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Abstract

In this paper, we discuss the steady state Fractional Advection Dispersion Equation
(FADE) on bounded domains in IRd . Fractional differential and integral operators are
defined and analyzed. Appropriate fractional derivative spaces are defined, and shown
to be equivalent to the fractional dimensional Sobolev spaces. A theoretical framework
for the variational solution of the steady state FADE is presented. Existence and
uniqueness results are proven, and error estimates obtained for the Finite Element
approximation.
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1 Introduction

In this paper, we investigate the variational solution to the steady state fractional advection
dispersion equation (FADE) in IRd , defined by

−
∫

‖v‖=1
Dv aD−β

v DvuM(dv) + b · ∇u + cu = f, (1.1)

where 0 ≤ β < 1, b(x, y) is the velocity of the fluid, c(x, y)u represents a reaction-absorption
term, f is a source term, a is the diffusivity coefficient, M(dv) is a probability density
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function (p.d.f.) on the unit sphere in IRd , Dv is the directional derivative in the direction
of the unit vector v, and D−β

v is the β order fractional integral, given by

D−β
v u(x) =

∫ ∞

0

wβ−1

Γ(β)
u(x− wv) dw. (1.2)

Our interest in (1.1) arises from the application of FADEs as a model for physical phenomena
exhibiting anomalous diffusion, i.e. diffusion not accurately modeled by the usual advection
dispersion equation. Anomalous diffusion has been used in modeling turbulent flow [3, 17],
and chaotic dynamics of classical conservative systems [18]. An application of particular
interest is that of contaminant transport in groundwater flow. In [1] the authors state that
solutes moving through aquifers do not generally follow a Fickian second-order governing
equation, because of large deviations from the stochastic process of Brownian motion. This
give rise to superdiffusive motion. In [10] the authors derive a general FADE, which is
equivalent to (1.1), by modeling the diffusion for which the probability density function
governing the underlying jump process follows the form of an arbitrary multivariate stable
law [16].

To date most solution techniques for equations involving fractional differential operators
have exploited the properties of the Fourier and Laplace transforms of the operators to
determine a classical solution. Finite difference have also been applied to construct numerical
approximation [12]. Finite difference quotients for multidimensional fractional differential
operators have also been derived [11]. Aside from [5, 6] we are not aware of any other papers
in the literature which investigate the Galerkin approximation and associated error analysis
for the FADE.

There are two properties of fractional differential operators which make the analysis of the
variational solution to the FADE more complicated than that for the usual advection dis-
persion equation. These are
(i) fractional differential operators are not local operators, and
(ii) the adjoint of a fractional differential operator is not the negative of itself.
Because of (i), (ii), and the fact that the FADE in (1.1) contains a probability measure over
the unit sphere in IRd , the correct function space setting for the variational solution is not
obvious. In our analysis we use the spaces Jµ

L,θ, Jµ
S,θ which are direct generalizations of the

left and symmetric fractional derivative spaces introduced in [5]. Additionally, we define
a fractional derivative space Jµ

L,M , whose definition involves the p.d.f. M , and show the
equivalence of these spaces to the fractional Sobolev spaces Hµ

0 .

For clarity of exposition we present the analysis for the fractional operators in IR2. The
generalization from IR2 to higher dimensions is obvious. This paper is organized as follows.
In Section 2, we discuss directional integral and directional differential operators in two
dimensions. In Section 3, the fractional integral and fractional differential operators are
defined in terms of the directional integral and directional differential operators and the p.d.f.
M . Section 4 contains a derivation/motivation for using (1.1) as a model for superdiffusion.
Section 5 contains definitions of fractional derivative spaces which form the functional setting
for the analysis of FADEs. In Section 6, we analyze the steady-state two-dimensional FADE,
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establishing the existence and uniqueness of a variational solution in the fractional Sobolev
space Hα

0 (Ω). Section 7 contains the analysis for the Finite Element approximation, with
convergence results. For a discussion of the computational implementation of this method
see [14].

2 Directional Integrals and Directional Derivatives

In this section we introduce directional integral and directional derivative operators, and
establish properties of these operators. To this end, we associate with each unit vector
v = [v1, v2]

t ∈ IR2 a unique angle θ ∈ [0, 2π) such that v = [cos θ, sin θ]t. Also, let C∞
0 (G)

denote the set of all functions u ∈ C∞(G) that vanish outside a compact subset K of G.
The following analysis directly generalizes to higher dimensions.

Definition 2.1 [Directional Integral] Let α > 0, θ ∈ [0, 2π) be given. The αth order
fractional integral in the direction of θ is given by

D−α
θ u(x, y) :=

∫ ∞

0

ξα−1

Γ(α)
u(x− ξ cos θ, y − ξ sin θ)dξ.

Remark: We note that for special directions the directional integral operator is equivalent
to the left and right Riemann-Liouville integral operators (see (A.1),(A.2)), i.e.

D−α
0 u(x, y) = −∞D−α

x u(x, y),

D−α
π/2u(x, y) = −∞D−α

y u(x, y),

D−α
π u(x, y) = xD

−α
∞ u(x, y),

D−α
3π/2u(x, y) = yD

−α
∞ u(x, y).

Theorem 2.1 The directional integral satisfies the semi-group property

D−α
θ D−β

θ u(x, y) = D−α−β
θ u(x, y), ∀ α, β > 0, θ ∈ [0, 2π), u ∈ Lp(IR2), p ≥ 1.

Proof : Using the definition of the directional integral,

D−α
θ D−β

θ u(x, y) =
∫ ∞

0

ξα−1

Γ(α)

∫ ∞

0

νβ−1

Γ(β)
u(x− (ξ + ν) cos θ, y − (ξ + ν) sin θ)dνdξ.

Setting η = ξ + ν in the inner integral, we have

D−α
θ D−β

θ u(x, y) =
∫ ∞

0

ξα−1

Γ(α)

∫ ∞

ξ

(η − ξ)β−1

Γ(β)
u(x− η cos θ, y − η sin θ)dηdξ

=
∫ ∞

0
u(x− η cos θ, y − η sin θ)

∫ η

0

ξα−1(η − ξ)β−1

Γ(α)Γ(β)
dξdη

=
∫ ∞

0
u(x− η cos θ, y − η sin θ)k(η) dη, (2.1)
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where

k(η) :=
∫ η

0

ξα−1(η − ξ)β−1

Γ(α)Γ(β)
dξ. (2.2)

Substituting s = ξ/η in (2.2), we see that

k(η) = ηα+β−1
∫ 1

0

sα−1(1− s)β−1

Γ(α)Γ(β)
ds

=
ηα+β−1B(α, β)

Γ(α)Γ(β)

=
ηα+β−1

Γ(α + β)
, (2.3)

where B(α, β) denotes the beta function satisfying

B(α, β) :=
∫ 1

0
sα−1(1− s)β−1ds =

Γ(α)Γ(β)

Γ(α + β)
.

The stated result then follows from (2.1), (2.3) and the definition of the directional integral.

Next, we establish the adjoint property of the directional integral operators for colinear
directions, i.e. D−α

θ and D−α
θ+π.

Theorem 2.2 For all u, v ∈ L2(IR2), α > 0, θ ∈ [0, 2π),

(
D−α

θ u(x, y), v(x, y)
)

=
(
u(x, y), D−α

θ+πv(x, y)
)
,

where (·, ·) denotes the usual inner product on L2(IR2).

Proof : From the definition of the fractional integral, we have that

(
D−α

θ u(x, y), v(x, y)
)

=
∫

IR

∫

IR

∫ ∞

0

ξα−1

Γ(α)
u(x− ξ cos θ, y − ξ sin θ)v(x, y)dξ dx dy.

