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INTRODUCTION

Transition state theory (TST)1 is the most widely used theory for calculating
rates of bimolecular reactions occurring in the gas phase and in condensed
phases. TST is also incorporated into the widely used RRKM theory for
unimolecular reactions. The popularity of TST is largely due to its
simplicity and its usefulness for correlating trends in reaction rates in terms

of easily interpreted quantities. Several forms of variational transition state
theory (VTST) have been proposed, one as early as 1937; however, until
recently, most applications of TST have been limited to the conventional
(nonvariational) formulation. In recent years there has been renewed
interest in VTST for providing insights into the factors controlling chemical

t An alphabetical list of the abbreviations used in this article is as follows : CVT, canonical

variational transition state theory; DA, dynamical-path vibrational-average tunneling
approximation; GTST, generalized transition state theory; ICVT, improved canonical

variational transition state theory; LA, least-action tunneling approximation; LAG, least-
action ground-state transmission coefficient; LC, large-curvature tunneling approximation;
LCG, large-curvature ground-state transmission coefficient; MCP, Marcus-Coltrin path; PA,

phase-average tunneling approximation; RRKM, Rice-Ramsperger-Kassel-Marcus; SAG,
semiclassical vibrationally(-rotationally) adiabatic ground-state transmission coefficient ; SC,

small-curvature tunneling approximation ; SO, second-order tunneling approximation ; SOP,
semiclassical optical potential tunneling approximation; TST, transition state theory; US,
unified statistical model; VA, vibrational-average tunneling approximation; VTST, vari-
ational transition state theory; #VT, microcanonical variational transition state theory.
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160 TRUHLAR & GARRETT

reaction rates, and VTST has been developed into a practical quantitative

tool. The present review is concerned with the most recent developments,

and we shall aim to complement rather than duplicate several other recent

reviews, which we now summarize.

Chesnavich & Bowers (30, 31) reviewed applications of statistical

methods in gas-phase ion chemistry, including detailed discussions of

transition-state switching models and applications of VTST to ion-dipole

capture. Walker & Light (188) reviewed the theory of reactive collisions,

including progress to date on VTST. Truhlar & Garrett (173) provided 
introduction to VTST and an overview of their early work on the subject.

Two later articles, by Garrett et al (67) and Truhlar et al (181), provided

partial reviews of selected aspects of further work of this group; these
articles are partly review and partly new material, and they are discussed

further below. Pechukas (124, 125) reviewed recent developments 

transition state theory, including VTST, and we especially wish to single out

his discussions of quantal and semiclassical approaches and of periodic-

orbit dividing surfaces. Pollak (138) has also reviewed periodic-orbit

dividing surfaces and related topics. Laidler & King (95) reviewed the
historical origins of transitions state theory, excluding VTST, with

coverage up to about 1938 ; I-Iirschfelder (81) provided additional historical

comments. Hase (79) reviewed the history and use of variational concepts 

unimolcular rate theory. Truhlar et al (177) reviewed the current status 

transition state theory, including VTST, with special emphasis on’ the

validity of the equilibrium and dynamical bottleneck assumptions, on
localized states in unimolecularly decaying systems, and on frictional effects

in solution-phase reactions. Truhlar et al (180) wrote a handbook-type

chapter and concentrated on the practical aspects of VTST calculations,
with emphasis on reactions of polyatomics, anharmonicity, tunneling, and

other corrections. See (200) on TST and VTST, emphasizing organic

applications.
The present review of VTST concentrates on work reported since the

previous review in this series, by Pechukas (124). Readers are referred 

Garrett & Truhlar (56) and to the reviews mentioned above for more
extensive references to earlier work. We also restrict the present review to

gas-phase reactions.
In addition to variational transition state theory, this chapter briefly

considers relevant recent developments in selected aspects of several related

subjects: related dynamical theories, the role of tunneling in chemical

reactions, the calculation of dynamical bottlenecks and rate constants for

state-selected processes, the role of resonances in chemical reactions, and

vibrational bonding.
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VARIATIONAL TRANSITION STATE THt/ORY

BASIC CONCEPTS

161

Since VTST is introduced in several of the papers above, we give here only a
brief review as background to the later sections.

