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Asymmetric nuclear matter at zero temperature is studied using a variational method
which is an extension of the methods used by the present authors previously for simpler
systems. An approximate expression for the energy per nucleon in asymmetric nuclear
matter is derived through a combination of two procedures, one used for symmetric nuclear
matter and the other for spin-polarized liquid 3He with spin polarization replaced by isospin
polarization. The approximate expression for the energy is obtained as a functional of
various spin-isospin-dependent radial distribution functions, tensor distribution functions,
and spin-orbit distribution functions. The Euler-Lagrange equations are derived to minimize
this approximate expression for the energy; they consist of 16 coupled integrodifferential
equations for various distribution functions. These equations were solved numerically for
several values of the nucleon number density ρ and for many degrees of asymmetry ζ [ ζ =
(ρn − ρp)/ρ, where ρn(ρp) is the neutron (proton) number density]. Unexpectedly, we find
that the energies at a fixed density cannot be represented by a power series in ζ2. A new
energy term, ε1(ζ

2 + ζ2
0 )1/2, where ζ0 is a small number and ε1 is a positive coefficient,

is proposed. It is shown that if the power series is supplemented with this new term, it
reproduces the energies obtained by variational calculations very accurately. This new term
is studied in relation to cluster formation in nuclear matter, and some mention is made of a
possible similar term in the mass formula for finite nuclei.

§1. Introduction

The variational study1) of infinite nuclear matter has a long history, and the re-
sults have been compared with other many-body calculations, such as the Brueckner-
Hartree-Fock calculations. For asymmetric nuclear matter, which is the main ob-
ject of our present study, there are fairly many studies employing nonrelativistic
and relativistic Brueckner theories.2) However, most variational calculations are for
symmetric nuclear matter and neutron matter.3) The variational calculations for
asymmetric nuclear matter of which the author is aware are very few: the Fermi
hypernetted chain (FHNC) calculations carried out in 1981,4) and the lowest-order
constrained variational (LOCV) calculations.5)

Since 1994, the present authors have been developing a different type of vari-
ational theory, in which approximate expressions for the energies per nucleon are
constructed as functionals of various two-body distribution functions and structure
functions. We now have approximate energy expressions for liquid 3He,6) neutron
matter, and symmetric nuclear matter.7) For liquid 3He, we have an expression
valid for arbitrary spin-polarized states.8) In this paper, we extend the theory to
treat asymmetric nuclear matter, utilizing the analogy between spin polarization and
isospin polarization. Here, we should mention the guiding principle of these varia-
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tional studies. We allow the variational functions to vary fully, without imposing any
artificial constraint. Thus in order for our method to be successful, the approximate
energy expression must have the property that its value remains in a reasonable
range over the full variation of the variational functions.

In §2, we make a modification of the previously derived energy expression for
the spin-polarized fermion system,8) because we encountered a difficulty in treating
spin-polarized neutron matter, and because we use the analogy between isospin polar-
ization and spin polarization. In §3, we construct the approximate energy expression
to be used for asymmetric nuclear matter, and the results of numerical calculations
are presented. When we were analyzing the results, we found peculiar behavior of the
energy per nucleon as a function of the degree of asymmetry ζ [ ζ = (ρn−ρp)/ρ, where
ρn(ρp) is the neutron (proton) number density, and ρ = ρn + ρp ]. We (and probably
most researchers) had believed that the energy per nucleon at a fixed density ρ can
be represented by a power series in ζ2. However, the results of our numerical calcu-
lations are contrary to this belief. In §4, a detailed analysis is presented to confirm
the impossibility of a power series expansion. Furthermore, a new term, including a
factor of (ζ2+ ζ2

0 )1/2, in which ζ0 is a small number independent of ζ, is proposed.
We find that if the power series is supplemented with this new term, it reproduces
the results of the variational calculations very accurately. Since ζ0 is very small, the
range of ζ in which the power series in ζ2 converges (ζ ≤ ζ0) is very narrow, indeed
much narrower than the region of physical interest. The new term is discussed in
relation to cluster formation in nuclear matter, and some mention is made of a pos-
sible similar term in the mass formula for finite nuclei. Brief concluding remarks are
given in §5. In the appendix, results of the calculations for fictitious spin-polarized
neutron matter that support the argument given in §4 are presented and discussed.

§2. Spin-polarized fermi liquid

2.1. Modification of the approximate energy expression

The main subject of this paper is asymmetric nuclear matter. In studying it,
however, we have found that the formulas we proposed previously for polarized spin-
1/2 fermion matter at zero temperature require some modification before treating
asymmetric nuclear matter. The reason we need this modification beforehand is that
the procedure for constructing the approximate energy expression for asymmetric
nuclear matter is a generalization of the procedure for spin-polarized matter. We
start from the Hamiltonian

H = −
N
∑

i=1

ℏ
2

2m
∇2

i +

N
∑

i<j

1
∑

s=0

Vs(rij)Psij . (2.1)

Here, N is the total number of particles, and m is the mass of a particle. The spin
projection operator Psij projects the (i, j) particle pair onto the spin-triplet state
(s = 1) or the spin-singlet state (s = 0). The two-body central potential Vs(rij) with
rij = ri − rj may depend on the spin state s. Because we consider infinite systems,
both the particle number N and the volume Ω are taken to infinity, with the number
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density ρ = N/Ω kept finite.
In the case of partially spin-polarized systems, the energy per particle, E/N ,

depends not only on ρ but also on x = ρu/ρ, with ρu being the number density of the
spin-up particles. We also use y = 1 − x in the following. In Ref. 8), we proposed
an approximate energy expression for the energy per particle E(ρ, x)/N as follows:

E

N
(ρ, x) =

3

5
(xEFu + yEFd) + 2πρ

1
∑

s=0

∑

µ

∫ ∞

0
Fµ

s (r)Vs(r)r
2dr

+
πℏ

2ρ

2m

1
∑

s=0

∑

µ

∫ ∞

0

[

1

Fµ
s (r)

dFµ
s (r)

dr
− 1

Fµ
Fs(r)

dFµ
Fs(r)

dr

]2

Fµ
s (r)r2dr

− ℏ
2

16π2mρ

4
∑

n=1

∫ ∞

0
acn

[Scpn(k) − 1][Scpn(k) − Sfn(k)]2

Scpn(k)/Sfn(k)
k4dk +

E3corr

N
.

(2.2)

The first term on the right-hand side of Eq. (2.2) represents the one-body kinetic
energy, where EFu = ℏ

2k2
Fu/(2m) and EFd = ℏ

2k2
Fd/(2m) are the Fermi energies

for spin-up and spin-down Fermi spheres, respectively, with kFu = (6π2ρx)1/3 and
kFd = (6π2ρy)1/3 being the corresponding Fermi wave numbers. The second term
represents the potential energy, with the spin-dependent radial distribution functions
Fµ

s (r)(s = 0, 1) defined by

Fµ
s (r12) = Ω2

∑

spin

∫

Ψ †(x1, · · · , xN ) Pµ
s12Ψ(x1, · · · , xN ) dr3 · · · drN , (2.3)

where Ψ(x1, · · · , xN ) is the wave function of the system, with xi representing the
space and spin coordinates of the i-th particle. The symbol

∑

in Eq. (2.3) rep-
resents summation over the spin coordinates of all particles. The spin-projection
operators Pµ

sij in Eq. (2.3) project the (i, j) particle pair onto the four spin states
(s, sz) = (1, 1), (1, 0), (1,−1) or (0, 0), where the superscript µ = (+, 0,−) indicates
sz = (1, 0,−1), respectively. We should note that this second term is the exact
expression for the expectation value of the potential energy per particle. The third
and the fourth terms represent a part of the kinetic energy caused by correlations
between particles. In the third term, Fµ

Fs(r) is the radial distribution function for the
degenerate Fermi gas. In the fourth term, we have (ac1, ac2, ac3, ac4) = (1, 1, x/y, y/x),
and the various structure functions in this term are explained below.

