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ABSTRACT

A variational retrieval of rain microphysics from polarimetric radar data (PRD) has been developed

through the use of S-band parameterized polarimetric observation operators. Polarimetric observations allow

for the optimal retrieval of cloud and precipitation microphysics for weather quantification and data assim-

ilation for convective-scale numerical weather prediction (NWP) by linking PRD to physical parameters.

Rain polarimetric observation operators for reflectivity ZH, differential reflectivity ZDR, and specific dif-

ferential phase KDP were derived for S-band PRD using T-matrix scattering amplitudes. These observation

operators link the PRD to the physical parameters of water contentW and mass-/volume-weighted diameter

Dm for rain, which can be used to calculate other microphysical information. The S-band observation op-

erators were tested using a 1D variational retrieval that uses the (nonlinear) Gauss–Newton method to it-

eratively minimize the cost function to find an optimal estimate of Dm andW separately for each azimuth of

radar data, which can be applied to a plan position indicator (PPI) radar scan (i.e., a single elevation). Ex-

periments on two-dimensional video disdrometer (2DVD) data demonstrated the advantages of including

FDP observations and using the nonlinear solution rather than the (linear) optimal interpolation (OI) solu-

tion. PRD collected by theNorman,Oklahoma (KOUN)WSR-88Don 15 June 2011 were used to successfully

test the retrievalmethod on radar data. The successful variational retrieval from the 2DVDand the radar data

demonstrate the utility of the proposed method.

1. Introduction

Observation-based radar retrievals utilize radar data to

retrieve rain microphysics information. Basic retrievals

use empirical formulas to calculate rain microphysics in-

formation on a gate-by-gate basis (e.g., Z–R relationship

for rain rate) without accounting for statistics of the ob-

servation errors. Advanced techniques such as optimal

interpolation (OI) (Eliassen 1954; Gandin 1963) and

variational methods (Lorenc 1986), which have been

used for data assimilation (DA) in numerical weather

prediction (NWP), can be utilized in observation-based

retrievals to account for these statistics. Early studies

on radar observation-based retrievals using variational

methods focused on retrievals of three-dimensional

wind fields from Doppler velocity observations (Sun

et al. 1991; Qiu and Xu 1992; Laroche and Zawadzki

1994; Gao et al. 1999; Gao et al. 2001). Hogan (2007),

Cao et al. (2013), and Yoshikawa et al. (2014) used radar

hydrometer related observations to optimally retrieveCorresponding author: Vivek N. Mahale, vmahale@ou.edu
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microphysics information by accounting for background

and/or observation errors (i.e., spatial covariance is taken

into account).

A variational method requires forward observation

operators. A forward observation operator (or forward

model) is a transformation, based on physical laws,

which converts NWP model state variables to observa-

tions (Kalnay 2003).Rodgers (2000) states that ‘‘the heart

of a successful and accurate retrievalmethod is the forward

model.’’ Throughout the literature, the forward observa-

tion operators are simply called observation operators.

The best observation operators must include relevant

physics, are numerically efficient, and have easily calcu-

lated first derivatives (i.e., the Jacobian) (Rodgers 2000).

An observation-based radar retrieval is beneficial if

it can be easily used in convective scale NWP to improve

model microphysics parameterization and weather

forecasts. Single moment and double moment micro-

physics parameterization schemes are commonly used in

high-resolution convective scale NWP models (e.g., Lin

et al. 1983; Milbrandt and Yau 2005; Morrison et al.

2005). In convective-scale NWP model simulations with

single-moment microphysics, rainwater mixing ratio qr
is the only prognostic variable for hydrometeor physics.

In double-moment microphysical parameterization schemes,

both qr and the number concentrationNt are predicted. The

values of Nt and qr can be converted to water content

(W 5 raqr, where ra is air density) and mass-/volume-

weighted diameter Dm, which are related to the drop

size distribution (DSD) for rain (i.e.,W andDm can be

considered ‘‘related parameters’’ to describe rain micro-

physics). They are also considered ‘‘physical parameters’’

because they describe physical quantities and are more

likely to have a Gaussian distribution than nonphysical

quantities. They can be utilized to calculate other mi-

crophysical quantities such as rainfall rate. Thismotivates

us to use parameterized polarimetric forward observation

operators that link NWP model state variables and radar

observed quantities for an observation-based retrieval.

Essentially, the goal is to link the prognostic physics

variables ofNt and qr to the polarimetric radar variables

by retrieving W and Dm for rain.

In this study, an observation-based variational retrieval

of rain microphysics from polarimetric radar data (PRD)

has been developed through the use of derived parame-

terized polarimetric observation operators and a nonlin-

ear, iterative solution.

The variational retrieval and derived observation

operators are tested by conducting experiments on two-

dimensional video disdrometer (2DVD; Kruger and

Krajewski 2002) data and radar data. Using 2DVD data,

the intrinsic or true values of the retrieved variables are

known and simulated observations can be calculated.

Since the truth is known, the 2DVD experiments can

quantitatively evaluate the variational retrieval and

observation operators for different conditions. These ex-

periments will be discussed in context of the both the re-

trieval of W and Dm (i.e., the inverse problem) and the

estimation of polarimetric radar variables (i.e., the for-

ward problem) to test the observation operators. In other

words, the observation operators are tested both going

backward from the observations to the state variables and

forward from the state variables to observations.

Once the variational retrieval and observation operators

are successfully tested on 2DVD data and simulated ob-

servations, the next step is to apply them to real radar data.

The goal of the radar data experiments is to demonstrate

the variational retrieval on a both a single azimuth and an

entire elevation scan of PRD.

This manuscript is organized as follows. The deriva-

tion of the parameterized polarimetric observation op-

erators is shown in section 2. This is followed by a

description of the variational retrieval methodology in

section 3. Next, the polarimetric observation operators

and variational retrieval methodology are applied to DSD

data collected by a disdrometer in section 4 and to radar

data in section 5. A summary of results, conclusions, and

futurework for this study are provided in the final section.

