
Variational Reasoning for Question Answering with Knowledge Graph

Yuyu Zhang∗

Georgia Institute of Technology
yuyu.zhang@cc.gatech.edu

Hanjun Dai∗

Georgia Institute of Technology
hanjun.dai@cc.gatech.edu

Zornitsa Kozareva
Amazon Web Services
kozareva@amazon.com

Alexander J. Smola
Amazon Web Services
smola@amazon.com

Le Song
Georgia Institute of Technology

lsong@cc.gatech.edu

Abstract

Knowledge graph (KG) is known to be helpful for the task
of question answering (QA), since it provides well-structured
relational information between entities, and allows one to fur-
ther infer indirect facts. However, it is challenging to build
QA systems which can learn to reason over knowledge graphs
based on question-answer pairs alone. First, when people ask
questions, their expressions are noisy (for example, typos in
texts, or variations in pronunciations), which is non-trivial for
the QA system to match those mentioned entities to the knowl-
edge graph. Second, many questions require multi-hop logic
reasoning over the knowledge graph to retrieve the answers.
To address these challenges, we propose a novel and unified
deep learning architecture, and an end-to-end variational learn-
ing algorithm which can handle noise in questions, and learn
multi-hop reasoning simultaneously. Our method achieves
state-of-the-art performance on a recent benchmark dataset
in the literature. We also derive a series of new benchmark
datasets, including questions for multi-hop reasoning, ques-
tions paraphrased by neural translation model, and questions
in human voice. Our method yields very promising results on
all these challenging datasets.

1 Introduction

Question answering (QA) has been a long-standing research
problem in Machine Learning and Artificial Intelligence.
Thanks to the creation of large-scale knowledge graphs such
as DBPedia (Auer et al. 2007) and Freebase (Bollacker et
al. 2008), QA systems can be armed with well-structured
knowledge on specific and open domains. Many traditional
approaches for KG-powered QA are based on semantic
parsers (Clarke et al. 2010; Liang, Jordan, and Klein 2011;
Berant et al. 2013; Yih et al. 2015), which first map a question
to formal meaning representation (e.g. logical form) and then
translate it to a KG query. The answer to the question can be
retrieved by executing the query. One of the disadvantages of
these approaches is that the model is not trained end-to-end
and errors may be cascaded.

With the recent success of deep learning, some end-to-end
solutions based on neural networks have been proposed and
show very promising performance on benchmark datasets,
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such as Memory Networks (Weston, Chopra, and Bordes
2014), Key-Value Memory Networks (Miller, Fisch, and et.
al. 2016) and Gated Graph Sequence Neural Networks (Li
et al. 2015). However, these neural approaches treat the KG
as a flattened big table of itemized knowledge records, mak-
ing it hard to exploit the structure information in the graph
and thus weak on logic reasoning. When the answer is not
a direct neighbor of the topic entity in question (i.e. there
are multiple hops between question and answer entities in
the KG), which requires logic reasoning over the KG, the
neural approaches usually perform poorly. For instance, it
is easy to handle single-hop questions like “Who wrote the
paper titled ...?” by querying itemized knowledge records
in triples (paper_title, authored_by, author_name). How-
ever, logic reasoning on the KG is required for multi-hop
questions such as “Who have co-authored papers with ...?”.
With the KG, we start from the mentioned author, and fol-

low author
authored
−−−−−−→ paper

authored_by
−−−−−−−−→ author to find

answers. A common remedy is the so-called knowledge
graph completion: create new relations for non-neighbor en-
tity pairs in the KG (Socher et al. 2013a; Dong et al. 2014;
Guu, Miller, and Liang 2015). However, multi-hop reason-
ing is combinatorial in nature, i.e. the number of multi-hop
relations grow explosively with the increase of hops. For ex-
ample, if we create new relation types like friend-of-friend
and friend-of-friend-of-friend, the number of edges in the
KG will explode, which is intractable for both storage and
computation.

