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Abstract. Several theoretical and practical geometry applications are based on

polygon meshes with planar faces. The planar panelization of freeform surfaces is

a prominent example from the field of architectural geometry. One approach to ob-

tain a certain kind of such meshes is by intersection of suitably distributed tangent

planes. Unfortunately, this simple tangent plane intersection (TPI) idea has a num-

ber of limitations. It is restricted to the generation of hexagon-dominant meshes: as

vertices are in general defined by three intersecting planes, the resulting meshes are

basically duals of triangle meshes. Furthermore, the explicit computation of inter-

section points requires dedicated handling of special cases and degenerate constel-

lations to achieve robustness on freeform surfaces. Another limitation is the small

number of degrees of freedom for incorporating design parameters.

Using a variational re-formulation, we equip the concept of TPI with additional

degrees of freedom and present a robust, unified approach for creating polygonal

structures with planar faces that is readily able to integrate various objectives and

constraints needed in different applications scenarios. We exemplarily demonstrate

the abilities of our approach on three common problems in geometry processing.

1 Introduction

The problem of generating polygonal meshes with pla-

nar faces of given freeform surfaces has been a topic of

intense research in recent years. Backed up by theoret-

ical results, e.g., on their connection to discrete conju-

gate curves networks [Bobenko and Suris 2008] or to discrete conformal and min-

imal surfaces [Bobenko et al. 2003, Müller 2011], a wide range of well founded

techniques based on these concepts have been developed leveraging the construc-

tional and architectural benefits of such structures. Such works include [Liu et al.
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2006,Pottmann et al. 2007a,Pottmann et al. 2007b,Zadravec et al. 2010,Wang et al.

2008, Troche 2008, Eigensatz et al. 2010] discussing the economical advantages of

manufacturing planar panels in general and the convenience of the (multi-layer)

support structures derivable from such structures in particular.

Background. Common methods generate polygonal meshes with planar faces by

means of non-linear optimization (perturbation) of the vertices of given input

meshes. This planarization is typically a delicate procedure, the stability of which

heavily depends on the input configuration. The close connection between con-

jugate curve networks (such as curves of principal curvature directions) and quad

meshes with planar faces suggests using quad meshes with elements aligned along

such curves on the surface since they are then expected to be approximately planar

and facilitate the success of the optimization.

Similarly the triangulation algorithms proposed by [Troche 2008, Wang et al.

2008], used for constructing dual hexagonal meshes with planar faces, also suggest

placing vertices of the triangulations along conjugate curves on the freeform surface.

The Variational Tangent Plane Intersection (VTPI) approach of this paper uses

tangent plane duality to create a polygon mesh with planar faces, similar to the TPI

approach presented by [Troche 2008]. However, our variational re-formulation of

the problem allows us to add new degrees of freedom, which do not only enable the

introduction of additional design parameters, but also enables us to remove the typ-

ical restriction of TPI to triangle input and hexagon-dominant output meshes. The

optimization formulation further eliminates the otherwise often needed handling of

instabilities arising from the explicit intersection computations in developable ar-

eas of the surface. In addition, using any of the vast number of available free and

commercial solver software, this formulation can easily be augmented by further

constraints and energies for controlling the output meshes.

Applications. In this paper we demonstrate the applicability of VTPI on

three common problems in geometry processing. For each problem scenario

we propose appropriate energies and constraints for controlling the particular

behavior, and show and discuss results. The first scenario is mesh planarization.

We demonstrate how quad meshes can be planarized by ap-

plying VTPI to the dual of the given mesh, yielding perfectly

planar faces. One notes that this necessitates intersections

involving more than three tangent planes, not possible with

standard TPI. The second problem is the generation of coarse mesh representations

with planar faces from freeform surfaces, similar to [Cohen-

Steiner et al. 2004] where, however, planarity was not en-

forced. When applying the technique to an architectural sce-

nario demanding exact planarity, [Cutler and Whiting 2007]

mention the problems of the intersection of several, possibly

poorly aligned or even co-planar, planes while simultane-

ously respecting optimized cluster normals or preferred intersection points. With

VTPI such problems can appropriately be taken care of.
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The third application deals with tri/hex dual- and multi-layer

structures, demonstrating the important case where an inner

(or outer) structure is to be covered by a dual outer (or in-

ner) structure consisting of planar faces. Such structures are

of interest for different types of support structures, such as

node/frame-based MERO1-like construction systems or the

recently proposed point folding structures of [Trautz and Herkrath 2009, Zimmer

et al. 2012]. The difference to the first scenarios is that such structures cannot al-

ways be considered independently from each other. We hence introduce further

constraints to prevent the inner and outer layer from intersecting each other while

energy functionals try to place the dual vertices at desirable positions. Also the

importance of the quality of the input meshes is discussed.