2. Parameterized polarimetric radar forward

observation operators

The DSD is the fundamental description of rain mi-

crophysics (Zhang 2016). Therefore, a DSDmodel will be

utilized to derive the observation operators. The DSD is

defined as the number of drops in a unit volume for each

unit diameter bin. It is a function of equivalent drop di-

ameterD and is expressed asN(D) (m23mm21);D is the

diameter of a sphere that has an equivalent volume to an

oblate spheroid. The raindrops are assumed to be spher-

oids that become more oblate as their size increases. In

this study, the two-parameter exponential distribution will

be used for the derivation of the observation operators:

N(D)5N
0
exp(2LD) , (1)

where N0 (m
23mm21) is the intercept parameter and L

(mm21) is the slope parameter. These are often called

‘‘DSD parameters.’’

For a two-parameter DSD model, the model physics

parameters Nt and qr can be converted to W and Dm.

Therefore, the state variables chosen for the observation

operators are W and Dm. Note that W and Dm can be de-

rived using existing DSD retrievals that retrieveN0 and L;

however, the advantage is these are physical parame-

ters, which tend to be Gaussian distributed. Nonphysical
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parameters are less likely to have a Gaussian distribution.

The terms N0 and L do not have a Gaussian distribution

(e.g., Cao et al. 2010; Zhang 2016). Cao et al. (2010) showed

that N0 and L have greatly skewed distributions.

The first state variable,W (gm23), is derived using the

definition of the volume of a sphere (V5D3
p/6) and the

third DSD moment:

W5
p

6
r
w

ðDmax

0

D3N
0
exp(2LD) dD (2a)

5
p

6
3 1023N

0
L

24
g(LD

max
, 4) , (2b)

where rw is the density of water and g is the incomplete

gamma function. As previously noted, W is directly re-

lated to qr as W 5 raqr.

The second state variable, Dm (mm), is derived using

the ratio of the fourth and third DSD moments:

D
m
5

ðDmax

0

D4N
0
exp(2LD) dD

ðDmax

0

D3N
0
exp(2LD) dD

(3a)

5
1

L

g(LD
max

, 5)

g(LD
max

, 4)
. (3b)

ParameterNt is related toN0by the zerothDSDmoment:

N
t
5

ðDmax

0

N
0
exp(2LD) dD (4a)

5
N

0

L
g(LD

max
, 1). (4b)

The relationship of Dm to qr and Nt can be derived

by first solving for N0 from (2) and L from (4). By

substituting N0 into the equation for L, the following

equation for L is found:

L5

p

6
r
w
N

t
g(LD

max
, 4)

r
a
q
r
g(LD

max
, 1)

2

4

3

5

1/3

. (5)

Therefore, using the definition of Dm from (3), Dm is

related to qr and Nt by the following relationship:

D
m
5

g(LD
max

, 5)

g(LD
max

, 4)

r
a
q
r
g(LD

max
, 1)

p

6
r
w
N

t
g(LD

max
, 4)

2

6

4

3

7

5

1/3

. (6)

The dual-polarized radar variables used for the deri-

vation of the observation operators are the horizon-

tal radar reflectivity factor Zh, differential reflectivity

[ZDR 5 10log10(Zdr), where Zdr is in linear units], spe-

cific differential phase KDP, and copolar correlation

coefficient rhv.

TheKDP observation operator will be applied through

the use ofFDP, whereFDP is the total differential phase,

which is the sum of the differential backscattering phase

and differential propagation phase (or differential phase).

It is assumed that contributions of differential backscat-

tering phase are negligible at S band for rain. With the

assumption that differential backscattering phase is neg-

ligible, FDP is assumed to only be an estimate of the dif-

ferential propagation phase, which is the integral of the

specific differential phase over the propagation path.

Therefore,FDP is directly related toKDP by the following:

F
DP

(r)5 2

ðr

0

K
DP

(l) dl . (7)

Parameter FDP is used in the variational retrieval in-

stead of KDP because it is a direct quantity that is mea-

sured by radars.

The derivation of the observation operators is a three-

step process. The first step is to calculate N(D) for a range

of Dm using a normalized W of 1gm23 and assuming an

exponential distribution (i.e.,Zh andKDP are normalized so

thatW is 1gm23 andDm only varies). To calculateN(D),L

is first calculated for a range of Dm using (3). Using L, N0

canbe calculated from(2).OnceL andN0 are known,N(D)

can be calculated using (1). For this derivation, Dm ranges

from;0.08 to;4.35mmwhen using a finiteDmax of 8mm.

The second step is to calculateZh,Zdr,KDP, and rhv by

using the S-band scattering amplitudes calculated with

the T-matrix method and using the N(D) values from the

first step. The T-matrix method (Waterman 1971) is a

numerical-scattering solution. For the scattering amplitude

calculations, it is assumed that raindrops will fall with their

major axis aligned horizontally (i.e., canting angle mean

and standard deviations are zero). It has been found that

the true standard deviation for the canting angles for rain-

drops is somewhere between 08 and 108 (e.g., Bringi and

Chandrasekar 2001; Ryzhkov et al. 2002). Ryzhkov et al.

(2002) found the assumption of no canting angle only re-

sults in a slight overestimation (,6%) in somePRD, so this

is a reasonable assumption. The axis ratios of the raindrops

assume the following relationship (Zhang 2016):

r5 0:95511 0:0251D2 0:036 44D2
1 0:005 303D3

2 0:000 249 2D4 , (8)

where r is the ratio of the semiminor and semimajor axes.

The third step is to use a polynomial function to fit

the calculated Zh, Zdr, KDP, and rhv to Dm. Because a

normalized W of 1 gkg21 was used in the calculation, W
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will be multiplied by the polynomial for Zh and KDP.

These will cancel forZDR and rhv because they are ratios.