Setting x̃ = x− ξ cos θ, ỹ = y − ξ sin θ, we have

(
D−α

θ u(x, y), v(x, y)
)

=
∫

IR

∫

IR

∫ ∞

0

ξα−1

Γ(α)
u(x̃, ỹ)v(x̃ + ξ cos θ, ỹ + ξ sin θ)dξ dx̃ dỹ

=
(
u(x, y), D−α

θ+πv(x, y)
)
.

Corollary 2.1 For α > 0, u, v ∈ L2(Ω),

(
D−α

θ u, v
)

L2(Ω)
=

(
u, D−α

θ+πv
)

L2(Ω)
.
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Proof : Let ũ, ṽ denote the extensions of u, v by zero outside of Ω. Then, Theorem 2.2
implies

(
D−α

θ u, v
)

L2(Ω)
=

(
D−α

θ ũ, ṽ
)

L2(IR2)
=

(
ũ, D−α

θ+πṽ
)

L2(IR2)
=

(
u, D−α

θ+πv
)

L2(Ω)
.

Theorem 2.3 The fractional directional integral operator D−α
θ satisfies the following Fourier

transform property

F(D−α
θ u(x, y)) = (iω1 cos θ + iω2 sin θ)−α û(ω1, ω2),

where
F (u(x, y)) =

∫

IR2
e−i(ω1x+ω2y)u(x, y) dx dy := û(ω1, ω2).

Proof : Introduce the linear mapping

[
x̃
ỹ

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
⇔

[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x̃
ỹ

]
. (2.4)

Then,

D−α
θ u(x, y) =

∫ ∞

0

ωα−1

Γ(α)
u(x̃ cos θ − ỹ sin θ − ω cos θ, x̃ sin θ + ỹ cos θ − ω sin θ) dω

=
∫ ∞

0

ωα−1

Γ(α)
u((x̃− ω) cos θ − ỹ sin θ, (x̃− ω) sin θ + ỹ cos θ) dω . (2.5)

Let η := x̃− ω ⇔ ω = x̃− η. Rewriting (2.5), we have

D−α
θ u(x, y) =

∫ x̃

−∞
(x̃− η)α−1

Γ(α)
u(η cos θ − ỹ sin θ, η sin θ + ỹ cos θ) dη .

Let v(η) := u(η cos θ − ỹ sin θ, η sin θ + ỹ cos θ). Then

D−α
θ u(x, y) =

∫ x̃

−∞
(x̃− η)α−1

Γ(α)
v(η) dη

= −∞D−α
x̃ v(x̃) .

Now,

F(D−α
θ u(x, y)) =

∫

IR2
e−i(ω1x+ω2y)D−α

θ u(x, y) dx dy

=
∫

IR2
e−i(ω1(x̃ cos θ−ỹ sin θ)+ω2(x̃ sin θ+ỹ cos θ))D−α

θ u(x, y) dx̃ dỹ

=
∫

IR2
e−i((ω1 cos θ+ω2 sin θ)x̃+(−ω1 sin θ+ω2 cos θ)ỹ)D−α

θ u(x, y) dx̃ dỹ .
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Let
ω̃1 := ω1 cos θ + ω2 sin θ and ω̃2 := −ω1 sin θ + ω2 cos θ .

Thus,

F(D−α
θ u(x, y)) =

∫

IR2
e−i(ω̃1x̃+ω̃2ỹ) D−α

θ u(x, y) dx̃ dỹ

=
∫

IR
e−iω̃2ỹ

∫

IR
e−iω̃1x̃ −∞D−α

x̃ v(x̃) dx̃ dỹ

=
∫

IR
e−iω̃2ỹ (iω̃1)

−αF(v(x̃)) dỹ (using (A.7))

= (iω̃1)
−α

∫

IR
e−iω̃2ỹ

∫

IR
e−iω̃1x̃v(x̃) dx̃ dỹ

= (iω̃1)
−α

∫

IR2
e−iω̃2ỹe−iω̃1x̃u(x, y) dx̃ dỹ.

Finally, using ω̃1x̃ + ω̃2ỹ = ω1x + ω2y, we obtain.

F(D−α
θ u(x, y)) = (iω̃1)

−α
∫

IR2
e−i(ω1x+ω2y)u(x, y) dx dy

= (iω̃1)
−αû(ω1, ω2)

= (iω1 cos θ + iω2 sin θ)−αû(ω1, ω2).

Next we introduce directional derivatives of arbitrary order.

Definition 2.2 Let n ∈ IN, θ ∈ [0, 2π) be given. The nth order derivative in the direction of
θ is given by

Dn
θ u(x, y) :=

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)n

u(x, y) = ([cos θ, sin θ]t · ∇)nu(x, y). (2.6)

Definition 2.3 [Directional Derivative] Let α > 0, θ ∈ [0, 2π) be given. Let n be the
smallest integer greater than α, n − 1 ≤ α < n, and define σ = n − α. Then the αth order
directional derivative in the direction of θ is defined by

Dα
θ u(x, y) := Dn

θ D−σ
θ u(x, y).

The Fundamental Theorem of Calculus generalizes to the directional integral and derivative.

Lemma 2.1 For u ∈ Lp(IR2), p ≥ 1, we have

DθD
−1
θ u(x, y) = u(x, y).
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Proof : As before, define x̃, ỹ by the mapping (2.4). Then

D−1
θ u(x, y) = −∞D−1

x̃ v(x̃, ỹ),

where, v(x̃, ỹ) = u(x̃ cos θ − ỹ sin θ, x̃ sin θ + ỹ cos θ). Then, using by the chain rule, we have

∂

∂x

(
−∞D−1

x̃ v(x̃, ỹ)
)

=
∂x̃

∂x

∂

∂x̃

(
−∞D−1

x̃ v(x̃, ỹ)
)

+
∂ỹ

∂x

∂

∂ỹ

(
−∞D−1

x̃ v(x̃, ỹ)
)

= cos θ v(x̃, ỹ)− sin θ
∂

∂ỹ

(
−∞D−1

x̃ v(x̃, ỹ)
)

. (2.7)

Similarly,

∂

∂y

(
−∞D−1

x̃ v(x̃, ỹ)
)

=
∂x̃

∂y

∂

∂x̃

(
−∞D−1

x̃ v(x̃, ỹ)
)

+
∂ỹ

∂y

∂

∂ỹ

(
−∞D−1

x̃ v(x̃, ỹ)
)

= sin θ (v(x̃, ỹ)) + cos θ
∂

∂ỹ

(
−∞D−1

x̃ v(x̃, ỹ)
)

. (2.8)

Combining (2.7) and (2.8) with Definition 2.2 we obtain the stated result.

Theorem 2.4 For u ∈ Lp(IR2), p ≥ 1, we have

Dα
θ D−α

θ u(x, y) = u(x, y).

Proof : Taking n ∈ IN such that n− 1 ≤ α < n, with σ = n− α, and using the semi-group
property, we have

Dα
θ D−α

θ u(x, y) = Dn
θ D−σ

θ D−α
θ u(x, y) = Dn

θ D−n
θ u(x, y) = u(x, y),

by repeated application of Lemma 2.1.

The Fourier transform property also generalizes to the fractional directional derivative. We
show this property holds over C∞

0 (Ω), Ω ⊂ IR2.

Theorem 2.5 For u ∈ C∞
0 (Ω), Ω ⊂ IR2, we have

F(Dα
θ u(x, y)) = (iω1 cos θ + iω2 sin θ)αû(ω1, ω2). (2.9)

Proof : Firstly, note that

F(Dθu(x, y)) =
∫

IR2
e−i(ω1x+ω2y)

(
cos θ

∂u(x, y)

∂x
+ sin θ

∂u(x, y)

∂y

)
dA

=
∫

IR
e−iω2y cos θ

∫

IR
e−iω1x ∂u(x, y)

∂x
dx dy

+
∫

IR
e−iω1x sin θ

∫

IR
e−iω2y ∂u(x, y)

∂y
dy dx.
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Integrating by parts, we have

F(Dθu(x, y)) = (iω1 cos θ + iω2 sin θ)û(ω1, ω2).

