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Quantum process tomography is an experimental technique to fully characterize an unknown quantum process.
Standard quantum process tomography suffers from exponentially scaling of the number of measurements
with the increasing system size. In this work, we put forward a quantum machine learning algorithm which
approximately encodes the unknown unitary quantum process into a relatively shallow depth parametric quan-
tum circuit. We demonstrate our method by reconstructing the unitary quantum processes resulting from the
quantum Hamiltonian evolution and random quantum circuits up to eight qubits. Results show that those quantum
processes could be reconstructed with high fidelity, while the number of input states required are at least two
orders of magnitude less than required by the standard quantum process tomography.

DOI: 10.1103/PhysRevA.105.032427

I. INTRODUCTION

Quantum process tomography is an indispensable tech-
nique in quantum information processing to fully characterize
an unknown quantum process [1]. It is increasingly pivotal
in identifying and verifying the performance of a quantum
device and its dynamics when the system goes larger.

Standard quantum process tomography (SQPT) works by
preparing an informationally complete set of input states and
then performing the standard quantum state tomography on
the corresponding output quantum states [2–4]. As a result,
the total number of quantum measurements scales as 42n for
an n-qubit quantum process. The exponential growth severely
limits the problem size on which SQPT can be feasibly
applied. Currently, SQPT has only been experimentally im-
plemented up to three qubits [5–10]. In the meantime, with the
rapid development of quantum computing hardware [11–13],
scalable quantum process tomography schemes are in great
demand.

Various schemes have been proposed to alleviate the
exponential scaling problem of SQPT. For example, ancilla-
assisted process tomography could reduce the exponential
number of input states to a single entangled state [3,14,15],
and direct characterization of quantum dynamics (DCQD)
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could reduce the total number of configurations from 42n to
4n [16,17]. In general, the exponential scaling is unavoidable
to reconstruct a generic quantum process. However, by as-
suming certain structures of the unknown quantum process,
the number of configurations can be significantly reduced.
Such examples include compressed sensing quantum pro-
cess tomography that assumes the measurement outcomes are
sparse [18], and tensor-network-states-based quantum process
tomography, which assumes a low entanglement structure of
the underlying quantum process [19,20]. Recently, quantum
machine learning combined with parametric quantum circuit
(PQC) has received extensive focus [21–26]. Specifically, the
authors of Ref. [26] showed that it was reasonable to compile
an unknown unitary process into a parametric quantum circuit,
however, it suffered from double amounts of qubits. The au-
thors of Ref. [27] also demonstrated that one could efficiently
encode the information of certain quantum states into a PQC
using a gradient-based quantum machine learning algorithm,
after which the unknown quantum state can be reconstructed
classically with high fidelity using the optimal parameters of
the PQC.

In this work, we propose a supervised quantum machine
learning algorithm for quantum process tomography, which
is also a continuation of Ref. [27]. As shown in Fig. 1, we
use a PQC of certain depth d to approximate the unknown
quantum process denoted by U , where �θ is a list of parameters
to be optimized in this PQC. To learn the information of U , we
randomly prepare a set of N random quantum states |ψ j〉, each
of which is separately fed into the unknown quantum process
and the PQC. Then, as long as each pair of output quantum
states U |ψ j〉 and C(�θ )|ψ j〉 are equal to each other and N
is large enough, the unitary operation represented by C(�θ )
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FIG. 1. Scheme of variational quantum process tomography.
Panel (a) illustrates the procedures of standard quantum process
tomography. The information of the unknown quantum process is
learned by 4n pairs of inputs and outputs for an n-qubit quantum
process U . Panel (b) gives a general framework of our method. We
build a loss function f to evaluate the distance between U and C(�θ ).
By training the PQC with the quantum states in the training set and
validation set, and optimizing the parameters in C(�θ ) based on a
gradient-descending approach, the PQC gradually approximates the
physical quantum process U . Panel (c) shows the structure of the
parametric quantum circuit which begins and ends with a single-
qubit layer. Each two-qubit layer is counted as a depth and the circuit
contains d depths of operations and ends with a single-qubit layer.

should be approximate to U . As a result, all the information of
U are stored in the parameters �θ and we can systematically re-
construct U from those parameters using a classical computer.
Interestingly, during the training process, we use an additional
set of random input states as the validation set, similar to that
used in classical machine learning algorithms, which tests the
generalization ability of the training outcomes for a particular
PQC and set of input states.