Overview. After briefly reviewing the TPI idea of [Troche 2008] Section 2 presents

the proposed variational formulation. In Section 3 this optimization problem is fur-

ther extended by a simple set of local constraints useful for creating non-intersecting

multi-layer structures. Finally in Section 4 experiments and results of the three

above mentioned applications are shown and Section 5 concludes the paper.

2 Tangent Plane Intersection

For a triangulation of a freeform surface [Troche 2008] computes a dual hexagon-

dominant mesh by intersection of (vertex) tangent planes. Here the tangent planes

of the three incident vertices of each triangle define an intersection point. In this

way also every vertex of the triangle mesh corresponds to a dual planar face, whose

corners are defined by the intersection points of the (typically six) triangles inci-

dent to that vertex. The edges between dual faces lie in the intersection lines of

the corresponding tangent planes as shown in Figure 1. Note that, as three planes

are necessary to define a unique intersection point, the approach cannot directly

be transferred to arbitrary polygons. The intersection point x = (x,y,z)⊤ ∈ R
3 of

Figure 1: The plane of each dual face is defined by the tangent plane of the respective primal

vertex. The dual edges lie in the pairwise intersections (dotted) of these tangent planes.

three non-co-planar tangent planes defined by normal vectors ni ∈R
3, ‖ni‖= 1 and

vertices vi ∈ R
3 respectively is defined by the three equations

n⊤
i x = n⊤

i vi, i ∈ 0,1,2, (1)

1www.mero.de
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which can be written as a 3×3 linear system Nx = b.

Note that while the explicit computation x = N−1b is not possible for rank-

deficient N (co-planar tangent planes), the validity of the three equations (1) can

always be checked for a given x. This observation suggests that an intersection

can be enforced by using (1) as boundary conditions for an optimization problem.

An additional energy can be specified to place intersection points close to preferred

positions in the unstable case of tangent plane co-planarity. Even where the inter-

section points are numerically well defined, they might lie quite far away from the

intended surface, making it desirable to be able to prescribe preferred positions also

in such stable cases.

The main idea of VTPI is to re-cast the basic TPI as a non-linear optimization

problem in this way, leading to a unified approach, which allows for further quality

control by specifying such additional constraints and energies (cf. Section 2.1).

However, for these to have any effect, additional degrees of freedom are necessary.

We propose to set the normals ni, which until now were considered fixed, free as

additional variables to optimize. And by further allowing a parallel offset of the

tangent planes along the normals, we gain even more flexibility (cf. Section 2.2).

2.1 Variational Formulation of TPI

Given a 2-manifold triangle mesh M with nV vertices, nE edges and nF faces, we

now formulate the basic optimization, which will be expanded on in the rest of the

section and in the Applications:

minimize F({x j}) s.t. E = Eint := {N jx j −b j = 0}nF
j=1, (2)

where F is a, yet to be defined, quadratic energy functional and Eint a set of lin-

ear equality constraints. Eint enforce that the unknown intersection point x j of

each triangle lies in all its three incident tangent planes. This indirect intersec-

tion is the key to making tangent plane intersections stable, as it avoids the ex-

plicit intersection computations. Counting the degrees of freedom it is clear that

for general configurations the minimization (2) yields the same predetermined in-

tersections {x j}
nF
j=1 as explicit TPI and that the energy F has no influence. How-

ever, in areas of zero Gaussian curvature, some intersection points are not well de-

fined. These ambiguities can be handled by specifying preferred intersection points

f j (e.g., the barycenter of the primal face) and defining an appropriate positional

energy F({x j}) := Fpos = ∑
nF
j=1

∥

∥x j − f j

∥

∥

2
. While in the current simple case this

functional merely controls the behaviour in degenerate configurations, it comes to

its full use when we add additional degrees of freedom in the following.