As a result, here are the derived parameterized po-

larimetric radar forward observation operators for rain:

Z
h
’W(20:30781 20:87D

m
1 46:04D2

m 2 6:403D3
m

1 0:2248D4
m)

2, (9)

Z
dr
’ 1:0192 0:1430D

m
1 0:3165D2

m 2 0:064 98D3
m

1 0:004 163D4
m , (10)

K
DP

’W(0:009 2602 0:086 99D
m
1 0:1994D2

m

2 0:028 24D3
m 1 0:001 772D4

m), (11)

r
hv
’ 0:99871 0:008 289D

m
2 0:011 60D2

m

1 0:003 513D3
m 2 0:0003 187D4

m , (12)

or in logarithmic units for ZH and ZDR:

Z
H
’ 10 log

10
[W(20:30781 20:87D

m
1 46:04D2

m

2 6:403D3
m 1 0:2248D4

m)
2], (13)

Z
DR

’ 10 log
10
(1:0192 0:1430D

m
1 0:3165D2

m

2 0:064 98D3
m 1 0:004 163D4

m). (14)

Figure 1 plots all the observation operators from (9)–

(14). These observation operators include relevant

physics, are numerically efficient (i.e., polynomials),

and have easily calculated first derivatives. Note that

these calculated polarimetric variables are intrinsic

values that do not consider propagation and error

effects (e.g., attenuation and sampling errors) and are

only valid for S-band radar data.

3. Variational retrieval

The solution to an observation-based variational re-

trieval is an optimal analysis field xa that minimizes a

cost function (Lorenc 1986):

J(x)5 (x2 x
b
)TB21(x2 x

b
)

1 [y2H(x)]TR21[y2H(x)] . (15)

The convention here follows vector–matrix form, which

is the notation used by the data assimilation community

(e.g., Ide et al. 1997; Huang 2000; Kalnay 2003). The up-

percase boldface letters represent matrices and the low-

ercase boldface letters represent vectors in this convention.

The cost function J is the distance between the anal-

ysis x and the background xb weighted by the inverse of

the background error covariance B plus the distance of

the analysis x to the observations yweighted by the inverse

of the observation error covariance R (Kalnay 2003).

Parameter H is the observation operator, and x is an anal-

ysis vector that is a concatenate of the state variablesW and

Dm (i.e., the variational retrieval finds an optimal analysis

ofW andDm). The other terms in the cost function (xb,B,

y, andR) are defined in greater detail later in this section.

The solution for an observation-based OI retrieval is

(Kalnay 2003)

x
a
5 x

b
1W[y2H(x

b
)] , (16a)

W5BH
T(R1HBH

T)
21

, (16b)

where W is the optimal weight matrix and H is the

Jacobian, which is the linear approximation ofH. H is

derived from (11), (13), and (14), which will be shown

later in this section.

The assumption with the OI solution is that back-

ground is a reasonable approximation of the true anal-

ysis, so that the solution of the analysis is equal to the

background values plus small increments (Kalnay 2003).

The OI solution is usually not solved iteratively (i.e., it

is solved explicitly), and is equivalent to the three-

dimensional variational assimilation (3DVAR) solu-

tion that is found by minimizing the cost function (15).

For moderately nonlinear problems, the Gauss–Newton

iterative method can find the solution (Rodgers 2000):

x
i11

5 x
b
1W[y2H(x

i
)1H

i
(x

i
2 x

b
)] , (17a)

W5BH
T
i (R1H

i
BH

T
i )

21
, (17b)

where Hi and H(xi) are updated during each iteration i.

The Gauss–Newton iterative method is utilized to solve

nonlinear least squares problems (e.g., variational data

assimilation problems) and has been shown to correspond

to the incremental four-dimensional variational (4DVAR)

assimilation solution (Lawless et al. 2005a,b). For this study,

the Gauss–Newton iterative method, (17), was used to

better account for the nonlinearity in the forward operator.

Note that for any variational retrieval, there is an

assumption that the background and observation errors

have a Gaussian probability distribution, the back-

ground and observation errors are uncorrelated, and

the background and observations are unbiased (Kalnay

2003). Errors will be introduced in the variational re-

trieval if these conditions are not met.

A comparison to the OI solution, (16), is also shown in

section 4. The comparison between bothmethods is shown

because even though most retrieval problems are not truly

linear, many still utilize linearization about some prior

state evenwhen the observation operator is not truly linear

(Rodgers 2000). Therefore, theOI solution is tested because

it provides abaseline to compare toGauss–Newton iterative

solution and to see if linearity can be assumed.
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To solve an observation-based variational retrieval, the

state variables and observations must be defined. As pre-

viously noted, the state variables for this observation-based

retrieval areW andDm, forming the state or analysis vector

x 5 [W; Dm]. The observations used are ZH, ZDR, and

FDP, yielding the observation vector y5 [ZH; ZDR;FDP].

Note that rhv is not used because of its limited dynamic

range for rain at S-band (Fig. 1f); rhv would not add value

to retrieval for pure rain as its error is approximately equal

to its dynamic range.

For the solution to (17), let us look at each term in-

dividually. First, assume that it is solved azimuthally and

that the number of range gates in one azimuth is nr. The

variational retrieval is solved azimuthally (1D in the radial

direction) to coincide with FDP measurements (i.e., to co-

incide with FDP defined as the integral of KDP over the

FIG. 1. The fitted parameterized polarimetric forward observation operators compared to direct calculations

from T-matrix method for (a) Zh, (b) ZH, (c) Zdr, (d) ZDR, (e) KDP, and (f) rhv. These are normalized for W of

1 gm23. The equation in each panel is the derived observation operator.
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propagation path). Therefore, the dimension of state

variables is n 5 2nr and the dimension of observations is

p 5 3nr.

The analysis vector at iteration i with dimension n 3 1

(2nr3 1) is denoted xi. It is the concatenate of the analysis

vectors of the state variables W and Dm at iteration i.

The analysis vector at iteration i11 with dimension n3 1

(2nr3 1) is denotedxi11. It is the concatenate of the analysis

vectors of the state variablesW and Dm at iteration i11.

