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Abstract. A new variational principle of virtual dissipation generalizing d’Alembert’s 
principle to nonlinear irreversible thermodynamics is applied to compressible heat- 
conducting fluids with Newtonian and non-Newtonian viscosity. The principle is applied 
in the context of Eulerian formalism where the flow is described with reference to a fixed 
coordinate system. New concepts of entropy displacement and mass displacement are 
used as well as a new definition of the chemical potential which avoids the usual ambi- 
guities of the classical thermodynamic approach. The variational principle is used to 
derive a novel, form of field differential equations for the coupled fluid dynamics and 
convective heat transfer. 

1. Introduction. A new variational principle which we have referred to as the 
principle of virtual dissipation of wide generality has been shown to govern dissipative 
thermodynamic systems both linear and nonlinear [ 11. It was applied to a new fundamen- 
tal approach to the thermorheology of continua including Newtonian and non-Newtonian 
viscous, compressible, heat-conducting fluids [2]. However, the treatment was based on a 
material description where the coordinates of the fluid particle fi are considered as 
functions of their initial coordinates xi : 

Ei = $i(xk 7 Q* (1) 

In such a material description the density p per unit initial volume depends on the initial 
coordinates xi , so that the treatment is applicable to a fluid which is nonhomogeneous 
at rest. 

In the present treatment we shall consider a fluid which is homogeneous at rest with 
a uniform value of the density pO , the pressure p, and the temperature T, . For such 
a case it is possible to express the principle of virtual dissipation in Eulerian form, where 
the space coordinates & and the time are the independent variables. 
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The unknowns are now new variables Si & , t) and Mi(& , t) introduced below ((23), 
(24)) and representing fields of entropy and mass displacements. New definitions are 
obtained for the chemical potential and the fluid pressure which avoid the usual ambig- 
uities of the classical treatment. 

Field differential equations in novel form are derived from the variational principle 
for the coupled dynamics and convective heat transfer. This is in contrast to current 
procedures of deriving variational principles from the di$erential equations. 

2. Principle of virtual dissipation in Eulerian form. In its Eulerian form the prin- 
ciple of virtual dissipation is expressed by 

n 

J (6x6 - fii 6Ui + pai hi + 1’ &s*) da = 0 
n 

(2) 

where the integration is over a domain Q of space defined by the fixed coordinates & 
with the element of volume dL? = d& d& d& and no variations at the boundary. At a 
given time t and at the fixed point z$i , @i is the body force, p the fluid density, T the 
absolute temperature and 6ui a virtual material displacement. Per unit volume at point 
5; and time t, 6 is the cell potential as defined previously ([l, 21) and s* is the entropy 
produced. The symbol 8R denotes a restricted variation for which 6.9 = 0. With the 
velocity ai the fluid acceleration is 

It should be noted that, in contrast with the previous treatment, the unit element is 
not a material cell but a fised cell of unit dimension in space with matter flowing through 
its boundaries. From the viewpoint of thermodynamics it is an open cell. 

In order to formulate explicitly the variational principle in its Eulerian form we must 
introduce the concepts of mass and entropy displacement as well as a new approach to 
the definition of chemical potential which avoids some of the difficulties and ambiguities 
involved in classical thermodynanics. 

3. Chemical potential and entropy displacement. The cell potential of the unit 
volume may be written 

6 = p6 (4) 

where 

5 = iz - T,s (5) 

and where s, ti and s are respectively the cell potential, the internal energy, and the 
entropy per unit mass. The variation is 

66 = s 6p + p ss. (6) 

According to a previous result ([l, 21) we write 

where p is the fluid pressure as a known function of p and s under static conditions. Note 
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that this definition is purely thermodynamic and does not involve the viscous stresses, 
while 0 = T - T, is the excess temperature over the initial equilibrium temperature T, . 
Combining (5), (6) and (7) yields 

66 = /l lip + e 6s (8) 

where S = pS is the entropy per unit volume and 

p&Ts+; (9) 

is the chemical potential which is a known function p(pS) of p and S. It is completely 
defined and does not contain any arbitrary constant since it is assumed that G = s = 0 
in the initial equilibrium state. From (8) we derive 

aSlap = P, as/se = s, 00) 

thus providing a new definition of P. 
We shall also need the concept of entropy displacement already introduced earlier 

in a more restricted form [3]. Consider the material time derivative of s multiplied by p: 

Taking into account the conservation of mass condition 

(11) becomes 

On the other hand, the same material derivative times p may be written 

DS 1 aJ, .*_a z2 
Pz= -;rjjy+S” - 

0 ati T 
- $5 Ji a: + Se* (14) 

I 

(12) 

(13) 

where Ji is the rate of heat flow by conduction per unit area and S,* is the rate of entropy 
production per unit volume due to viscosity, Equating expressions (13) and (14) yields 

(15) 

We define the entropy displacement vector as 

8; = A!!$” + Sir 

where the time derivatives 

&” = pv,.?, 6’s’ = Ji/T 

(16) 

(17) 

are respectively the rates of entropy displacements by convection and conduction. 
Furthermore, 



326 M. A. BIOT 

is the rate of entropy production per unit volume due to thermal conduction. Hence, 
integrating (15) with respect to time with zero initial conditions, we obtain 

(19) 

where 

a* = ST * + s.* (20) 

is the total entropy produced per unit volume. Eq. (19) may be considered as an entropy 
conservation equation in terms of the entropy S per unit volume and the total entropy 
displacement field Si . The term 

s = -as,/af, (21) 

will be called the entropy supplied per unit volume. Relation (21) constitutes a funda- 
mental holomonic conservation constraint between s and Xi . We may also write (19) as 

s = s + s*, (22) 

i.e. the total entropy of the unit volume is the sum of the entropy produced and the 
entropy supplied by convection and conduction. 