The structure functions Scpn(k)(n = 1 − 4) are non-negative functions defined
by

Scp1(k)
Scp2(k)

}

= 1 +
S+

1 (k)

2x
+

S−
1 (k)

2y

∓ 1

2

√

(

S+
1 (k)

x
− S−

1 (k)

y

)2

+

(

S0
1(k) + S0

0(k)
)2

xy
≥ 0, (2.4a)
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Scp3(k)
Scp4(k)

}

= 1 +







1

2x
1

2y







[

S0
1(k) − S0

0(k)
]

≥ 0, (2.4b)

where Sµ
s (k) are the Fourier transforms of Fµ

s (r):

Sµ
s (k) = ρ

∫

[Fµ
s (r) − Fµ

s (∞)] exp(ik · r)dr, (2.5)

for (s, µ) = (1, +), (1, 0), (1,−) and (0, 0), respectively. The inequalities in (2.4) are
necessary conditions on the structure functions, and, as discussed in Ref. 9), (2.4a)
is equivalent to the following set of inequalities:

S+
c (k) ≡ 1 +

S+
1 (k)

x
≥ 0, (2.6a)

S−
c (k) ≡ 1 +

S−
1 (k)

y
≥ 0, (2.6b)

4xy S+
c (k) S−

c (k) − [S0
1(k) + S0

0(k)]2 ≥ 0. (2.6c)

The functions Sfn(k) in the fourth term on the right-hand side of Eq. (2.2) are defined
by

Sf1(k) = Sf2(k) = x S+
cF(k) + y S−

cF(k) ≡ Sf(k), (2.7a)

Sfn(k) ≡ ScpFn(k), (n = 3, 4) (2.7b)

where S±
cF(k) and ScpFn(k) are, respectively, S±

c (k) and Scpn(k) for the degenerate
Fermi gas. It should be noted that inequalities in (2.4) are automatically guaranteed
in the variational calculations with the approximate energy expression Eq. (2.2).

The last term in Eq. (2.2) is a correction to the kinetic energy, and it is composed
of two parts:

E3corr

N
(ρ, x) =

E3corr-01

N
(ρ, x) +

E3corr-2

N
(ρ, x). (2.8)

The first part is

E3corr-01

N
(ρ, x) =

�
2

16π2mρ

∫ ∞

0

{

W0(k) +
W+

1 (k)

x

[

S+
1 (k) − S+

F1(k)
]

+
W−

1 (k)

y

[

S−
1 (k) − S−

F1(k)
]

}

k4dk, (2.9)

where

W0(k) =

[

S+
cF(k) − 1

] [

S+
cF(k) − Sf(k)

]2

S+
cF(k)/Sf(k)
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+

[

S−
cF(k) − 1

] [

S−
cF(k) − Sf(k)

]2

S−
cF(k)/Sf(k)

, (2.10a)

W±
1 (k) =

Sf(k)
[

S±
cF(k) − Sf(k)

]

[

S±
cF(k)

]2

{

2
[

S±
cF(k)

]2 − S±
cF(k) − Sf(k)

}

, (2.10b)

with Sµ
Fs

(k) being Sµ
s (k) for the degenerate Fermi gas. The last term in Eq. (2.8) is

expressed as

E3corr-2

N
(ρ, x) = − �

2

16π2mρ

∫ ∞

0

{

W+
2 (k)

[

S+
c (k) − S+

cF(k)
]2

+W−
2 (k)

[

S−
c (k) − S−

cF(k)
]2

+
W 0

2 (k)

xy

[

S0
1(k) + S0

0(k)
]2
}

k4dk, (2.11)

where

W±
2 (k) = S±

cF(k) − 1 − Sf(k) +

[

Sf(k)

S±
cF(k)

]3

, (2.12a)

W 0
2 (k) =

1

4

[

S+
cF(k) + S−

cF(k) − 2

−Sf(k)

{

2 −
[

Sf(k)

S+
cF(k)S−

cF(k)

]2
[

S+
cF(k) + S−

cF(k)
]

}]

. (2.12b)

In Ref. 8), we carried out variational calculations using these expressions for
liquid 3He, and we obtained fairly reasonable results. However, we later encountered
a case in which the numerically minimized energy obtained from the expression
Eq. (2.2) is unreasonably low; specifically, E3corr-2(ρ, x)/N became a large negative
value. Following the guiding principle mentioned in §1, we modify the approximate
energy expression to avoid this unreasonable lowering of the kinetic energy.∗) Specif-
ically, we need to modify the expression for E3corr-2(ρ, x)/N , which was found to be
responsible for this energy lowering.

A convenient way to avoid the unreasonable lowering of the kinetic energy is
to put a denominator in the dangerous term. The necessary conditions on such a
denominator are that it be nonnegative, that it increase as the numerator increases,
and that it tend to unity as the system tends to the degenerate Fermi gas, so that
the correspondence between our formalism and the cluster expansion is unchanged
up to the main part of the three-body clusters.

With the above considerations, the modified expression we propose for E3corr-2(ρ,
x)/N is as follows:

E3corr-2

N
(ρ, x) = − �

2

16π2mρ

∫ ∞

0

{

W+
2 (k)

[

S+
c (k) − S+

cF(k)
]2

S+
c (k)/S+

cF(k)

∗) The kinetic energy cannot be lower than the kinetic energy of the degenerate Fermi gas.
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Fig. 1. Energies per particle, E/N , for liquid
3He as functions of the number density ρ

with the fraction of spin-up particles x =

0.5, 0.6, 0.7, 0.8, 0.9, and 1. The solid curves

represent the energies calculated with the

modified energy expression, while the dot-

ted curves are for the unmodified expres-

sion.

Fig. 2. Energies per particle, E/N , for liquid
3He as functions of the fraction of spin-

up particles x with ρ = 0.016, 0.017, 0.018,

0.019, and 0.020 Å−3. The solid curves and

dotted curves represent the modified and

unmodified expressions, respectively, as in

Fig. 1.

+W−
2 (k)

[

S−
c (k) − S−

cF(k)
]2

S−
c (k)/S−

cF(k)
+

W 0
2 (k)

xy

[

S0
1(k) + S0

0(k)
]2

}

k4dk.

(2.13)

In the integrand of Eq. (2.13), the denominators in the first two terms satisfy the
above-mentioned conditions, while no suitable denominator is found for the third
term, which is not responsible for the unreasonable energy lowering.

2.2. Numerical calculations for spin-polarized liquid 3He

Once the approximate energy expression is constructed, we can derive the Euler-
Lagrange (EL) equations through the variational procedure. In this case, the varia-
tional functions are spin-dependent radial distribution functions Fµ

s (r), and the EL
equations are coupled integrodifferential equations for Fµ

s (r). We can solve them
numerically with the iteration method explained in detail in Ref. 6).

In this subsection, we test the modified energy expression obtained in the last
subsection with spin-polarized liquid 3He. We use Eq. (2.2) with the mass of a 3He
atom as m. The potential Vs(r) corresponds to the intermolecular force between two
3He atoms; in this paper, we use the HFDHE2 potential.10)

The energy per particle, E/N , is plotted in Figs. 1 and 2 with the old and modified
expressions, Eqs. (2.11) and (2.13). It is seen that, in this case, the essential feature
of E/N is not changed by the modification. A somewhat significant change is seen in
the highly, but not completely, spin-polarized region (x ≈ 0.9), where the modified
E/N values are appreciably lower than the old ones. Figures 3 and 4 present some
examples of the spin-dependent radial distribution functions Fµ

s (r) and the structure
functions Scpn(k) for the modified energy expression. These functions are almost
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Fig. 3. Radial distribution functions F µ
s (r) for

liquid 3He at ρ = 0.018 Å−3, x = 0.8.

Fig. 4. Structure functions Scpn(k) for liquid
3He at ρ = 0.014 Å−3 and ρ = 0.018 Å−3,

with x = 0.8. The functions S±
c (k) defined

in Eqs. (2.6) are also shown.

the same as those obtained with the old expression: The long tails of Fµ
s (r) and the

increases of Scpn(k) near k ≈ 0 are similar to those found without the modification.

§3. Approximate energy expression for asymmetric nuclear matter

3.1. Formulation for asymmetric nuclear matter

In this subsection, we construct an approximate energy expression for spin-
unpolarized asymmetric nuclear matter at zero temperature. The procedure we
employ here is a combination of two procedures, one for symmetric nuclear matter,
which is explained in Ref. 7), and the other for spin-polarized liquid 3He, which is
presented in Ref. 8) and modified in the last section. The “spin polarization” in
the latter procedure is replaced here by “isospin polarization”. Hereafter, we assign
isospin-up to protons and isospin-down to neutrons.