Another key challenge is how to locate topic entities in
the KG. Most existing works assume that the topic entity in
question can be located by simple string matching (Miller,
Fisch, and et. al. 2016; Dodge et al. 2015; Li et al. 2015;
Berant et al. 2013), which is often not true. When people
ask questions, either in text or speech, various noise can be
introduced in the expressions. For example, people are likely
to make typos or name ambiguity in question. In even harder
case, audio questions, people may pronounce the same entity
differently in different questions, even for the same person.
Due to these noises, it is hard to do exact matching to locate
topic entities. For text questions, broad matching techniques
(e.g. hand-craft rules, regular expressions, edit distance, etc.)
are.g.e widely used for entity recognition (Rao, McNamee,
and Dredze 2013). However, they require domain experts and
lots of human effort. For speech questions, it is even harder
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to match topic entities directly. Most existing QA systems
first do speech recognition, converting the audio to text, and
then match entities in text. Unfortunately, the error rate is
typically high for speech recognition system to recognize
entities in voice, such as human names or street addresses.
Since it is not end-to-end, the error of the speech recognition
system may cascade to affect the downstream QA system.

Typically, the training data for QA system is provided
as question-answer pairs, where fine-grained annotation of
these pairs are not available, or only available for a few. More
specifically, there are very few explicit annotations of the
exact entity present in the question, the type of the questions,
and the exact logic reasoning steps along the knowledge
graph leading to the answer. Thus it is challenging to simul-
taneously learn to locate the topic KG entity in the question,
and figure out the unknown reasoning steps pointing to the
answer based on training question-answer pairs alone.

To address the challenges mentioned above, we propose
an end-to-end learning framework for question answering
with knowledge graph named variational reasoning network
(VRN), which have the following new features:
• We build a probabilistic modeling framework for end-to-

end QA system, which can simultaneously handle uncer-
tain topic entity and multi-hop reasoning.

• We propose a novel propagation-like deep learning archi-
tecture over the knowledge graph to perform logic infer-
ence in the probabilistic model.

• We apply the REINFORCE algorithm with variance reduc-
tion technique to make the system end-to-end trainable.

• We derive a series of new challenging benchmark datasets
METAQA1 (MoviE Text Audio QA) intended for research
on question-answering systems. These datasets contain
over 400K questions for both single- and multi-hop reason-
ing. To test QA systems in more realistic (and more diffi-
cult) scenarios, METAQA also provides neural-translation-
model-paraphrased datasets, and text-to-speech-based au-
dio datasets.
Extensive experiments show that our method achieves

state-of-the-art performance on both single- and multi-hop
datasets, demonstrating the capability of multi-hop reasoning.
Moreover, we obtain promising results on the challenging
audio QA datasets, showing the effectiveness of end-to-end
learning framework. With the rise of virtual assistant tools
(e.g. Alexa, Cortana, Google Assistant and Siri), QA sys-
tems are now even closer to our daily life. This paper is one
step towards more realistic QA systems, which can handle
noisy question input in both text and speech, and learn from
examples to reason over the knowledge graph.

2 Related Work

QA with semantic parser: Most traditional approaches for
KG-powered QA are based on semantic parsers, which map
the question to a certain meaning representation or logical
form (Clarke et al. 2010; Liang, Jordan, and Klein 2011;
Kwiatkowski et al. 2013; Berant et al. 2013; Yih et al. 2015;
Marx et al. 2014; Höffner et al. 2016), or directly map the

1Our new benchmark dataset collections METAQA are publicly
available at https://goo.gl/f3AmcY.

question to an executable program (Liang et al. 2016). These
approaches require domain-specific grammars, rules, or fine-
grained annotations. Also, they are not designed to handle
noisy questions, and do not support end-to-end training since
they use separate stages for question parsing and logic rea-
soning.

Neural approaches for QA: The family of memory net-
works achieves state-of-the-art performance in various kinds
of QA tasks. Some of them are able to do reasoning within
local context (Kumar, Irsoy, and et. al. 2015; Sukhbaatar et al.
2015) using attention mechanism (Yang et al. 2015). For QA
with KG, Miller, Fisch, and et. al. achieves state-of-the-art
performance, outperforming previous works (Bordes, Chopra,
and Weston 2014; Weston, Chopra, and Bordes 2014) on
benchmark datasets. Recent work (Neelakantan et al. 2016)
uses neural programmer model for QA with single knowl-
edge table. However, the multi-hop reasoning capability of
these approaches depends on recurrent attentions and there is
no explicit traversal over the KG.

Graph embedding: Recently, researchers have built deep
architectures to embed structured data, such as trees (Socher
et al. 2013b; Irsoy and Cardie 2014; Mou et al. 2016) or
graphs (Duvenaud et al. 2015; Dai, Dai, and Song 2016;
Atwood and Towsley 2016). Also some works (Li et al. 2015;
Johnson 2017) extend it to sequential case like multi-step
reasoning. However, these approaches only work on small
instances like sentences or molecules. Instead, our work em-
beds the reasoning-graph from source entity to every target
entity in large-scale knowledge graph.