Transition state theory is a statistical mechanical theory of chemical

reaction rates that may be derived from two fundamental assumptions.

First one defines a reaction coordinate s leading from reactants (negative s)

to products (positive s) and a (generalized) transition state as a system 

way between reactants and products with a fixed value for s (thus the
transition state is a system with one less degree of freedom than the

reactants). The first assumption is that transition state species that originate

as reactants are in local equilibrium with reactants. The second assumption

is that any system passing through the transition state does so only once

(before the next collision or before it is stabilized or thermalized as 
reactant or product). These assumptions may be called the local-equilibrium

and no-recrossing assumptions. Early workers were aware that the validity
of the no-recrossing assumption depends on the location of the transition

state, and that the transition state may be variationally defined as the

phase-space hypersurface with the least one-way flux through it (82, 192) 

as the hypersurface that yields the smallest free energy of activation (48). But

in all conventional formulations of transition state theory, the transition

state passes through a saddlepoint on a potential energy surface and the
omitted coordinate s is taken as the unbound saddlepoint normal mode

(49). Variational transition state theory (VTST) is the name we apply 

theories that use the minimum-flux or maximum-free-energy-of-activation

criteria to choose the transition state. VTST does not provide exact

expressions for rate constants because it still involves the local-equilibrium

assumption and because additional approximations are required to

translate the flux-through-a-hypersurface argument into practical terms in

a quantum mechanical world. Furthermore the variational search for the

best transition state is usually carried out with constraints (e.g, one-
dimensional search in coordinate space) for practical reasons.

Although the early statements of the classical variational principle by

Wigner (192) and Horiuti (82) are correct and clear, the reader should 

warned that there has also been some confusion about VTST. Thus Evans

(48) incorrectly implied that the maximum free energy of activation

corresponds to a minimum-probability rather than a minimum-flux

condition and that the minimum-free-energy transition state passes

through the saddlep.oint. Later workers sometimes confused the minimum-
flux condition with a minimum-density-of-states condition. Some workers
attempted to discuss variational ideas in terms of free energy surfaces as
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162 TRUHLAR & GARRETT

functions of more than one coordinate, whereas the free energy to be

minimized is a function of the location of a transition state surface, not a
function of all the coordinates of the system. For another example, Swarc

(169) provided a correct description of how to carry out a maximum-free-

energy-of-activation calculation with classical reaction-coordinate motion,

but Eyring (50) commented incorrectly that it is not possible to define the

free energy of activation if the transition-state hypersurface does not pass

through a stationary point of the potential energy, i.e. the saddlepoint.

Swarc himself was unsure how to compare calculations with different

reaction coordinates, but correct appreciation of the variational criterion

shows that it applies to arbitrary variations in the transition state, not just

to different choices for a given reaction coordinate.

Modern appreciation of VTST concepts includes the discussion of

Eliason & Hirschfelder (47) of the relationship of a variational criterion for

the transition-state-theory rate constant to collision theory and the

applications by Keck (89, see also 90) of variational theory to atom-atom

recombination in the presence of a third body. Keck (91) also presented

variational theory in a more general context. Bunker & Pattengill (23),
Marcus (102, 103), and Wong & Marcus (196) proposed related schemes

(not VTST) for unimolecular and bimolecular reactions (see also 55, 
171). Tweedale & Laidler (185) provided an example of a free-energy-of-

activation curve as a function of reaction coordinate for a collinear atom-

diatom reaction, and Quack & Troe (145-149) used VTST and related

dynamical schemes for a series of calculations on unimolecular de-

compositions of triatomics. In the last .five years or so there has been

considerable activity in elucidating the classical mechanics of variational

transition states; general techniques have been proposed for calculating

free energy of activation profiles from potential energy surfaces and for

performing VTST calculations for arbitrary systems; and variational

transition state theory including important quantization and tunneling

effects has begun to receive extensive testing as a general practical tool for

for the calculation of bimolecular rate constants.

