(sy11) - - - Alsy)A(s) - - - Alsy—1),  (8)
the derivative of the weight (3) is

aW(S): 1 N

day, 175, 2 Bum B, )

We sample the states by generating successive con-
figurations from a stored S by single-spin flips; s,, —
—s,,- We denote the new tentative configuration S!,.
Visiting the spins sequentially, m = 1,2,..., N, we flip
them according to the METROPOLIS probability: Pg;, =
min[W2(S},)/W?*(S),1]. To evaluate Pg;,, we use the
cyclic property of the trace and write the new coeffi-
cient as W(S!,) = Tr{A(—s,,)B(m)}. Further, we write the
matrix B(m) in Eq. (8) as a product of left and right
matrices B(m) = L(m + 1)R(m — 1), where L(m)=
A(s,,) -+ A(sy) and R(m) = A(s;) - - - A(s,,). We also de-
fine L(N + 1) = R(0) = I. Before starting the updating
process, we calculate and store the left matrices

L(2),...,L(N), based on the initial spin configuration
(random or from a previous run). Each successive spin-
flip attempt then requires only one matrix multiplication,
and another for advancing the right matrix: R(m) = R(m —
1)A(s,,). Since L(m) is no longer needed at this stage, we
store R(m) in its place for future use.

Diagonal quantities, e.g., the Ising part of the energy,
E, = —>,0%0%,,, can be simply obtained by averaging
the appropriate spin correlations in the stored state |S). To
calculate off-diagonal quantities, ratios W(S')/W(S) are
needed. After a full sweep of spin updates, all the matrices
R(m) have been generated and stored. We can use them to
speedily measure the off-diagonal energy E, = hY (o] +
o), the estimator of which is

< W(Sh)
E(S) = hm; W)

(10)

as well as the derivatives (9). To evaluate the sums, we now
traverse the system from m = N to 1, and in the process
generate the left matrices L(m) and store them in the place
of R(m). Once this process is completed, we again have
what we need to carry out an updating sweep in the manner
described above. A full updating sweep, including mea-
surements, thus requires 4N matrix multiplications (plus
operations that have a lower scaling in D), giving a formal
scaling ND? of the algorithm.

Carrying out successive simulations with fixed matrices
A(=1), the energy and derivatives obtained on the basis of
some number F of spin-flip sweeps (referred to as one
simulation bin) are used to update the matrix elements with
J = i according to (and subsequently a}; = a};) [21]

aj; — aj; — 8(k)ri;sgn(0E/da)). (11)

Here rj; €[0,1) is random and &(k) is the maximum

change, which decreases as a function of a counter k =
0,1, .... Thus, instead of moving in the direction of the
approximately evaluated gradient, as in standard stochastic
optimization [22,23], each parameter is changed indepen-
dently, using the “correct’ sign but with a random and well
bounded magnitude for the step. This results in a very
stable optimization ideally suited for problems with large
numbers of parameters. For the gradual reduction of 8, we
here use a geometric form, § = §,QF, with, typically, Q =
0.9-0.95, but other forms also work well, e.g., § = 6ok~ ¢,
with @ € [1/2, 1]. For each k, we complete a number, G,
of bins, each followed by updates of the matrix elements.
The number of sweeps per bin, F, as well as G are
increased with k. The rationale behind increasing F(k) is
that, as we approach the energy minimum, the derivatives
will become smaller and require more sampling in order
not to be dominated by noise [24]. Increasing G leads
effectively to a slower “cooling” rate. We typically use a
linear dependence in both cases: F' = Fyk, G = Gyk. We
output the energy and its statistical error computed on the
basis of the G bins before each increment of k. Since F and
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TABLE 1. Variational QMC results for the critical transverse
Ising chain compared with the exact solution [25]. The error bars
of the MPS energies are =~ 108 or smaller.

N D E/NMPS) E/N(ex) M?>(MPS) M? (ex.)

16 12 —1.27528715 —1.27528715 0.52233(2) 0.522332
32 16 —1.27375097 —1.27375102 0.44076(5) 0.440795
64 20 —1.27336736 —1.27336739 0.37151(9) 0.371455
128 32 —1.27327145 —1.27327150 0.3126(1) 0.312752
256 48 —1.27324731 —1.27324753 0.2630(2) 0.263192

G increase with k, the error bars will decrease. For a
sufficiently long run, if the cooling is slow enough, the
calculated Ep (k) should approach the optimal energy for a
given matrix size D.