Compared to its alternatives, our approach has several ad-
vantages. First, near-term quantum computers or simulators
may only be able to faithfully run a quantum process with
limited depths, therefore, it is reasonable that the same process
could be reproduced by a parametric quantum circuit with a
relatively low depth. However, the amount of entanglement
produced by such quantum computers could be huge [12,13],
in which case the tensor-network-states-based methods would
be invalid. Second, our approach only requires to measure a
single qubit for each configuration, hence it is less prone to
errors with relatively shallow circuit and simple measurement
[12,13]. Lastly, with a small number of input states, our ap-
proach may already be able to reconstruct U with very high
fidelity. We demonstrate our approach on the reconstruction
of two unitary processes produced by quantum Hamiltonian
evolution and random quantum circuits, respectively. In both
examples our numerical results show that we could recon-
struct a quantum process up to eight qubits with a similarity
value [defined in Eq. (6)] higher than 99%, and the number of
required input quantum states is smaller than that required by
SQPT by at least two orders of magnitude.

This paper is organized as follows. In Sec. II, we introduce
the scheme of our quantum machine learning algorithm for
quantum process tomography. In Sec. III, we demonstrate our
method with numerical simulations of quantum process to-
mography for the time evolution of a quantum XXZ spin chain
and the randomly generated quantum circuit. We conclude in
Sec. IV.

II. APPROXIMATING UNITARY QUANTUM PROCESSES
WITH PARAMETRIC QUANTUM CIRCUIT

Our quantum machine algorithm is composed of three
parts: design of the PQC, training, and validation, which are
shown in Figs. 1(b) and 1(c). Figure 1(a) shows the procedures
of standard quantum process tomography as a comparison. In
the following, we present the details of each component.

A. Parametric quantum circuit

The design of our PQC is shown in Fig. 1(c), where inter-
laced layers of single-qubit gates and two-qubits controlled-
NOT (CNOT) gates are used. It is designed to quickly generate
entanglement between qubits, thus make it possible to ap-
proximate complicated quantum processes. In practice, the
design of the PQC should also take the underlying quantum
hardware into consideration, especially the choice as well as
the pattern of the two-qubit gates. Each two-qubit layer is
counted as a depth and is varied between odd and even depth.
Each single-qubit layer contains three rotational gates (Rz, Ry,
and Rz) on each qubit, where Ry and Rz are defined as

Ry(θ ) =
[

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

]
, (1)

Rz(θ ) =
[

e−i θ
2 0

0 ei θ
2

]
. (2)

The sequence Rz, Ry, and Rz makes sure that arbitrary single-
qubit rotations can be produced with appropriate parameters.
Our PQC ends with a single-qubit layer. As a result, for
such a circuit with n qubits and d depths, the total number
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of parameters is 3n(d + 1). Actually, our method is a gen-
eralized framework with various circuit ansatzes. Based on
the numerical results, we utilize such interlacing single-layer
parallel CNOT gates in the following simulations. More details
are shown in Appendix. B.

B. Training process

We build a loss function which reflects the distance be-
tween the unitary represented by C(�θ ) and the target unitary
U . Concretely, we first randomly generate a set of N quantum
states, denoted as � = {|ψ1〉 , |ψ2〉 , . . . , |ψN 〉}. Here, a ran-
dom quantum state is generated by applying an Ry gate with
random parameters onto each qubit and controlled-Z (CZ)
gates with random control and target qubits. Each state |ψ j〉 is
fed into the unknown quantum process U and the PQC C(�θ ),
with the output quantum states denoted as |ψ ideal

j 〉 = U |ψ j〉
and |ψ ′

j〉 = C(�θ ) |ψ j〉. Then we compute the Euclidean dis-
tance between |ψ ideal

j 〉 and |ψ ′
j〉, which is

∥∥ |ψ ′
j〉 − ∣∣ψ ideal

j

〉 ∥∥2 = 2 − 2Re
( 〈

ψ ideal
j

∣∣ψ ′
j

〉 )
. (3)