Some comments on notation: Transition state theory (TST) refers 

conventional, generalized, or variational transition state theory. When it is
necessary to make a distinction, conventional transition state theory refers

to placing the transition state at a saddlepoint on the potential energy

surface, generalized transition state theory (GTST) refers to arbitrary
locations of the transition state, and variational transition state theory

refers to GTST when the location of the transition state is determined

variationally. The optimum transition states for microcanonical or canon-

ical ensembles correspond to a minimum sum of states or a maximum free
energy of activation, respectively. Microcanonical variational theory (#VT)
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VARIATIONAL TRANSITION STATE THEORY 163

and canonical variational theory (CVT) denote the results obtained making
the transition-state theory assumption at the globally best dynamical

bottleneck for a microcanonical or canonical ensemble (55-57). Improved

canonical variational theory (ICVT) refers to using #VT below the/~VT

energy threshold and optimizing the variational transition states for the

non-zero contributions based on a canonical ensemble truncated from

below at the threshold energy (61, 70).

When TST is compared to gas-phase experimental results, one tests both

fundamental assumptions as well as the potential energy surface. When

classical TST is tested against accurate classical dynamics (trajectories), one

makes the same local-equilibrium approximation and uses the same

potential energy surface for both calculations ; hence only the no-recrossing

assumption is tested. When quantized TST is tested against accurate (i.e.

converged) quantal dynamical calculations one again uses the local-

equilibrium assumption and the same potential energy surface in both
cases, but now one tests not only the implicit translation of the classical no-

recrossing assumption to a quantum mechanical world but also the

accuracy of the incorporation of quantal effects such as tunneling into the

TST calculation.

CLASSICAL VARIATIONAL TRANSITION STATE

THEORY

The fundamental TST dynamical assumption of no recrossing is inherently

a classical approximation, and classical TST can be formulated invoking

the fundamental equilibrium and dynamical assumptions without any

ambiguity or further approximations. In classical mechanics, TST provides

an upper bound on the cross section or the local-equilibrium rate constant,

and this bound is the basis for classical VTST, in which the calculated cross
section or rate constant is minimized with respect to the location of the

transition state. Physically one interprets the generalized transition states

as tentative dynamical bottlenecks to the phase-space flow of trajectories

from reactants to products. The variational transition state is the best

dynamic bottleneck for an equilibrium ensemble.

For collinear atom-diatom reactions, the classical microcanonical
variational transition states are periodic trajectories that vibrate between

two equipotentials in the interaction region (123, 124, 138). Such trajec-
tories (called pods) may be found numerically. Pechukas (123, 124) 

Pollak (128, 135) have discussed the problems with generalizing the pods

treatment to reactions in three dimensions. More approximate but more

general techniques for variational!y optimizing transition states, straight-
forwardly applicable in any number of dimensions, involve modeling
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164 TRUHLAR & GARRETT

the vibrational and rotational state sums (classical phase space volumes) 

generalized transition states by the usual techniques of bound-state theory

and searching numerically for the optimum transition states (56, 109).

Before 1979, most tests of the accuracy of the TST no-recrossing

assumption were carried out for collinear H + H2 with the conventional

transition state location at the saddlepoint (26, 27, 78, 127, 166). These

studies showed that this assumption is exact for this system up to about 0.2

eV above the barrier for collinear reactions and in 3D the agreement is
better than 10~o up to 1 eV above the barrier. More recently, both

conventional TST and VTST have been compared to accurate classical

calculations for a variety of collinear atom-diatom reactions. These studies

show that VTST often provides significant improvements in accuracy as

compared to conventional TST (142, 167, 56, 61).