Then, F(Dα
θ u(x, y)) = F(Dn

θ D−σ
θ u(x, y))

= (iω1 cos θ + iω2 sin θ)nF(D−σ
θ u(x, y))

= (iω1 cos θ + iω2 sin θ)n−σû(ω1, ω2).

3 Fractional Integrals and Fractional Derivatives

In this section we introduce the fractional integral and fractional derivative operators..

Definition 3.1 Let u : IR2 → IR, α < 0 (α > 0) be given. Then the α order fractional
integral (derivative) with respect to the measure M is defined as

Dα
Mu(x, y) :=

∫ 2π

0
Dα

θ u(x, y) M(dθ), (3.1)

where M(dθ) is a probability measure on [0, 2π).

Note: From (2.9) and (3.1), the α order fractional derivative operator with respect to M
satisfies

F(Dα
Mu(x, y)) =

[∫ 2π

0
(iω1 cos θ + iω2 sin θ)αM(dθ)

]
û(ω1, ω2). (3.2)

Remark: Definition 3.1 is equivalent to the definition of the fractional order derivative in
[10],

F(Dα
Mu(x)) =

[∫

‖v‖=1
(iω · v)αM(dv)

]
û(ω).

Definition 3.2 Let u : IRd → IR, α > 0 be given. Then the α order Riesz fractional integral
is defined as [15]

D−αu(x) =
1

γd(α)

∫

IRd
|x− y|α−du(y)dy, (3.3)

where

γd(α) =

{
2απd/2 Γ(α

2
)/Γ(d−α

2
), if α 6= d + 2k, k ∈ IN

1, if α = d + 2k, k ∈ IN
.

This definition stems from the facts that, [7, 15], F(−∆u(x)) = |ω|2 and

F−1(|ω|−α) =
1

γd(α)

{ |x|α−d, if α 6= d + 2k, α 6= −2k, k ∈ IN
|x|α−d ln 1

|x| , if α = d + 2k, k ∈ IN
. (3.4)

Correspondingly, a Riesz fractional order derivative may be defined as a power of the Laplace
operator composed with a Riesz fractional integral operator.
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Definition 3.3 Let u : IRd → IR, α > 0 be given, n the smallest integer greater than α/2,
(n− 1 < α/2 ≤ n,) and σ = 2n− α. Then the α order Riesz fractional derivative is defined
as

Dαu := (−∆)nD−σu =
(−∆)n

γd(σ)

∫

IRd
|x− y|σ−du(y)dy. (3.5)

Lemma 3.1 For u : IR2 → IR and M the uniform probability measure, the fractional integral
(3.1) is a constant multiple of the Riesz fractional integral (3.5).

Proof : If M(dθ) is constant, then M(dθ) = dθ/(2π). From the definition of the directional
integral, we have

Dα
Mu(x) =

1

2π

∫ 2π

0

∫ ∞

0

rα−1

Γ(α)
u(x + r cos θ, y + r sin θ)drdθ.

Changing to Cartesian coordinates, this is just

Dα
Mu(x) =

1

2πΓ(α)

∫

IR2
|x− y|α−2u(y)dy,

which is a constant multiple of the Riesz fractional integral.

The following theorem shows that the Riesz fractional integral of a function of two variables
which is constant with respect to one of the variables can be rewritten as a directional
integral.

Theorem 3.1 Let u : IR2 → IR, and ũ : IR → IR satisfy u(x, y) = ũ(x). Then

D−αu(x, y) = D−αũ(x).

Proof : If u is constant in y, then changing to polar coordinates yields

D−αu(x, y) =
1

γ2(α)

∫ 2π

0

∫ ∞

0
rα−1u(x− r cos θ, y − r sin θ)drdθ

=
1

γ2(α)

∫ 2π

0

∫ ∞

0
rα−1ũ(x− r cos θ)drdθ

=
1

γ2(α)

∫

E1

∫ ∞

x

(η − x)α−1

(cos θ)α
ũ(η)dηdθ

+
1

γ2(α)

∫

E2

∫ x

−∞
(x− η)α−1

(− cos θ)α
ũ(η)dηdθ,

where E1 := (0, π/2)∪ (3π/2, 2π), E2 := (π/2, 3π/2). By symmetry, this can be rewritten as

D−αu(x, y) = c1

∫ ∞

−∞
|x− η|α−1ũ(η)dη,
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where

c1 :=
2

γ2(α)

∫ π/2

0
(cos θ)−αdθ.

What remains is to show that c1 = 1/γ1(α).

Using the substitution x = sin2 θ, we have

c1 =
1

γ2(α)

∫ 1

0
(1− x)−α/2−1/2x−1/2dx

=
1

γ2(α)
B(1/2− α, 1/2).

Using the definitions of the function γn(α), and the beta function B(·, ·), we have

c1 =

(
Γ(1− α/2)

2απΓ(α/2)

) (
Γ(1/2− α/2)Γ(1/2)

Γ(1− α/2)

)
.

As Γ(1/2) =
√

π, the stated result follows.

4 Derivation of the FADE

In this section, we motivate the definition of the fractional advection dispersion equation
via a continuous time random walk (CTRW) model. For the CTRW we consider the jump
probability density function (p.d.f.) to be an arbitrary bivariate stable law. We then rewrite
the FADE in terms of the composition of the traditional equation for conservation of mass,
as well as a fractional Fick’s law.

For a particle undergoing a CTRW, let P (x, y, t) denote the p.d.f. describing the probability
of the particle being at position (x, y) at time t. We denote by f(∆x, ∆y, ∆t) the transitional
probability density of the particle being displaced (∆x, ∆y) units over the time interval ∆t.
We assume that f(·, ·, ·) is both spatially and temporally independent. The Chapman-
Kolmogorov equation gives

P (x, y, t + ∆t) =
∫

IR

∫

IR
f(x− ξ, y − ψ, ∆t)P (ξ, ψ, t) dξ dψ,

from which we obtain

P (x, y, t + ∆t)− P (x, y, t)

∆t
=

1

∆t

(∫

IR

∫

IR
f(x− ξ, y − ψ, ∆t)P (ξ, ψ, t) dξ dψ − P (x, y, t)

)
.

(4.1)
Taking the Fourier transform of both sides of (4.1) yields

P̂ (ω1, ω2, t + ∆t)− P̂ (ω1, ω2, ∆t)

∆t
=

1

∆t

(
f̂(ω1, ω2, ∆t)P̂ (ω1, ω2, t)− P̂ (ω1, ω2, t)

)
. (4.2)
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If we view f(∆x, ∆y, ∆t) as an arbitrary bivariate stable distribution with index α 6= 1, [10],
we have

f̂(ω1, ω2, ∆t) = exp
[
−i∆tb · ω + a ∆t

∫ 2π

0
(iω1 cos θ + iω2 sin θ)αM(dθ)

]

= 1− i∆tb · ω + a ∆t
∫ 2π

0
(iω1 cos θ + iω2 sin θ)αM(dθ) + o(∆t). (4.3)

Substituting (4.3) into (4.2), using (3.2), and taking the limit as ∆t → 0, we obtain the two
dimensional FADE

∂P

∂t
= −b · ∇P + aDα

MP. (4.4)

We remark that the FADE in two dimensions can take a variety of forms depending upon the
structure of the probability measure M . For example, if M is uniform on [0, 2π], we obtain
a FADE with a Riesz fractional derivative in the dispersive term. However, if M is discrete
p.d.f. over the set {0, π/2, π, 3π/2} with probabilities {p1, p2, p3, p4} respectively, we obtain

Dα
MP = (p1 −∞Dα

x + p2 −∞Dα
y + p3 xD

α
∞ + p4 yD

α
∞)P,

which corresponds to the FADE presented in [9], and represents a continuous time random
walk in which the jumps are restricted to the x (horizontal) and y (vertical) directions [10].