The inner product on the right-hand side of Eq. (3) can be
efficiently computed with a quantum computer using a gener-
alized SWAP-test algorithm, which is detailed in Appendix. A.
The loss function f is defined as the summation of the distance
obtained over all input states, which is

f (�θ ) = 1

N

N∑
j=1

∥∥ |ψ ′
j〉 − ∣∣ψ ideal

j

〉 ∥∥2

= 2

N

N∑
j=1

[
1 − Re

( 〈
ψ ideal

j

∣∣ψ ′
j

〉 )]
, (4)

namely, f is the mean square error between the two set of
output quantum states.

The loss function f is a hybrid quantum-classical function
and its gradient can be estimated based on the chain rule,
where it contains functions to be evaluated with a quantum
computer and functions to be evaluated on a classical com-
puter

∂ f (�θ )

∂�θ j

= ∂ f (�θ )

∂O(�θ )

∂O(�θ )

∂�θ j

= ∂ f (�θ )

∂O(�θ )

(
1

2
O(�θ+

j ) − 1

2
O(�θ−

j )

)
. (5)

O in our case means the generalized SWAP-test with para-
metric quantum gates and ∂O(�θ )/∂θ j can be computed using
parameter-shifting rule [28], where �θ j denotes the jth pa-
rameter in the parameter list �θ and �θ±

j = �θ j ± π
2 . Hence the

gradient of the loss function f can be computed following
the authors of Ref. [29], who proposed a method to embed
Eq. (5) into the classical automatic differentiation frame-
work, such that the gradient of a hybrid quantum-classical
loss function can be automatically computed using a hybrid
quantum-classical computer. The gradient can then be fed into
a gradient-based optimizer to minimize the loss function f .

After the training, we evaluate the distance between U and
C(�θ ) using the similarity defined as

similarity
(
U , C(�θ )

) = 1 − ‖C(�θ ) − U‖F

2‖ U‖F
. (6)

Here ‖X‖F denotes the Frobenius norm of the matrix X . The
similarity(U , C(�θ )) = 1 means ‖C(�θ ) − U‖F = 0, in which
case U can be perfectly reconstructed from C(�θ ).

C. Usage of a validation set

As a prior, we do not know whether our PQC is expressive
enough or not to represent U , and whether the number of input
states is enough or not to ensure convergence to U . Moreover,
in practice we may also have the problem of overfitting such
that the optimal C(�θ ) is very distinct from U but the loss
function f has already converged to 0. To overcome these
problems, we borrow the idea of the validation set from clas-
sical machine learning, which is part of the training data and
primarily used to test the generalization ability of the training
outcomes without resorting to the testing data.

Concretely, we generate another set of input states denoted
as � = {|φ1〉 , |φ2〉 , . . . , |φN 〉}, i.e., the validation set, which
is independent of the training set. After the training process,
we feed each |φ j〉 into the unknown quantum process and
the resulting optimal PQC, obtaining two outputs |φideal

j 〉 =
U |φ j〉 and |φ′

j〉 = C(�θ ) |φ j〉. Then we compute the quantum
fidelity between |φideal

j 〉 and |φ′
j〉 efficiently through the SWAP-

test [30] on a quantum computer, and summarize over all
the instances of the validation set, which is defined as the
accuracy

accuracy
(
U , C(�θ )

) = 1

N

N∑
j∈�

Re
( 〈

φideal
j

∣∣φ′
j

〉 )
. (7)

It is noted that accuracy is a faithful tool. If accuracy is
close to 1, it means the PQC we obtained can be well gener-
alized to the new input validation states. Actually we show
that accuracy and similarity are indeed strongly correlated
in our numerical simulation (using the Pearson correlation
coefficient r), therefore we can pick out the simulation with
larger accuracy value as a more faithful reconstruction of U .
Moreover, the accuracy is an efficient evaluation criterion.
Since direct characterization of distance between U and C(�θ )
as required in Eq. (6) scales exponentially with the number
of qubits n, it is possible to determine whether the training is
successful or not based on the accuracy, without resorting to
the complete characterization of similarity.