Multi-hop reasoning: There are some other works on knowl-
edge graph completion with traversal, which requires path
sampling (Guu, Miller, and Liang 2015; Neelakantan, Roth,
and McCallum 2015) or dynamic programming (Toutanova
et al. 2016). Our work can handle QA with natural language
or human speech, and the reasoning-graph embeddings can
represent complicated reasoning rules.

In summary, most of the existing approaches have sep-
arate stages for entity locating, such as keyword match-
ing, frequency-based method, and domain-specific meth-
ods (Yang and Chang 2016). Since they are not jointly trained
with the reasoning part, the errors in entity locating (e.g. in-
correctly recognized name entity from speech recognition
system) will be cascaded to the downstream QA system.

3 Model

3.1 Problem definition

Knowledge base/graph (KG): A knowledge graph is a
directed graph where the entities and their relations are
represented by nodes and edges, respectively, i.e. G =
(V (G), E(G)). Furthermore, each edge from E(G) is a triplet
(a1i , ri, a

2
i ), representing a directed relation ri between sub-

ject entity a1i and object entity a2i both from the node set
V (G). Each entity in the knowledge graph can also contain
additional information such as type and text description. For
instance, entity a1i is described as actor Jennifer Lawrence,
and entity a2i is movie Passengers. Then a relation in the
knowledge graph can be (Jennifer Lawrence, acted_in, Pas-
sengers), where the corresponding ri is acted_in.
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Figure 1: End-to-end architecture of the variational reasoning network (VRN) for question-answering with knowledge graph.
The model consists of two probabilistic modules for topic entity recognition (P (y|q)) and logic reasoning over knowledge graph
(P (a|y, q)) respectively. Inside the knowledge base plate, the scope of entity Lost Christmas (colored red) is illustrated, and each
colored ellipsoid plate corresponds to the reasoning graph leading to a potential answer colored in yellow. The reasoning graphs
are efficiently embedded and scored against the question embeddings to retrieve the best answer. During training, to handle the
non-differentiable sampling operation y ∼ P (y|q), we use variational posterior with the REINFORCE algorithm.

Question answering with KG: Given a question q, the al-
gorithm is asked to output an entity in the knowledge graph
which properly answers the question. For example, q can be
a question like “who acted in the movie Passengers?”, and
one possible answer is Jennifer Lawrence, which is an entity
in the KG. In a more challenging setting, q can even be an
audio segment reading the same question. The training set
Dtrain = {(qi, ai)}

N
i=1 contains N pairs of question and an-

swers. Note that fine-grained annotation is not present, such
as the exact entity present in the question, question type, or
the exact logic reasoning steps along the knowledge graph
leading to the answer. Thus, a QA system with KG should be
able to handle noisy entity in questions and learn multi-hop
reasoning directly from question-answer pairs.

3.2 Overall formulation

To address both key challenges in a unified probabilistic
framework, we propose the variational reasoning network
(VRN). The overall architecture is shown in Fig 1. VRN
consists of two probabilistic modules, as described below.

Module for topic entity recognition: Recognizing the topic
entity y (or the entity mentioned in the question) is the first
step in performing logic reasoning over the knowledge graph2.
For example, the topic entity mentioned in Sec 3.1 is the
movie Passenger. We denote the topic entity as y, and model
the compatibility of this entity with the question qi as a prob-
abilistic model Pθ1(y|qi), which shows the probability of the
KG entity y being mentioned in the question qi. Depending
on the question form (text or audio), the parameterization
of Pθ1(y|qi) may be different and details can be found in
Sec 3.3.

Module for logic reasoning over knowledge graph: Given
the topic entity y in question qi, one need to reason over the
knowledge graph to find out the answer ai. As described in

2In this paper, we consider the case with single topic entity in
each question.

Sec 3.1, the algorithm should learn to use the reasoning rule
(y, acted_by, ai) for that question. Since there is no annota-
tions for such reasoning step, the QA system has to learn it
only from question-answer pairs. Thus we model the likeli-
hood of an answer ai being correct given entity y and ques-
tion qi as Pθ2(ai|y, qi). The parameterization of Pθ2(ai|y, qi)
need to capture traversal or reasoning over knowledge graph,
which is explained in detail in Sec 3.4.