2.2 Additional Degrees of Freedom

We again consider the problem formulation from above; given a set of preferred in-

tersection points of the dual structure, we are looking for the (primal) vertex normals

and corresponding offsets that minimize the deviation of the tangent plane intersec-

tions from the given points. How these extensions are added to the optimization

problem (2) is described in the following.
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Setting the Normals Free. Letting the normal vectors {ni}
nV
i=1 vary, the functional

has the form F({x j},{n j}). We have 3(nF + nV ) unknowns and the equality

constraints Eint are now quadratic as both the ni and x j are variables. To guar-

antee (unit) normals, E is further augmented by a set of quadratic constraints

Enorm := {‖ni‖
2 −1 = 0}nV

i=1.

Offsetting the Tangent Planes. An offset factor h is introduced into the plane equa-

tion (1) as follows n⊤(x− (v+ hn)) = 0 ⇒ n⊤x = n⊤v− h. The constraints Eint

now additionally depend on the unknown offsets {hi}
nV
i=1 and the total number of

variables is 3nF +4nV . The energy functional has the form F({x j},{ni},{hi}).

2.3 Solving the Optimization Problem

For the optimization we use Ipopt2, an open source implementation of the primal-

dual interior point method by [Wächter and Biegler 2006]. Note that such methods

inherently allow for inequality constraints and can be used to optimize more general

problems of the form:

minimize F(X) s.t. E(X) := {Ei(X) = 0}n=
i=1

I(X) := {I j(X)≥ 0}n>
j=1

(3)

where X is the vector of unknowns and E(X) and I(X) equality and inequality con-

straints.

In the basic setting (above) F(X) is the simple positional energy, X ∈R
3nF+4nV ,

E(X) = {Eint,Enorm} and there are no inequalities (I(X) = /0), hence we are not

utilizing the full potential of (3). In the next section the optimization formulation is

further extended by introducing simple but powerful inequalities for avoiding (local)

intersections between a primal and a dual structure. These can be easily integrated

into the minimization (3).

Until now, we only considered the generation of hexagon-dominant meshes with

planar faces. Section 4.1 shows how this can be extended to the planarization of

general polygons.

2.4 Remarks

We first note that after adding more degrees of freedom to the problem (cf. Section

2.2) not all variables have to occur in the energy functional. For example, in Fpos

only the unknown intersections {x j}
nF
j=1 appear – the other variables are linked via

the constraints Eint.

It is also not even necessary for any of the variables to occur in F , the solver

would then just output the first valid solution (fulfilling the constraints). One practi-

cal example would be to specify hard inequality constraints forcing the intersections

to lie, e.g., withing the extrusion of the base triangle or at a certain height, instead

of using a soft energy such as Fpos.

2https://projects.coin-or.org/Ipopt
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Figure 2: Red: a naı̈ve dual structure with planar faces penetrating the primal structure in

different ways. Blue: non-penetrating dual structure utilizing the constraints of Section 3.

A short note on the implementation: while [Wächter and Biegler 2006] already

offers a comfortable c++ interface we additionally use the NSolver wrappers from

[Bommes et al. 2010] for an almost effortless definition and prototyping of energies

and constraints, with the possibility of easily exchanging solver backends.

3 Local Constraints for Multi-Layer Dual Structures

In architecture multi-layer structures are typically required to be non-intersecting.

One layer carries panels (e.g., glass or inflated membrane cushions) and the other

one has a structural function. Here we consider the problem of finding a hexagon

(dominant) dual mesh not intersecting a given triangle mesh.

Using the method above a preferred offset distance between the structures can be

prescribed by defining appropriate vertex positions {f j}
nF
j=1, however, mesh curva-

ture and tessellation can still lead to intersections between the structures (cf. Figure

2).

We devise three simple geometric constraints for avoiding (local) intersections

which can be easily integrated into the above optimization framework. The three

constraints are based on three identified intersection scenarios: vertex, face and

(a) Vertex Intersection (b) Face Intersection (c) Edge Intersection

xk

xl

vi v j
vi

n△
n△vi

vi

x j
x j

m j v j

v j

Figure 3: Local intersection scenarios between a primal (blue) and dual (green) structure.