As we already mentioned, we wish to enforce the prop-
erty that A(—1) and A(1) have the same eigenvalues. We do
this after each adjustment of the matrix elements, by
diagonalizing both matrices and averaging their eigenval-
ues. The averaged diagonal matrix is then transformed
back using the diagonalizing matrices for the original
A(=1). If we do not carry out this diagonalization step,
we still in practice do obtain matrices with approximately
equal eigenvalue spectra. However, enforcing this condi-
tion exactly seems to have favorable effects on the ability
of the optimization method to quickly converge to a spin-
inversion invariant ground state. We normalize the matri-
ces so that the largest element Iafjl = 1.

It should be noted that the optimal matrices are not
unique—there is a huge degeneracy in terms of simulta-
neous transformations of A(=*1) that leave the trace invari-
ant. This may also be an advantage in the optimization, as
we are not trying to locate a point, but only reach some
large hypersurface in parameter space.

In Fig. 1 we show an example of the convergence of the
optimization for a 16-site chain, using D = 8 and starting
from random A(=1). The initial maximum parameter shift
was 8, = 0.05. We compare with a run that started from
matrices resulting from a calculation with D = 6 (with the
new matrix elements in the larger matrices generated at
random in the range [ — 8, 4]), which allows for a smaller
initial step 6y = 0.005. The latter calculation produces a
marginally lower energy, showing that the cooling rate in
the former case was slightly too fast—cooling slower we
obtain consistent results.

It is useful to start the optimization for some N and D
from A(*1) previously obtained for a smaller N and the
same D, or the same N and smaller D. Another good
strategy is to first do a short run with a large 6, = 0.1 to
achieve convergence only approximately, and then to re-
start the calculation with a smaller &, [but much larger than
the smallest 6(k) reached previously]. After a few such
restarts there are typically no further changes in the mini-
mum energy reached.

We do not claim that the cooling protocol presented
above is optimal; further improvements could potentially
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FIG. 1 (color online). Main panel: Convergence of the energy
per site of a 16-site system at 4 = 1, using D = § and starting
from random matrices. The cooling parameters were Q = 0.9,
69 = 0.05, Gy = 10, F, = 100. Inset: The later stages of the
simulation on a more detailed scale, and a comparison with a run
which started from a converged D = 6 calculation (lower curve);
here 6, = 0.005, G, = 5, Fy = 50.

lead to considerable efficiency gains. However, even as it
stands now the scheme performs remarkably well.

We now compare simulation results with the exact so-
lution [25] of the critical transverse Ising chain. We con-
sider the energy as well as the square magnetization:
M? = (3,;0%)?/N*. The convergence with D is illustrated
in Fig. 2. In the case of the energy, a desired relative
accuracy requires a D which eventually approaches a
constant for large N. The squared magnetization is directly
related to the long-distance physics, however, and our
results are consistent with the expectation that D has to
grow as some power, D ~ N, to achieve a given relative
accuracy. From Fig. 2 we obtain, roughly, « in the range
0.5-1. The statistical errors in Fig. 2 are smaller than the
symbols. The slight jaggedness of the curves for L = 256,
in particular, reflects the fact that it is not possible in
practice to reach the optimum exactly. Nevertheless, it is

(E,-E)/IEI

)
T
I

™M, M

FIG. 2 (color online). Relative error of the energy and squared
magnetization versus the matrix dimension D.
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clear from these tests that our scheme allows for a system-
atic approach to the ground state.

In Table I we show results for the largest D considered
for each N. The statistical errors of the energies are not
shown, but are at most =2 in the last digit (i.e., 10~%). For a
variational wave function that can exactly reproduce the
exact ground state, which should be the case here for D —
oo, the fluctuations in the energy should vanish. We indeed
observe a strong reduction of the statistical errors of Ep, (k)
with increasing D, as reflected in the very small error bars.
For N > 16, there is still some small discrepancies beyond
statistical errors, which we believe are not due to the finite
D but incomplete optimization. The ability of a stochastic
scheme to reach so close to the optimum is still quite
remarkable.

We have also carried out simulations with general non-
symmetric matrices. In order to strictly enforce the lattice
reflection and spin-inversion symmetries, we then use a
wave function with a trace of four different matrix products
related to each other by these symmetries, i.e.,

W(S) = Tr{P(S) + P(Sg) + P(=S) + P(—=Sp)}, (12)

where P(S) = A(s;) - -A(sy), and —S and Sy are ob-
tained by, respectively, spin-inverting and reflecting the
configuration S. For given D, this wave function has a
lower optimum energy than one with a single product
P(S). The energy is also better than for the symmetric
matrices discussed above. The computational effort is
higher by a factor of 4, however, and the optimization
converges slightly slower. An advantage of spin-
symmetrizing according to Eq. 12, instead of enforcing
equal A(*1) eigenvalues, is that matrix diagonalizations,
with potential instabilities for large D, are avoided.