Thebackground statevector (alsoknownas thefirst guess)

with dimension n3 1 (2nr 3 1) is denoted xb. It is the con-

catenate of the background vectors of the state variables W

and Dm. For this study, the background state vector is ob-

tained from empirical formulas forW andDm (Zhang 2016):

W5 (1:0233 1023)Z
h
3 1020:0742Z3

DR
10:511Z2

DR
21:511ZDR ,

(18)

D
m
5 0:0657Z3

DR 2 0:332Z2
DR 1 1:090Z

DR
1 0:689. (19)

The observation vector with dimension p3 1 (3nr3 1)

is denoted y. It is the concatenate of the observation

vectors for ZH, ZDR, and FDP.

The covariance matrix of background errors with di-

mension n3 n (2nr3 2nr) is denotedB. The background

error standard deviations used in this study were sW 5

0.707 gm23 and sDm
5 1mm (i.e., the variances are

s2
W 5 0.5 g2m26 and s2

Dm
5 1mm2). The relatively large

background error gives more weight to observations,

which is a reasonable assumption since this is an

observation-based retrieval with no model background.

The background covariance assumes a Gaussian corre-

lation model (Huang 2000):

b
ij
5s2

b exp

"

2
1

2

�

r
ij

r
L

�2
#

, (20)

where s2
b is the is the background error covariance (s2

W

and s2
Dm

), rij is the distance between the ith and jth radar

gates, and rL is the spatial decorrelation length. In this

study, rLwas set to 1000m.An increase (decrease) in the

spatial decorrelation length results in an increase (de-

crease) in smoothing of the final analysis. Therefore, the

spatial influence of the observations is determined by

the background error covariance matrix.

The covariance matrix of observations errors with di-

mension p 3 p (3nr 3 3nr) is denoted R. The observation

error standard deviations used in this study were sZH
5

1 dB, sZDR
5 0.2 dB, and sFDP

5 58. It is assumed that

each observation’s error is independent from the other

observations. Therefore, R is a diagonal matrix.

The observation operator H converts state variables in

the analysis vector at iteration i to observations. These

operators (11), (13), and (14) were derived in section 2.

The Jacobian H contains the partial derivative of each

observation operator with respect to the state variables.

It has a dimension p 3 n (3nr 3 2nr). These can be cal-

culated analytically by taking the partial derivatives of

(11), (13), and (14) with respect to W and Dm:

›Z
H

›W
5

10

W ln(10)
, (21)

›Z
H

›D
m

5
20(20:871 23 46:04D

m
2 33 6:403D2

m 1 43 0:2248D3
m)

ln(10)(20:30781 20:87D
m
1 46:04D2

m 2 6:403D3
m 1 0:2248D4

m)
, (22)

›Z
DR

›W
5 0, (23)

›Z
DR

›D
m

5
10(20:14301 23 0:3165D

m
2 33 0:064 98D2

m 1 43 0:004 163D3
m)

ln(10)(1:0192 0:1430D
m
1 0:3165D2

m 2 0:064 98D3
m 1 0:004 163D4

m)
, (24)

›K
DP

›W
5 0:009 2602 0:086 99D

m
1 0:1994D2

m

2 0:028 24D3
m 1 0:001 772D4

m , (25)

›K
DP

›D
m

5W(20:086 991 23 0:1994D
m

2 33 0:028 24D2
m 1 43 0:001 772D3

m). (26)

The partial derivative of ›ZDR/›W is zero because ZDR

only depends on Dm. For the partial derivatives

›ZH/›W, ›ZH/›Dm, and ›ZDR/›Dm, the matrix is di-

agonal because they have gate-to-gate independence.

For ›FDP/›W and ›FDP/›Dm, the matrix is a lower tri-

angle because FDP is defined as 2 times the summation

of KDP up to a given gate:
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F
DP

(r
n
)5 2�

N

i51

K
DP

(r
i
)Dr

i
. (27)

The observation-based variational retrieval is com-

plete when the analysis vector xi converges to a solution.

A block diagram of the iteration procedure for the varia-

tional retrieval is shown inFig. 2. In practice, the number of

iterations can be fixed and/or a convergence test applied. If

there are non-rain hydrometeors present (e.g., hail) any-

where in the azimuth, there may not be a solution or an

unrealistic solution due to contamination within the azi-

muth (since the retrieval is solved azimuthally). This is

because these parameterized polarimetric radar forward

observation operators were derived using the T-matrix

calculations for rain.

To solve this for an entire plan position indicator

(PPI) radar scan, each azimuth within a PPI scan is

solved independently. A PPI scan is a radar scan where

the elevation angle is constant and the azimuth angle

varies. In other words, simply loop through all the

azimuths to get a solution for an entire radar elevation scan.

4. Testing the variational retrieval on DSD data

The variational retrieval and observation operators

are tested by conducting experiments on 2DVD data

FIG. 2. Block diagram of the iteration procedure for the nonlinear variational retrieval for a

single azimuth of radar data.
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collected on 13 May 2005 (Zhang 2015). The 2DVD

data are from a quasi-linear convective system (QLCS)

that has an estimated storm motion from 16 to 18m s21

or ;1 kmmin21. The 2DVD data are collected for

;4.63 h; however, only the results for the first 60min

are shown because this is when the leading convective

line of theQLCS passes over the disdrometer and when

the most significant increase in FDP occurs (i.e., the

most notable part of the dataset).

First, the intrinsic or true values for W and Dm are

calculated using the 2DVD data. When calculating the

intrinsicW andDm, five-point averages of the rawW and

Dm calculations are used to remove noise from the data.

Second, ZH, ZDR, and FDP are calculated using the

observation operators [(11), (13), and (14)] and the re-

lationship between FDP and KDP [(27)]. These calcu-

lated polarimetric variables are assumed to be the true

observations in these experiments. Third, it is assumed

that the time series of 2DVD data represents a radial of

radar data. This is assumed because the storm motion

remained nearly steady state. Based on the stormmotion,

eachminute of 2DVDdata represents approximately a 1-km

range gate of data. Thus, the entire 60min of data represents

a radial that is 60 km in length. Finally, in all of these

experiments, a constant background is calculated using

the empirical relationship given in (18) and (19). The

mean of the empirically derived W and Dm are calcu-

lated using the entire radial of data (;4.63 h). These

mean values for W and Dm are used as the constant

background.

a. OI versus nonlinear

In the first experiment, the OI solution (16) is com-

pared to the nonlinear solution (17). Both of these so-

lutions only include ZH and ZDR (FDP is not included).

