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Abstract

Many recent advances in large scale probabilistic

inference rely on variational methods. The suc-

cess of variational approaches depends on (i) for-

mulating a flexible parametric family of distri-

butions, and (ii) optimizing the parameters to

find the member of this family that most closely

approximates the exact posterior. In this paper

we present a new approximating family of distri-

butions, the variational sequential Monte Carlo

(VSMC) family, and show how to optimize it in

variational inference. VSMC melds variational in-

ference (VI) and sequential Monte Carlo (SMC),

providing practitioners with flexible, accurate,

and powerful Bayesian inference. The VSMC fam-

ily is a variational family that can approximate

the posterior arbitrarily well, while still allow-

ing for efficient optimization of its parameters.

We demonstrate its utility on state space models,

stochastic volatility models for financial data, and

deep Markov models of brain neural circuits.

1 Introduction

Complex data like natural images, text, and medical records

require sophisticated models and algorithms. Recent ad-

vances in these challenging domains have relied upon varia-

tional inference (VI) [Kingma and Welling, 2014, Hoffman

et al., 2013, Ranganath et al., 2016a]. Variational infer-

ence excels in quickly approximating the model posterior,

yet these approximations are only useful insofar as they

are accurate. The challenge is to balance faithful posterior

approximation and fast optimization.

We present a new approximating family of distributions

called variational sequential Monte Carlo (VSMC). VSMC

blends VI and sequential Monte Carlo (SMC) [Stewart and

McCarty, 1992, Gordon et al., 1993, Kitagawa, 1996], pro-

Proceedings of the 21st International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2018, Lanzarote, Spain. PMLR:
Volume 84. Copyright 2018 by the author(s).

viding practitioners with a flexible, accurate, and powerful

approximate Bayesian inference algorithm. VSMC is an effi-

cient algorithm that can approximate the posterior arbitrarily

well.

Standard SMC approximates a posterior distribution of latent

variables with N weighted particles iteratively drawn from

a proposal distribution. The idea behind variational SMC is

to view the parameters of the proposal as indexing a family

of distributions over latent variables. Each distribution in

this variational family corresponds to a particular choice of

proposal; to sample the distribution, we run SMC to generate

a set of particles and then randomly select one with proba-

bility proportional to its weight. Unlike typical variational

families, the VSMC family trades off fidelity to the posterior

with computational complexity: its accuracy increases with

the number of particles N , but so does its computational

cost.

We develop the VSMC approximating family, derive its cor-

responding variational lower bound, and design a stochastic

gradient ascent algorithm to optimize its parameters. We

connect VSMC to the importance weighted auto-encoder

(IWAE) [Burda et al., 2016] and show that the IWAE lower

bound is a special case of the VSMC bound. As an illustra-

tion, consider approximating the following posterior with

latent variables x1:T and observations y1:T ,

p(x1:T | y1:T ) =
T∏

t=1

N (xt ; 0, 1)N (yt ;x
2
t , 1)/p(y1:T ).

This is a toy Gaussian state space model (SSM) where the

observed value at each time step depends on the square

of the latent state. Figure 1c shows the approximating

power of VSMC versus that of the IWAE and of standard

variational Bayes (VB). As the length of the sequence T
increases, naïve importance sampling effectively collapses

to use only a single particle. VSMC on the other hand main-

tains a diverse set of particles and thereby achieves a signif-

icantly tighter lower bound of the log-marginal likelihood

log p(y1:T ).

We focus on inference in state space and time series models,

but emphasize that VSMC applies to any sequence of prob-

abilistic models, just like standard SMC [Del Moral et al.,

2006, Doucet and Johansen, 2009, Naesseth et al., 2014].
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Figure 1: Comparing VSMC and the IWAE. (a) VSMC constructs a weighted set of particle trajectories using SMC and then

samples one according to the final weight. Here, the size of the dot is proportional to the weight, wi
t; the gray arrows denote

the ancestors, ait−1; and the blue arrows denote the chosen path, b1:T . (b) IWAE does the same, but without resampling. This

leads to particle degeneracy as time increases—only one particle has nonneglible weight at time T . (c) The ELBO suffers

from this degeneracy: all are comparable when T is small, but as time increases the IWAE provides minimal improvement

over standard VB, whereas VSMC still achieves nearly the true marginal likelihood.