(a) A simple projection suffices to check whether a dual vertex lies “in front of” a primal

face. (b) Likewise, one needs to check if a dual face lies “above” the primal vertex. (c)

A dual edge can penetrate two neighboring primal faces, lying “underneath” the primal edge.

A constraint can be derived by comparing the normal (red) of the plane spanned by the dual

edge and a primal vertex with the primal edge.
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edge intersections detailed below (cf. Figure 3).

Vertex Intersections occur when a dual vertex lies behind a primal face (cf. Figure

3 (a)) and can easily be avoided by forcing the intersection point to lie in front of

the face: inequalities {m⊤
j (x j −v j)≥ 0}nF

j=1, where v j is any (fixed) incident vertex

of face j and m j the (fixed) face normal, are added to I(X).

Face Intersections occur when a primal vertex pokes through a dual face (cf. Fig-

ure 3 (b)) we avoid this by demanding the tangent planes to lie above the primal

vertices vi. The inequalities {hi ≥ 0}nV
i=1 are added to I(X).

Edge Intersections occur when a dual edge lies “below” the corresponding primal

edge (cf. Figure 3 (c)). As a primal edge alone does not define a unique above

or below relation, it is unclear how to express this as direct positional constraints

on the dual vertices xk and xl at the primal edge ei j between vi and v j, instead

we utilize the orientation inherent in the 2-manifold base mesh and formulate this

as an orientation problem: If the normal of the triangle △ikl points away from the

edge ei j the dual edge lies “above” the primal, otherwise “below”. The inequalities

{((xk −vi)× (xl −vi)) · (v j −vi)≥ 0}ei j∈M are added to I(X).
Note that the edge-intersection constraints depend on the relative position of xk

and xl . While this simple formulation was sufficient for our experiments, further

constraints could be implemented to guarantee the correct orientation (cf. Section

2.4). Figure 2 demonstrates the effect of adding the above constraints to (3) and

further results are shown in Section 4.3.

Discussion. Note, that these constraints prevent local in-

tersections between the primal and the dual structure. Un-

suitable offset-distances may still lead to intersections of

the dual structure with itself as depicted in the inset. Aes-

thetic architectural meshes and practical offset-distances

are, however, typically not very prone to such problems.

4 Applications

4.1 Planarization

To planarize a given polygon mesh M with non-triangle faces a dual (virtual) mesh

M ∗ is created and submitted to the VTPI of Section 2 which then produces a pla-

narized version of M . The only difference to the previous setting is that the input

mesh M ∗ is generally no longer a triangle mesh and one needs to make sure that

the n tangent planes of an n-polygonal face all intersect at the same point x. This

is achieved by simply adding more equations of the type (1) to Eint in (2), yielding

a n× 3 dimensional matrix N for each face. Note that this overdetermined system

would in general have no solution for fixed tangent planes (as in the standard TPI

approach). The additional degrees of freedom provided by free normals and offsets
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in VTPI facilitate such intersections. The vertices of M can be used as preferred

points of intersection.

Here we briefly demonstrate the results of this approach and compare them to

the recently proposed planarizing flow of [Alexa and Wardetzky 2011]. Figure 4

shows the results of both methods on the FERTILITY and FELINE quad mesh. The

results are comparable but the methods strongly differ.

The planarizing flow is practically parameter-free, simple to use and yields high-

quality planarizations. However, extending the method by prescribing additional

constraints and integrating it into an optimization framework such as [Wächter and

Biegler 2006] requires computing Jacobians (and possible Hessians), a delicate task

for the SVD involved in the computation of the Laplacian. The VTPI presented

here only depends on simple-to-derive polynomials, but does necessitate specifying

weighting factors for the linear combination of energy functionals.

Energies. Additional to the simple positional energy in (1) our experiments yielded

that energies preserving lengths of edges and face diagonals, as well as the directions

of edges are useful for controlling the quality of the planarized version. Figure 5

briefly shows a few exemplary combinations of these energies. The “HHH” energy

weighting is identical to the setting used for both examples in Figure 4.

As the different functionals have different value ranges (and partly also different

polynomial degrees) choosing good weighting factors depends on the scale of the

input object, the type of functionals and their respective relations. For this reason

we just state approximative relational sizes (Low/High) between the weights.