We start from the Hamiltonian

H = −
N
∑

i=1

�
2

2m
∇2

i +
N
∑

i<j

Vij , (3.1)

where m is the nucleon mass, defined as the average of the proton mass and the
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neutron mass. The two-body potential Vij is assumed to be expressed as

Vij =
1
∑

t=0

1
∑

s=0

[{VCts(rij) + s [VTt(rij)STij + VSOt(rij) (s · Lij)]}Ptsij ] + Vqij . (3.2)

Here, the operators Ptsij are the isospin-spin-projection operators, which project the
(i, j) nucleon pair states onto the triplet-odd [(t, s) = (1, 1)], singlet-even [(t, s) =
(1, 0)], triplet-even [(t, s) = (0, 1)] or singlet-odd [(t, s) = (0, 0)] state, STij is the
tensor operator,

STij =
3

r2
ij

(σi · rij)(σj · rij) − σi · σj , (3.3)

Lij is the relative orbital angular momentum of the (i, j) nucleon pair, and Vqij is a
quadratic angular momentum part. For the isoscalar part∗) of the AV18 potential,11)

we have

Vqij =

1
∑

t=0

1
∑

s=0

[

VqLts(rij) |Lij |2 + sVqSOt(rij) (s · Lij)
2
]

Ptsij . (3.4)

For simplicity, in this paper, we omit the remaining isovector and isotensor parts
included in the AV18 potential, as in the case of the FHNC calculations of Akmal
et al.,3) because their contribution to the total energy is expected to be negligibly
small.

We construct the approximate energy expression for asymmetric nuclear matter
as a functional of the spin-isospin-dependent radial distribution functions F ν

ts(r), ten-
sor distribution functions F ν

Tt(r), and the spin-orbit distribution functions
F ν

SOt(r), which depend on the z-component, tz, of the total isospin of the two par-
ticipating nucleons:

F ν
ts(r12) = Ω2

∑

isospin

∑

spin

∫

Ψ †(x1, · · ·, xN )P ν
ts12Ψ(x1, · · ·, xN )dr3 · · · drN , (3.5a)

F ν
Tt(r12) = Ω2

∑

isospin

∑

spin

∫

Ψ †(x1, · · ·, xN )ST12P
ν
t112Ψ(x1, · · ·, xN )dr3 · · · drN , (3.5b)

F ν
SOt(r12) = Ω2

∑

isospin

∑

spin

∫

Ψ †(x1, · · ·, xN ) (s·L12) P ν
t112Ψ(x1, · · ·, xN )dr3 · · · drN .

(3.5c)

Here, the summations are taken over the spin and isospin coordinates of all nucleons,
and ν = (+, 0,−) represents the three isotriplet states, tz = (1, 0,−1), of the nucleon
pair. In Eq. (3.5), P ν

tsij is the corresponding projection operator.
The distribution functions in Eq. (3.5) implicitly depend on the proton fraction

ξ = ρp/ρ which is the ratio of the proton number density, ρp, to the total nucleon

∗) Here, the isoscalar part means the charge-independent part, which is by far the dominant

part of the nuclear potential. Note that this is not the part pertinent to the isospin-singlet state.
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number density, ρ. We also use the neutron fraction η = ρn/ρ, where ρn is the
neutron number density. The asymmetry parameter ζ introduced in §1 is related to
ξ and η as ζ = 1− 2ξ = 2η − 1. In this paper, we mainly treat the case ξ ≤ η in the
range from ξ = 1/2 (symmetric nuclear matter, for which ζ = 0) to ξ = 0 (neutron
matter, for which ζ = 1).

In order to construct the approximate energy expression, we temporarily assume
a Jastrow-type wave function,

Ψ(x1, · · · , xN ) = Sym

[

∏

i<j

fij

]

ΦF(x1, · · · , xN ), (3.6)

where Sym[ ] is the symmetrizer with respect to the order of the factors in the
products, and ΦF(x1, · · · , xN ) is the wave function of the degenerate Fermi gas. The
correlation function fij in Eq. (3.6) is taken as

fij =
1
∑

t=0

1
∑

s=0

∑

ν

[fν
Cts(rij) + sfν

Tt(rij)STij + sfν
SOt(rij) (s · Lij)] P

ν
tsij . (3.7)

It should be noted that, after the approximate energy expression is constructed, this
temporary assumption concerning the wave function is removed. Then, we cluster-
expand both the expectation value of the Hamiltonian 〈H〉/N(〈H〉 ≡ 〈Ψ |H|Ψ〉/〈Ψ |Ψ〉)
and the distribution functions appearing in Eq. (3.5). In the two-body cluster ap-
proximation, they are expressed as explicit functionals of the correlation functions
fν
Cts(r), f

ν
Tt(r) and fν

SOt(r). By eliminating these correlation functions, in principle,
the two-body cluster approximation of 〈H〉/N can be expressed in terms of the dis-
tribution functions. In practice, however, we have to rely on auxiliary functions,
i.e., “intrinsically-central distribution functions” F ν

Cts(r), “dressed tensor correlation
functions” gν

Tt(r), and “dressed spin-orbit correlation functions” gν
SOt(r), defined as

the solutions of the following set of equations:

F ν
ts(r) = F ν

Cts(r) + 8s [gν
Tt(r)]

2 F ν
Fts(r) +

2

3
s [gν

SOt(r)]
2 F ν

qFts(r), (3.8a)

F ν
Tt(r) = 16

{

√

F ν
Ct1(r)F

ν
Ft1(r)g

ν
Tt(r) − [gν

Tt(r)]
2 F ν

Ft1(r)

}

− 2

3
[gν

SOt(r)]
2 F ν

qFt1(r),

(3.8b)

F ν
SOt(r) = −24 [gν

Tt(r)]
2 F ν

Ft1(r)

+
4

3

{
√

F ν
Ct1(r)

F ν
Ft1(r)

gν
SOt(r) −

[gν
SOt(r)]

2

4
− gν

Tt(r)g
ν
SOt(r)

}

F ν
qFt1(r). (3.8c)

Here, F ν
Fts(r) is the radial distribution function in the case of the degenerate Fermi

gas, and explicitly, it is given by

F ν
Fts(r) =

wν
t (2s + 1)

4

{

1 − (−1)t+s l(z1)l(z2)
}

, (3.9)

where (w+
1 , w0

1, w
−
1 , w0

0) = (ξ2, ξη, η2, ξη), l(z) ≡ 3 j1(z)/z, and z1 = z2 = kFpr for
(t, ν) = (1, +), z1 = z2 = kFnr for (t, ν) = (1,−), and (z1, z2) = (kFpr, kFnr) for
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ν = 0, with kFp = (3π2ρξ)1/3 and kFn = (3π2ρη)1/3 being the Fermi wave numbers
for protons and neutrons. Furthermore, F ν

qFts(r) is also a function pertinent to the
degenerate Fermi gas:

F ν
qFts(r12) = Ω2

∑

isospin

∑

spin

∫

Φ†
F(x1, · · · , xN ) |L12|2 P ν

ts12ΦF(x1, · · · , xN )dr3 · · · drN

=
wν

t (2s + 1)

4

{

(z1)
2 + (z2)

2

10
+ (−1)t+s 3

2
[j2(z1)l(z2) + j2(z2)l(z1)]

}

,

(3.10)

where the choice of z1 and z2 is the same as in the case of Eq. (3.9), except that r
is replaced by r12.