Since the topic entity in question is not annotated, it is natu-
ral to formulate the problem by treating the topic entity y as a
latent variable. With the two probabilistic components above,
we model the probability of answer ai being correct given
question qi as

∑

y∈V (G) Pθ1(y|qi)Pθ2(ai|y, qi), which sums

out all possibilities of the latent variable. Given a training set
Dtrain of N question-answer pairs, the set of parameters θ1
and θ2 can be estimated by maximizing the log-likelihood of
this latent variable model:

max
θ1,θ2

1

N

N
∑

i=1

log

⎛

⎝

∑

y∈V (G)

Pθ1(y|qi)Pθ2(ai|y, qi)

⎞

⎠ . (1)

Next we will describe our parametrization of Pθ1(y|qi) and
Pθ2(ai|y, qi), and the algorithms for learning and inference
based on that.

3.3 Probabilistic module for topic entity
recognition

Most existing QA approaches assume that topic entities are
annotated, or can be simply found via string matching. How-
ever, for more realistic questions or even audio questions, a
more general approach is to build a recognizer that can be
trained jointly with the logic reasoning engine.

To handle unlabeled topic entities, we notice that the full
context of the question can be helpful. For example, Michael
could either be the name of a movie or an actor. It is hard
to tell which one relates to the question by merely looking



Algorithm 1 Joint training of VRN

1: Initialize θ1, θ2, φ with small labeled set
2: for i = 1 to n do
3: Sample (qi, ai) from the training data
4: Sample {yj}

M
j=1 using (8)

5: Smoothing μ̃, σ̃ with {A(yj , qi, ai)}
M
j=1

6: Update the baseline b(·) using least square
7: ψ ← ψ − η∇ψL using (10)
8: θ1 ← θ1 − η∇θ1L, θ2 ← θ2 − η∇θ2L
9: end for

at this entity name. However, we should be able to resolve
the unique entity by checking the surrounding words in the
question. Similarly, in the knowledge graph there could be
multiple entities with the same name, but the connected edges
(relations) of the entity nodes are different, which helps to
resolve the unique entity. For example, as a movie name,
Michael may be connected with a directed_by edge pointing
to an entity of director; while as an actor name, Michael may
be connected with birthday and height edges.

Specifically, we use a neural network fent(·) : q �→ R
d

which can represent the question q in a d dimensional vector.
Depending on the question form (text or audio), this neural
network can be a simple embedding network mapping bag-
of-words to a vector, or a recurrent neural network to embed
sentences, or a convolution neural network to embed audio
questions. Thus the probability of having y in q is

Pθ1(y|q) = softmax
(

W⊤
y fent(q)

)

(2)

=
exp(W⊤

y fent(q))
∑

y′∈V (G) exp(W
⊤
y′ fent(q))

, (3)

where Wy ∈ R
d, ∀y ∈ V (G) are the weights in the last classi-

fication layer. This parameterization avoids heuristic keyword
matching for the entity as is done in previous work (Miller,
Fisch, and et. al. 2016; Bordes, Chopra, and Weston 2014),
and makes the entity recognition process differentiable and
end-to-end trainable.

3.4 Probabilistic module for logic reasoning over
knowledge graph

Parameterizing the reasoning model Pθ2(a|y, q) is chal-
lenging, since 1) knowledge graph can be very large; 2) the
required logic reasoning is unknown and can be multi-step. In
other words, retrieving the answer requires multi-step traver-
sal over a gigantic graph. Thus in this paper, we propose a
reasoning-graph embedding architecture, where all the infer-
ence rules and their complex combinations are represented
as nonlinear embeddings in vector space and will be learned.
Scope of y. More specifically, we assume the maximum num-
ber of steps (or hops), T , of the logic reasoning is known
to the algorithm. Starting from a topic entity y, we perform
topological sort (ignoring the original edge direction) for all
entities within T hops according to the knowledge graph. Af-
ter that, we get an ordered list of entities a1, a2, . . . , am and
their relations from the knowledge graph. We call this sub-
graph Gy with ordered nodes as the scope of y. Fig 2 shows
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Figure 2: A question like “movie sharing same genre and
director” would require two reasoning paths y → Crime → a
and y → Andrew Dominik → a. The vector representation
should encode the information of the entire reasoning-graph,
which can be computed recursively. Thus the embedding of
Andrew Dominik can be reused by The assassination and
Killing Them Softly.