In Section 5, we demonstrate the advantages of VSMC on

both simulated and real data. First, we show on simulated

linear Gaussian SSM data that VSMC can outperform the

(locally) optimal proposal [Doucet et al., 2001, Doucet and

Johansen, 2009]. Then we compare VSMC with IWAE for

a stochastic volatility model on exchange rates from finan-

cial markets. We find that VSMC achieves better posterior

inferences and learns more efficient proposals. Finally, we

study recordings of macaque monkey neurons using a prob-

abilistic model based on recurrent neural networks. VSMC

reaches the same accuracy as IWAE, but does so with less

computation.

Related Work Much effort has been dedicated to learn-

ing good proposals for SMC [Cornebise, 2009]. Guarniero

et al. [2017] adapt proposals through iterative refinement.

Naesseth et al. [2015] uses a Monte Carlo approximation

to the (locally) optimal proposal [Doucet and Johansen,

2009]. Gu et al. [2015] learn proposals by minimizing the

Kullback-Leibler (KL) from the posterior to proposal using

SMC samples; this strategy can suffer from high variance

when the initial SMC proposal is poor. Paige and Wood

[2016] learn proposals by forward simulating and inverting

the model. In contrast to all these methods, VSMC optimizes

the proposal directly with respect to KL divergence from

the SMC sampling process to the posterior.

VSMC uses auxillary variables in a posterior approximation.

This relates to work in VI, such as Hamiltonian VI [Sal-

imans et al., 2015], variational Gaussian processes [Tran

et al., 2016], hierarchical variational models [Ranganath

et al., 2016b], and deep auxiliary variational auto-encoders

[Maaløe et al., 2016]. Another approach uses a sequence of

invertible functions to transform a simple variational approx-

imation to a complex one [Rezende and Mohamed, 2015,

Dinh et al., 2014]. All of these rich approximations can be

embedded inside VSMC to build more flexible proposals.

Archer et al. [2015], Johnson et al. [2016] develop varia-

tional inference for state space models with conjugate dy-

namics, while Krishnan et al. [2017] develop variational

approximations for models with nonlinear dynamics and

additive Gaussian noise. In contrast, VSMC is agnostic to

the distributional choices in the dynamics and noise.

Importance weighted auto-encoders [Burda et al., 2016]

obtain the same lower bound as variational importance sam-

pling (VIS), a special case of VSMC. However, VIS provides

a new interpretation that enables a more accurate variational

approximation; this relates to another interpretation of IWAE

by Cremer et al. [2017], Bachman and Precup [2015]. Vari-

ational particle approximations [Saeedi et al., 2014] also

provide variational approximation that improve with the

number of particles, but they are restricted to discrete latent

variables.

Finally, the log-marginal likelihood lower bound (6) was

developed concurrently and independently by Maddison

et al. [2017] and Le et al. [2017]. The difference with our

work lies in how we derive the bound and the implications

we explore. Maddison et al. [2017], Le et al. [2017] derive

the bound using Jensen’s inequality on the SMC expected

log-marginal likelihood estimate, focusing on approximate

marginal likelihood estimation of model parameters. Rather,

we derive (6) as a tractable lower bound to the exact evi-

dence lower bound (ELBO) for the new variational family

VSMC. In addition to a lower bound on the log-marginal like-

lihood, this view provides a new variational approximation

to the posterior.

2 Background

We begin by introducing the foundation for variational se-

quential Monte Carlo (VSMC). Let p(x1:t, y1:t) be a se-

quence of probabilistic models for latent (unobserved) x1:t
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and data y1:t, with t = 1, . . . , T . In Bayesian infer-

ence, we are interested in computing the posterior distri-

bution p(x1:T | y1:T ). Two concrete examples, both from

the time-series literature, are hidden Markov models and

state space models [Cappé et al., 2005]. In both cases, the

joint density factorizes as

p(x1:T , y1:T ) = f(x1)

T∏

t=2

f(xt |xt−1)

T∏

t=1

g(yt |xt),

where f is the prior on x, and g is the observation (data)

distribution. For most models computing the posterior

p(x1:T | y1:T ) is computationally intractable, and we need

approximations such as VI and SMC. Here we construct

posterior approximations that combine these two ideas.

In the following sections, we review variational inference

and sequential Monte Carlo, develop a variational approxi-

mation based on the samples generated by SMC, and develop

a tractable objective to improve the quality of the SMC vari-

ational approximation. For concreteness, we focus on the

state space model above. But we emphasize that VSMC

applies to any sequence of probabilistic models, just like

standard SMC [Del Moral et al., 2006, Doucet and Johansen,

2009, Naesseth et al., 2014].