The relative advantage of the nonlinear solution overOI

is demonstrated in Fig. 3. For all analyses, the nonlinear

solution is closer to the truth. For example, the peak

values of W are 0.65 and 1.58 gm23 for the OI and

nonlinear solutions at 20 km, respectively (Fig. 3a). The

nonlinear solution is closer to the true maximum value

of 1.94 gm23.

ForZH, there is generally an underestimation of values

in the OI solution when compared to the nonlinear

solution and truth (Fig. 3b). For example, the peak

values are ;45 and ;50 dBZ for the OI and nonlinear

solutions at 29 km, respectively. The nonlinear solution

is the same as the truth in this case. Dm and ZDR are

similar for both the OI and nonlinear solutions with an

exception of the peak values (Figs. 3c,d). There a slight

underestimation on the OI solution at peak values. For

example, the true value at 12 km is 3.05 dB for ZDR and

3.00mm for Dm. This compares to 2.85 dB and 2.80mm

for the OI solution and 3.00 dB and 2.94mm for the

nonlinear solution.

The advantage of the nonlinear solution over OI is

also shown by the final value of FDP. Since FDP is

integrated in the along-radial direction, the value at

the final gate provides insight on the performance

across the entire radial of data. In this experiment, the

final value of FDP for the OI solution at;158 is nearly

half when compared to the nonlinear solution at ;298

(Fig. 3e). The nonlinear solution is very close to the

true value, which is 308. This seems reasonable and

intuitive based on the significant underestimation of

W across the entire radial with the OI solution.

b. Nonlinear without FDP versus nonlinear with FDP

In the second experiment, the nonlinear solution with-

out FDP is compared to that with FDP. The advantage of

includingFDP in the variational retrieval is shown in Fig. 4.

The most evident advantage is seen in W, especially with

larger values (.1.5gm23) (Fig. 4a). The peak values ofW

are 1.58 and 1.75gm23 for nonlinear solution without and

withFDP, respectively. The nonlinear solution withFDP is

closer to the true maximum value of 1.94gm23.

ForZH,Dm, andZDR, the benefits of includingFDP are

negligible (Figs. 4b,c,d). The final value of FDP for the

nonlinear solution without FDP is ;298, which is close to

the nonlinear solution with FDP and the truth at ;308

(Fig. 4e). When compared to the previous experiment, the

final value of FDP does not have a significant difference.

Even though most of the analyses show little or no

benefit, it is important to note that there is still evi-

dence of some benefit of adding FDP in addition to ZH

and ZDR as shown with the increase in the peak W

value. This improves results for W that is closer to the

true value. In other words, the inclusion of FDP is im-

portant for the retrieval of larger W values.

c. Simulated observations

In the third experiment, the nonlinear solution with

FDP is compared to the nonlinear solution with FDP

with random error added to the observations. Adding

random error may result in worse retrievals, which is an

important consideration since true radar observations

include random error. The random errors included are

61 dBZ for ZH, 60.2 dB for ZDR, and 658 for FDP.

These values were chosen because they are used in the

covariance matrix of observations errors, as described

in previous section.

As shown in Fig. 5, this experiment demonstrates

that the nonlinear variational retrieval still provides a

reasonable solution even with random error in the

observations. This is especially true when looking at

the solution as a whole. As previously mentioned, the
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best way to assess this is by looking at the final FDP

value because FDP is an integrated quantity. The final

value of FDP with random error is the same as truth

(;308) (Fig. 5e). Therefore, on average, the solution is

still reasonable.

5. Applying the variational retrieval to radar data

In the previous section, the variational retrieval and

observation operators were successfully tested on 2DVD

data and simulated observations. The next step is to apply

them to real radar data. For this study, the variational

retrieval is applied to the PRDcollected from the S-band

Norman, Oklahoma (KOUN), Weather Surveillance

Radar-1988 Doppler (WSR-88D) on 15 June 2011. The

radar data are obtained from the National Centers for

Environmental Information (NOAA/NCEI 2011). The

radar data from this event captures observations of a

downburst and its parent thunderstorm. Only the PRD

at a range up to ;32 km is used for the variational re-

trieval because this is a sufficient range to capture the

storm of interest. More information about the downburst

FIG. 3. OI analysis and nonlinear analysis compared

to the truth for (a) W, (b) ZH, (c) Dm, (d) ZDR, and

(e) FDP using 2DVD data collected on 13 May 2005.

The constant background field for W and Dm are

also shown.
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event can be found in studies by Kuster et al. (2016) and

Mahale et al. (2016).

a. Single-azimuth experiment

The variational retrieval is tested on a single azi-

muth of radar data before applying it to an entire PPI

scan. As previously mentioned, the variational retrieval

is solved azimuthally (1D) to coincide with FDP obser-

vations. As with the 2DVD data, some assumptions and

preprocessing to the data are applied to this experiment.

A constant background for W and Dm are calculated

using the azimuthal mean of empirical relationship

given in (18) and (19). Also as with 2DVD data, quality-

control of the radar data is accomplished through a

median filter to reduce the noise in the data. In addition,

some constraints are placed on the radar data. The ZH

minimum is set to 10 dBZ, ZDR is limited to 0.1 to 6 dB,

and only positive values of FDP are allowed. These

constraints are based on the bounds of the observation

operators as shown in Fig. 1. Finally, a simple attenuation

FIG. 4. As in Fig. 3, but with nonlinear analysis

withoutFDP and nonlinear analysis withFDP compared

to the truth.
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correction is also implemented to the radar data using the

differential phase (DP) attenuation correction procedure

(Bringi et al. 1990) with coefficients derived in

Zhang (2016).

In this experiment, PRD from an azimuth (;3.58)

with moderate ZH (;30–50 dBZ) and high rhv (.0.98)

values is chosen. Based on these observations, the as-

sumption is that only raindrops associated moderate

rainfall are present in this azimuth with no hail con-

tamination. This makes it an ideal azimuth to test the

variational retrieval. Once W and Dm are solved using

the variational retrieval, the observation operators are

used to calculate ZH, ZDR, and FDP analyses as in the

2DVD experiments.