These tests of classical VTST against accurate classical rate constants

have been for bimolecular reactions with a single saddlepoint. Although

more than one dynamical bottleneck can occur for single-saddlepoint

reactions because of the decrease in the bound vibrational frequency in

going from reactants toward the saddlepoint (an entropic effect), the

presence of the two dynamical bottlenecks is an energetic effect for two-

saddlepoint surfaces. Garrett et al (68) tested VTST for a potential energy

surface with two identical saddlepoints. The second saddlepoint makes

the no-recrossing assumption less valid at the first saddlepoint. In fact,

TST and #VT overestimate the exact classical rate constant by a factor

of two at total energies infinitesimally above the saddlepoint energy.

However, the calculations show that the #VT and conventional TST results

overestimate the exact classical one by only 20~ at an energy 0.1 kcal/mol

above the saddlepoint. Over a temperature range from 100 to 10,000 K,

conventional TST rates agree with #VT and CVT ones to within 10~. For

the system studied, the worst agreement between any form of TST and the

exact classical results is for conventional TST at high temperature; for

example at 2400 K conventional TST is too high by 21~o and at 10,000 K it

is too high by 47%.

Wolf & Hase (194) applied minimum-state-density criteria, which are
similar to VTST, to find critical configurations for RRKM calculations on

the dissociation of H-C-C model systems. The variational RRKM rate

constants were larger than those computed from trajectories, typically by a
factor of two for the tighter transition states and by factors of 5-50 for the

looser cases. The largeness of the latter is probably due to the use of har-

monic, separable approximation for the classical density of states and to

an oversimplified treatment of the hindered-rotor degrees of freedom.

J. Miller (111, see also 112) has applied classical generalized TST to 

reaction with no intrinsic barrier: H+O2. In these calculations, the
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VARIATIONAL TRANSITION, STATE THEORY 165

harmonic-oscillator, rigid-rotor approximation is used to evaluate the sum

of states at the generalized transition state and the density of states of

reactants. The vibrational frequencies and moments of inertia are obtained

from an ab initio potential energy surface. Although reaction cross sections

were computed for several locations of the dividing surface, the location of

the dividing surface that gives the minimum reaction cross section for each

energy was not found. Using the dividing surface that gives the smallest

cross sections, the generalized TST results severely underestimate the

quasiclassical trajectory results at all total energies below about 33

kcal/mol. However, we emphasize that these comparisons are for purely

classical generalized TST versus trajectories with quantized initial con-

ditions; hence no definite ordering of the resulting cross-sections should be

expected.

Martin & Raft (109) have suggested a general procedure for classical
variational transition state theory calculations in atom-diatom reactions in

three dimensions. The dividing surface is expressed as a linear combination
of internal coordinates and the coefficients in this expansion are variation-

ally optimized to minimize the thermal rate constant. Calculations were

performed for the H + H2 and H + 12 reactions. For the H + H2 system the

variational TST results are within 22~ of the exact classical ones over a

temperature range 300 to 1100 K. The agreement is not as good for the
H + 12 system, in which the VTST result overestimates the classical trajec-

tory rate by a factor of 2.3 at 600 K. By carrying out combined-phase-
space-trajectory calculations (4, 85) at their best dividing surface, a factor 

18 reduction in computer time with a decrease of a factor of four in

statistical uncertainty was realized for the H + H2 system, as compared to a

trajectory calculation with sampling in the reactants’ region.

Classical variational transition state theory has also been applied to the

calculations of capture rate constants in collisions of ions with polar

molecules. Su & Chesnavich (165) have extended earlier calculations
(32, 33) to reduce the numerical error. The systems studied corresponded 

H- and H~ reacting with a variety of polar molecules. For these systems

the/~VT rate constants agree very well with classical trajectory ones.