III. NUMERICAL RESULTS AND DISCUSSIONS

We demonstrate our quantum machine learning algo-
rithm using numerical simulations based on a classical PQC
simulator. Specifically, we concentrate on two cases: (1)
the unknown unitary process is produced by a quantum
Hamiltonian evolution and (2) by random quantum circuits,
respectively.
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FIG. 2. Numerical results on the Heisenberg XXZ spin-chain time evolution. Panel (a) shows a typical training process on (5,7,10),
(5,7,12), and (5,7,15) configurations. The loss function f (blue line, corresponds to the left axis) decreases with the training epochs till
converging to a threshold value. Meanwhile, the similarity value (orange line, corresponds to the right axis) approaching 1. Panel (b) shows
the correspondence between the accuracy on validation set and the similarity of the final results among 100 trials of (5,6,10) simulations.
The data are sorted in a descending similarity order. The blue solid line denotes the similarity between C(�θ ) and U . The red dotted line
shows the accuracy value on the validation set. It is noted that the accuracy and similarity values are indeed strongly correlated with a
Pearson correlation coefficient r = 0.9555. (c) Scalability tests from 2-qubit to 8-qubit quantum processes. The left-axis (blue circle) shows
the maximum similarity reached during repetitive trials and the logarithmic right-axis represents the corresponding number of input states N
needed. The orange dotted line denotes the number of inputs in SQPT, and the orange rectangular represents that in PQC. In (a), (b), and (c),
the evolution time dt = 0.01. (d) Extension tests on quantum processes with longer evolution time dt , ranging from 0.01 to 0.15. The line
graph shows the maximum similarity value reached among repetitive trials on a (6,7,18) circuit.

A. XXZ spin-chain time evolution

We take the Hamiltonian of the Heisenberg XXZ spin
chain [31] in a magnetic field as our example, which is written
as

ĤXXZ =
n−1∑
l=1

[
J
(
σ̂ x

l σ̂ x
l+1 + σ̂

y
l σ̂

y
l+1

) + 
σ̂ z
l σ̂ z

l+1

] + h
n∑

l=1

σ̂ z
l .

(8)
Here n is the number of spins (qubits), J is the tunneling
strength, 
 is the interaction strength, and h is the magne-
tization strength. The evolutionary operator with time dt is
denoted as

UXXZ = e−iĤXXZ dt . (9)

In the simulations, we fix h = 0.1, J = 1, and set dt = 0.01.
As shown in Sec. II, we will encode UXXZ into the circuit

parameters �θ . We prepare a set of randomly generated states
|ψi〉 as inputs, i.e., the training set �, and feed each |ψi〉
into both the quantum process and the PQC. The same train-
ing procedure is repeated for 100 times, with each of them
initialized independently. After training, another randomly
generated validation set is utilized to test the generalizability
and pick out the most faithful instance of parametric circuit.
Based on Eqs. (6) and (7), we can evaluate the performance
of the parametric quantum circuits on the training set and
validation set.

Here, we denote (n, d, N ) as an n-qubit, d-depth, and
N-input PQC configuration in the numerical simulation. Fig-

ure 2(a) illustrates a typical five-qubit training process on
different sizes of input states: (5,7,10), (5,7,12), and (5,7,15)
cases. The parametric quantum circuit is initialized by ran-
domly generated parameters and evaluated by loss function in
Eq. (4) at each epoch. Figure 2(a) shows that the loss func-
tion goes down with the training process while the similarity
gradually reaches 1 under different N . Moreover, among 100
independent trials with random initialization on the (5,6,10)
PQC configuration, we utilize the validation set to distinguish
the more faithful PQC. It is plotted in Fig. 2(b) that the
accuracy on the validation set shows a strong correspondence
with the final similarity value with the Pearson correlation
coefficient r = 0.9555. Therefore, it is feasible to utilize the
accuracy value as a criterion to determine the optimal circuit
parameters to reconstruct U with higher similarity.