Variational Inference In variational inference we postu-

late an approximating family of distributions with varia-

tional parameters λ, q(x1:T ;λ). Then we minimize a diver-

gence, often the KL divergence, between the approximating

family and the posterior so that q(x1:T ;λ) ≈ p(x1:T | y1:T ).
This minimization is equivalent to maximizing the ELBO

[Jordan et al., 1999],

L(λ) = Eq(x1:T ;λ) [log p(x1:T , y1:T )− log q(x1:T ;λ)] .
(1)

VI turns posterior inference into an optimization problem.

Sequential Monte Carlo SMC is a sampling method

designed to approximate a sequence of distributions,

p(x1:t | y1:t) for t = 1 . . . T with special emphasis on the

posterior p(x1:T | y1:T ). For a thorough introduction to SMC

see Doucet and Johansen [2009], Doucet et al. [2001], Schön

et al. [2015].

To approximate p(x1:t | y1:t) SMC uses weighted samples,

p(x1:t | y1:t) ≈ p̂(x1:t | y1:t) ,
N∑

i=1

wi
t∑

ℓ w
ℓ
t

δxi
1:t
, (2)

where δX is the Dirac measure at X .

We construct the weighted set of particles sequentially for

t = 1, . . . , T . At time t = 1 we use standard importance

sampling xi
1 ∼ r(x1). For t > 1, we start each step by

resampling auxiliary ancestor variables ait−1 ∈ {1, . . . , N}

with probability proportional to the importance weights

wj
t−1; next we propose new values, append them to the end

of the trajectory, and reweight as follows:

resample ait−1 ∼ Categorical(w
j
t−1/

∑
ℓ w

ℓ
t−1)

propose xi
t ∼ r(xt |x

ai
t−1

t−1 ),

append xi
1:t = (x

ai
t−1

1:t−1, x
i
t),

reweight wi
t = f(xi

t | x
ai
t−1

t−1
) g(yt | x

i
t)/r(xi

t | x
ai
t−1

t−1
).

We refer to the final particles (samples) xi
1:T as trajectories.

Panels (a) and (b) of Figure 1 show sets of weighted trajecto-

ries. The size of the dots represents the weights wi
t and the

arrows represent the ancestors ait−1. Importance sampling

omits the resampling step, so each ancestor is given by the

corresponding particle for the preceding time step.

The trajectories xi
1:T and weights wi

T define the SMC ap-

proximation to the posterior. Critically, as we increase the

number of particles, the posterior approximation becomes

arbitrarily accurate. SMC also yields an unbiased estimate

of the marginal likelihood,

p̂(y1:T ) =

T∏

t=1

1

N

N∑

i=1

wi
t. (3)

This estimate will play an important role in the VSMC ob-

jective.

The proposal distribution r(xt |xt−1) is the key design

choice. A common choice is the model prior f—it is known

as the bootstrap particle filter (BPF) [Gordon et al., 1993].

However, proposing from the prior often leads to a poor

approximation for a small number of particles, especially

if xt is high-dimensional. Variational SMC addresses this

shortcoming; it learns parameterized proposal distributions

for efficient inference.

3 Variational Sequential Monte Carlo

We develop VSMC, a new class of variational approxima-

tions based on SMC. We first define how to sample from the

VSMC family and then derive its distribution. Though gener-

ating samples is straightforward, the density is intractable.

To this end, we derive a tractable objective, a new lower

bound to the ELBO, that is amenable to stochastic optimiza-

tion. Then, we present an algorithm to fit the variational

parameters. Finally, we explore how to learn model parame-

ters using variational expectation-maximization.

To sample from the VSMC family, we run SMC (with the

proposals parameterized by variational parameters λ) and

then sample once from the empirical approximation of the

posterior (2). Because the proposals r(xt | xt−1 ;λ) depend

on λ, so does the SMC empirical approximation. Algorithm 1

summarizes the generative process for the VSMC family.
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Algorithm 1 Variational Sequential Monte Carlo

Require: Targets p(x1:t, y1:t), proposals r(xt |xt−1 ;λ),
and number of particles N .