Swamy & Hase (168) have carried out similar studies for alkali ions
recombining with H20. In these studies the agreement between classical

trajectory rate constants and #VT ones is not as favorable: for the

Li ÷ + H20 system errors of 2.3 were found at 300 and 1000 K, and for the

K+ +H20 system errors of 2.9 and 6 were found at 300 and 1000 K,
respectively. The errors are the result of trajectories that form short-lived

collision complexes that are not stabilized by a third-body collision, thus

leading to recrossing of the dividing surface.

One difficulty in calculating reliable thermal rate constants is the lack of
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166 TRUHLAR & GARRETT

potential energy surface information. In VTST the necessary information is

the potential energy in a region about the minimum-energy path, whereas

in conventional TST only information about the potential near the

saddlepoint and in the reactant region is necessary. Truhlar et al (182) have

developed methods of interpolating parameters in the reaction-path

Hamiltonian between reactants, the saddlepoint, and products. They
compared/~VT valculations based on interpolation to conventional TST,

to btVT using the actual potential energy surface information, and to exact

classical rate constants for a symmetric, a nearly symmetric, and two
asymmetric collinear atom-diatom reactions. In all cases the/~VT results

computed using the interpolated potential energy surface information are

in good agreement with the/~VT results obtained using the actual potential.

The interpolation schemes provide useful means of obtaining improved

estimates of the rate constants for systems with limited potential energy

surface information.

VARIATIONAL TRANSITION STATE THEORY IN

THE REAL, QUANTIZED WORLD

VTST calculations in the quantum mechanical world have been carried out
using the ansatz that if quantum effects on reaction-coordinate motion,

which is responsible for movement from the reactants’ region of phase space

or state space to the products, are temporarily neglected, it still makes

physical sense to minimize the rate constant (57). The intermediate-step
quantity involved in this step, a rate constant corresponding to classical

reaction-coordinate motion but a quantum mechanical treatment of all

other degrees of freedom, has been called the hybrid rate constant.

Minimizing the hybrid rate constant with respect to dividing-surface

location is called quantized VTST. (In a quantized calculation there is

usually not a large difference between the results of/~VT, CVT, and ICVT

calculations; in such cases we can just say VTST.) Quantal effects on

reaction-coordinate motion and to some extent even quantal nonsepar-

ability of the reaction coordinate can be included, if desired, by multiplying

the hybrid rate constant by a transmission coefficient. This~ generally

includes both classically forbidden barrier penetration and nonclassical
barrier reflection, but since the former usually dominates it is convenient to

call this a tunneling correction.

Microcanonical variational theory for the hybrid rate constant is

equivalent to making an adiabatic approximation for all degrees of freedom

with respect to the reaction coordinate (56, 57). Thus there is a strong

connection between VTST and adiabatic collision theories. By use of the

adiabatic analogy or diabatie generalizations, the dynamic bottlenecks of
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VARIATIONAL TRANSITION STATE THEORY 167

TST can also sometimes be interpreted as dynamical bottlenecks for state-

selected reactions or for the decay of quasibound collisional resonance

states.
The most important quantum mechanical effect on reaction-coordinate

motion is tunneling. Thus the ability to estimate tunneling probabilities

accurately is essential to the accurate use of transition state theory for many

reactions. In general the tunneling contribution may be estimated by any

semielassieal or quantal method; in some eases the adiabatic approxi-

mation mentioned above in conjunction with the classical-reaction-

coordinate motion part of the calculation is also useful for the tunneling

calculations, and the adiabatic derivation of TST makes it clear how to

include tunneling consistently (183, 70). Quantized VTST with semi-

classical adiabatic transmission coefficients based on the #round-state
s-wave reaction probability is abbreviated VTST/SAG. Two kinds of

nonadiabatic transmission coefficients have also been applied as correc-

tions to quantized VTST; these have been called the large-curvature
#round-state and /east-action #round-state methods, and they lead to

results abbreviated VTST/LCG and VTST/LAG.
Although it is not a necessary part of VTST, in our own work we have