In Fig. 2(c), we conduct simulations on Heisenberg XXZ
spin chains of different lengths to evaluate the scalability
of our method. For an n-qubit Heisenberg XXZ spin chain
time evolution process (n ranges from 2 to 8), we utilize
different depths of PQC d , choose different sizes of training
sets N , repeat such independently identical simulations for
100 times, and calculate the maximum similarity achieved.
Compared with standard quantum process tomography, which
needs 4n pairs of input states and output states, the number of
required input quantum states in our method is at least two
orders of magnitude less (concretely N = 56 and N = 120
for the seven-qubit and eight-qubit quantum processes, while
the corresponding numbers in SQPT are 16 384 and 65 536,
respectively). Meanwhile we utilize a relatively shallow depth
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FIG. 3. Numerical results on the randomly generated quantum circuits. (a) A typical six-qubit randomly generated quantum circuit
organization. (b) Scalability tests from two-qubit to eight-qubit quantum processes. The left-axis (blue circle) shows the maximum similarity
reached during repetitive trials and the logarithmic right-axis represents the corresponding number of input states N needed. The randomly
generated circuit are of depth 6, and the evolution time dt = 0.01. (c,d) Variational quantum process tomography on randomly generated
quantum circuit on four-qubit (green triangle), five-qubit (blue circle), and six-qubit (red rectangle) cases, respectively. The line graph shows
the relationship between the similarity [maximum value in (c) and average value in (d)] and the PQC depth d .

circuit (d � 8) and achieve a faithful similarity (higher than
99%) over all cases. More data and configuration details can
be seen in Appendix B. In addition, our method only involves
single-qubit measurements for each configuration, instead of
measuring in the complete set of computational basis.

We further study the influence of the evolution time dt of
the Hamiltonian on the results of our method in Fig. 2(d).
We take a (6,7,18) PQC configuration as an example, and set
various evolution times dt , ranging from 0.01 to 0.15. Under
each case, we repeat the numerical simulations and get the
maximum similarity value. In Fig. 2(d), we plot the maximum
similarity against the evolution times dt . It can be seen that
our method still achieves an acceptable similarity when the
evolution time goes longer.

B. Randomly generated quantum circuit

In this section, we consider the quantum process of ran-
domly generated circuits. For an n-qubit D-depth randomly
generated quantum circuit, we first apply Hadamard gates
to initialize the state to a symmetric superposition. Then,
the circuit is organized by depth, including controlled-phase
(CZ) gates alternating between odd and even configurations to
entangle neighboring qubits and the randomly chosen single-
qubit gate (T ,

√
X , or

√
Y ). Finally, Hadamard gates are

applied to each qubit. A specific six-qubit randomly generated
circuit is organized as shown in Fig. 3(a). It is noted that such
randomly generated quantum circuits are hard for efficient
simulation on a classical computer [32,33].

Here, we take the six-depth randomly generated quan-
tum circuits as examples. We utilize (4, d, 8), (5, d, 30),
and (6, d, 39) PQC configurations to learn the corresponding
quantum process, respectively, where PQC depth d ranges

from 1 to 30. Data details can be seen in Appendix B.
Similarly, we conduct the scalability tests from two-qubit to
eight-qubit six-depth randomly generated quantum circuits
in Fig. 3(b). In Figs. 3(c) and 3(d), we plot the maximum
similarity and average similarity value against the PQC depth
d . It is seen that for such a specific random quantum circuit,
our method can give an approximate circuit C(�θ ) with high
similarity among repetitive independent trails, and the results
depend on the depth of the parametric circuits d . Taking the
four-qubit (green line) randomly generated quantum circuit as
an example, the most appropriate PQC depth d is among 6 to
15 (the maximum similarity can reach to 1 and meanwhile the
average similarity keeps at a relatively high value). Shallow
circuits may not be expressive enough to rebuild U , while
deeper depth with more parameters may result in overfit-
ting. Hence, although the maximum similarity can reach to
1 toughly, but the average similarity remains low when the
depth d > 25.