Note that for a random walk in one spatial dimension, M must be discrete with P (θ = 0) = p
(jump to the left), P (θ = π) = q (jump to the right), with p + q = 1.

For a general FADE in two dimensions, consider the conservation of mass equation

∂P

∂t
+∇ · F + cu = f, (4.5)

where F denotes mass flux, cu a reaction-absorption term, and f a source term. Observe
that the dispersive term in (4.4) can be rewritten as

Dα
MP =

∫ 2π

0
Dα

θ P M(dθ)

=
∫ 2π

0
(∇ · [cos θ, sin θ]tDα−1

θ P M(dθ)

= ∇ ·
(∫ 2π

0
[cos θDα−1

θ P, sin θDα−1
θ P ]tM(dθ)

)
.

Thus, we can view the fractional advection dispersion equation (4.4) as (4.5) with the rela-
tionship

F = Fd

where Fd denotes the fractional Fick’s law

Fd = −a
∫ 2π

0
[cos θDα−1

θ P, sin θDα−1
θ P ]tM(dθ) + bP , (4.6)

b is the velocity of the fluid, and a denotes the coefficient of diffusivity.
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Thus, we take as the general form for the time dependent fractional advection dispersion
equation in two dimensions

∂P

∂t
−∇ ·

(
a

∫ 2π

0
[cos θDα−1

θ P, sin θDα−1
θ P ]tM(dθ)

)
+ b · ∇P + cu = f. (4.7)

Note that if α = 2, then the traditional advection dispersion equation is obtained, i.e.

∂P

∂t
−∇ · A∇P + b · ∇P + cu = f,

where

A = a
∫ 2π

0
ΣM(dθ),

with

Σ =

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

represents the covariance of the distribution.

5 Fractional Derivative Spaces

In this section we function spaces needed for the analysis of the variational solution to
FADEs. We show that these spaces equivalence to the fractional order Sobolev spaces. The
following lemma is helpful in establishing equivalence of the spaces.

Lemma 5.1 Let α > 0 be given. Then for each θ ∈ [0, 2π),

(
Dα

θ u,Dα
θ+πu

)
= cos(πα)‖Dα

θ u‖2
L2(IR2). (5.1)

Proof : We will make use of the property that for ξ ∈ IR

(iξ)α =

{
exp(−iπα) (−iξ)α if ξ ≥ 0

exp(iπα) (−iξ)α if ξ < 0
. (5.2)

(−− denotes complex conjugate.)

We have,

(
Dα

θ u,Dα
θ+πu

)
=

∫

IR2
(i(ω1 cos θ + ω2 sin θ))α û(ω) (−i(ω1 cos θ + ω2 sin θ))α û(ω)dA

=
∫

E1

(i(ω1 cos θ + ω2 sin θ))α û(ω) (−i(ω1 cos θ + ω2 sin θ))α û(ω) dA

+
∫

E2

(i(ω1 cos θ + ω2 sin θ))α û(ω) (−i(ω1 cos θ + ω2 sin θ))α û(ω) dA,
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where
E1 := {(ω1, ω2) ∈ IR2|ω1 cos θ + ω2 sin θ ≥ 0},
E2 := {(ω1, ω2) ∈ IR2|ω1 cos θ + ω2 sin θ < 0}.

Using (5.2), this becomes

(
Dα

θ u,Dα
θ+πu

)
= exp(−iπα)

∫

E2

|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA

+ exp(iπα)
∫

E1

|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA

= cos(πα)
∫

IR2
|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA

+i sin(πσ)
(∫

E1

|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA

−
∫

E2

|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA
)

. (5.3)

For f(x) ∈ IR, we have that F(f)(−ω) = F(f)(ω). Thus,

(i(ω1 cos θ + ω2 sin θ))αû(ω)(i(ω1 cos θ + ω2 sin θ))αû(ω)

= (−i(ω1 cos θ + ω2 sin θ))αû(−ω)(−i(ω1 cos θ + ω2 sin θ))αû(−ω)

= |(−i(ω1 cos θ + ω2 sin θ))αû(−ω)|.
Integrating over E1, we have

∫

E1

|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA =
∫

E1

|(−i(ω1 cos θ + ω2 sin θ))αû(−ω)|2 dA

=
∫

E2

|(i(ω1 cos θ + ω2 sin θ))αû(ω)|2 dA. (5.4)

Therefore, combining (5.3) and (5.4), we have the stated result.

Next, we introduce two spaces which depend on the θ-directional derivative and then show
that these spaces are equivalent.

Definition 5.1 Let α > 0, θ ∈ [0, 2π) be given. Define the semi-norm

|u|Jα
L,θ

(IR2) := ‖Dα
θ u‖L2(IR2),

and norm
‖u‖Jα

L,θ
(IR2) := (‖u‖2

L2(IR2) + |u|2Jα
L,θ

(IR2))
1/2, (5.5)

and let Jα
L,θ(IR

2) denote closure of C∞(IR2) with respect to ‖ · ‖Jα
L,θ

(Ω).

Definition 5.2 Let α > 0, α 6= n− 1/2, n ∈ IN, θ ∈ [0, 2π) be given. Define the semi-norm

|u|Jα
S,θ

(IR2) := |
(
Dα

θ u,Dα
θ+πu

)
L2(IR2)

|1/2,
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and norm
‖u‖Jα

S,θ
(IR2) := (‖u‖2

L2(IR2) + |u|2Jα
S,θ

(Ω))
1/2, (5.6)

and let Jα
S,θ(IR

2) denote the closure of C∞(IR2) with respect to ‖ · ‖Jα
S,θ

(IR2).

Lemma 5.2 Let α > 0, α 6= n− 1/2, n ∈ IN, θ ∈ [0, 2π) be given. Then the spaces Jα
L,θ(IR

2),
Jα

L,θ+π(IR2), and Jα
S,θ(IR

2) are equal, with equivalent semi-norms and norms.

Proof : This result follows directly from the relation (5.1).

Let Ω denote a bounded open, convex set in IR2. We now show that the same norm equiva-
lence holds for functions defined with support in Ω.

Definition 5.3 Define the spaces Jα
L,θ(Ω), Jα

S,θ(Ω) to be the closures of C∞
0 (Ω) under (5.5)

and (5.6), respectively.

Lemma 5.3 Let α 6= n− 1/2, n ∈ IN, u ∈ C∞
0 (Ω). Then there exists a constant C such that

‖Dα
θ u‖L2(IR2) ≤ C‖Dα

θ u‖L2(Ω). (5.7)

Proof : Under the change of variables
[

x̃
ỹ

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
⇔

[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x̃
ỹ

]
, (5.8)

Dα
θ maps to Dα

0 . As u ∈ C∞
0 (Ω), Dα

0 u = Dαu, the one-dimensional left Riemann-Liouville
fractional derivative (see (A.3)). By Fubini’s theorem

‖Dα
θ u‖2

L2(Ω) =
∫

Ω
|Dα

θ u|2 dxdy =
∫

Ω̃
|Dα

0 u|2 dx̃dỹ =
∫ ỹmax

ỹmin

∫ f2(ỹ)

f1(ỹ)
|Dα

0 u|2 dx̃dỹ, (5.9)

and
‖Dα

θ u‖2
L2(IR2) =

∫

IR

∫

IR
|Dα

θ u|2 dxdy =
∫

IR

∫

IR
|Dα

0 u|2 dx̃dỹ.