1: for i = 1 . . . N do

2: Simulate xi
1 from r(x1 ;λ)

3: Set wi
1 = f(xi

1) g(y1 | xi
1)/r(xi

1 ;λ)

4: end for

5: for t = 2 . . . T do

6: for i = 1 . . . N do

7: Simulate ait−1 with Pr(ait−1 = j) =
wj

t−1∑
ℓ w

ℓ
t−1

8: Simulate xi
t from r(xt |x

ai
t−1

t−1 ;λ)

9: Set xi
1:t = (x

ai
t−1

1:t−1, x
i
t)

10: Set wi
t = f(xi

t | x
ai
t−1

t−1
) g(yt | x

i
t)/r(xi

t | x
ai
t−1

t−1
;λ)

11: end for

12: end for

13: Simulate bT with Pr(bT = j) = wj

T/
∑

ℓ w
ℓ
T

14: return x1:T , xbT
1:T

The variational distribution q(x1:T ;λ) marginalizes out all

the variables produced in the sampling process, save for the

output sample x1:T . This marginal comes from the joint

distribution of all variables generated by VSMC,

φ̃(x1:N
1:T , a1:N1:T−1, bT ;λ) =

[ N∏

i=1

r(xi
1 ;λ)

]

︸ ︷︷ ︸
step 2

·

·
T∏

t=2

N∏

i=1

[
w

ai
t−1

t−1∑
ℓ w

ℓ
t−1︸ ︷︷ ︸

step 7

r(xi
t |x

ai
t−1

t−1 ;λ)

]

︸ ︷︷ ︸
step 8

[
wbT

T∑
ℓ w

ℓ
T

]

︸ ︷︷ ︸
step 13

. (4)

(We have annotated this equation with the steps from the

algorithm.) In this joint, the final output sample is defined by

extracting the bT -th trajectory x1:T = xbT
1:T . Note that the

data y1:T enter via the weights and (optionally) the proposal

distribution. This joint density is easy to calculate, but

for variational inference we need the marginal distribution

of x1:T . We derive this next.

Let bt , a
bt+1

t for t ≤ T − 1 denote the ancestors for

the trajectory x1:T returned by Algorithm 1. Furthermore,

let ¬b1:T be all particle indices not equal to (b1, . . . , bT ),
i.e. exactly all the particles that were not returned by Algo-

rithm 1. Then the marginal distribution of x1:T = xb1:T
1:T =

(xb1
1 , xb2

2 , . . . , xbT
T ) is given by the following proposition.

Proposition 1. The VSMC approximation on x1:T is

q(x1:T | y1:T ;λ)

= p(x1:T , y1:T )Eφ̃
(
x
¬b1:T
1:T

,a
¬b1:T−1

1:T−1
;λ

)
[
p̂(y1:T )

−1
]
. (5)

Proof. See the supplementary material A.1.

This has an intuitive form: the density of the variational pos-

terior is equal to the exact joint times the expected inverse

of the normalization constant (c.f. (3)). While we can esti-

mate this expectation with Monte Carlo, it yields a biased

estimate of log q(x1:T | y1:T ;λ) and the ELBO (1).

The surrogate ELBO. To derive a tractable objective, we

develop a lower bound to the ELBO that is also amenable to

stochastic optimization. It is

L̃(λ) ,
T∑

t=1

Eφ̃(x1:N
1:t ,a1:N

1:t−1
;λ)

[
log

(
1

N

N∑

i=1

wi
t

)]

= E [log p̂(y1:T )] (6)

We call L̃(λ) the surrogate ELBO. It is a lower bound to the

true ELBO for VSMC or, equivalently, an upper bound on the

KL divergence. The following theorem formalizes this fact:

Theorem 1 (Surrogate ELBO). The surrogate ELBO (6), is

a lower bound to the ELBO (1) when q is defined by (5), i.e.

log p(y1:T ) ≥ L(λ) ≥ L̃(λ).

Proof. See the supplementary material A.2.

The surrogate ELBO is the expected SMC log-marginal likeli-

hood estimate. We can estimate it unbiasedly as a byproduct

of sampling from the VSMC variational approximation (Al-

gorithm 1). We run the algorithm and use the estimate to

perform stochastic optimization of the surrogate ELBO.

Stochastic Optimization. While the expectations in the

surrogate ELBO are still not available in closed form, we can

estimate it and its gradients with Monte Carlo. This admits

a stochastic optimization algorithm for finding the optimal

variational parameters of the VSMC family.