In addition, there are two points to be noted. First, the loss
function in Eq. (4) is a global operation since we need to
ensure the absolute phase between all output states. Hence
it may result in the barren plateau when the system size
grows [34,35]. Based on our simulation results, however, our
method is feasible with the qubits’ number going to 8 since
we tried other approaches including changing circuit ansatzes
(sequential or parallel structure), increasing training set states
(various N), adding circuit depth (traversing d), and so on
to avoid vanishing gratitude during optimization iterations.
Moreover, we evaluated the loss value and added disturbance
when the loss tends to be flat. Numerical results show that
our method is available under the current two models and
there indeed exists more possible attempts to solve the barren
plateau problem. Second, our approach is initially designed

032427-5



XUE, LIU, WANG, ZHU, GUO, AND WU PHYSICAL REVIEW A 105, 032427 (2022)

TABLE I. Numerical simulation details of scalability test on the
Heisenberg XXZ spin-chain time evolution.

n Maximum similarity d NPQC NSQPT

Seq. setting 2-para setting 1-para setting

2 99.46% 99.37% 99.26% 2 4 16
3 99.42% 99.14% 99.34% 4 5 64
4 98.82% 98.70% 99.08% 4 5 256
5 99.13% 99.32% 99.66% 7 12 1024
6 98.88% 98.59% 99.48% 7 12 4096
7 98.73% 98.67% 99.51% 8 56 16384
8 97.97% 98.57% 99.72% 8 120 65536

only for the unitary quantum process, however, it has the
potential to generalize it to a generic quantum process. Pos-
sible methods include utilizing the superposition of unitaries
or extending the nonunitary to a larger unitary. Specifically, as
proved in Ref. [37], we could utilize linear combinations of
unitary operators to construct the equivalent nonunitary. It is
also worth trying by transforming the nonunitary process into
a unitary in a larger Hilbert space by unitary dilation [38] and
then learning the extended unitary.

IV. CONCLUSION

In this work, we propose a quantum machine learning al-
gorithm for quantum process tomography, which encodes the
unknown unitary quantum process into a parametric quantum
circuit of certain depth d . A set of randomly generated product
quantum states are used as the training data to minimize the
loss function. The training process is repeated with a vali-
dation set in the end to filter out the instance with highest
similarity, namely the closest to the unknown quantum pro-
cess.

We demonstrate our method by two numerical examples,
including the Hamiltonian evolution with the Heisenberg
XXZ spin chain from two-qubit to eight-qubit and random
quantum circuits. The results indicate that a faithful recon-
struction of U (similarity higher than 99%) can be reached
with a relatively low-depth PQC (d � 8), and a relatively
small number of training states (at least two orders of mag-
nitude compared to SQPT). Moreover, only the single-qubit
measurement is required in each configuration, instead of
measuring in the complete set of the computational basis. The
method shows good feasibility on both models under limited

TABLE II. Numerical simulation details of time extension test
on (6,7,18) PQC configuration.

dt Max. similarity dt Max. similarity

0.02 99.80% 0.09 98.78%
0.03 99.62% 0.10 98.48%
0.04 99.54% 0.11 98.22%
0.05 99.49% 0.12 98.02%
0.06 99.38% 0.13 97.69%
0.07 99.18% 0.14 97.30%
0.08 98.98% 0.15 96.94%

TABLE III. Numerical simulation details of scalability test on
the 6-depth randomly generated quantum circuits.