Note that as

supp(u(x̃, ỹ)) ⊆ {(x̃, ỹ | f1(ỹ) ≤ x ≤ f2(ỹ), ỹmin ≤ ỹ ≤ ỹmax},
then,

supp(Dα
0 u(x̃, ỹ)) ⊆ {(x̃, ỹ | −∞ < x < ∞, ỹmin ≤ ỹ ≤ ỹmax}.

Hence, by Property A.10,

‖Dα
θ u‖2

L2(IR2) =
∫ ỹmax

ỹmin

∫

IR
|Dα

0 u|2 dx̃dỹ

≤
∫ ỹmax

ỹmin

C(ỹ)
∫ f2(ỹ)

f1(ỹ)
|Dα

0 u|2 dx̃dỹ.
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As Ω is bounded, and C(ỹ) is finite for all ỹ ∈ [ỹmin, ỹmax], there exists a constant C such
that C(ỹ) ≤ C for all ỹ. Hence, by (5.9),

‖Dα
θ u‖2

L2(IR2) ≤ C
∫ ỹmax

ỹmin

∫ f2(ỹ)

f1(ỹ)
|Dα

0 u|2 dx̃dỹ = C‖Dα
θ u‖2

L2(Ω).

Lemma 5.4 Let α > 0, α 6= n − 1/2, n ∈ IN, θ ∈ [0, 2π) be given. The spaces Jα
L,θ(Ω),

Jα
L,θ+π(Ω), and Jα

S,θ(Ω) are equal, with equivalent semi-norms and norms.

Proof : We show the stated result for Jα
L,θ(Ω) and Jα

S,θ(Ω). The proof for Jα
L,θ+π(Ω) and

Jα
S,θ(Ω) follows analogously.

Let ũ be the extension of u by zero outside of Ω. Note that

supp(Dα
θ uDα

θ+πu) ⊆ Ω,

thus
|u|Jα

S,θ
(Ω) = |ũ|Jα

S,θ
(IR2).

We have from Lemma 5.2 that | · |Jα
L,θ

(IR2) and | · |Jα
S,θ

(IR2) are equivalent. Thus, it suffices to

show that | · |Jα
L,θ

(IR2) and | · |Jα
L,θ

(Ω) are equivalent.

We immediately have that for u ∈ C∞
0 (Ω),

|u|Jα
L,θ

(Ω) ≤ |ũ|Jα
L,θ

(IR2).

Also, for α 6= n− 1/2, n ∈ IN, Lemma 5.3 implies

|ũ|Jα
L,θ

(IR2) ≤ C|u|Jα
L,θ

(Ω).

Next we define the fractional dimension Sobolev spaces and relate Jα
L,θ(Ω) ( Jα

L,θ+π(Ω), Jα
S,θ(Ω)

) to Hα
0 (Ω) [8].

Definition 5.4 Let Ω ⊂ IR2 and µ > 0. Define the semi-norm

|u|Hµ(Ω) := ‖ |ω|µû‖L2(IR), (5.10)

and norm
‖u‖Hµ(Ω) := (‖u‖2

L2(Ω) + |u|2Hµ(Ω))
1/2,

and let Hµ
0 (Ω) denote the closure of C∞

0 (Ω) with respect to ‖ · ‖Hµ(Ω).

Lemma 5.5 Let α > 0, α 6= n − 1/2, n ∈ IN, θ ∈ [0, 2π) be given. The spaces Jα
L,θ(Ω), and

Hα
0 (Ω) are equal, with equivalent semi-norms and norms.
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Proof : For Ω = IR2 the statement follows directly from (5.10), Plancherel’s theorem, and
(2.9). For Ω ⊂ IR2, with ũ the extension of u by zero outside of Ω, we have

|u|Jα
L,θ

(Ω) ≡ |u|Jα
S,θ

(Ω) = |ũ|Jα
S,θ

(IR2) ≡ |ũ|Jα
L,θ

(IR2)

≡ |ũ|Hα(IR2) = |u|Hα(Ω) .

We now present two properties for the directional derivative operator, Dα
θ , (inverse and

adjoint) which we use in our subsequent analysis.

Lemma 5.6 For α > 0, u ∈ Jα
L,θ(Ω),

D−α
θ Dα

θ u = u,

and for 0 < s < α,
Ds

θD
α−s
θ u = Dα

θ u.

Proof : The stated results follow directly from Property A.6 and Property A.7

Lemma 5.7 For α > 0, u, v ∈ Jα
L,θ(Ω),

(Dα
θ u, v)L2(Ω) =

(
u, Dα

θ+πv
)

L2(Ω)
.

Proof : Applying Corollary 2.1 and Lemma 5.6, we have

(Dα
θ u, v)L2(Ω) =

(
Dα

θ u, D−α
θ+πDα

θ+πv
)

L2(Ω)

=
(
D−α

θ Dα
θ u, Dα

θ+πv
)

L2(Ω)

=
(
u, Dα

θ+πv
)

L2(Ω)
.

For the next step in our analysis, we define a semi-norm by integrating | · |2Jα
L,θ

(Ω) with respect

to the probability measure M(dθ). We then show that the space defined using this semi-norm
is equivalent to Hα

0 (Ω).

Definition 5.5 For α > 0, define the semi-norm

|u|Jα
M (IR2) :=

(∫ 2π

0
|u|2Jα

L,θ
(IR2)M(dθ)

)1/2

,

and norm
‖u‖Jα

M (IR2) := (‖u‖2
L2(IR2) + |u|2Jα

M (IR2))
1/2,

and let Jα
M(IR2) denote closure of C∞(IR2) with respect to ‖ · ‖Jα

M (IR2).
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Lemma 5.8 For an arbitrary measure M , there exists a constant C such that

|u|Jα
M (IR2) ≤ C|u|Hα(IR2).

Proof : Using (2.9) and Plancherel’s theorem, for θ fixed we have

|u|Jα
L,θ

(IR2) = ‖Dα
θ u‖L2(IR2)

= ‖(iω1 cos θ + iω2 sin θ)αû‖L2(IR2)

≤ ‖|ω|αû‖L2(IR2) = |u|Hα(IR2).

Integration with respect to M(dθ) implies |u|Jα
M (IR2) ≤ C|u|Hα(IR2).

Definition 5.6 Define the space Jα
M(Ω) as the closure of C∞

0 (Ω) under the Jα
M(Ω) norm.

Corollary 5.1 For an arbitrary measure M , there exists a constant C such that

|u|Jα
M (Ω) ≤ C|u|Hα(Ω).

Proof : Let ũ be the extension of u by zero outside of Ω. Then we immediately obtain

|u|Jα
M (Ω) ≤ |ũ|Jα

M (IR2)

≤ C|ũ|Hα(IR2)

= C|u|Hα(Ω).

In order to show existence and uniqueness for (1.1) over the fractional Hilbert space Hα
0 (Ω),

we must show ‖u‖Jα
M (Ω) ≥ C‖u‖Hα(Ω). This, however, is dependent upon the form of the

measure M . We introduce the condition on M that
∫ 2π

0
| sin θ|2α M(d(θ − ψ)) ≥ C1, (5.11)

independent of the value of ψ ∈ [−π/2, π/2].

Remark 5.1: The condition (5.11) holds if M(dθ) is non-zero over a connected set of positive
measure in [0, 2π]. As sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2, we have

∫ 2π

0
| sin θ|2α M(d(θ − ψ)) ≥ 2

π

∫ π/2

0
θ2α [M(d(θ − ψ)) + M(d(π − θ + ψ))

+ M(d(π + θ − ψ)) + M(d(2π − θ + ψ))] ,

which is positive if M(dθ) is non-zero over a connected set of positive measure.