an example of a 2-hop scope, where entities are labeled with
their topological distance to the source entity.
Reasoning graph to a. Given a potential answer a in the
scope Gy , we denote Gy→a to be the minimum subgraph that
contains all the paths from y to a in Gy. The actual logic
reasoning leading to answer a for question q is unknown
but hidden in the reasoning graph. Thus we will learn a
vector representation (or embedding) for Gy→a, denoted as

g(Gy→a) ∈ R
d, for scoring the compatibility of the question

type and the hidden path in the reasoning graph.
More specifically, suppose the question is embedded using

a neural network fqt(·) : q �→ R
d, which captures the ques-

tion type and implies the type of logic reasoning we need to
perform over knowledge graph. Then the compatibility (or
likelihood) of answer a being correct can be computed using
the embedded reasoning graph Gy→a and the scope Gy as

Pθ2(a|y, q) = softmax
(

fqt(q)
⊤g(Gy→a)

)

(4)

=
exp(fqt(q)

⊤g(Gy→a))
∑

a′∈V (Gy)
exp(fqt(q)⊤g(Gy→a′))

. (5)

We note that the normalization in the likelihood requires
the embedding of the reasoning graphs for all entities a′ in
the scope Gy. This may involve thousands of or even more
reasoning graphs depending on the KG and the number of
hops. Computing these embeddings separately can be very
computationally expensive. Instead, we develop a neural ar-
chitecture which can compute these embeddings jointly and
share intermediate computations.
Joint embedding reasoning graphs. More specifically, we
propose a “forward graph embedding” architecture, which is
analogous to forward filtering in Hidden Markov Model or
Bayesian Network. The embedding of the reasoning graph
for a is computed recursively using its parents’ embeddings:

g(Gy→a) =
1

#Parent(a)

∑
aj∈Parent(a),(aj ,r,a) or (a,r,aj)∈Gy

σ(V × [g(Gy→aj
), �er]), (6)

where �er is the one-hot encoding of relation type r ∈ R, V ∈
R

d×(d+|R|) are the model parameters, σ(·) is a nonlinear
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function such as ReLU, and #Parent(a) counts the number of

parents of a in Gy . The only boundary case is g(Gy→y) = �0
when y = a. Overall, computing the embedding g(Gy→a) for
all a takes O(|V (Gy)|+ |E(Gy)|) time, which is proportional
to the number of nodes and edges in the scope Gy .

This formulation is able to capture various reasoning rules.
Take Fig 2 as an example: the embedding of the entity
Killing Them Softly sums up the two embeddings propagated
from its parents. Thus it tends to match the reasoning paths
from the parent entities. Note that this formulation is signif-
icantly different from the work in (Duvenaud et al. 2015;
Dai, Dai, and Song 2016; Atwood and Towsley 2016), where
embedding is computed for each small molecular graph sepa-
rately. Furthermore, those graph embedding methods often
contain iterative processes which visit each nodes multiple
times.

4 End-to-end Learning

In this section, we describe the algorithm for learning the
parameters in Pθ1(y|q) and Pθ2(a|y, q). The overall learning
algorithm is described in Algorithm 1.

4.1 Variational method with inverse
reasoning-graph embedding

EM algorithm is often used to learn latent variable models.
However, performing exact EM updates for the objective
in (1) is intractable since the posterior cannot be computed
in closed form. Instead, we use variational inference and
optimize the evidence lower bound:

max
ψ,θ1,θ2

L(ψ, θ1, θ2) =
1

N

N
∑

i=1

EQψ(y|qi,ai)[

logPθ1(y|qi) + logPθ2(ai|y, qi)

− logQψ(y|qi, ai)], (7)

where the variational posterior Qψ(y|q, a) is jointly learned
with the model. Note that (7) is essentially optimizing the
lower bound of (1). Thus to reduce the approximation error,
a powerful set of posterior distributions is necessary.

Variational posterior. Qψ computes the likelihood of the
topic entity y for a question q, with additional information of
answer a. Thus besides the direct text or acoustic compatibil-
ity of y and q, we can also introduce logic match with the help
of a. Similar to the forward propagation architecture used in
Sec 3.4, here we can define the scope Ga for answer a, the
inverse reasoning graph Ga→y, and the inverse embedding
architecture to efficiently compute the embedding g̃(Ga→y).
Finally, the variational posterior consists of two parts:

Qψ(y|q, a) ∝ exp
(

W̃⊤
y f̃ent(q) + f̃qt(q)

⊤g̃(Ga→y)
)

, (8)

where the normalization is done over all entities y′ in the

scope Ga. Furthermore, the embedding operators f̃ent, f̃qt
and parameters {W̃y}y∈V (G) are defined in the same way as
(4) and (6) but with different set of parameters. One can also
share the parameter to obtain a more compact model.