4. Variational derivation of the field equations. The field will be defined by seven 
variables. Six of the variables are represented by two vectors, one being the entropy 
displacement 

Si = Si(f!s 7 t); (23) 

the other is the mass displacement 

Mi = M&k ) 0 (24) 

defined by the relation 

iPj = pvi . (25) 

It satisfies the mass conservation equation (12) which may be written 

p = -aMi/ati (26) 

The seventh variable is the scalar s* representing the entropy produced per unit volume. 
When applying the variational principle (2) we vary the vectors Si and Mi . The 

various terms in the integrand of (2) are obtained as follows. Accoridng to (8) and (22) 
we write 

66 = /.J 6p + e 66 = p 6p + e qs + s*>. 

In order to obtain the restricted variation LiR we put 6s* = 0. Hence 

6B6 = /.l 6p + 0 6s. 

The virtual displacemrnt 6ui of a fluid particle may be written 

6ui = 6MJp. 

(27) 

(28) 

(2% 
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The thermal conduction of the fluid is expressed by 

Ji = TSiT = -lc(aO/a&) (30) 

t where k is the thermal conductivity of the fluid at point & and time t. Hence (18) becomes 

ST 
‘*= ; A!$‘&‘. 

The thermal conductivity lc is a function of the local density p and local entropy S: 

k = lc(p, S). (32) 

The virtual dissipation due to thermal conduction is 

T Gig.* = ; &” 6SiT. (33) 

The virtual dissipation due to viscosity is 

(34) 

where vii’ is the viscous stress dependent on the strain rate tensor ei,‘. For a Newtonian 
fluid gii’ may be expressed as 

gii ’ = aDo./aeii’ (35) 

where the dissipation function is 

CO, = $(X’e” + 2veii’eji’) (36) 

with viscosity coefficients X’ and q and the volumetric strain rate e’ = e;i’ . The viscosity 
coefficients are functions of the local density p and local entropy S: 

X’ = X’(p, S), 71 = dP, S). (37) 

The strain rate is 

(33) 

For a non-Newtonian fluid we have shown by a very simple derivation that the viscous 
stress is expressed by 

where 

(39) 

F, = F~(P, s, I,, Ia I,>, (40) 

are functions of p, S and the three invariants 
I 

I, = eii’ 6ij , I,’ = eii’eii’, I,’ = C?ii’eik’eki’. (41) 

I The total virtual dissipation is 

T ,js* = T(6sT* + &s,*) = ; &’ GsiT + uii’ -$ 
I 

(42) 
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With expressions (28) (29) and (42) for the variations, the variational principle (2) 
becomes 

S[ p 6p + fl 6s - (~33~ - aJ 6M, + E siT 6SiT + (Tii’ * * 
( )I dn = 0. (43) 1. 

n ati P 

An essential step is due to the relations 

(44) 

derived from the holonomic conservation constraints (21) and (26). We introduce these 
values in the integrand of Eq. (43) and assume arbitrary variations 6Mi and SSi different 
from zero inside CL Integration by parts then yields 

s [( &i _ 1 au,,’ 
n ati P a.5 

EL + ai 
> 

SMi + $$ 6Si + F &’ 6SiT 1 dQ = 0. (45) 
I 

It remains to evaluate KS,’ in terms of 6M< and SSi . Eq. (17), 

implies 

Hence from Eq. (16) we obtain 

Introducing the values (47) and 

sic = pvis = sit& 

SS, = s 6M, . 

6SjT = SSi - s 6M, . 

(48) into (45), we obtain 

(46) 

(47) 

(48) 

s R ap 1 au..' 
n zg/-- -~-~;+~i+S~)6M,+(~+~ST)6Si]d~. (49) 

P ati 

The variations 6M, and 6Si being arbitrary and independent, this result implies the 
field equations 

(50) 

These equations may be further transformed as follows. From Eqs. (5) and (9) we derive 

dp = d: + d ; - d(fE). 
0 (51) 

Introducing the value (7) of s, we obtain 

dp = dr, - B do. 
P 

(52) I 

Hence 

ap lap ae 
-=----s-s 
ab P a.5 ati 

I 

(53) 
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Furthermore, from (48) we write 

SiT = & - &j (54) 

By substituting the values (53) and (54) the field equations (50) become 

, Is%.! ( auii’ 
P a.& ati > - (Bi + aj = 0, 

(55) 

k g + T(S, - Sil!li) = 0. 
, 

These six equations contain the seven unknowns t&M, and .a*. The additional equation 
may be obtained from (42) and expresses the local dissipation 

~‘~* = 5 (Sj - S~j)($j - gj@) + gii’ $ 7 . 
, (2 (56) 

The acceleration ai is expreseed by means of (3) with vi = tii/p, while p is given by 
(26) and p, k, T and 8 are known functions of p and S. 

The field equations (55) provide a novel form governing the coupled dynamics and 
convective heat transfer of a viscous compressible heat conducting fluid for Newtonian 
as well as non-Newtonian viscosity. The corresponding variational principle is expressed 
by Eq. (2). This generalizes the variational principle obtained earlier [4, 5, 61 for un- 
coupled convective heat transfer. 
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