We assume the proposals r(xt |xt−1;λ) are reparam-

eterizable, i.e., we can simulate from r by set-

ting xt = h(xt−1, εt ;λ), εt ∼ s(εt) for some distribution

s not a function of λ. With this assumption, rewrite the gra-

dient of (6) by using the reparameterization trick [Kingma

and Welling, 2014, Rezende et al., 2014],

∇L̃(λ) = grep + gscore (7)

grep = E [∇ log p̂(y1:T )] ,

gscore = E

[
log p̂(y1:T )∇ log φ̃(a1:N1:T−1 | ε1:N1:T ;λ)

]
.

This expansion follows from the product rule, just as in

the generalized reparameterizations of Ruiz et al. [2016]

and Naesseth et al. [2017]. Note that all xi
t, implicit in the

weights wi
t and p̂(y1:T ) are now replaced with their reparam-

eterizations h(· ;λ). The ancestor variables are discrete and

cannot be reparameterized—this can lead to high variance

in the score function term, gscore from (7).
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In Section 5, we empirically assess the impact of ignoring

gscore for optimization. We empirically study optimizing

with and without the score function term for a small state

space model where standard variance reduction techniques,

explained below, are sufficient. We lower the variance using

Rao-Blackwellization [Robert and Casella, 2004, Ranganath

et al., 2014], noting that the ancestor variables at−1 have no

effect on weights prior to time t,

gscore =

T∑

t=2

E


log p̂(y1:T )

p̂(y1:t−1)




N∑

i=1

∇ log
w

ai
t−1

t−1∑
ℓ w

ℓ
t−1




 . (8)

Furthermore, we use the score function

∇ log φ̃(a1:N1:T−1 | ε1:N1:T ;λ) with an estimate of the fu-

ture log average weights as a control variate [Ranganath

et al., 2014].

We found that ignoring the score function term gscore (8)

from the ancestor variables, leads to faster convergence and

very little difference in final ELBO. This corresponds to

approximating the gradient of L̃ by

∇L̃(λ) ≈ E [∇ log p̂(y1:T )] = grep. (9)

This is the gradient we propose to use for optimizing the

variational parameters of VSMC. See the supplementary ma-

terial A.3 for more details, where we also provide a general

score function-like estimator and the control variates.

Algorithm. We now describe the full algorithm to opti-

mize the VSMC variational approximation. We form stochas-

tic gradients ∇̂L̃(λ) by estimating (9) using a single sample

from s(·)φ̃(· | · ;λ). The sample is obtained as a byproduct

of sampling VSMC (Algorithm 1). We use the step-size

sequence Adam [Kingma and Ba, 2015] or ρn proposed by

Kucukelbir et al. [2017],

ρn = η · n−1/2+δ ·
(
1 +

√
sn
)−1

,

sn = t
(
∇̂L̃(λn)

)2
+ (1− t)sn−1, (10)

where n is the iteration number. We set δ = 10−16 and

t = 0.1, and we try different values for η. Algorithm 2

summarizes this optimization algorithm.1

Variational Expectation Maximization. Suppose the

target distribution of interest p(x1:T | y1:T ; θ) has a set of

unknown parameters θ. We can fit the parameters using vari-

ational expectation-maximization (VEM) [Beal and Ghahra-

mani, 2003]. The surrogate ELBO is updated accordingly

log p(y1:T ; θ) ≥ L̃(λ, θ) (11)

1Reference implementation using Adam is available at
github.com/blei-lab/variational-smc.

Algorithm 2 Stochastic Optimization for VSMC

Require: Data y1:T , model p(x1:T , y1:T ), proposals

r(xt |xt−1 ;λ), number of particles N
Ensure: Variational parameters λ⋆

1: repeat

2: Estimate the gradient ∇̂L̃(λn) given by (9)

3: Compute stepsize ρn with (10)

4: Update λn+1 = λn + ρn∇̂L̃(λn)
5: until convergence

where the normalization constant p(y1:T ; θ) is now a func-

tion of the parameters θ. Note that the expression for L̃(λ, θ)
is exactly the same as (6), but where the weights (and po-

tentially proposals) now include a dependence on the model

parameters θ. Analogously, the reparameterization gradi-

ents have the same form as (9). We can maximize (11), with

respect to both θ and λ, using stochastic optimization. With

data subsampling, VSMC extends to large-scale datasets of

conditionally independent sequences [Hoffman et al., 2013,

Titsias and Lázaro-Gredilla, 2014].