Remark 5.2: The condition (5.11) holds if M(dθ) is atomic with at least two atoms, θi, θj,
such that θi 6= θj + π. In this case, (5.11) reduces to

∫ 2π

0
| sin θ|2α M(d(θ − ψ)) =

n∑

i=1

P (θ = θi)| sin(θi + ψ)|2α,

which is positive for all such ψ if and only if θi 6= θj + π for some i and j.
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Theorem 5.1 Let M satisfy (5.11). Then the spaces Hα(IR2) and Jα
M(IR2) are equal, with

equivalent semi-norms and norms.

Proof : We already have from Lemma 5.8 that

|u|Jα
M (IR2) ≤ C|u|Hα(IR2).

In order to show the reverse inequality, consider u ∈ C∞
0 (IR2). Then, we have

|u|2Jα
M (IR2) =

∫ 2π

0
|u|2Jα

L,θ
(IR2) M(dθ)

=
∫ 2π

0
‖Dα

θ u‖2 M(dθ)

=
∫ 2π

0
‖F (Dα

θ u) ‖2 M(dθ)

=
∫ 2π

0

∫

IR2
|(iω1 cos θ + iω2 sin θ)α û(ω1, ω2)|2 dω M(dθ)

=
∫ 2π

0

∫

IR2
|ω|2α | sin(θ + arctan(ω1/ω2))|2α |û(ω1, ω2)|2 dω M(dθ)

=
∫

IR2

(∫ 2π

0
| sin(θ + arctan(ω1/ω2))|2α M(dθ)

)
|ω|2α |û(ω1, ω2)|2 dω .

As for all (ω1, ω2) ∈ IR2, ψ = arctan(ω1/ω2) ∈ [−π/2, π/2], (5.11) implies

|u|2Jα
M (IR2) ≥ C1|u|2Hα(IR2).

Finally, as Jα
M(IR2) and Hα(IR2) are the closures of C∞

0 (IR2), the equivalence of semi-norms
follows. The equivalence of norms then follows from the definitions of the Jα

M(IR2) and
Hα(IR2) norms.

Corollary 5.2 Let M satisfy (5.11) and α 6= n− 1/2, n ∈ IN. Then the spaces Jα
M(Ω) and

Hα
0 (Ω) are equivalent, with equivalent semi-norms and norms.

Proof : Let u ∈ C∞
0 (Ω), and ũ denote its extension by zero to all of IR2. Using Lemma 5.4

and Theorem 5.1, we have

|u|2Jα
M (Ω) =

∫ 2π

0
|u|2Jα

L,θ
(Ω) M(dθ)

≥ C
∫ 2π

0
|u|2Jα

S,θ
(Ω) M(dθ).

As (
Dα

θ u, Dα
θ+πu

)
L2(Ω)

=
(
Dα

θ ũ, Dα
θ+πũ

)
L2(IR2)

,
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we have

|u|2Jα
M (Ω) ≥ C

∫ 2π

0
|ũ|2Jα

S,θ
(IR2) M(dθ)

≥ C2

∫ 2π

0
|ũ|2Jα

L,θ
(IR2) M(dθ), from Lemma 5.2,

= C2|ũ|2Jα
M (IR2)

≥ C3|ũ|2Hα(IR2), from Lemma 5.8,

= C3|u|2Hα(Ω) .

Finally, as Jα
M(Ω) and Hα

0 (Ω) are closures of C∞
0 (Ω) under equivalent norms, we have

|u|Jα
M (Ω) ≥ C|u|Hα(Ω).

The reverse inequality is given in Corollary 5.1, which implies that the semi-norms are
equivalent. By the definition of the Jα

M(Ω) and Hα
0 (Ω) norms, norm equivalence follows.

We now may state a fractional Poincaré-Friedrichs inequality for this set of spaces.

Theorem 5.2 Let u ∈ Jα
L,θ(Ω), then

‖u‖L2(Ω) ≤ C|u|Jα
L,θ

(Ω), (5.12)

and for 0 < s < α,
|u|Js

L,θ
(Ω) ≤ C|u|Jα

L,θ
(Ω). (5.13)

Proof : Using the change of variables

[
x̃
ỹ

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
⇔

[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x̃
ỹ

]
. (5.14)

D−α
θ maps to D−α

0 , a one-dimensional fractional differential operator. In view of (5.9), the
conclusions (5.12) and (5.13) then follow from Property A.8 and Property A.9, respectively.

Corollary 5.3 [Fractional Poincaré-Friedrichs] For u ∈ Jα
M(Ω),

‖u‖L2(Ω) ≤ C|u|Jα
M (Ω), (5.15)

and for 0 < s < α,
|u|Js

M (Ω) ≤ C|u|Jα
M (Ω). (5.16)

Proof : The conclusions (5.15) and (5.16) follow from (5.12), (5.13), and the definition of
the Jα

M(Ω) semi-norm.
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6 Variational Formulation

Let Ω denote an bounded, open connected region in IR2. In this section we show that there
exists a unique variational solution of (1.1) in the space Hα

0 (Ω).

Problem 6.1 [Steady State Fractional Advection Dispersion Equation]
Given f ∈ H−α(Ω), find u : Ω̄ → IR such that

Lu = f, in Ω, (6.1)

u = 0, on ∂Ω. (6.2)

where

Lu := −
∫ 2π

0

(
Dθ aDβ

θ u
)

M(dθ) + b(x, y) · ∇u + c(x, y)u,

0 < β ≤ 1, α := β+1
2

, a > 0, b(x, y) := [b1(x, y), b2(x, y)]t ∈ (C1(Ω̄))2, c(x, y) ∈ C(Ω̄) with
c− 1

2
∇ · b ≥ 0 and M(dθ) satisfies (5.11).

In order to derive a variational form for (6.1)-(6.2), we assume that u is a sufficiently smooth
solution of (6.1)-(6.2) and multiply by an arbitrary v ∈ C∞

0 (Ω) to obtain

∫

Ω
f v dx =

∫

Ω
−

(∫ 2π

0
DθaDβ

θ u M(dθ)
)

v + b · ∇u v + c u v dx

=
∫

Ω
−

∫ 2π

0
aDα

θ uDα
θ+πv M(dθ) + D0u b1 v + Dπ/2u b2 v + c u v dx

=
∫

Ω
−

(∫ 2π

0
aDα

θ uDα
θ+πv M(dθ)

)
+ Dα

0 uD1−α
π (b1 v) + Dα

π/2uD1−α
3π/2(b2 v) + c u v dx .

Thus, we define the associated bilinear form B : Hα
0 (Ω)×Hα

0 (Ω) → IR as

B(u, v) := −
∫ 2π

0
a

(
Dα

θ u, Dα
θ+πv

)
M(dθ) +

(
Dα

0 u, D1−α
π (b1 v)

)
+

(
Dα

π/2u, D1−α
3π/2(b2 v)

)
+ (c u, v) .

For f ∈ H−α(Ω) we define the associated linear functional F : Hα
0 (Ω) → IR as

F (v) := 〈f, v〉 ,

where < ·, · > denotes the duality pairing of H−µ(Ω) and Hµ
0 (Ω), µ ≥ 0.

Definition 6.1 [Variational Solution] A function u ∈ Hα
0 (Ω) is a variational solution of

(6.1)-(6.2) provided that
B(u, v) = F (v), ∀v ∈ Hα

0 (Ω). (6.3)

Using the results of Section 5, we show that there exists a unique variational solution to
(6.1)-(6.2).
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Lemma 6.1 The bilinear form B(·, ·) is coercive over Hα
0 (Ω), i.e. there exists a constant

C0 such that
B(u, u) ≥ C0‖u‖2

Hα(Ω). (6.4)

Proof : With α > 1/2, and u ∈ Hα
0 (Ω) the limit of {φn}∞n=0, φn ∈ C∞

0 (Ω), it is straight
forward to establish that

(
Dα

0 u, D1−α
π (b1 v)

)
+

(
Dα

π/2uD1−α
3π/2(b2 v)

)
= −1

2
((∇ · b) u, u) .