Using the auxiliary functions, the two-body cluster approximation of 〈H〉/N can
be expressed as follows:

〈H〉2
N

(ρ, ζ) ≈ E2

N
(ρ, ζ) =

3

5
(ξEFp + ηEFn)

+2πρ

1
∑

t=0

1
∑

s=0

∑

ν

∫ ∞

0
[F ν

ts(r)VCts(r) + sF ν
Tt(r)VTt(r)

+sF ν
SOt(r)VSOt(r) + F ν

qLts(r)VqLts(r) + sF ν
qSOt(r)VqSOt(r)

]

r2dr

+
2π�

2ρ

m

1
∑

t=0

1
∑

s=0

∑

ν

∫ ∞

0

{

[

1

F ν
Cts(r)

dF ν
Cts(r)

dr
− 1

F ν
Fts(r)

dF ν
Fts(r)

dr

]2

×F ν
Cts(r)

4
+ 8s

{

[

dgν
Tt(r)

dr

]2

+
6

r2
[gν

Tt(r)]
2

}

F ν
Ft1(r)

+
2s

3

[

dgν
SOt(r)

dr

]2

F ν
qFt1(r)

}

r2dr. (3.11)

Here, EFp = ℏ
2k2

Fp/(2m) and EFn = ℏ
2k2

Fn/(2m) are the Fermi energies for the
protons and neutrons, respectively. In addition, we have

F ν
qLts(r) = F ν

Cts(r)
F ν

qFts(r)

F ν
Fts(r)

+ 8s [gν
Tt(r)]

2 [6F ν
Fts(r) + F ν

qFts(r)
]

+
2

3
s [gν

SOt(r)]
2 F ν

bFts(r), (3.12a)

F ν
qSOt(r) =

2

3
F ν

Ct1(r)
F ν

qFt1(r)

F ν
Ft1(r)

− 2

3

√

F ν
Ct1(r)

F ν
Ft1(r)

[2gν
Tt(r) + gν

SOt(r)] F
ν
qFt1(r)

+ [gν
Tt(r)]

2

[

72F ν
Ft1(r) +

20

3
F ν

qFt1(r)

]

+
8

3
gν
Tt(r)g

ν
SOt(r)F

ν
qFt1(r)

+
2

3
[gν

SOt(r)]
2 F ν

bFt1(r), (3.12b)



Variational Study of Asymmetric Nuclear Matter and a New Term 555

where

F ν
bFts(r12) = Ω2

∑

isospin

∑

spin

∫

Φ†
F(x1, · · · , xN ) |L12|4 P ν

ts12ΦF(x1, · · · , xN )dr3 · · · drN

=
wν

t (2s + 1)

4

[

(z1)
4 + (z2)

4

70
+

(z1z2)
2

25
+

(z1)
2 + (z2)

2

5

− (−1)t+s9

{

j2(z1)j2(z2) − j1(z1)j1(z2)

+
1

6
[l(z1)j2(z2) + l(z2)j2(z1)]

}

]

. (3.13)

The choice of z1 and z2 in Eq. (3.13) is the same as in the case of Eq. (3.10).
Next, we consider the three-body cluster terms in relation to the necessary con-

ditions on the spin-isospin-dependent structure functions.8) More precisely, we prop-
erly take into account the three-body-cluster direct term originating from Hijk that
is of lowest order in the correlations, hν

Cts(r) ≡ fν
Cts(r) − 1. Here, Hijk represents

the terms with the two ∇i operators in the kinetic energy operating on two different
correlation functions, fij and fik.

12) Here, this three-body cluster term is expressed
in terms of hν

Cts(r), but it is more convenient to express it approximately in terms
of structure functions as explained in the following. The spin-isospin-dependent
structure functions are defined as the Fourier transforms of F ν

ts(r):

Sν
ts(k) = ρ

∫

[F ν
ts(r) − F ν

ts(∞)] exp(ik · r)dr. (3.14)

If we keep only the lowest-order terms in hν
Cts(r), and temporarily disregard the

exchange part on the right-hand side of Eq. (3.14), then we obtain the relation
between hν

Cts(r) and Sν
ts(k) as

hν
Cts(r) ≈

1

4(2s + 1)π3ρwν
t

∫

Sν
ts(k) exp(−ik · r)dk. (3.15)

Using this relation, the above three-body cluster term composed of only hν
Cts(r) is

written as

〈H〉3d

N
≈ E3d

N
= − �

2

16π2mρ

8
∑

n=1

∫ ∞

0
bcn [Scpn(k) − 1]3 k4dk, (3.16)

with (bc1, bc2, bc3, bc4, bc5, bc6, bc7, bc8) = (1, 1, ξ/η, η/ξ, 3, 3, 3ξ/η, 3η/ξ). Here, we have

Scp1(k)
Scp2(k)

}

= 1 +
T+

a1(k)

2ξ
+

T−
a1(k)

2η

∓1

2

√

(

T+
a1(k)

ξ
− T−

a1(k)

η

)2

+

(

T 0
a1(k) + T 0

a0(k)
)2

ξη
≥ 0, (3.17a)
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Scp3(k)
Scp4(k)

}

= 1 +







1

2ξ
1

2η







[

T 0
a1(k) − T 0

a0(k)
]

≥ 0, (3.17b)

Scp5(k)
Scp6(k)

}

= 1 +
T+

b1(k)

2ξ
+

T−
b1(k)

2η

∓1

2

√

(

T+
b1(k)

ξ
− T−

b1(k)

η

)2

+

(

T 0
b1(k) + T 0

b0(k)
)2

ξη
≥ 0, (3.17c)

Scp7(k)
Scp8(k)

}

= 1 +







1

2ξ
1

2η







[

T 0
b1(k) − T 0

b0(k)
]

≥ 0, (3.17d)

with

T ν
at(k) = Sν

t1(k) + Sν
t0(k), (3.18a)

T ν
bt(k) =

Sν
t1(k)

3
− Sν

t0(k). (3.18b)

The nonnegativities of the structure functions Scpn(k) (n = 1 − 8) given in (3.17)
are obtained from the general form,

Scpn(k) ≡ cn

N

〈





N
∑

j=1

ω
†
nj exp (−ik · rj)



 ·
[

N
∑

i=1

ωni exp (ik · ri)

]〉

≥ 0, (3.19)

where cn is an appropriate normalization factor, and the operator ω is chosen as

µp√
ξ

1 + τz

2
+

µn√
η

1 − τz

2
,
τx ± iτy√

2
,

(

µp√
ξ

1 + τz

2
+

µn√
η

1 − τz

2

)

σ,

and

(

τx ± iτy√
2

)

σ. (3.20)

It should be noted that when the operator ω includes the parameters µp and µn,
the extremes, corresponding to the strongest and weakest conditions, are evaluated
under the condition µ2

p + µ2
n = 1, and this yields (3.17).

Next, taking into account the exchange correction and introducing denomina-
tors,8) we modify and improve Eq. (3.16) as

E3

N
(ρ, ζ) = − �

2

16π2mρ

8
∑

n=1

∫ ∞

0
bcn

[Scpn(k) − 1] [Scpn(k) − Sfn(k)]2

Scpn(k)/Sfn(k)
k4dk

+
E3-corr

N
(ρ, ζ). (3.21)

Here, we have Sfn(k) = ScpFn(k) [ScpFn(k) is Scpn(k) for the degenerate Fermi gas]
for n = 3, 4, 7 and 8, whereas

Sf1(k) = Sf2(k) = Sf5(k) = Sf6(k) = ξS+
cF(k) + ηS−

cF(k) ≡ Sf(k),

(n = 1, 2, 5 and 6) (3.22)
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with

S+
cF(k) ≡ 1 +

(

S+
F11(k) + S+

F10(k)
)

ξ
= 1 +

2S+
F11(k)

3ξ
, (3.23a)

S−
cF(k) ≡ 1 +

(

S−
F11(k) + S−

F10(k)
)

η
= 1 +

2S−
F11(k)

3η
, (3.23b)

where Sν
Fts(k) is Sν

ts(k) for the degenerate Fermi gas. The relations between ScpFn(k)
and S±

cF(k) are

ScpF1(k) = ScpF5(k) =

{

S+
cF(k) for ξ ≥ η,

S−
cF(k) for ξ ≤ η,

(3.24a)

ScpF2(k) = ScpF6(k) =

{

S−
cF(k) for ξ ≥ η,

S+
cF(k) for ξ ≤ η,

(3.24b)

The last term, E3-corr(ρ, ζ)/N , in Eq. (3.21) is introduced in order to make
E3(ρ, ζ)/N second or higher order in the correlation [Sν

ts(k) − Sν
Fts(k)], and also in

order to correctly take into account the second-order (i.e., lowest order) three-body-
cluster two-particle-exchange terms that are composed of only hν

Cts(r) caused by
Hijk. Explicitly, it is given by

E3-corr

N
(ρ, ζ) =

�
2

16π2mρ

∫ ∞

0

[

W0(k) +
W+

1 (k)

ξ

[

S+
11(k) − S+

10(k) − S+
F11(k) + S+

F10(k)
]

+
W−

1 (k)

η

[

S−
11(k) − S−

10(k) − S−
F11(k) + S−

F10(k)
]

−W+
2 (k)