4 Perspectives on Variational SMC

We give some perspectives on VSMC. First, we consider

the VSMC special cases of N = 1 and T = 1. For N = 1,

VSMC reduces to a structured variational approximation:

there is no resampling and the variational distribution is

exactly the proposal. For T = 1, VSMC leads to a special

case we call variational importance sampling, and a reinter-

pretation of the IWAE [Burda et al., 2016], which we explore

further in the first half of this section.

Then, we think of sampling from VSMC as sampling a highly

optimized SMC approximation. This means many of the

theoretical SMC results developed over the past 25 years can

be adapted for VSMC. We explore some examples in the

second half of this section.

Variational Importance Sampling (VIS). The case

where T = 1 is SMC without any resampling, i.e., impor-

tance sampling. The corresponding special case of VSMC

is VIS. The surrogate ELBO for VIS is exactly equal to the

IWAE lower bound [Burda et al., 2016].

This equivalence provides new intuition behind the IWAE’s

variational approximation on the latent variables. If we want

to make use of the approximation q(x1:T ;λ⋆) learned with

the IWAE lower bound, samples from the latent variables

should be generated with Algorithm 1, i.e. VIS. For VIS it is

possible to show that the surrogate ELBO is always tighter

than the one obtained by standard VB (equivalent to VIS

with N = 1) [Burda et al., 2016]. This result does not carry

over to VSMC, i.e. we can find cases when the resampling

creates a looser bound compared to standard VB or VIS.

However, in practice the VSMC lower bound outperforms

github.com/blei-lab/variational-smc
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Figure 2: Example of VIS q(x ;λ) approximating a multi-

modal p(x | y) with a Gaussian proposal r(x ;λ).

the VIS lower bound.

Figure 2 provides a simple example of VIS applied to a

multimodal p(x | y) ∝ N (x ; 0, 1)N (y ;x2/2, ex/2) with a

normal proposal r(x ;λ) = N (x ;µ, σ2) and a kernel den-

sity estimate of the corresponding variational approximation

q(x ;λ). The number of particles is N = 10. Standard VB

with a Gaussian approximation only captures one of the two

modes; which one depends on the initialization. We see that

even a simple proposal can lead to a very flexible posterior

approximation. This property is also inherited by the more

general T > 1 case, VSMC.

Theoretical Properties. The normalization constant esti-

mate of the SMC sampler, p̂(y1:T ), is unbiased [Del Moral,

2004, Pitt et al., 2012, Naesseth et al., 2014]. This, to-

gether with Jensen’s inequality, implies that the surro-

gate ELBO E[log p̂(y1:T )] is a lower bound to log p(y1:T ).
If log p̂(y1:T ) is uniformly integrable it follows [Del Moral,

2004], as N → ∞, that

L̃(λ) = L(λ) = log p(y1:T ).

This fact means that the gap in Theorem 1 disappears and

the distribution of the trajectory returned by VSMC will tend

to the true target distribution p(x1:T | y1:T ). A bound on the

KL divergence gives us the rate

KL
(
q(x1:T ;λ)

∥∥∥ p(x1:T | y1:T )
)
≤ c(λ)

N
,

for some constant c(λ) < ∞. This is a special case of a

“propagation of chaos” result from Del Moral [2004, Theo-

rem 8.3.2].

We can arrive at this result informally by studying (5): as

the number of particles increases, the marginal likelihood

estimate will converge to the true marginal likelihood and

the variational posterior will converge to the true posterior.

Huggins and Roy [2017] provide further bounds on vari-

ous divergences and metrics between SMC and the target

distribution.

VSMC and T . Like SMC, variational sequential Monte

Carlo scales well with T . Bérard et al. [2014]

show a central limit theorem for the SMC approxima-

tion log p̂(y1:T )− log p(y1:T ) with N = bT , where b > 0,

as T → ∞. Under the same conditions as in that work, and

assuming that log p̂(y1:T ) is uniformly integrable, we can

show that

KL
(
q(x1:T ;λ)

∥∥∥ p(x1:T | y1:T )
)
≤ −E

[
log

p̂(y1:T )

p(y1:T )

]

−−−−→
T→∞

σ2(λ)

2b
, 0 < σ2(λ) < ∞.

The implication for VSMC is significant. We can make

the variational approximation arbitrarily accurate by set-

ting N ∝ T , even as T goes to infinity. The supplement

shows that this holds in practice; see A.4 for the toy example

from Figure 1. We emphasize that neither standard VB nor

IWAE (VIS) have this property.