Discussion. One notices an interesting effect when observ-

ing the planarization of quad-strips that undergo ≥ 90◦ ro-

tations along their trajectory in the non-planar state, e.g.,

a strip that goes from the flat pedestal on the FERTILITY

around her feet or the strip coming from behind her back

going onto the pedestal. The top figure on the right shows

a close up of two strips. The planarization of such strips is

handled quite differently by the two methods.

VTPI tends to concentrate these rotations to single points

(see bottom figure on the right) yielding “triangles” (degen-

erate quads), whereas the method of [Alexa and Wardetzky

2011] tends to preserve the quad structure better at the expense of introducing rip-

ples and plateaus (cf. the marked regions in Figure 4).

An interesting direction for future work would be to investigate if the identifica-

tion of such turning points can help guide a manual or an automatic (re-)placement

of nearby singularities or the introduction of new singularities needed for a better

planarization.

The running time of our method is highly problem dependent. A torus can be

tessellated with 10k planar hexagons in less than 15 sec, while the topologically and

geometrically more involved FELINE model took about 2.5 min. to planarize.
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Input [Alexa and Wardetzky 2011] VTPI

F
E

L
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E
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E
R

T
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Y

Figure 4: The two compared methods yield very similar results in good-natured areas. How-

ever, in areas where the input quads are not aligned to the principal curvatures (front leg of

FELINE) the results strongly differ. Also see the Discussion in Section 4.1.

Input [Alexa and
Wardetzky 2011]

pos (H)
edir (L)

fdiag & elen (L)

pos (L)
edir (L)

fdiag & elen (H)

pos (H)
edir (H)

fdiag & elen (H)

Figure 5: Results for different parameters for planarization. When primarily preserving the

shape of the quads (“LLH”) ripples similar to [Alexa and Wardetzky 2011] occur. Addition-

ally enforcing high positional and directional constraints (“HHH”) yields the mesh on the

right.

4.2 Variational Shape Approximation

In the second test scenario we applied the VTPI to Constrained Planar Remeshing

for Architecture [Cutler and Whiting 2007], a method based on Variational Shape

Approximation [Cohen-Steiner et al. 2004] to approximate complex models by pla-

nar, efficiently manufacturable panels.

[Cutler and Whiting 2007] use a combination of different metrics for the Llyod

relaxation algorithm to cluster the faces of an input triangle mesh. Subsequently

the intersections of the planar proxies of neighboring clusters are sought to yield

a coarse approximation with planar faces. Here typical intersection problems arising
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(a) Bunny example (b) High valence example

Figure 6: Variational Shape Approximation with planar panels.

from parallel planes or poorly oriented planes defining intersection points far away

from the expected cluster corner can occur as discussed by the authors.

Energies. The above mentioned intersection scenario and associated problems

map perfectly to VTPI. Additional to a positional energy keeping intersections close

to the computed cluster corners we implemented a simple energy penalizing devi-

ation from the optimized proxy normals. Figure 6 shows a coarse BUNNY and an

example with high-valence intersection points.

Discussion. Note that this section just demonstrates the applicability of the VTPI.

No post-processing (e.g., fixing acute angles) was implemented. For the VTPI con-

cave faces and acute angles do not pose a problem. Naturally, energies or constraints

limiting the interior angles can be added. However, simply forbidding acute angles

in the optimization will generally not lead to good results or even a valid solution,

such issues need to be properly addressed already in the clustering step.

Regarding the intersection problems, re-locating clusters and rerunning the clus-

tering or locally tilting the planes for better intersections as suggested in [Cutler and

Whiting 2007] might lead to acceptable solutions. Nevertheless, it is valuable to

have a reliable tool such as VTPI for intersection computations, which is addition-

ally able to handle high-valence vertices.

4.3 Dual and Multi-Layer Structures

For the third application scenario we consider the creation of dual hexagon-

dominant structures with planar faces at a preferred offset-distance from a given

triangle meshes.