{

[

S+
c1(k) − S+

cF(k)
]2

S+
c1(k)/S+

cF(k)
+ 3

[

S+
c2(k) − S+

cF(k)
]2

S+
c2(k)/S+

cF(k)

}

−W−
2 (k)

{

[

S−
c1(k) − S−

cF(k)
]2

S−
c1(k)/S−

cF(k)
+ 3

[

S−
c2(k) − S−

cF(k)
]2

S−
c2(k)/S−

cF(k)

}

−W 0
2 (k)

ξη

{

[

S0
11(k) + S0

01(k)
]2

3
+
[

S0
10(k) + S0

00(k)
]2

}]

k4dk, (3.25)

with

W0(k) = 4

{

[

S+
cF(k) − 1

] [

S+
cF(k) − Sf(k)

]2

S+
cF(k)/Sf(k)

+

[

S−
cF(k) − 1

] [

S−
cF(k) − Sf(k)

]2

S−
cF(k)/Sf(k)

}

,

(3.26a)

W±
1 (k) = 2

Sf(k)
[

S±
cF(k) − Sf(k)

]

[

S±
cF(k)

]2

{

2
[

S±
cF(k)

]2 − S±
cF(k) − Sf(k)

}

, (3.26b)

W±
2 (k) = 4

{

S±
cF(k) − 1 − Sf(k) +

[

Sf(k)

S±
cF(k)

]3
}

, (3.26c)
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W 0
2 (k) = S+

cF(k) + S−
cF(k) − 2 − Sf(k)

{

2 −
[

Sf(k)

S+
cF(k)S−

cF(k)

]2
[

S+
cF(k) + S−

cF(k)
]

}

.

(3.26d)

Furthermore, the functions S±
cn(k) (n = 1, 2) are defined as

S+
c1(k) ≡ 1 +

T+
a1(k)

ξ
≥ 0, (3.27a)

S−
c1(k) ≡ 1 +

T−
a1(k)

η
≥ 0, (3.27b)

S+
c2(k) ≡ 1 +

T+
b1(k)

ξ
≥ 0, (3.27c)

S−
c2(k) ≡ 1 +

T−
b1(k)

η
≥ 0. (3.27d)

These inequalities for S±
cn(k) are easily proved as in the case of (2.6). Also, in the

case of the degenerate Fermi gas, S±
cn(k) reduces to S±

cF(k) defined by Eq. (3.23),
irrespective of the value of n. Note that, in the integrand of Eq. (3.25), the fourth
and fifth terms have denominators corresponding to the modification in §2.

Combining the above results, the approximate energy expression for asymmetric
nuclear matter is obtained at this point as

E

N
(ρ, ζ) =

E2

N
(ρ, ζ) +

E3

N
(ρ, ζ). (3.28)

This expression satisfies the following conditions (i) – (vi), similarly to the case of
partially spin-polarized matter:

(i) E(ρ, ζ)/N is expressed as a functional of the spin-isospin-dependent radial
distribution functions, F ν

ts(r), tensor distribution functions, F ν
Tt(r), and spin-orbit

distribution functions, F ν
SOt(r), defined by Eq. (3.5).

(ii) E(ρ, ζ)/N has features similar to those of the corresponding quantities for
neutron matter, Eneu(ρ)/N , and symmetric nuclear matter, Esym(ρ)/N , whose ex-
plicit expressions are given in Refs. 7) and 13). These features are described in the
following.

(iia) The central, tensor and spin-orbit components of the potential energies
are expressed exactly, whereas the quadratic orbital angular momentum part and
the quadratic spin-orbit part of the potential energies are expressed so as to include
at least the two-body cluster terms.

(iib) The one-body and two-body cluster terms of the kinetic energy are in-
cluded in the expression. Also included are the lowest-order direct and two-particle-
exchange three-body-cluster terms that are composed of only hν

Cts(r) arising from
Hijk. Other cluster terms are partially included.

(iic) The necessary conditions on the spin-isospin-dependent structure func-
tions Scpn(k) are guaranteed.

(iii) E(ρ, ζ)/N is symmetric with respect to exchange of ξ and η.
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(iv) E(ρ, ζ)/N reduces to the expressions previously obtained in the limiting
cases: E(ρ, ζ = 0)/N = Esym(ρ)/N and E/N(ρ, ζ = 1)/N = Eneu(ρ)/N .

(v) E(ρ, ζ)/N is a smooth function of ζ, and thus,

∂E(ρ, ζ)/N

∂ζ

∣

∣

∣

∣

ζ=0

= 0. (3.29)

(vi) The kinetic energy terms caused by the correlation between particles are of
second or higher order in the correlation.

3.2. Phenomenological additional terms

In this subsection, we consider a phenomenological modification of the energy
expression with the purpose of obtaining reasonable values of the energy per nucleon.
This is done because the variational calculations without such a modification give
energies that are too low, with unrealistically long tails of the noncentral distribution
functions. The modification for the case of symmetric nuclear matter and neutron
matter is proposed in Refs. 7) and 13), and it is fairly successful. In this subsection,
we make a similar modification for asymmetric nuclear matter.

The modification is made by adding phenomenological noncentral correction
terms to the original energy expression, Eq. (3.28). The form of the added term is

Em

N
= −2πρ

1
∑

t=0

∑

ν

∫ ∞

0
[1 − D (r0; r)]

{

F ν
Tt(r)VTt(r) + F ν

SOt(r)VSOt(r)

+

[

F ν
qSOt(r) −

2

3
F ν

qLt1(r)

]

VqSOt(r)

}

r2dr, (3.30)

where r0 = (3/4πρ)1/3 is the radius of a sphere of volume 1/ρ. The explicit form of
the damping function D(r0; r) in Eq. (3.30) is chosen as

D (r0; r) = exp

[

−
(

r

ar0

)2
]

, (3.31)

with an adjustable parameter a, whose value is determined so that the saturation
point of symmetric nuclear matter obtained by the calculation is close to the empir-
ical one.

In practice, the introduction of Em/N implies that purely noncentral components
of the two-body nuclear potential are multiplied by D(r0; r), so that the noncentral
potentials are damped as the two nucleons move away from each other. In the case
of the (s · L)2 part of the nuclear potential implicitly composed of the central and
purely noncentral components, only the latter component is multiplied by D(r0; r).

As a result of this modification, the calculations give relatively reasonable satura-
tion point, but the fit is not quite satisfactory: Either the obtained saturation density
is somewhat higher than the empirical one, or the saturation energy is higher than
the empirical value, or both. For example, if the isoscalar part of the AV18 potential
is used with the damping function D(r0; r), the saturation energy for symmetric nu-
clear matter is Esat/N = −15.78 MeV, with the saturation density ρsat = 0.195 fm−3
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for a = 1.45. This deviation from the empirical saturation point is similar to the
deviation found with various other non-relativistic many-body calculations, i.e., the
theoretical saturation points lie on the so-called Coester band. Actually, the above-
mentioned saturation point is in the boundary region of the Coester band on the
side nearer the empirical saturation point. Because the deviation is possibly caused
by the lack of three-body nuclear forces, in this study, we take into account the
contribution of additional three-body interactions (TNI) by following the method
employed by Lagaris and Pandharipande,14) as described below.

The isoscalar part of the AV18 potential Vij is expressed as the sum of 14 two-
body operators Op

ij times their radial dependence composed of the one-pion-exchange

long-range part V π
p , the intermediate part V I

p , and the short-range repulsive part

V R
p . The TNI is separated into two parts, a repulsive part (TNR) and an attractive

part (TNA). Then, the effect of the TNR is incorporated into the two-body nuclear
potential as a reduction of the intermediate-range parts of the two-body forces:

Vij + TNR =
14
∑

p=1

[

V π
p (rij) + V I

p (rij)e
−γρ + V R

p (rij)
]

Op
ij , (3.32)

where the reduction factor exp[−γρ] includes an adjustable parameter γ. The TNA
is taken into account simply by the additional energy

ETNA

N
= βρ2e−δρ

(

3 − 2ζ2
)

, (3.33)

where β and δ are adjustable parameters. Then, the total energy is expressed as the
sum of Eqs. (3.28), (3.30) and (3.33) with the interaction Eq. (3.32).