4.2 REINFORCE with variance reduction

Since the latent variable y in the variational objective (7)
takes discrete values, which is not differentiable with respect
to ψ, we use the REINFORCE algorithm (Williams 1992)
with variance reduction (Mnih and Gregor 2014) to tackle
this problem.

First, using the likelihood ratio trick, the gradient of L
with respect to posterior parameters ψ can be computed as
(for simplicity of notation, we assume that there is only one
training instance, i.e., N = 1):

∇ψL = EQψ(y|q,a)

[

∇ψ logQψ(y|q, a)A(y, q, a)
]

, (9)

where A(y, q, a) = logPθ1(y|q) + logPθ2(a|y, q) −
logQψ(y|q, a) can be treated as the learning signal in policy
gradient.

Second, to reduce the variance of gradient, we center and
normalize the signal A(y, q, a) and also subtract a baseline
function b(q, a) (Mnih and Gregor 2014). Finally, the gradi-
ent in (9) can be approximated by the Monte Carlo method
using K samples of the latent variable from Qψ:

∇ψL ≈ 1
K

∑K
j=1 ∇ψ logQψ(yj |q, a)

(

(A(yj ,q,a)−μ̃)
σ̃

− b(q, a)
)

, (10)

where μ̃ and σ̃ estimate the mean and standard deviation of
A(yj , q, a) with moving average. b(q, a) is another neural
network that fits the expected normalized learning signal.
In our experiments, we simply build a two-layer perceptron
with concatenated one-hot answer and question features. Here

b(q, a) tries to fit Ã(yj , q, a) =
(A(yj ,q,a)−μ̃)

σ̃
by minimizing

the square loss. For other parameters θ1 and θ2 in Pθ1(y|q)
and P(θ2)(a|y, q) respectively, the gradients are computed in
the normal way.

5 Inference

During inference, we are only given the question q,
and ideally we want to find the answer by computing
argmaxy,a log (Pθ1(y|q)Pθ2(a|y, q)). However, this compu-
tation is quadratic in the number of entities and thus too
expensive. Alternatively, we can approximate it via beam
search. So we select k candidate entities y1, y2, . . . , yk with
top scores from Pθ1(y|q), and then the answer is given by

a∗ = argmax
a∈Gy,y∈{y1,y2,...,yk}

logPθ2(a|y, q). (11)

In our experiments, we found that k = 1 (equivalent as
greedy inference) can already achieve good performance.

6 Experiments

6.1 The METAQA benchmark

There is an existing public QA dataset named Wiki-
Movies3, which consists of question-answer pairs in the do-
main of movies and provides a medium-sized knowledge
graph (Miller, Fisch, and et. al. 2016). However, it has sev-
eral limitations: 1) all questions in it are single-hop, thus it

3It is available at https://research.fb.com/downloads/babi.
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Table 1: Test results (% hits@1) on Vanilla and Vanilla-EU datasets. EU stands for entity unlabeled.

Vanilla
1-hop

Vanilla
2-hop

Vanilla
3-hop

Vanilla-EU
1-hop

Vanilla-EU
2-hop

Vanilla-EU
3-hop

VRN 97.5 89.9 62.5 82.0 75.6 38.3
Bordes, Chopra, and Weston’s QA system 95.7 81.8 28.4 39.5 38.3 26.9
KV-MemNN 95.8 25.1 10.1 35.8 10.3 10.5
Supervised embedding 54.4 29.1 28.9 18.1 23.2 25.3

Table 2: Test results (% hits@1) on NTM-EU and Audio-EU datasets. EU stands for entity unlabeled.

NTM-EU
1-hop

NTM-EU
2-hop

NTM-EU
3-hop

Audio-EU
1-hop

Audio-EU
2-hop

Audio-EU
3-hop

VRN 81.3 69.7 38.0 37.0 24.6 21.1
Bordes, Chopra, and Weston’s QA system 32.5 32.3 25.3 18.5 19.3 15.3
KV-MemNN 33.9 8.7 10.2 4.3 7.0 15.3
Supervised embedding 16.1 22.8 24.2 4.1 6.1 12.1

is not able to evaluate the ability of reasoning; 2) there is
no noise on the topic entity in question, so it can be easily
located in the knowledge graph; 3) it is generated from very
limited number of text templates, which is easy to be ex-
ploited by models and of limited practical value. Some small
datasets like WebQuestions (Berant et al. 2013) are mostly
for single-hop questions; while WikiTableQuestions (Pasu-
pat and Liang 2015) involves tiny knowledge table for each
question, instead of one large-scale knowledge graph shared
among all questions.