always considered one-dimensional sequences of generalized-transition-

state dividing surfaces orthogonal to a gradient-following-path in mass-

scaled coordinates. This choice of dividing surfaces is convenient; it

eliminates potential coupling between the reaction coordinate and the
other degrees of freedom through quadratic terms, and it promotes the

dynamic separability of the reaction coordinate, thus tending to minimize

local recrossing effects. Furthermore the use of a gradient-following path in

mass-scaled coordinates facilitates the inclusion of internal centrifugal

effects in tunneling calculations. An excellent discussion of gradient-
following paths and the structure of the Hamiltonian in coordinate systems

¯ built on such paths has been given by Natanson (120).

Practical VTST calculations for a quantized world have so far been based

on variationally optimizing the hybrid rate constant and adding a

tunneling correction (70, 181) because more rigorous extensions of VTST

to a quantum mechanical world do not provide a useful bound [see the

discussions in (123, 172, 43)-I. Pollak (131) has presented a new transition

state expression with bounding properties and discussed its expansion in a

power series in h. The h expansion is known to be slowly convergent for
tunneling contributions. It would be interesting to see whether practical

and accurate bounds for real chemical reactions could be obtained from

this formulation or whether the formalism provides a practically advan-
tageous way to choose variational dividing surfaces.

Garrett et al (71) tested VTST/SAG calculations for model collinear
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reactions with mass combinations H + FH and D + FD and with a low-

barrier, twin-saddlepoint potential energy surface by comparison against

accurate quantal dynamical calculations. The comparisons showed that

VTST/SAG predicts accurate local-equilibrium rate constants within a

factor of 1.57 over the 200-7000 K range for the H + FH mass combination

and within a factor of 1.42 over the 20(~2400 K range for D + FD, with the

largest errors at the lowest temperature in each case. Employment of fully

quantal vibrationally adiabatic tunneling calculations rather than semi-

classical ones improved the accuracy. In another series of tests of

VTST/SAG calculations against accurate quantal collinear rates, Bondi

et al (16) considered the reactions H+H2, Mu+H2, and Mu+D2 
200-2400 K, using two different potential energy surfaces for two 0f the

mass combinations, for a total of five cases. For H + H2 and Mu + H2 the

accuracy was 38~ or better over the whole temperature range, but for

Mu d- 02 the errors were in this range only for T ~ 500 K or 800 K, depend-

ing on the surface. The accuracy of VTST/SAG calculations for the seven

systems discussed in this paragraph is actually slightly worse than typical of

that found in 18 previous test cases of VTST/SAG calculations against

accurate quantal equilibrium rate constants for collinear systems, as
reviewed previously (61, 181, 177). In fact, for 300 K, for the full set of 

cases the ratio to the accurate quantal equilibrium rate constant of the rate

constant calculated by VTST/SAG calculations employing CVT for the

VTST part and the small-curvature-tunneling approximation (163) for the

SAG part, is in the range 0.49 to 1.54 in 22 cases and in the range 0.62 to 1.30
in 17 cases. In contrast, conventional transition state theory calculations

often show large errors in these 25 cases: the ratio of conventional

transition state theory rate constants to accurate quantal equilibrium rate

constants is in the above two ranges in only seven and five cases,

respectively, and even extending the range to 0.4 to 2.5 increases the number

of cases to only 13.

For Mu + D2 the VTST/SAG calculation on the most accurate surface

decreases the er.rors from factors of 59, 23, and 1.8 in conventional TST at

200 K, 300 K, and 2400 K to 0.42, 0.49, and 0.92, respectively. These results,

like all VTST/SAG calculations mentioned so far, are based on straight-line

GTST dividing surfaces with anharmonicity treated by a Morse approxim-
ation [the Morse I approximation in the notation of Garrett & Truhlar (56,

57)]. Pollak (138) has shown that more accurate results can be obtained 
the Mu+D2 mass combination by semiclassical quantization of pods.