3.3. Results of numerical calculations

As mentioned in the last subsection, we employ the modified isoscalar part of
the AV18 potential. In the last subsection, four adjustable parameters, a, γ, β and
δ, were introduced. Among them, we assume γ = 0.15 fm3,14),15) and the remaining
three parameters are determined so as to reproduce the empirical saturation point for
symmetric nuclear matter. The values of the parameters so chosen are a = 1.4, β =
−265 MeVfm6 and δ = 4.4 fm3, giving the saturation density ρsat = 0.16 fm−3, the
saturation energy Esat/N = −15.80 MeV and the incompressibility K = 232 MeV.
By the way, if we interpolate between the energies for symmetric nuclear matter
(ζ = 0) and neutron matter (ζ = 1) using a quadratic form in ζ, then the symmetry
energy (the coefficient of ζ2) is evaluated to be 29.38 MeV. Once the values of the
adjustable parameters are fixed, the EL equations for the actual variational functions
F ν

Cts(r), gν
Tt(r) and gν

SOt(r) (consisting of 16 coupled integrodifferential equations)
are solved numerically for asymmetric nuclear matter. The results for the energy are
plotted in Figs. 5 and 6, and detailed discussion of them is given in §4.

The various distribution functions and the nonnegative structure functions are
displayed in Figs. 7 – 12 for ρ = 0.16 fm−3, ζ = 0.2 and 0.8. The central distribu-
tion functions shown in Figs. 7 and 8 have two features, the effect of the exclusion
principle, or more exactly, of the antisymmetrization of the wave function, and the
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Fig. 5. Energies per particle, E/N , for asym-

metric nuclear matter as functions of the

number density ρ with the degree of asym-

metry ζ = 0, 0.2, 0.4, 0.6, 0.8, and 1. The

dotted curve connects the minimum points

of the solid curves.

Fig. 6. Energies per particle, E/N , for asym-

metric nuclear matter as functions of the

degree of asymmetry, ζ.

influence of the nuclear force. More precisely, except for the dips around the origin
due to the strong repulsive core, the spatially odd states [F ν

11(r) and F 0
00(r)] are

pushed out from the origin more than the even states [F ν
10(r) and F 0

01(r)], which
is an effect of antisymmetrization, and the distribution functions of the even states
have high peaks around r = 1 fm, reflecting the strong attractive forces. When the
distribution functions for ζ = 0.2 and ζ = 0.8 are compared with each other, the
shapes are found to be similar, except for their absolute values. According to the
general rule for the ground state, the noncentral distribution functions plotted in
Figs. 9 and 10 always take values (including the signs) that lower the total energy.
The conspicuous noncentral distributions are the tensor distribution function for the
triplet-even state, F 0

T0(r), and the spin-orbit distribution function for the triplet-odd
states F ν

SO1(r), in particular F−
SO1(r) for the case of large asymmetry (ζ = 0.8).

Regarding the structure functions, we first note the behavior of S±
cn(k) [Eq.

(3.27)] displayed in Figs. 11 and 12. It is seen that as k approaches zero, the quan-
tities S±

c1(k) increase to infinity, while S±
c2(k) tend to zero. Therefore, according to

Eqs. (3.27) and (3.18), the quantities S±
11(k) + S±

10(k) increase to infinity as k goes
to zero, while S±

11(k)/3 − S±
10(k) do not. This means that both S±

11(k) and S±
10(k)

increase to infinity as k approaches zero. This kind of increase is likely to be a sign
of nucleon pairing;∗) it is seen, in this case, in the triplet-odd state and singlet-even
state. From the figures, it is also seen that there are minima in the curves of S±

c1(k).
When the asymmetry is not large (Fig. 11), the minima of the two curves appear
at values of k that do not differ greatly. By contrast, when the asymmetry is large

∗) Because our formulation does not take into account the nucleon pairing explicitly, the exis-

tence of this pairing is not proved but only suggested by the infinite increase of the structure function

as k → 0, which implies a positive (attractive) long-ranged spatial correlation in the corresponding

pair distribution function.
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Fig. 7. Radial distribution functions F ν
ts(r)

for asymmetric nuclear matter at ρ =

0.16 fm−3, ζ = 0.2.

Fig. 8. Radial distribution functions F ν
ts(r)

for asymmetric nuclear matter at ρ =

0.16 fm−3, ζ = 0.8.

Fig. 9. Tensor distribution functions F ν
Tt(r)

for asymmetric nuclear matter at ρ =

0.16 fm−3, ζ = 0.2, and 0.8.

Fig. 10. Spin-orbit distribution functions

F ν
SOt(r) for asymmetric nuclear matter at

ρ = 0.16 fm−3, ζ = 0.2, and 0.8.



Variational Study of Asymmetric Nuclear Matter and a New Term 563

Fig. 11. Structure functions Scpn(k) and

S±
cn(k) for asymmetric nuclear matter at

ρ = 0.16 fm−3, ζ = 0.2.

Fig. 12. Structure functions Scpn(k) and

S±
cn(k) for asymmetric nuclear matter at

ρ = 0.16 fm−3, ζ = 0.8.

(Fig. 12), the minimum of S−
c1(k) appears at a significantly larger value of k than

the minimum of S+
c1(k). In this case, the neutron density is considerably higher than

the proton density, and, accordingly, two neutrons come nearer to each other than
do two protons. This smaller value of r corresponds to a larger value of k, and this
explains the difference between the positions of the two minimum points. The square
root of Eq. (3.17a) and the difference between the values of k at the minimum points
of S±

c1(k) result in the wavy behavior of Scp1(k).

§4. New term in the mass formula

4.1. Impossibility of expanding the energy as a power series in (ρn − ρp)
2/ρ2

In the last section, we obtained values of the energy per particle E(ρ, ζ)/N for
various values of ρ and ζ. Now we closely examine these values, in particular, the ζ
dependence of E(ρ, ζ)/N . For this purpose, we define Ea-s(ρ, ζ)/N as

Ea-s

N
(ρ, ζ) =

E

N
(ρ, ζ) − E

N
(ρ, 0). (4.1)

It has been widely assumed or, rather, believed that Ea-s/N of infinite nuclear matter
can be expanded as a power series in ζ2. However, if the results plotted in Figs. 6 and
13 are closely inspected, the possibility of a power series expansion seems doubtful.
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Fig. 13. Energy difference per particle Ea-s(ρ,

ζ)/N [Eq. (4.1)] for asymmetric nuclear

matter as functions of ζ2.

Fig. 14. Energy difference per particle Ea-s(ρ,

ζ)/N for asymmetric nuclear matter as

functions of ζ2 : (a) ζ2 ≤ 0.1; (b) ζ2 ≤ 0.01.

The solid curve represents Ea-s(ρ, ζ)/N at

ρ = 0.16 fm−3, while the dashed curve rep-

resents Eas-s(ζ)/N defined in §4.2.

In particular, the curves in Fig. 6 near
ζ = 0 seem to deviate from the expected
ζ2-dependence.

In order to clarify the situation, we
plot Ea-s/N with the abscissa taken as
ζ2 in Fig. 13, and for the normal density,
ρ = 0.16 fm−3, two magnified graphs of
the same quantity in the neighborhood
of ζ2 = 0 are given in Fig. 14. If the
power series expansion were valid, the
curves for Ea-s/N would approach lines
as the graphs are limited within a nar-
rower range of values of ζ. However, it
is found that the actual situation is the
reverse: The curve in the narrowest re-
gion near ζ2 = 0 (Fig. 14(b)) deviates
most from a line.

For further confirmation of the im-
possibility of a power series expansion,
here we attempt to carry out an expan-
sion. We attempt to compute with three
terms, up to ζ6. (For Ea-s/N , the con-
stant term vanishes.) It is found that
the coefficients depend strongly on the
region of ζ2 that we attempt to fit. Fur-
thermore, when we consider the region
in the neighborhood of ζ2 = 0, the co-
efficients of the ζ4 and ζ6 terms are ab-
surdly large, and if we use such a series
in the region of larger ζ2, the series de-
viates greatly from the true Ea-s/N . We
have also confirmed that, even if we in-
clude the ζ8 and ζ10 terms, no apprecia-
ble improvement of the fit is obtained.

It is important to note that the im-
possibility of the expansion is not caused
by the complexity of the approximate
energy expression given in §3. The ten-
dency for deviation from the ζ2 law near
ζ = 0 was already seen in our calcu-
lations of hypothetical nuclear matter,
in which nucleons are assumed to in-
teract with each other through central
forces, such as the OMY potential, as in
Ref. 16). In that case, nuclear matter
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was treated without consideration of the noncentral nuclear forces, and, accordingly,
the effective theory described in §3.2 of this paper was not necessary.