Thus in this paper, we introduce a new challenging
question-answer benchmark: METAQA (MoviE Text Audio
QA). It contains more than 400K questions for both single
and multi-hop reasoning, and provides more realistic text
and audio versions. METAQA serves as a comprehensive
extension of WikiMovies. Due to the page limit, we briefly
list the datasets included in METAQA below, and put more
details in Appendix A4.

• Vanilla: We have the original WikiMovies as the Vanilla
1-hop dataset. For multi-hop reasoning, we design 21 types
of 2-hop questions and 15 types of 3-hop questions, and
generate them by random sampling from a text template
pool. Details and question examples are in Appendix B.

• NTM: Thanks to the recent breakthrough in neural trans-
lation models (NTM), we can introduce more variations
over the Vanilla datasets. We use a NTM trained by dual
learning techniques (He et al. 2016) to paraphrase ques-
tion by first translating it from English to French, and then
sample translations back to English with beam search. The
questions in the NTM dataset have different wordings but
keep the same meaning. This dataset also contains 1-hop,
2-hop and 3-hop categories.

• Audio: To make it even more practical and challenging,
we generate audio datasets with the help of text-to-speech
(TTS) system. We use Google TTS service to read all the
questions in Vanilla. We also provide extracted MFCC
features for each question. The Audio dataset also contains

4For Appendix, refer to the full version of our paper at
https://arxiv.org/abs/1709.04071.

Figure 3: Improvement of the entity recognizer.

1-hop, 2-hop and 3-hop categories. Note that although the
audio is machine-generated, it is still much less regulated
compared to text-template-generated data, and have a lot
of variations in waveforms. For example, even for the same
word, the TTS system can have different intonations de-
pending on the word position in question and other context
words. Visualization of the audio data can be found in
Appendix C.

6.2 Competitor methods

We have three competitor methods: 1) as discussed in Sec 2,
Miller, Fisch, and et. al. proposed Key-Value Memory Net-
works (KV-MemNN), and reported state-of-the-art results at
that time on WikiMovies; 2) Bordes, Chopra, and Weston’s
QA system also tries to embed the inference subgraph for rea-
soning (Bordes, Chopra, and Weston 2014), but the represen-
tation is simply an unordered bag-of-relationships and neigh-
bor entities; 3) the “supervised embedding” is considered
as yet another baseline method, which is a simple approach
but often works surprisingly well as reported in (Dodge et al.
2015).

We implement baseline methods with Tensorflow. Our
results on Vanilla 1-hop are consistent with the reported
performance in (Miller, Fisch, and et. al. 2016). We take
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whichever higher and report it in Table 1. For example, our
KV-MemNN obtains 95.8% test accuracy, while the original
paper reports 93.9% on the same dataset, so we just report
95.8% in table.

When training KV-MemNN, we use the same number
of “internal hops” as the hop number of that dataset. We
also try to use more “internal hops” than the dataset hop
number, but it is not helpful. Also, we insert knowledge items
within 3 hops of the located topic entity to the memory slots,
which ensures that if the topic entity is correctly matched, the
answer is existing somewhere in the memory array.

6.3 Experimental settings

We use all the datasets in METAQA for experiments. We
follow the same split of train/validation/test for all datasets.
The number of questions in each part is listed in Appendix
(Table 3). We tune hyperparameters on validation set for all
methods. In both Vanilla and NTM, we use bag-of-words
representation for entity name to parameterize Wy in (3).

For Vanilla, we have two different settings: 1) provide the
entity labels in all questions, so that we can compare with
KV-MemNN under the same setting of Miller, Fisch, and et.
al. on Vanilla 1-hop dataset; 2) only provide 5% entity labels
among all questions, named as Vanilla-EU (EU stands for
topic entity unlabeled). We make all the methods use bag-of-
words representation of the question, and avoid hard entity
matching. This setting is more of a sanity check of how much
the method is dependent on labeled topic entities. In practice,
hard matching can always be an option on text data, but it is
not feasible for audio data.