5 Empirical Study

Linear Gaussian State Space Model The linear Gaus-

sian SSM is a ubiquitous model of time series data that

enjoys efficient algorithms for computing the exact poste-

rior. We use this model to study the convergence properties

and impact of biased gradients for VSMC. We further use

it to confirm that we learn good proposals. We compare to

the bootstrap particle filter (BPF), which uses the prior as

a proposal, and the (locally) optimal proposal that tilts the

prior with the likelihood.

The model is

xt = Axt−1 + vt,

yt = Cxt + et,

where vt ∼ N (0, Q), et ∼ N (0, R), and x1 ∼ N (0, I).
The log-marginal likelihood log p(y1:T ) can be computed

using the Kalman filter.

We study the impact of the biased gradient (9) for optimizing

the surrogate ELBO (6). First, consider a simple scalar model

with A = 0.5, Q = 1, C = 1, R = 1, and T = 2. For the

proposal we use r(xt |xt−1 ;λ) = N (xt ;λ+ 0.5xt−1, 1),
with x0 ≡ 0. Figure 3 (left) shows the mean and spread

of estimates of gscore (8), with control variates, and grep (9),

as a function of λ for four randomly generated datasets.

The optimal setting of λ is where the sum of the means is

equal to zero. Ignoring the score function term gscore (8)

will lead to a perturbation of the optimal λ. However, even

for this simple model, the variance of the score function

term (red) is several orders of magnitude higher than that

of the reparameterization term (blue), despite the variance

reduction techniques of Section 3. This variance has a

significant impact on the convergence speed of the stochastic

optimization.
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Figure 3: (Left) Mean and spread of the stochastic gradient components gscore (8) and grep (9), for the scalar linear Gaussian

model on four randomly generated datasets, where the number of particles is N = 2. (Right) Log-marginal likelihood

(log p(y1:T )) and ELBO as a function of iterations for VSMC with biased gradients (blue) or unbiased gradients (red). Results

for four different linear Gaussian models.

Next, we study the magnitude of the perturbation, and its ef-

fect on the surrogate ELBO. We generate data with T = 10,

(A)ij = α|i−j|+1 for α = 0.42, Q = I , and R = I . We ex-

plored several settings of dx = dim(xt), dy = dim(yt), and

C. Sparse C measures the first dy components of xt, and

dense C has randomly generated elements Cij ∼ N (0, 1).
Figure 3 (right) shows the true log-marginal likelihood and

ELBO as a function of iteration. It shows VSMC with biased

gradients (blue) and unbiased gradients (red). We choose

the proposal

r(xt | xt−1 ;λ) = N
(
xt | µt + diag(βt)Axt−1, diag(σ

2
t )
)
.

with λ =
{
µt, βt, σ

2
t

}T
t=1

, and set the number of particles

to N = 4. Note that while the gradients are biased, the

resulting ELBO is not. We can see that the final VSMC

ELBO values are very similar, regardless of whether we

train with biased or unbiased gradients. However, biased

gradients converge faster. Thus, we use biased gradients in

the remainder of our experiments.

Next, we study the effect of learning the proposal using

VSMC compared with standard proposals in the SMC litera-

ture. The most commonly used is the BPF, sampling from

the prior f . We also consider the so-called optimal proposal,

r ∝ f · g, which minimizes the variance of the incremen-

tal importance weights [Doucet and Johansen, 2009]. Ta-

ble 1 shows results for a linear Gaussian SSM when T = 25,

Q = 0.12I , R = 1, dx = 10, and dy = 1. Because of the

relatively high-dimensional state, BPF exhibits significant

bias whereas the optimal proposal SMC performs much bet-

ter. VSMC outperforms them both, learning an accurate

proposal that results in an ELBO only 0.9 nats lower than

Table 1: ELBO for BPF, SMC with (locally) optimal proposal,

and VSMC. The true log-marginal likelihood is given by

log p(y1:T ) = −236.9.

BPF Optimal SMC VSMC

ELBO −6701.4 −253.4 −237.8

the true log-marginal likelihood. We further emphasize that

the optimal proposal is unavailable for most models.