The impossibility of a power series expansion in ζ2 is neither a spurious arti-
fact of the complicated integrodifferential equations nor a characteristic peculiar to
isospin polarization. To show this, in the appendix we present results of a study of
fictitious spin-polarized neutron matter for which the nuclear force is varied some-
what arbitrarily. In that case, the Euler-Lagrange equations are a much simpler set
of integrodifferential equations than the set for asymmetric nuclear matter. In the
appendix, the energy per neutron E(ρ, κ)/N is calculated at various values of the
number density ρ and the degree of polarization κ = (ρu − ρd)/ρ. (Here, ρu and ρd

are the number densities of spin-up and spin-down neutrons, respectively.) Then, the
behavior of the difference between the energies of polarized matter and unpolarized
matter,

Epol

N
(ρ, κ) =

E

N
(ρ, κ) − E

N
(ρ, 0), (4.2)

is compared with the behavior of Ea-s(ρ, ζ)/N obtained above. This comparison
shows that, for some neutron-neutron potentials, these two functions are very similar,
and in particular, Epol(ρ, κ)/N cannot be expanded as a power series in κ2.

4.2. A new term suggesting the partial formation of clusters

As the unfeasibility of a power series expansion of Ea-s/N in ζ2 has become
clear, our next problem is to find a formula to represent Ea-s/N . The main property
of Ea-s/N which makes impossible its expansion as a power series is the strong
dependence of the gradient ∂[Ea-s/N ]/∂(ζ2) on ζ2 in the neighborhood of ζ2 =
0. If we turn our attention to the mass formula of (finite) nuclei, we find a term
having such a property. This term is called the Wigner term, and has the form
cw|I|/(A + aw),17) where A is the mass number, and cw and aw are constants. (aw

is often taken to be zero.) I is the difference between the neutron number and the
proton number, and the symmetry between neutrons and protons is maintained by
taking the absolute value. The Wigner term is important for light nuclei, but its
importance diminishes as A increases, because some other terms in the mass formula
increase in proportion to A, whereas the Wigner term does not. For this reason, it
has been assumed to this time that a term similar to the Wigner term, i.e., a term
proportional to |ζ|, does not exist for infinite nuclear matter. However, if such a
term does exist, what would be the result? It is rather easy to see that if a |ζ|
term is added to the power series in ζ2, the above-mentioned strong dependence of
∂[Ea-s/N ]/∂(ζ2) on ζ2 is reproduced in the region moderately near ζ2 = 0. However,
in the region very close to ζ2 = 0, the reproduction is poor; when Ea-s/N is regarded
as a function of ζ, not of ζ2, the result of our many-body calculation is smooth at
ζ = 0, while a function including a |ζ| term is not. This defect can be removed by
replacing |ζ| by (ζ2 + ζ2

0 )1/2, with ζ0 being a small number. Thus, our choice is

E

N
(ρ, ζ) = ε0(ρ) +

Ea-s

N
(ρ, ζ), (4.3a)
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with
Ea-s

N
(ρ, ζ) = ε1(ρ)

[

√

ζ2 + ζ2
0 − ζ0

]

+

q
∑

n=1

ε2n(ρ)ζ2n. (4.3b)

The first term on the right-hand side of Eq. (4.3b) is the new term. If the number
density ρ is given, then ε0, ε1, ε2n and ζ0 are regarded as parameters, among which
ε0 is fixed by the result for symmetric nuclear matter. Although not indicated
explicitly, ζ0 also depends on ρ. The parameters ε1, ε2n and ζ0 are determined by
comparison of the expression (4.3b) with the results of the many-body calculations
for asymmetric nuclear matter. Using the expression (4.3b) with q = 3 (up to ζ6), we
obtain the results given in Table I. As expected, ζ0 is very small, and this smallness
explains the impossibility of a power series expansion: An expansion of (ζ2 + ζ2

0 )1/2

as a power series in ζ2 converges only in a very narrow region, |ζ| ≤ ζ0, which is
much narrower than the region of physical interest. The quantity ε1 is not very
large, but certainly it is non-zero. We also see that ε2, which is often regarded as
the symmetry-energy coefficient, takes a reasonable value. The smallness of ε4 and
ε6 shows that, even if we omit them, the ε2ζ

2 term represents the general tendency
of the energy of asymmetric nuclear matter fairly well. It should be emphasized
that Eq. (4.3b) reproduces the results of many-body calculations very accurately.
For example, at the saturation density ρ = 0.16 fm−3, we carried out many-body
calculations at 28 values of ζ2( 
= 0), and these 28 data are reproduced by the 5
parameter formula Eq. (4.3b) within a deviation of 4 keV. This accuracy is one
order of magnitude better than the accuracy obtained with the simple power series
in ζ2. This improvement of the accuracy supports the appropriateness of the new
term.

Now we consider the question of what kind of phenomenon could cause the
appearance of the new term. We strongly suspect that the partial formation of
clusters in nuclear matter is the main cause. Such clusters that are likely to be
formed are light self-mirror nuclei. These nuclei have especially large binding energies
compared with other isobars due to the Wigner term. The most probable clusters are
2H and 4He, which are the only bound states among the isobars. For simplicity, let
us consider 2H only. Because a cluster is formed only when two nucleons approach
each other closely, we consider a small region in nuclear matter and assume that
there are Np protons and Nn neutrons in this region. Then, the maximum number
of 2H clusters that can be formed in this region is the smaller of Np and Nn, i.e.,

Table I. Values of the parameters in Eq. (4.3b). The last digit of each is uncertain.

ρ[fm−3] ε1[MeV] ζ0 ε2[MeV] ε4[MeV] ε6[MeV]

0.04 1.74 0.078 12.41 −1.72 0.46

0.08 2.15 0.063 19.00 −3.05 1.20

0.12 2.29 0.054 24.24 −3.43 1.59

0.16 2.32 0.048 28.63 −3.21 1.76

0.20 2.31 0.044 32.35 −2.65 1.72

0.24 2.26 0.041 35.60 −2.07 1.66

0.28 2.21 0.038 38.45 −1.55 1.59
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min(Nn, Np). If

(Nn − Np) / (Nn + Np) = ζ, (4.4a)

then

min (Nn, Np) = (1 − |ζ|) (Nn + Np) /2. (4.4b)

Thus, the absolute value |ζ| appears. Since cluster formation lowers the energy, the
absolute value |ζ| would appear in the energy formula with a positive coefficient.

Actually, the above argument is over-simplified. First, formation of clusters does
not generally occur to the maximum degree; on the contrary, it occurs with a rather
low probability. Second, Eq. (4.4a) does not hold in general, although it will hold
on average. Here, it should be noted that, due to the exclusion principle, the spatial
distributions of protons and neutrons are much more uniform than the distribution
of freely and randomly moving classical particles. Therefore, the deviation from
Eq. (4.4a) is considerably smaller than that estimated from the distributions of
classical particles of two kinds. The third simplification regards the choice of clusters;
light nuclei (e.g., 3H and 3He) other than self-mirror nuclei may be formed as clusters.
If these simplifications are removed, the nonsmooth behavior of the energy expression
caused by the presence of |ζ| will disappear, but in the region not very close to ζ = 0,
the general properties of the |ζ| term will remain. The above argument is one reason
we suspect cluster formation to be the cause of the new term, and the results given
in the appendix further support this conjecture.

The above argument is consistent with the behavior of the distribution functions.
The large peaks of F 0

01(r) around r = 1 fm seen in Figs. 7 and 8 together with the
strong tensor correlation F 0

T0(r) found in Fig. 9 indicate that the triplet-even state
gives a large contribution to the binding energy, part of which may be through cluster
formation. Note that 2H is in the triplet-even state, and other nuclei regarded as
possibilities for the cluster have large triplet-even components. It should also be
noted that, as seen from comparison of Figs. 7 and 8, the weight of the triplet-even
state decreases as ζ increases.