Energies. For the planarization of given meshes (Section 4.1) energies preserving

edge lengths and diagonals proved useful. Here we compute dual structures whose

geometry is yet unknown and strongly depends on other constraints and parame-

ters such as the wanted offset of the dual structure. Hence, to compute aesthetic

outer/inner shells of given designs we use a combination of element fairing and

normal smoothness energies instead. Our element fairing energy simply penalizes

positional deviation from the c.o.g. of a vertex’ neighbors, and normal smoothness

the deviation of the normals of neighboring faces. Figure 7 briefly demonstrates the

effect of these energies. The bottom row shows dual structures guaranteed to not
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Figure 7: Shows the effect of the element fairing and normal smoothness energies when

computing dual structures of the ALPINEHUT model, also shown in Figure 2. The second

row uses the intersection constraints from Section 3. All four examples used the positional

energy. Additionally using element fairing tends to concentrate curvature to sharp creases,

segmenting the mesh into flat or low-curvature patches consisting mainly of regular convex

faces, while the normal smoothness leads to a rounder shape. These effects are most visible

in the top two rows, in the absence of constraints.

intersect the primal structure locally (using the constraints from Section 3) and the

upper row shows free (unconstrained) dual structures.

Element quality. In practical applications such as architecture, aesthetic qualities

(regularity, convex angles, etc.) of the dual elements are important. While VTPI is

a practical tool for computing dual structures with planar faces, it cannot circumvent

the topological and geometrical problems inherent in the task, e.g., concavities, de-

generacies etc. Although specifying additional energies and constraints can to some

extent hide or relocate some effects (such as the curvature concentrated along the

sharp creases in Figure 7), it always comes at the cost of other qualities such as

approximation accuracy.

The importance of good input meshes. One of the most effective ways to con-

trol the quality of the dual mesh is by specification of an appropriate primal mesh.

One important quality factor in this regard is symmetry. Figure 8 demonstrates

how symmetric dual structures can be achieved from symmetric input, whereas the

typical smooth, highly regular triangle meshes resulting from standard remeshing

approaches yield an unstructured less pleasing output. Hence, automatic triangu-

lation methods, such as the ones employed in the pre-processing stage by [Troche

2008] and [Wang et al. 2008], can lead to good dual structures of abstract organic

objects, but are not suited for working with symmetric or technical input shapes.

While we assume qualitative input to our algorithm, we also added a couple

of basic heuristics to support manual improvement. Local self-intersection or dual
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vertices lying too close to each other are identified and highlighted, suggesting to

the designer to, e.g., locally introduce higher valence faces or flip the corresponding

edge in the triangle mesh.

Figure 8: Dual structures of symmetric and non-symmetric input triangulations for the

TRAINSTATION design, all computed using the same parameters.

Discussion. The here proposed creation of planar dual panels at a desired offset

distance is in a sense related to the recent rationalization of point folding structures

[Zimmer et al. 2012]. There a dual (hexagon-dominant) structure arose implicitly

from the generation of the point folding elements, but, since the dual faces were in

general not planar, the supporting construction framework could not be covered by

an outer simple surface. Unifying the two concepts is an interesting direction for

future work and would require interleaving the typical discrete optimization used in

rationalization with the here presented continuous optimization possibly along the

lines of [Eigensatz et al. 2010].

5 Conclusion

We presented a generic optimization framework for planar polygonal meshing that

is based on a variational formulation of tangent plane intersections. The formulation

allows for the introduction of additional degrees of freedom which we utilize to en-

rich the otherwise rigid concept of tangent plane intersection with various energies

and constraints to make it applicable to different geometry processing scenarios,

even computing intersection points of more than three tangent planes.

One advantage of VTPI is the fact that the dual faces are always planar and

their normals can be used during the optimization, e.g., to define further energies

or constraints (such as the face constraints of Section 3). Our approach utilizes

the strengths of modern solvers and is slightly more brute-force than some state-of-

the-art methods dealing with constrained solutions spaces (e.g., [Yang et al. 2011]).

On the other hand it requires only a minimal implementation effort to prototype

different energies and constraints.
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Controlling surfaces properties (such as planarity of panels) is only one step to-

wards more profitable manufacturing. Reducing the number of different panels or

molds (cf. [Eigensatz et al. 2010, Fu et al. 2010, Singh and Schaefer 2010, Zimmer

et al. 2012]) is another important aspect. While both problems are well understood

on their own, the combined problem of simultaneously optimizing both, the number

of panels and the properties of the surface, is inherently difficult. Not only is the one

typically a discrete and the other a continuous optimization problem, but the reduc-

tion of the number of panels and the quality optimization of the same are practically

two contradicting goals for which no common, acceptable solution must exist in

general. Nevertheless, such a method would be invaluable in modern architecture.
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