n Maximum similarity d NPQC NSQPT

Seq. setting 2-para setting 1-para setting

2 99.99% 99.99% 99.99% 3 4 16
3 99.99% 99.99% 99.99% 5 8 64
4 99.99% 99.99% 99.99% 6 8 256
5 99.99% 99.99% 99.99% 7 30 1024
6 99.99% 99.99% 99.99% 7 39 4096
7 99.99% 99.99% 99.99% 8 59 16384
8 - - 99.99% 8 120 65536

system size and there are indeed more topics that can be con-
sidered in future work, including analyzing large-scale open
quantum system dynamics and solving the barren plateau. Our
work presents a promising application of using the quantum
machine learning algorithm to accelerate quantum process
tomography.
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APPENDIX A: GENERALIZED SWAP-TEST CIRCUIT

The key to calculating the loss function and accuracy is
the inner product between the target state |ψ ideal

j 〉 = U |ψ j〉
and the circuit output state |ψ ′

j〉 = C(�θ ) |ψ j〉. For real state
vectors, the standard SWAP-test circuit (shown in Fig. 4 gray
shaded box) is enough to evaluate the overlap since it is a real
number. However, |ψ ideal

j 〉 and |ψ ′
j〉 are complex vectors, so

we introduce a generalized SWAP-test to evaluate the overlap
value.

HH HH

HH

U U

HH

U U

HH HH

standard SWAP-test circuit

superposition state 

preparation circuit

{

FIG. 4. Generalized SWAP-test circuit. The bottom gray shaded
circuit is the standard SWAP-test circuit. By measuring the ancillary
qubit, we could get access to the fidelity between two input quantum
states. The top orange shaded layer involves in a superposition state
preparation circuit and a standard SWAP-test circuit. Solving the two
equations on the right, we can get two complex state vector’s overlap
value c.
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TABLE IV. Numerical simulation details of random quantum circuit tests.

Max. similarity Avg. similarity Max. similarity Avg. similarity

d 4-qubit 5-qubit 6-qubit 4-qubit 5-qubit 6-qubit d 4-qubit 5-qubit 6-qubit 4-qubit 5-qubit 6-qubit

1 34.73% 34.73% 33.69% 34.26% 32.97% 32.56% 16 99.99% 99.99% 99.99% 68.50% 97.95% 97.20%
2 34.59% 34.59% 40.09% 33.08% 35.74% 36.34% 17 99.98% 99.98% 99.99% 58.64% 64.97% 88.46%
3 44.95% 44.95% 60.00% 42.63% 36.24% 46.17% 18 99.92% 99.99% 99.99% 47.47% 68.22% 92.86%
4 54.79% 54.79% 48.97% 47.13% 37.55% 44.58% 19 98.34% 99.99% 99.99% 47.24% 84.41% 88.08%
5 54.52% 54.52% 78.94% 46.10% 45.11% 59.39% 20 99.85% 99.99% 99.99% 50.81% 90.25% 93.54%
6 99.99% 99.99% 99.99% 59.28% 47.66% 67.63% 21 59.22% 99.91% 99.98% 46.54% 48.39% 82.62%
7 99.99% 99.99% 99.99% 81.24% 48.72% 78.34% 22 99.09% 99.99% 99.97% 48.01% 76.70% 79.27%
8 99.99% 99.99% 99.99% 73.15% 87.78% 81.68% 23 57.71% 99.94% 99.97% 48.52% 77.47% 73.86%
9 99.99% 99.99% 99.99% 93.66% 91.77% 93.21% 24 52.24% 99.97% 99.98% 47.07% 65.41% 66.43%
10 99.99% 99.99% 99.99% 97.26% 95.31% 94.16% 25 55.73% 99.88% 99.99% 49.38% 50.24% 43.23%
11 99.99% 99.99% 99.99% 94.42% 96.93% 99.03% 26 55.48% 99.69% 99.61% 48.04% 47.60% 36.67%
12 99.99% 99.99% 99.99% 67.82% 97.03% 98.89% 27 55.44% 99.21% 99.90% 49.22% 44.83% 37.58%
13 99.99% 99.99% 99.99% 91.75% 99.62% 99.40% 28 56.54% 99.85% 45.77% 48.65% 48.84% 36.54%
14 99.99% 99.99% 99.99% 73.53% 83.19% 98.33% 29 54.25% 85.67% 99.94% 49.26% 46.50% 37.29%
15 99.99% 99.99% 99.99% 58.23% 99.34% 95.60% 30 54.51% 48.65% 57.68% 49.14% 45.78% 36.74%