Straight-line dividing surfaces for collinear reactions have more straight-

forward three-dimensional and polyatomic analogs than do pods, so we

prefer this treatment to one based on pods ; but it is not too impractical to

go beyond the Morse approximation for anharmonicity. If the anharmonic
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energy levels of the straight-line generalized transition states are calculated

numerically by the WKB approximation, without the Morse approxim-
ation, VTST/SAG agrees with quantal equilibrium rate constants for

Mu + D2 on the most accurate surface within 8~ over the 200-2400 K
temperature range (Garrett & Truhlar 1984, J. Chem. Phys. In press); it is

encouraging that it is not necessary to use the curved pods as dividing

surfaces to achieve this accuracy. Further work (Garrett & Truhlar 1984, J.
Chem. Phys. In press) shows that although the Morse approximation

usually leads to reasonably good agreement with the WKB approximation
for the zero point energy at the variational transition state (quantitative

differences are largest for reactions with high zero point energies), using the

WKB method for stretching vibrations does provide systematic improve-

ment over that achieved in previously reported tests of VTST/SAG

calculations against accurate quantal dynamics. The rest of the VTST-plus-

tunneling results discussed in the present section were all obtained by the
more convenient Morse approximation for stretches and by a mixed

quadratic-quartic approximation (62, 84) for bends that have no cubic

anharmonicity.

Bondi et al (16) also predicted three-dimensional rate constants for the

Mu + Hz reaction based on the most accurate available potential energy
surface, the so-called LSTH [Liu (!00), Siegbahn & Liu (157), Truhlar 

Horowitz (178)] surface. At 600 K, the ratio of the VTST rate to the TST

one is 0.11, the ratio of the VTST/SAG rate to one calculated (15) from full
quasiclassical trajectory calculations is 0.065, and the kinetic isotope effect
(ratio of the rate for Mu + H2 to that for H + H2) is 0.017. The small values

for all three ratios are direct consequences of the large zero point effects for

this system and the large dependence of the ground-state stretching energy

level of the generalized transition state on the value of the reaction
coordinate. Despite the size of this effect, the predicted rate constants at

608 K and 875 K are in good agreement with later experimental values

[D. M. Garner and D. G. Fleming 1982, unpublished; cited in (15)].

These calculations involve no empirical elements or adjustable parameters

and they are believed to be the first totally ab initio reliable, quantitative
predictions of chemical reaction rates. With our present confidence in the

reliability of our dynamical calculations for a given potential energy

surface, the difficulty of making such predictions for other reactions
depends more on future advances in electronic-structure calculations of

potential energy surfaces than on further advances in treating the dynamics.

Blais et al (13-15), again using the LSTH surface, compared VTST,

VTST/SAG, and quasiclassical trajectory calculations of rate constants
and activation energies for H + Hz, D + Hz, and Mu + Hz to each other at

444-2400 K and to experiment at 444-875 K. The VTST/SAG calculations
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are in best agreement with experiment at the lower temperatures because of

the importance of tunneling. The most interesting aspect of these calcu-

lations is the temperature dependence of the activation energy. For example

the activation energy predicted by the VTST/SAG calculations for D + H2
rises from 6.8 kcal/mol at 300 K to 7.5, 9.0, and 14.0 kcal/mol at 444, 875,
and 2400 K. The latter two values, at temperatures at which tunneling

effects are less important, are in good agreement with trajectory values of

8.7 and 13.9 kcal/mol. Since recrossing errors increase with temperature in

classical tests for this kind of system, the agreement of variational transition

state theory with full trajectory calculations for the slope of the rate

constant at 2400 K is encouraging, especially for using the simpler theory

for the important practical problem of extrapolating rate constants to high
temperature for combustion applications.