The W, Dm, ZH, ZDR, and FDP analyses for the single

azimuth are shown in Fig. 6. For comparison, the em-

pirical relationships (18) and (19) are used to calculateW

and Dm. The empirical relationships only depend on ZH

and ZDR and do not account for FDP. Even so, the em-

pirical relationships can be used to qualitatively assess the

FIG. 5. As in Fig. 3, but with nonlinear analysis

without error and nonlinear analysis with random error

compared to the truth. The simulated observations

(truth 1 random error) for ZH, ZDR, and FDP are

also shown.
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results of the variational retrieval. The observed values

forZH,ZDR, andFDP are shown as a comparison as well.

ForW, the variational retrieval is smoother than the

empirical relationship (Fig. 6a). This is reasonable

because the variational retrieval takes account for the

spatial covariance, which is a function of the spatial

decorrelation length. The variational retrieval would

be less smooth (smoother) with a smaller (larger)

spatial decorrelation length. The local maxima and

minima for W are at approximately the same range;

however, the magnitudes of these maxima and minima

are sometimes different. For example, at ;9–10-km

range, the maximum magnitude of the difference be-

tween the two W values is 0.43 gm23.

This range is also where there is a noticeable dif-

ference between the ZH analysis and observations

(Fig. 6b). At the same range, the maximum magnitude

of the difference between ZH analysis and observa-

tions is 3.8 dB. The FDP observations are essentially

increasing W values beyond simply what the ZH values

FIG. 6. Analysis for (a) W, (b) ZH, (c) Dm, (d) ZDR,

and (e) FDP by applying the variational retrieval on a

single azimuth of 5.38 elevation scan of KOUN WSR-

88D data at 0020UTC 15 Jun 2011. The observed values

for ZH, ZDR, and FDP are plotted for comparison. The

empirical relationship and constant background field

for W and Dm are shown as well.
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would suggest in this range, which results in larger ZH

values in the analysis to keep it consistent with the ZH

observation operator. If sFDP
was increased (decreased),

the W values in this range would decrease (increase)

because of decreasing (increasing) influence ofFDPwith

more (less) weight given toZH. Outside of this range, the

ZH analysis is fairly close to the ZH observations (albeit

smoother).

For theDm analysis (Fig. 6c), the variational retrieval

is smoother than the empirical relationship as well and

the peak values are less than the empirical relationship

at a range of ;6 and ;11 km. This occurs because the

observation operators, andmore specifically the T-matrix

calculations, have a smaller dynamic range for Dm.

Consequently, the reduction of Dm also results in a

coincident reduction in ZDR as well (Fig. 6d). Outside

these areas, the ZDR analysis is fairly close to the ZDR

observations.

When comparingWwithFDP at this range (Figs. 6a,e),

it is evident that the FDP has a positive impact in modu-

latingW. TheFDP analysis has a relatively steep slope in

this range (i.e., relatively large KDP), which is why W is

greater than in the empirical relationship that does not

have the contribution from FDP.

It is also noteworthy that the FDP analysis can only

monotonically increase when using the variational

retrieval (Fig. 6e). This is because only positive KDP

values are allowed in the observation operator. As

shown, FDP observations are noisy and chaotic when

compared to ZH and ZDR observations, which is why

sFDP
is relatively large when compared to sZH

and sZDR
.

The variational retrieval provides a method to calcu-

late a smoother, monotonically increasing FDP while

accounting for the ZH and ZDR observations. This is the

characteristic that would be expected for FDP in a pure-

rain azimuth with no hail contamination at S band.

In addition, because the FDP analysis can only mono-

tonically increase with range,FDP observations serve as a

constraint for the variational retrieval. This is because the

final FDP analysis value is dependent on the total sum of

W across the entire azimuth. The other two observations,

ZH and ZDR, are independent from gate to gate when

attenuation and differential attenuation can be ignored.

Overall, the single-azimuth experiment on an area

of moderate rainfall was successful. The locations of

local maxima and minima for W,Dm, ZH, and ZDR are

similar to either the empirical formula or the obser-

vations with some differences in magnitude. The sim-

ilarity to the empirical formula provides a proof of

concept that the variational retrieval yields a reason-

able solution. The subtle differences can be accounted

for mostly with the addition of FDP observations (in

the case of W and ZH) and the limitation of T-matrix

calculations used in the observation operators (in the

case ofDm and ZDR). Finally, these results demonstrate

that the variational retrieval has utility in calculating a

smoother, monotonically increasing (more physically

representing) FDP.

b. PPI experiment

After the single-azimuth experiment, the variational

retrieval was applied on the entire PPI of radar data by

looping through all 360 azimuths. As with the single-

azimuth experiment, onceDm andW are obtained using

the variational retrieval, the observation operators are

used to calculate ZH and ZDR analyses to assess the

observation operators in context to the forward prob-

lem. Instead of calculating FDP, the KDP analysis is

shown to demonstrate it can be estimated using this

method. KDP is operationally useful because it is better

correlated to rainfall rates due to it being unaffected by

calibration error and attenuation as well as being more

linearly related to rainfall rate, which gives it utility for

quantitative precipitation estimation (QPE) (Bringi and

Chandrasekar 2001). TheW andDm analyses are shown

in Fig. 7 and the ZH and ZDR observations and analyses

are shown in Fig. 8. The differences between the obser-

vations and analyses are also shown (Figs. 8e,f). TheKDP

analysis is shown in Fig. 9.

The most evident feature in the analyses is the noisy

results across the western to northwestern sector of the

PPI. Parts of the analyses in this area are unrealistic and

the ZH analysis differs significantly from the observa-

tions. There are even some azimuths that are completely

void of data in the analyses. Further investigation was

done on why the variational retrieval failed in this sector

and will be discussed later in this section. In addition to

this sector, there are a few other azimuths that are void

of data. These azimuths do not have a solution likely

due to low ZH values and/or the presence of non-

meteorological scatterers (i.e., biological or ground

clutter) in the azimuth.