The finding of a new term in the energy expression for nuclear matter suggests
that a corresponding term is necessary in the mass formula for finite nuclei. When
we treat finite nuclei, we should plot the energy at the saturation density, ρsat(ζ),
for each value of ζ, rather than the energy at the fixed saturation density, ρsat(0),
of symmetric nuclear matter. As ζ increases from zero, ρsat(ζ) remains very near
ρsat(0), until ζ becomes close to 0.1, and then it begins to decrease, as shown in
Fig. 5. The energy per nucleon at ρsat(ζ) measured from that at ζ = 0, ρ = ρsat(0),
which we denote by Eas-s(ζ)/N , is plotted in Fig. 14(a) by the dashed curve in
the region ζ2 < 0.1. In the region ζ2 ≪ 1, this curve is very close to the solid
curve representing Ea-s(ρsat(0), ζ)/N . Although not shown in the figures, values of
Eas-s(ζ)/N are obtained up to ζ ≈ 0.8, as seen in Fig. 5. A suitable expression for
Eas-s(ζ)/N takes a form similar to Eq. (4.3b),

Eas-s

N
(ρ, ζ) = ε1s

[

√

ζ2 + ζ2
0s − ζ0s

]

+

q
∑

n=1

ε2nsζ
2n, (4.5)
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Table II. Values of the parameters in Eq. (4.5). The last row lists the values determined with the

data in the limited range, 0 < ζ ≤ 0.3. The last digit of each is uncertain.

q ε1s[MeV] ζ0s ε2s[MeV] ε4s[MeV] ε6s[MeV]

3 2.14 0.041 28.97 −8.58 −2.01

1 2.81 0.054 26.63 — —

where ε1s, ε2ns, and ζ0s are parameters independent of ρ, unlike the parameters in
Eq. (4.3b). By taking powers of ζ2 in Eq. (4.5) up to ζ6(q = 3), we compare Eq. (4.5)
with the results of the variational calculations, and the parameter values obtained
are given in Table II. The accuracy of the fit is good: The differences between the
right-hand side of Eq. (4.5) and the results of the variational calculations are less
than 3 keV. If we use a simple power series, omitting the first term on the right-hand
side of Eq. (4.5) with q = 3, the fit is much worse, with the differences exceeding
80 keV at some values of ζ. Even if we increase the number of terms in the simple
power series expansion up to five (q = 5), the differences exceed 23 keV, with ε2ns

being absurdly large.
If we regard a finite nucleus as a part of nuclear matter, the neutron excess

divided by the mass number, I/A, corresponds to ζ. The nuclidic region I/A ≤ 0.3
includes most known nuclides and many undiscovered nuclides. The existence of
nuclides is also expected in the region I/A > 0.3, but these nuclei are likely to have
neutron skins. Therefore, their inner parts, which can be regarded as parts of nu-
clear matter, will have fewer neutrons, and the corresponding ζ will be considerably
smaller than I/A. In most nuclear mass formulas, no term including I2q(q > 1) as
a factor is used. From these considerations, we conclude that it is meaningful to
compare the results of the variational calculations for ζ ≤ 0.3 with the right-hand
side of Eq. (4.5) with q = 1. The parameter values obtained through this comparison
are also given in Table II. With these parameters, the right-hand side of Eq. (4.5)
represents the results of the variational calculations for ζ ≤ 0.3 within an accuracy
of 4 keV.

For finite nuclei, the corresponding new term should be b1((I
2 + I2

0 )1/2 − I0),
where b1 and I0 are positive constants. If we consider the sensitivity of the results to
nuclear forces, as demonstrated in the appendix, we believe that b1 and I0 should be
treated as adjustable parameters. If I0 is very small, this term has some similarity
to the Wigner term, but it remains important in heavy nuclei. The coefficient b1

may be rather small, but the effect of this new term should be clarified by future
studies of the mass formula.

§5. Concluding remarks

In this paper we constructed an approximate energy expression for asymmetric
nuclear matter. This expression is fairly complicated, but it is one of the simplest
expressions in conformity with our guiding principle. There is ample room for im-
provement. For example, refinements of the kinetic energy expressions caused by
noncentral correlations are expected to replace the phenomenological modification,
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as in Eq. (3.30), and a direct treatment of the bare three-body nuclear force is desir-
able, in place of the phenomenological one used in this paper. It would be interesting
to see whether the new term found in this paper remains after these improvements.
It is also important to determine whether other calculational methods give a similar
term and whether the interpretation that this new term is due to cluster formation
is correct or not. If the existence of cluster formation is confirmed, a new property
of nuclear matter will be revealed.
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Appendix A

Spin-Polarized Neutron Matter with Fictitious Potentials

In this appendix, we give the results of calculations for partially spin-polarized
neutron matter with fictitious two-body nuclear potentials. It is not the purpose
of this calculation to investigate the properties of real neutron matter. Rather, the
purpose is to obtain information regarding the appearance of the new term studied
in §4. Here, the two-body nuclear potential Vs(r)(s = 0, 1) is taken to be of a
purely central type. Then, the approximate energy expression given in Eq. (2.2) is
appropriate, with the last term modified as explained in §2. We use the triplet-odd
central component of the AV18 potential VC11(r) for both s = 0 and 1 with the
modification explained below. The reason we do not use the singlet-even component
of the AV18 potential as V0(r) is that, if it is used, the energy takes a large negative
value. The modification of VC11(r) is as follows. The component VC11(r) is composed
of three parts, as shown in Eq. (3.32), among which we multiply the intermediate
and one-pion-exchange parts (V I

p and V π
p ) by C1 = 0.9 for the spin-triplet state and

by C0 = 1, 1.1 or 1.2 for the spin-singlet state. It should be noted that for C0 = 1.2,
the two-neutron system has a bound state, while for C0 = 1 and 1.1 it has no bound
state. The threshold for bound-state formation is C0 ≈ 1.14. We conjecture that
the formation of a spin-singlet two-neutron bound state in spin-polarized neutron
matter has some properties in common with the formation of self-mirror nuclei in
asymmetric nuclear matter. Here, we point out that the numerical calculations
for spin-polarized neutron matter are much simpler than those for spin-unpolarized
asymmetric nuclear matter.

The results of the variational calculations for this spin-polarized fictitious neu-
tron matter at ρ = 0.16 fm−3 are displayed in Fig. 15. There, the normalized energy
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ε defined as

ε (κ) ≡ [E(ρ, κ)/N − E(ρ, κ = 0)/N ] / [E(ρ, κ = 1)/N − E(ρ, κ = 0)/N ] (A.1)

is plotted as a function of κ2, where κ is the degree of polarization, defined by
κ = (ρu − ρd)/ρ, with ρu and ρd being the number densities of spin-up and spin-
down neutrons, respectively. In Fig. 15, we see the change in the characteristics of
the curves for ε as C0 varies. For C0 = 1, the curve is almost straight, which means
that the normalized energy is accurately approximated by a quadratic function of
κ, or, if higher accuracy is required, by a power series in κ2. For C0 = 1.1, devia-
tion of the curve from a line becomes discernible, and for C0 = 1.2, the deviation
is more marked even in the very small neighborhood of κ = 0. This shows that,
in order to represent this behavior, a term similar to the new term explained in §4
is necessary, and it also strongly suggests that this phenomenon is caused by clus-
ter formation. Here, we comment on the observation that the curve for C0 = 1.1
deviates, though slightly, from a line. The value C0 = 1.1 is below the threshold
of bound-state formation. Considering this point, can we attribute the deviation
from a line to cluster formation? We think that we can. The formation of clusters
in matter is not the same as the formation of bound states in free space. Cluster
formation depends on the environment, and in neutron matter there are various envi-
ronments with various probabilities. Therefore, the “threshold” of cluster formation
in matter is not a point, but has a certain width. From this consideration, the slight
deviation of the curve for C0 = 1.1 from a line is consistent with cluster formation.

Fig. 15. Normalized energies ε = [E/N(ρ, κ)−

E/N(ρ, κ = 0)]/[E/N(ρ, κ = 1) − E/N(ρ, κ

= 0)] for fictitious spin-polarized neutron

matter.

We have one further comment, re-
lated to the modification of the energy
expression made in §2. When we car-
ried out the calculation for fictitious
neutron matter with the old expression,
Eq. (2.11), we encountered the difficulty
that when we chose C1 = 1 (not 0.9, as
in the case considered in the above dis-
cussion) and C0 = 1 at ρ = 0.16 fm−3,
the calculated energy during the iter-
ation decreased at x ≈ 0.8 as if there
were no lower bound, and the iteration
did not converge. Thus, we were led to
modify the energy expression, and after
making this modification, our calcula-
tions were stable.
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