To make task more realistic and challenging, we exper-
iment with EU setting for NTM and Audio datasets. For
NTM-EU, only 5% topic entity labels among all questions
are provided. For Audio-EU, a higher labeled ratio 20% since
it is much more difficult than text data. To handle the variant
length of audio questions, we use a simple convolutional
neural network (CNN) with three convolutional layers and
three max-pooling layers to embed the audio questions into
fixed-dimension vectors. We put more details about CNN
embedding in Appendix D.

For all the EU setting above, the small set of entity labeled
questions are used to initialize a topic entity recognizer. After
that, all methods train on entire dataset but without the entity
labels. For VRN, we show that this pretrained recognizer will
also get improved with variational joint training; for other
baselines, the entity recognizer will be fixed.

6.4 Results and discussions

The experimental results are listed in Table 1 and Table 2.
Vanilla: Since all the topic entities are labeled, Vanilla mainly
evaluates the ability of logic reasoning. Note that Vanilla 1-
hop is the same as WikiMovies, which is included for sanity
check. All the baseline methods achieve similar performance
as reported in the original papers (Miller, Fisch, and et. al.
2016; Bordes, Chopra, and Weston 2014), while our method
performs the best. It is clear to see that 2- and 3-hop ques-
tions are harder, leading to significant accuracy drop on all
methods. Nevertheless, our method still achieves promising
results and lead competitors by a large margin. We notice that

KV-MemNN is not performing well on multi-hop reasoning,
perhaps due to explosion of relevant knowledge items.
Vanilla-EU: Without topic entity labels, all reasoning-based
methods are getting worse on multi-hop questions. However,
supervised embedding gets better in this case, since it just
learns to remember the pair of question and answer entities.
According to the statistics in Appendix (Table 4), a big por-
tion of questions can be answered by just memorizing the
pairs in training data. That explains why supervised embed-
ding behaves differently on this dataset.
NTM-EU: The questions in this dataset are paraphrased by
neural translation model, which increases the variety of word-
ings, and makes the task harder. It is reasonable that all meth-
ods are getting slightly worse results compared to Vanilla-
EU. The same explanation applies to supervised embedding,
which is not reasoning but memorizing all the pairs. This
is indeed weak generalization and it takes advantage of the
nature of this dataset, but it is not likely to perform well on
new entity pairs.
Audio-EU: This audio dataset is the most challenging one.
As mentioned in Sec 6.1, even the same word can be pro-
nounced in a variety of intonations. It is hard to recognize the
entity in audio data, also hard to tell the question type. It is not
surprising that all methods perform worse compared to text
data. Our method achieves 37% on 1-hop audio questions,
which is very promising. For 2-hop and 3-hop questions,
our method still outperforms other methods. Clearly, there
is large room for improvement on audio QA. We leave it
as future work, and hopefully the METAQA benchmark can
facilitate more researchers working on QA systems.

6.5 Model ablation

Since our framework uses variational method to jointly learn
the entity recognizer and reasoning graph embedding, we
here do the model ablation to answer the following two ques-
tions: 1) is the reasoning graph embedding approach neces-
sary for inference? 2) is the variational method helpful for
joint training?
Importance of reasoning graph embedding: As the results
shown in Table 1, our proposed VRN outperforms all the
other baselines, especially in 3-hop setting. Since this exper-
iment only compares the reasoning ability, it clearly shows
that simply representing the inference rule as linear combina-
tion of reasoning graph entities is not enough.
Improvement of entity recognition with joint training: In
Fig 3 we show that using our joint training framework with
variance reduction REINFORCE, we can improve the entity
recognition performance further without the corresponding
topic entity label supervision. For 1-hop and 2-hop questions,
our model can improve greatly. While for 3-hop, since the in-
ference task is much harder, we can only marginally improve
the performance. For audio data, we’ve improved by 10% in
1-hop case, and it is hard to improve further for multi hops.
In Table 1, the baselines perform significantly worse in the
EU setting, due to the absence of joint training.

6.6 Inspection of learning and inference

We study the convergence of our learning algorithm in Ap-
pendix E.1. It shows variance reduction technique helps the
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convergence significantly, while simpler tasks converge bet-
ter. Also we present an example inference path with highest
score in the reasoning graph in Appendix E.2. To answer
“What are the main languages in David Mandel films?”, the
model learns to find the movie EuroTrip first through directed
or wrote relationships, then follow in_language to get the
correct answer German. For visualizing general multi-hop
reasoning, attention mechanism in the aggregation operator
of each node would be helpful.
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