Outside of these areas, the ZH and ZDR analyses are

similar to the observations (Fig. 8). The local maxima

and minima are near the same locations (with an occa-

sional variation in the magnitude), which results in the

same precipitation structure. Some variability in mag-

nitude is expected because an optimal analysis that uti-

lizes all the information from ZH, ZDR, and FDP. Also,

some smoothing occurs because the spatial covariance

is taken into account. One noticeable difference is that

the peak magnitude of ZDR is tempered when com-

pared to observations. As noted in the single-azimuth

experiment, this is because of the dynamic range of

Dm that can be calculated through the variational

retrieval.
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There are also slight discontinuities from azimuth to

azimuth. This is likely an artifact from changes in the

errors ofFDP observations from azimuth to azimuth and

the subsequent effect on the final FDP analysis value. In

this study, the FDP error distribution is assumed con-

stant across the entire PPI, which may not be the case.

As previously noted, the final FDP analysis value is de-

pendent on the total sum ofW across the entire azimuth.

Slight deviations in the final FDP analysis value will re-

sult in a slight change for the retrieved state variables

across the entire azimuth.

The KDP analysis is an optimal analysis that utilizes in-

formation from ZH and ZDR (in addition toFDP) (Fig. 9).

As previously noted,FDP can only monotonically increase

when using the variational retrieval. This is a constraint

that comes out of the observation operator. Therefore,

negative KDP values cannot exist. This is reasonable for

areas of pure rain. Like ZH and ZDR, KDP is relatively

smooth from the variational retrieval.

Applying a simplified hydrometeor classification al-

gorithm (HCA) from Mahale et al. (2014) (based upon

Park et al. 2009) provided more insight on why the

variational retrieval failed on thewestern to northwestern

sector of the PPI. The HCA discriminates between 10

classes of radar echo: 1) ground clutter and anomalous

propagation (GC/AP), 2) biological scatterers (BS), 3)

dry aggregated snow (DS), 4) wet snow (WS), 5) crystals

(CR), 6) graupel (GR), 7) big drops (BD), 8) light and

moderate rain (RA), 9) heavy rain (HR), and 10) a

mixture of rain and hail (RH). As shown in Fig. 10, these

radials had radar gates that are classified as RH, which

implies there was potentially hail contamination on

these radials. This classification seems reasonable based

on the observed ZH and ZDR values. Relatively high ZH

with near-zero or negative ZDR has been observed as a

signature associated with hail for S-band radars (e.g.,

Bringi et al. 1986). In addition, as previously mentioned,

the HCA also indicates GC/AP and/or BS in some of the

other azimuths where no solution was found.

As noted, if there is hail contamination (or any non-

rain hydrometers) present anywhere in the azimuth,

theremay not be a solution or an unrealistic solution due

to contamination. This is because the observation op-

erators were derived using the T-matrix calculations for

pure rain. On Figs. 7–9, the sector associated with hail

contamination is highlighted using the results from the

HCA. For operational purposes in the detection of

hazardous weather, the failure of the variational re-

trieval could actually be a tool used to determine if hail

is present in a thunderstorm. This would be especially

true if the variational retrieval is conducted locally

over a set number of simultaneous gates rather than an

entire azimuth.

6. Summary and conclusions

In this study, a proposed method for the observation-

based variational retrieval of the physical parameters of

W andDm from S-band PRDwas developed through the

use of parameterized polarimetric radar observation

operators and a nonlinear, iterative method.

The observation operators were derived for ZH, ZDR,

and KDP using the T-matrix method and an exponential

distribution model, which link PRD toDm andW. These

simple observation operators are advantageous because

they include relevant physics, are numerically efficient,

and have easily calculated first derivatives. In addition,

these parameters can be easily assimilated to NWP

because are directly related to the prognostic physics

variables of Nt and qr.

FIG. 7. Analysis for (a)W and (b) Dm by applying the variational retrieval using a 5.38 elevation scan of KOUN

WSR-88D data at 0020 UTC 15 Jun 2011. The boundaries of the sector with hail contamination are marked by the

black lines.
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The use of an exponential distribution results in an

overdetermined problem, which is advantageous in this

retrieval because FDP is used as a constraint along the

azimuth (i.e., it can only monotonically increase), the

PRD are not all independent (e.g., ZDR has dependence

on ZH), and there are measurement and model errors.

For example, this would make the retrieval less sensitive

toZDR bias becauseZH,ZDR, andKDP are all a function

of Dm (though some error will be added to the retrieval

due to the assumption that observations are unbiased).

The disadvantage of an exponential distribution is that it

may not perform as well in areas where there is concavity

present in the DSD. Nevertheless, recent work has shown

the two parameter DSD model has an advantage for

FIG. 8. The (a) ZH observations, (b) ZDR observations, (c) ZH analysis, (d) ZDR analysis, (e) ZH observations

and analysis difference, and (f) ZDR observations and analysis difference using a 5.38 elevation scan of KOUN

WSR-88D data at 0020 UTC 15 Jun 2011. The analyses are from applying the variational retrieval.
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retrieving DSDs from PRD when compared to the three-

parameter gamma DSD model (Huang et al. 2019).

Using these observation operators, the Gauss–Newton

iterative method for moderately nonlinear problems was

successively used in the variational retrieval. Experi-

ments on calculated W and Dm from 2DVD data dem-

onstrated the advantages of using the nonlinear solution

when compared to the OI solution and including FDP

observations in addition to ZH and ZDR. The FDP ob-

servations may have only provided a slight benefit be-

cause they do not increase substantially at S band

(especially for light to moderate rainfall). It was also

shown even with the inclusion of random error into the

2DVD data, a reasonable solution can still be found.

These advantages were discussed in context of the

both the retrieval of W and Dm and the estimation of

polarimetric radar variables to test the observation

operators both inverse and forward, respectively. It

can be concluded from these experiments that accounting

for nonlinearity and including FDP observations is ben-

eficial for the retrieval W and Dm. The nonlinearity is

noteworthy because even though most problems are not

truly linear, the data assimilation community often

assumes linearity.