Hence

B(u, u) = −
∫ 2π

0
a

(
Dα

θ u, Dα
θ+πv

)
M(dθ) +

(
(c− 1

2
∇ · b)u, u

)

≥ a
∫ 2π

0
|u|2Jα

S,θ
(Ω)M(dθ).

By norm equivalence (Lemma 5.4), Corollary 5.2, and the fractional Poincaré-Friedrichs
inequality (Corollary 5.3), we obtain

B(u, u) ≥ C1

∫ 2π

0
|u|2Jα

L,θ
(Ω)M(dθ)

= C1|u|2Jα
M (Ω)

≥ C2‖u‖2
Jα

M (Ω)

≥ C‖u‖2
Hα(Ω).

Lemma 6.2 The bilinear form B(·, ·) is continuous on Hα
0 (Ω)×Hα

0 (Ω), i.e. there exists a
constant C1 such that

|B(u, v)| ≤ C1‖u‖Hα(Ω)‖v‖Hα(Ω). (6.5)

Proof : First, we apply the triangle inequality and introduce terms I, II and III:

|B(u, v)| ≤
∣∣∣∣−

∫ 2π

0
a

(
Dα

θ u, Dα
θ+πv

)
M(dθ)

∣∣∣∣ +
∣∣∣
(
Dα

0 u, D1−α
π (b1 v)

)
+

(
Dα

π/2u D1−α
3π/2(b2 v)

)∣∣∣

+ |(c u, v)|
:= I + II + III

In order to bound III, we use Cauchy-Schwarz to obtain

III ≤ ‖c u‖L2(Ω)‖v‖L2(Ω)

≤ ‖c‖∞‖u‖L2(Ω)‖v‖L2(Ω)

≤ ‖c‖∞‖u‖Hα(Ω)‖v‖Hα(Ω). (6.6)
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Next, using (2.9) we bound I by

I ≤ a
(∫ 2π

0
|u|2Jα

L,θ
(Ω)M(dθ)

)1/2 (∫ 2π

0
|v|2Jα

L,θ+π
(Ω)M(dθ)

)1/2

≤ a‖u‖Jα
M (Ω)

(∫ 2π

0
|v|2Jα

L,θ
(Ω)M(dθ)

)1/2

≤ a‖u‖Jα
M (Ω) ‖v‖Jα

M (Ω)

≤ C1‖u‖Hα(Ω)‖v‖Hα(Ω). (6.7)

To bound II note that from Property A.11 in the appendix, there exists constants Cb1 and
Cb2 such that ‖b1v‖H1−α(Ω) ≤ Cb1‖v‖H1−α(Ω) and ‖b2v‖H1−α(Ω) ≤ Cb2‖v‖H1−α(Ω). Hence, using
Lemmas 5.4 and 5.5,

II ≤ ‖u‖Jα
L,0(Ω)‖b1v‖J1−α

L,π (Ω) + ‖u‖Jα
L,pi/2

(Ω)‖b2v‖J1−α
L,3π/2

(Ω)

≤ C1 ‖u‖Hα(Ω)

(
‖b1v‖H1−α(Ω) + ‖b2v‖H1−α(Ω)

)

≤ C2 ‖u‖Hα(Ω) ‖v‖H1−α(Ω) ≤ C ‖u‖Hα(Ω) ‖v‖Hα(Ω) . (6.8)

Combining (6.6) - (6.8), we have (6.5).

Lemma 6.3 The linear functional F (·) is continuous over Hα
0 (Ω).

Proof : The result follows from the fact that

F (v) = 〈f, v〉 ≤ ‖f‖H−α(Ω)‖v‖Hα(Ω), ∀ v ∈ Hα
0 (Ω). (6.9)

Theorem 6.1 There exists a unique solution u ∈ Hα
0 (Ω) to (6.3) satisfying

‖u‖Hα(Ω) ≤ C‖f‖H−α(Ω). (6.10)

Proof : By Lemmas 6.1, 6.2, 6.3, the operators B, F satisfy the hypotheses of the Lax-
Milgram theorem, from which existence and uniqueness of a solution to (6.3) immediately
follow. The estimate (6.10) is obtained from combining (6.4), (6.5), and (6.9).

7 Finite Element Convergence Estimates

Let {Sh} denote a family of partitions of Ω, with grid parameter h. Associated with Sh,
define the finite dimensional subspace Xh to be the basis of piecewise polynomials of order
m− 1, where m ≥ 1 ∈ IN. Denote by Ihu the piecewise polynomial interpolant of u in Sh.

Let uh be the solution to the finite dimensional variational problem

B(uh, vh) = F (vh), ∀ vh ∈ Xh. (7.1)
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We define the energy norm associated with (6.3) as

‖u‖E := B(u, u)1/2. (7.2)

Note that from (6.4) and (6.5) we have norm equivalence of ‖ · ‖Hα(Ω) and ‖ · ‖E.

Theorem 7.1 Let u denote the solution to (6.3). There exists a unique solution to (7.1)
which satisfies the estimate

‖u− uh‖E ≤ CI inf
v∈Xh

‖u− v‖E ≤ CI‖u− Ihu‖E. (7.3)

Proof : Existence and uniqueness follow from the fact that Xh is a subspace of the space
Hα

0 (Ω), and thus (7.1) satisfies the hypotheses of the Lax-Milgram lemma over the finite
dimensional subspace Xh. The estimate (7.3) is a result of Ceá’s lemma.

The finite dimensional subspace Xh and the interpolant Ihu are chosen specifically so that
they satisfy an approximation property over subspaces of Hm(Ω). That is to say that Ihu
satisfies the following theorem [2].

Theorem 7.2 [Approximation Property] Let u ∈ Hr(Ω), 0 < r ≤ m, and 0 ≤ s ≤ r. Then
there exists a constant CA depending only on Ω such that

‖u− Ihu‖Hs(Ω) ≤ CAhr−s‖u‖Hr(Ω).

We can combine the previous results into an estimate for e := u− uh in the energy norm.

Corollary 7.1 Let u ∈ Hα
0 (Ω) ∩Hr(Ω) (α ≤ r ≤ m) solve (6.3), and uh solve (7.1). Then

there exists a constant C such that the error e = u− uh satisfies

‖e‖Hα(Ω) ≤ Chr−α‖u‖Hr(Ω). (7.4)

Proof : From Theorem 7.1, we have that the error satisfies

‖e‖E ≤ CI‖u− Ihu‖E.

Applying the approximation property and continuity yields

‖e‖E ≤
√

C1CICAhr−α‖u‖Hr(Ω). (7.5)

Finally, we obtain (7.4) via the norm equivalence of ‖ · ‖Hα(Ω) and ‖ · ‖E.
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We now apply the Aubin-Nitsche trick to obtain a convergence estimate in the L2 norm.
First, we must make an assumption concerning the regularity of the solution to the adjoint
problem:

−
∫ 2π

0

(
Dβ

θ+π aDθ+πw
)
M(dθ) + (−∇ · b(x, y) + c(x, y))w = g, in Ω (7.6)

w = 0, on ∂Ω. (7.7)

Assumption ADRG: For w solving (7.6) with g ∈ L2(Ω), we have

‖w‖H2α(Ω) ≤ CE‖g‖L2(Ω).

Theorem 7.3 Let u ∈ Hα
0 (Ω) ∩Hr(Ω) (α ≤ r ≤ m) solve (6.3), and uh solve (7.1). Then,

under Assumption ADRG, there exists a constant C such that the error e = u− uh satisfies

‖e‖L2(Ω) ≤ Chr‖u‖Hr(Ω). (7.8)

Proof : Introduce w as the solution of (7.6) with g = e = u− uh ∈ L2(Ω). Then w satisfies
the variational form

B(v, w) = (e, v), ∀ v ∈ Hα
0 (Ω), (7.9)

and the regularity estimate

‖w‖H2α(Ω) ≤ CE‖e‖L2(Ω).