Given two complex quantum states |ψ〉 and |φ〉, it is al-
ready known that the fidelity between the two states can be
evaluated using a SWAP-test circuit, namely a = | 〈ψ |φ〉 |2 can
be efficiently calculated on a quantum device. Thus, as long
as we can prepare another superposition state ξ = 1√

2
(|ψ〉 +

|φ〉), we can also obtain the fidelity b = | 〈ψ |ξ〉 |2. Based on
the two results above, we can arrive at the overlap between the
two quantum state vectors

c = 〈ψ |φ〉 = b − a + 1

2
+ i

√
(a + 1)b − b2 − (a − 1)2

4
.

(A1)
The superposition state ξ can be easily obtained using a

controlled operation with an auxiliary qubit, as |0〉 〈0| Û|φ〉 +
|1〉 〈1| Û|ψ〉, where Û|ψ〉 denotes the unitary operation to pro-
duce the quantum state |ψ〉. As shown in Ref. [36], we can
add control to the arbitrary unitary process. By postselecting
the ancillary qubit on |0〉, we prepare the superposition state.

It is noted that our generalized approach only requires to
measure a single qubit for each configuration (while the three-

qubit TOFFOLI gate is used as required by the SWAP-test). Since
the errors of quantum gate operations are almost one order of
magnitude less than that of quantum measurements for current
quantum computers [12,13], our method could be less prone
to errors, compared to the massive and general measurements
involved in SQPT.

APPENDIX B: DETAILS OF NUMERICAL SIMULATIONS

In this work, we put forward a generalized parametric
quantum circuit framework to solve the quantum process to-
mography problem. Actually, the circuit ansatz is not fixed,
but problem-specific. There are various circuit organizations
and we take the following three kinds of circuit ansatzes as
examples in Fig. 5 and conduct numerical simulations. The
overall results on two models are showed in Tables I and III.
Based on the numerical results, we utilize the single-layer
parallel setting in the work.

In Fig. 2(c), we conduct the scalability tests on n-qubit
Heisenberg XXZ spin-chain time evolution. Here, we give
detailed numerical results listed in Table I where d , NPQC,

depth 1 depth 2

... ...

depth 1 depth 2

... ... ... ...

depth 1 depth 2

... ...

(b) two-layer parallel setting gnittes lellarap reyal-elgnis )c(gnittes laitneuqes )a(

FIG. 5. Different circuit ansatzes. (a) Sequential setting, the CNOT gates are one by one. (b) Two-layer parallel setting, the CNOT gates are
organized as two staggering layers. (c) Single-layer parallel setting, the CNOT gates are interlacing organized (varied between odd and even
depth).
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and NSQPT denote PQC depth, number of input quantum states
in our method and number of input quantum states in SQPT,
respectively, under single-layer parallel setting.

In Fig. 2(d), we conduct extension tests on longer time
evolution process with (6,7,18) configuration. Here, we give
detailed numerical results listed in Table II, where the maxi-
mum similarity is calculated under 100 trials.

In Fig. 3(b), we conduct the scalability tests on n-qubit
six-depth randomly generated quantum circuits. Here, we give

detailed numerical results listed in Table III where d , NPQC,
and NSQPT denote PQC depth, the number of input quantum
states in our method, and the number of input quantum states
in SQPT, respectively, under a single-layer parallel setting.

In Figs. 3(c) and 3(d), we utilize (4,6,8), (5,7,30), and
(6,7,39) PQC configurations to learn the corresponding four-
qubit, five-qubit, and six-qubit six-depth randomly generated
quantum circuits, respectively. Here, we give detailed numer-
ical results listed in Table IV.
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