When applied to real radar data, the variational method

yields promising results for the retrieved W and Dm and

derived KDP within areas of pure rain. Since the observa-

tion operators were derived with the assumption of pure

rain, the retrieval failed where there was hail contamina-

tion. In this case, the derived KDP fromW andDm can be

considered a related parameter that describes the rain

microphysics.

Overall, the successful variational retrieval of W and

Dm from the 2DVD and the real radar data from two

separate events demonstrate the utility of the proposed

method. This method develops a framework that utilizes

proven techniques from the data assimilation commu-

nity. While the inclusion of a background state may not

be a significant advantage for 1D (azimuth) retrieval, it

can be important for 2D or 3D retrieval problems, which

can become underdetermined if the background is not

included because of the data distribution/coverage and

spacing.

In the future, additional studies can be conducted on

simulated and real data using this proposed retrieval

method. This may include controlled experiments where

we know the true quality of the measurements and their

error. Other future research includes deriving the ob-

servation operators for other radar frequencies (e.g., X

and C bands) and incorporating observation operators

for other hydrometer types such as hail. The inclusion

of other hydrometeors is important for operational

use, especially when retrieving information above the

melting layer. For X and C bands, attenuation would

have to definitely be accounted for in the ZH and ZDR

observation operators (or applied prior to the re-

trieval). Finally, a goal is to utilize the variational

retrieval for data assimilation in NWP to improve

model forecasts.
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The hydrometeor classification algorithm for the polari-

metric WSR-88D: Description and application to an MCS.

Wea. Forecasting, 24, 730–748, https://doi.org/10.1175/

2008WAF2222205.1.

Qiu, C. J., and Q. Xu, 1992: A simple-adjoint method of wind

analysis for single-Doppler data. J. Atmos. Oceanic Technol.,

9, 588–598, https://doi.org/10.1175/1520-0426(1992)009,0588:

ASAMOW.2.0.CO;2.

Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding:

Theory and Practice. Series on Atmospheric, Oceanic, and

Planetary Physics, Vol. 2, World Scientific, 256 pp.

Ryzhkov, A. V., D. S. Zrnic, J. C. Hubbert, V. N. Bringi,

J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar

observations and interpretation of co-cross-polar correlation

DECEMBER 2019 MAHALE ET AL . 2499

Unauthenticated | Downloaded 08/21/22 11:19 AM UTC

https://doi.org/10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2
https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2
https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2
https://doi.org/10.1175/2009JAMC2227.1
https://doi.org/10.1175/JAMC-D-12-0101.1
https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
https://doi.org/10.1175/1520-0426(2001)018<0026:TDSAVR>2.0.CO;2
https://doi.org/10.1175/1520-0426(2001)018<0026:TDSAVR>2.0.CO;2
https://doi.org/10.1175/JAM2550.1
https://doi.org/10.1175/JAM2550.1
https://doi.org/10.1175/JTECH-D-18-0107.1
https://doi.org/10.1175/JTECH-D-18-0107.1
https://doi.org/10.1175/1520-0493(2000)128<2588:VAUSF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2588:VAUSF>2.0.CO;2
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
https://doi.org/10.1175/WAF-D-15-0081.1
https://doi.org/10.1175/WAF-D-15-0081.1
https://doi.org/10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2
https://doi.org/10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2
https://doi.org/10.1256/qj.04.20
https://doi.org/10.1256/qj.04.20
https://doi.org/10.1002/fld.851
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.1175/JAMC-D-13-0358.1
https://doi.org/10.1175/JAMC-D-13-0358.1
https://doi.org/10.1175/JAMC-D-16-0062.1
https://doi.org/10.1175/JAMC-D-16-0062.1
https://doi.org/10.1175/JAS3534.1
https://doi.org/10.1175/JAS3446.1
https://www.ncdc.noaa.gov/data-access/radar-data/nexrad
https://www.ncdc.noaa.gov/data-access/radar-data/nexrad
https://doi.org/10.1175/2008WAF2222205.1
https://doi.org/10.1175/2008WAF2222205.1
https://doi.org/10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2
https://doi.org/10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2


coefficients. J. Atmos. Oceanic Technol., 19, 340–354, https://

doi.org/10.1175/1520-0426-19.3.340.

Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three di-

mensional wind and temperature fields from simulated single

Doppler radar data. J. Atmos. Sci., 48, 876–890, https://doi.org/

10.1175/1520-0469(1991)048,0876:ROTDWA.2.0.CO;2.

Waterman, P. C., 1971: Symmetry, unitarity and geometry in

electromagnetic scattering. Phys. Rev., 3, 825–839, https://

doi.org/10.1103/PHYSREVD.3.825.

Yoshikawa, E., V. Chandrasekar, and T. Ushio, 2014: Raindrop

size distribution (DSD) retrieval for X-band dual-polarization

radar. J. Atmos. Oceanic Technol., 31, 387–403, https://doi.org/

10.1175/JTECH-D-12-00248.1.

Zhang, G., 2015: Comments on ‘‘Describing the shape of raindrop

size distributions using uncorrelated raindrop mass spectrum

parameters.’’ J. Appl.Meteor. Climatol., 54, 1970–1976, https://

doi.org/10.1175/JAMC-D-14-0210.1.

——, 2016: Weather Radar Polarimetry. CRC Press, 304 pp.

2500 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 36

Unauthenticated | Downloaded 08/21/22 11:19 AM UTC

https://doi.org/10.1175/1520-0426-19.3.340
https://doi.org/10.1175/1520-0426-19.3.340
https://doi.org/10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2
https://doi.org/10.1103/PHYSREVD.3.825
https://doi.org/10.1103/PHYSREVD.3.825
https://doi.org/10.1175/JTECH-D-12-00248.1
https://doi.org/10.1175/JTECH-D-12-00248.1
https://doi.org/10.1175/JAMC-D-14-0210.1
https://doi.org/10.1175/JAMC-D-14-0210.1