Stochastic Volatility A common model in financial

econometrics is the (multivariate) stochastic volatility

model [Chib et al., 2009]. The model is

xt = µ+ φ(xt−1 − µ) + vt,

yt = β exp
(xt

2

)
et,

where vt ∼ N (0, Q), et ∼ N (0, I), x1 ∼ N (µ,Q), and

θ = (µ, φ,Q, β). (In the multivariate case, multiplication is

element-wise.) Computing log p(y1:T ; θ) and its gradients

for this model is intractable, we study the VEM approxima-

tion to find the unknown parameters θ. We compare VSMC

with IWAE and structured VI. For the proposal in VSMC and

IWAE we choose

r(xt |xt−1 ;λ, θ) ∝ f(xt |xt−1 ; θ)N (xt ;µt,Σt),

with variational parameters λ = (µ1, . . . , µT ,Σ1, . . . ,ΣT ).
We define the variational approximation for structured VI to

be q(x1:T ;λ, θ) =
∏T

t=1 r(xt |xt−1 ;λ, θ).

We study 10 years of monthly returns (9/2007 to 8/2017)

for the exchange rate of 22 international currencies with
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Table 2: ELBO for the stochastic volatility model with

T = 119 on exchange rate data. We compare VSMC (this

paper) with IWAE and structured VI.

Method ELBO

Structured VI 6905.1

N = 4
IWAE 6911.2
VSMC 6921.6

N = 8
IWAE 6912.4
VSMC 6935.8

N = 16
IWAE 6913.3
VSMC 6936.6

respect to US dollars. The data is from the Federal Reserve

System. Table 2 reports the optimized ELBO (higher is bet-

ter) for different settings of the number of particles/samples

N = {4, 8, 16}. VSMC outperforms the competing methods

with almost 0.2 nats per time-step.

In theory we can improve the bound of both IWAE and VSMC

by increasing the number of samples N . This means we

can first learn proposals using only a few particles N , for

computational efficiency. Then, at test time, we can increase

N as needed for improved accuracy. We study the impact of

increasing the number of samples for VSMC and IWAE using

fix θ⋆ and λ⋆ optimized with N = 16. Figure 4 shows that

the gain for IWAE is limited, whereas for VSMC it can be

significant.

100 200 300 400 500

N

6910

6920

6930

6940

6950

6960

E
L
B
O VSMC

IWAE

Figure 4: The estimated ELBO for VSMC (this paper) and

IWAE , with confidence bands, as a function of the number

of particles N for fix θ⋆, λ⋆.

Deep Markov Model An important problem in neuro-

science is understanding dynamics of neural circuits. We

study a population of 105 motor cortex neurons simulta-

neously recorded in a macaque monkey as it performed

reaching movements [c.f. Gao et al., 2016]. In each trial,

the monkey reached toward one of fourteen targets; each

trial is T = 21 time steps long. We train on 700 trials and

test on 84.

We use recurrent neural networks to model both the dynam-

0 20 40 60 80 100

Iterations (103)
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E
L
B
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VSMC dx = 3

VSMC dx = 5

VSMC dx = 10

Figure 5: The estimated ELBO of the neural population test

data as a function of iterations for VSMC (this paper) and

IWAE, for dx = {3, 5, 10} and T = 21.

ics and observations. The model is

xt = µθ(xt−1) + exp (σθ(xt−1)/2) vt,

yt ∼ Poisson (exp (ηθ(xt))) ,

where vt ∼ N (0, I), x0 ≡ 0, and µ, σ, η are neural net-

works parameterized by θ. The multiplication in the tran-

sition dynamics is element-wise. This is a deep Markov

model [Krishnan et al., 2017].

For inference we use the following proposal for both VSMC

and IWAE,

r(xt |xt−1, yt ;λ) ∝ N (xt ;µ
x
λ(xt−1), exp (σ

x
λ(xt−1)))

× N (xt ;µ
y
λ(yt), exp (σ

y
λ(yt))) ,

where µx, σx, µy, σy are neural networks parameterized

by λ, and the proposal factorizes over the components

of xt. Figure 5 illustrates the result for dx = {3, 5, 10}
with N = 8. VSMC gets to the same ELBO faster.

6 Conclusions

We introduced the variational sequential Monte Carlo

(VSMC) family, a new variational approximating family that

provides practitioners with a flexible, accurate, and power-

ful approximate Bayesian inference algorithm. VSMC melds

variational inference (VI) and sequential Monte Carlo (SMC).

This results in a variational approximation that lets us trade-

off fidelity to the posterior with computational complexity.
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