Substitute v = e in (7.9), and applying Galerkin orthogonality, we have

‖e‖2
L2(Ω) = B(e, w)

= B(e, w − Ihw)

≤ C1‖e‖Hα(Ω)‖w − Ihw‖Hα(Ω)

≤ C1CAhα‖e‖Hα(Ω)‖w‖H2α(Ω)

≤ C1CACEhα‖e‖Hα(Ω)‖e‖L2(Ω).

Therefore, dividing through by ‖e‖L2(Ω) yields the estimate

‖e‖L2(Ω) ≤ C1CACEhα‖e‖E,

and applying (7.4) we obtain (7.8).

Remark: For a Finite Element approximation to (6.3), uh ∈ Sh, v ∈ Sh,

B̃(uh, v) :=
∫ 2π

0

∫

Ω
aDβ

θ uh Dθv dxM(dθ) +
∫

Ω
b · ∇uh v dx +

∫

Ω
c uh v dx ,

is computationally more suitable than B(uh, v). See [14] for a discussion on Finite Element
implementation issues for FADEs.
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A Riemann-Liouville Fractional Integral Operators

In this section we present the Riemann-Liouville fractional integral and differential operators
and several properties which they satisfy.

Definition A.1 [Left Riemann-Liouville Fractional Integral] Let u be a function defined on
(a, b), and σ > 0. Then the left Riemann-Liouville fractional integral of order σ is defined to
be

aD
−σ
x u(x) :=

1

Γ(σ)

∫ x

a
(x− s)σ−1u(s)ds. (A.1)

Definition A.2 [Right Riemann-Liouville Fractional Integral] Let u be a function defined
on (a, b), and σ > 0. Then the right Riemann-Liouville fractional integral of order σ is
defined to be

xD
−σ
b u(x) :=

1

Γ(σ)

∫ b

x
(s− x)σ−1u(s)ds. (A.2)

Definition A.3 [Left Riemann-Liouville Fractional Derivative] Let u be a function defined
on IR, µ > 0, n be the smallest integer greater than µ (n− 1 ≤ µ < n), and σ = n−µ. Then
the left fractional derivative of order µ is defined to be

Dµu := −∞Dµ
xu = Dn −∞D−σ

x u(x) =
1

Γ(σ)

dn

dxn

∫ x

−∞
(x− ξ)σ−1u(ξ)dξ. (A.3)

Definition A.4 [Right Riemann-Liouville Fractional Derivative] Let u be a function defined
on IR, µ > 0, n be the smallest integer greater than µ (n− 1 ≤ µ < n), and σ = n−µ. Then
the right fractional derivative of order µ is defined to be

Dµ∗u := xD
µ
∞u = (−D)n

xD
−σ
∞ u(x) =

(−1)n

Γ(σ)

dn

dxn

∫ ∞

x
(ξ − x)σ−1u(n)(ξ)dξ. (A.4)

Note. If supp (u) ⊂ (a, b), then Dµu = aD
µ
xu and Dµ∗u = xD

µ
b u, where aD

µ
x and xD

µ
b u

are the left and right Riemann-Liouville fractional derivatives of order µ [13].

With these definitions, we note several properties of the Riemann-Liouville fractional integral
and differential operators [13, 15].

Property A.1 [Semigroup Property] The left and right Riemann-Liouville fractional inte-
gral operators satisfy the semigroup properties: for u ∈ Lp(a, b), p ≥ 1,

aD
−µ
x aD

−σ
x u(x) = aD

−µ−σ
x u(x), ∀ x ∈ (a, b), ∀ µ, σ > 0,

xD
−µ
b xD

−σ
b u(x) = xD

−µ−σ
b u(x), ∀ x ∈ (a, b), ∀ µ, σ > 0. (A.5)
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Property A.2 [Adjoint Property] The left and right Riemann-Liouville fractional integral
operators are adjoints in the L2 sense, i.e. for all σ > 0,

(
aD

−σ
x u, v

)
L2(a,b)

=
(
u, xD

−σ
b v

)
L2(a,b)

, ∀ u, v ∈ L2(a, b). (A.6)

Property A.3 [Fourier Transform Property] Let σ > 0, u ∈ Lp(IR), p ≥ 1. The Fourier
transform of the left and right Riemann-Liouville fractional integral satisfy the following,

F( −∞D−σ
x u(x)) = (iω)−σû(ω),

F( xD
−σ
∞ u(x)) = (−iω)−σû(ω), (A.7)

where û(ω) denotes the Fourier transform of u.

Property A.4 The left (right) Riemann-Liouville fractional derivative of order µ acts as a
left inverse of the left (right) Riemann-Liouville fractional integral of order µ, i.e.

aD
µ
x aD

−µ
x u(x) = u(x), (A.8)

xD
µ
b xD

−µ
b u(x) = u(x), ∀ µ > 0. (A.9)

Property A.5 [Fourier Transform Property] Let µ > 0, u ∈ C∞
0 (a, b). The Fourier trans-

form of the left and right Riemann-Liouville fractional integral satisfy the following,

F( −∞Dµ
xu(x)) = (iω)µû(ω),

F( xD
µ
∞u(x)) = (−iω)µû(ω). (A.10)

In one space dimension the following norms and spaces are useful. For I denoting the interval
(a, b) ⊂ IR1

|u|Jµ
L(I) := ‖Dµu‖L2(I), ‖u‖Jµ

L(I) :=
(
‖u‖2

L2(I) + ‖Dµu‖2
L2(I)

)1/2
, (A.11)

|u|Jµ
R(I) := ‖Dµ∗u‖L2(I), ‖u‖Jµ

R(I) :=
(
‖u‖2

L2(I) + ‖Dµ∗u‖2
L2(I)

)1/2
, (A.12)

and Jµ
L(I), Jµ

R(I), denotes the closure of C∞
0 (I) with respect to (A.11) and (A.12), respec-

tively.

Property A.6 [5] For u ∈ Jµ
L(I), we have D−µDµu = u, and for u ∈ Jµ

R(I), we have
D−µ∗Dµ∗u = u.

Property A.7 [5] For u ∈ Jµ
L(I), 0 < s < µ,

D−s Ds Dµ−su = Dµ−su.

26



Property A.8 [5] [Fractional Poincaré-Friedrichs] For u ∈ Jµ
L(I), we have

‖u‖L2(I) ≤ C|u|Jµ
L(I), (A.13)

and for u ∈ Jµ
R(I),

‖u‖L2(I) ≤ C|u|Jµ
R(I) . (A.14)

Property A.9 [5] For u ∈ Jµ
L(I), 0 < s < µ, we have

|u|Js
L(I) ≤ C|u|Jµ

L(I),

and for u ∈ Jµ
R(I), 0 < s < µ,

|u|Js
R(I) ≤ C|u|Jµ

R(I).

We also state an additional result regarding the diminishing nature of aD
µ
x outside of (a, b)

for functions u ∈ C∞
0 (a, b).

Property A.10 [5] Let µ 6= n − 1/2, n ∈ IN, u ∈ C∞
0 (I). Then there exists a constant C

depending only on u such that

‖ aD
µ
xu‖L2(IR) ≤ C‖ aD

µ
xu‖L2(a,b).

Property A.11 [5] Let µ ∈ [0, 1], b ∈ C1(Ī) and v ∈ Hµ(I). Then there exists a constant
C depending only on b and µ such that

‖bv‖Hµ(I) ≤ C‖v‖Hµ(I).
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