In summary, we have demonstrated that the variational
QMC approach can be successfully combined with the
versatility of tensor-network states, for a sign-problem
free and systematically refinable (through the tensor di-
mension D) generic many-body method. The scaling with
the matrix size D in the case of MPS for periodic chains is
formally reduced from D3 [20] to D3, and similar reduc-
tions are possible with tensor networks in higher dimen-
sions [19]. There may, of course, be some further
nonobvious D dependence in the convergence properties
of the sampling and optimization schemes—it is clear that
stochastic optimization will be difficult in practice for D
much larger than the maximum D = 48 considered here. It
should be noted, however, that other MPS schemes, as well
as DMRG, also have convergence issues beyond the formal
scaling in N and D.

At the late stages of completing this work we became
aware of Ref. [26], where a different QMC approach is
proposed in the same spirit and applied to “‘string” states.

A.W.S. thanks Y.-J. Kao for stimulating discussions.
This work was supported by the NSF under Grant
No. DMR-0513930 (A.W.S.) and by the Australian
Research Council Grant No. FF0668731 (G.V.). A.W.S.

also gratefully acknowledges support from the National
Center for Theoretical Sciences, Hsinchu, Taiwan.

[1] H.G. Evertz, Adv. Phys. 52, 1 (2003).

[2] N.V. Prokofév, B.V. Svistunov, and I.S. Tupitsyn, Zh.
Eksp. Teor. Fiz. 114, 570 (1998) [JETP 87, 310 (1998)].

[3] O.F. Syljuasen and A.W. Sandvik, Phys. Rev. E 66,
046701 (2002).

[4] A.W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).

[5] A.W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007); R. G.
Melko and R.K. Kaul, arXiv:0707.2961; K. Harada,
N. Kawashima, and M. Troyer, arXiv:cond-mat/0608446.

[6] E.Y. Loh et al., Phys. Rev. B 41, 9301 (1990).

[7]1 P. Henelius and A.W. Sandvik, Phys. Rev. B 62, 1102
(2000).

[8] S.R. White, Phys. Rev. Lett. 69, 2863 (1992).

[9] U. Schollwock, Rev. Mod. Phys. 77, 259 (2005).

[10] S.R. White and D.J. Scalapino, Phys. Rev. Lett. 91,
136403 (2003).

[11] S. Liang and H. Pang, Phys. Rev. B 49, 9214 (1994).

[12] S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537
(1995).

[13] G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.
Lett. 90, 227902 (2003).

[14] F. Verstraete and J. 1. Cirac, arXiv:cond-mat/0407066.

[15] T. Nishino et al., Nucl. Phys. B5S75, 504 (2000).

[16] A. Isacsson and O.F. Syljuasen, Phys. Rev. E 74, 026701
(2006).

[17] V. Murg, F. Verstraete, and J.1. Cirac, Phys. Rev. A 75,
033605 (2007).

[18] J.Jordan, R. Oris, G. Vidal, F. Verstraete, and J.I. Cirac,
arXiv:cond-mat/0703788.

[19] The scaling with MPS is reduced from D? and D> [20] for
open and periodic boundaries, respectively, to D> and D3.
For PEPS with open boundaries the scaling goes from
D8D? = D' [17] to D*D? + D*D"* = D°, where D ~
D? and D' = D are the ranks of the boundary MPS
employed in the contraction. A reduction of several
powers of D is also achieved in the case of PEPS with
cylinder and torus boundary conditions.

[20] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93,
227205 (2004).

[21] J. Lou and A.W. Sandvik, Phys. Rev. B 76, 104432
(2007).

[22] H. Robbins and S. Monro, Ann. Math. Stat. 22, 400
(1951); J.C. Spall, in Wiley Encyclopedia of Electrical
and Electronics Engineering, edited by J.G. Webster
(Wiley, New York, 1999), Vol. 20.

[23] A. Harju, B. Barbiellini, S. Siljaméki, R. M. Nieminen,
and G. Ortiz, Phys. Rev. Lett. 79, 1173 (1997).

[24] Stochastic optimization takes advantage of noise [22], but
there is some limit beyond which too many errors in the
signs of the derivatives are detrimental.

[25] T.W. Burkhardt and 1. Guim, J. Phys. A 18, L33 (1985);
T. D. Shultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.
36, 856 (1964).

[26] N. Schuch, M.M. Wolf, E. Verstraete, and J.I. Cirac,
arXiv:0708.1567.

220602-4