Clary (38) tested VTST/SAG calculations (72) against presumably

accurate quantal calculations (35, 37, 38, see also 40) for t.he three-
dimensional D + C1H exchange reaction and three isotopic .analogs, with

the same potential energy surface used for both sets of calculations so that

the comparison provided a test of the dynamical methods. The quantal
calculations were performed by a method (35, 36) combining the energy

sudden and centrifugal sudden approximations in a way particularly

appropriate for the transfer of a heavy particle between two light ones. The
VTST/SAG and quantal rate constants for 295 K differed by only 15~o, 5~,

25~o, and 12~ for the four cases studied. Good (but not as good) agreement,

an error of 38~ for T>~ 300 K, had also been obtained for the only previous
test (70, 181), for H + H2, of VTST/SAG calculations against presumably

accurate three-dimensional rate constants (156) for a given potential energy

surface. Note that for H + H2 no sudden approximations were made in the

quantal calculations; the accurate calculations are possible in this case

because of.the lightness of all three atoms, yielding a relatively small

number of channels. In the H + H2 case, as for the H + FH case discussed

above, the agreement is congiderably improved if fully quantal one-
dimensional tunneling calculations (60; see also 124, 173) are substituted

for the semiclassical tunneling calculations. Using such fully quantal

tunneling calculations, VTST-plus-tunneling results have recently been

reported (176) for eight tritium-substituted analogs of the H + 2 reaction,

using the accurate LSTH potential energy surface that was also used for the

Mu + H2 calculations discussed above.

Clary et al (41) tested VTST/SAG calculations against accurate quantal

calculations for collinear H+BrH and D+BrH and against energy-
sudden-approximation, centrifugal-sudden-approximation calculations

for the same reactions in three dimensions. The VTST/SAG and quantal

rate constants showed good agreement in all four cases; e.g. for three-
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dimensional H + BrH they agree to 20~o or better for 150-500 K, even

though the SAG transmission coefficient is 1050 at 150 K.

Garrett et al (72, 73) applied VTST/SAG calculations to three-

dimensional kinetic isotope effects in the reactions C1 + H2, D2, T2, HD,

DH, HT, and TH. They considered eleven different potential energy

surfaces with a goal of finding a surface that was consistent with experiment.

They found large differences from conventional TST in many cases,

especially for intramolecular HD/DH kinetic isotope effects. None of the

VTST/SAG calculations was in completely satisfactory agreement with

experiment, perhaps because of errors in all the surfaces but also perhaps

because of remaining uncertainties in the tunneling calculations or other

errors in the dynamics calculations, such as different amounts of recrossing

for the different isotopic combinations.

Isaacson & Truhlar (84) extended the VTST formulation to general
nonlinear polyatomic reactions and Skodje e~ al (162) similarly extended

the SAG transmission-coefficient approximation. Both extensions make

use of the polyatomic reaction-path Hamiltonian of Miller et al (118) and

assume independent generalized normal modes. Extensions of these

methods have also been presented (180) for three-dimensional polyatomic

reactions with linear generalized transition states. Isaacson & Truhlar (84)

and Truhlar et al (181) applied the general polyatomic formalism to the

reaction OH + Hz ~ H20 + H, as well as to reactions of OH with D2, HD,

and DH, using Schatz & Elgersma’s (155) fit of Walch & Dunning’s (186) 
initio potential energy surface. They found that variational optimization of

the generalized transition state lowered the calculated rate by a factor of 1.9

at 298 K, and quantal effects on reaction-coordinate motion increased it by

a factory of 17 at the same temperature ; both the optimization effect and the

tunneling correction are decreasing functions of temperature. The final

results agree with the recommended experimental rate constants of Cohen
& Westberg (42) within a factor of 1.7 over the 298-2400 K temperature

range, over which the rate constant varies by a factor of 2 x 103. The

calculated results are a factor of 1.6-1.7 higher than experiment (151, 42) 

298 K, a factor of 0.6-0.8 lower at 600 K, and more accurate at 2400 K. Thus
they slightly underestimate the low-temperature activation energy and

slightly overestimate the high-temperature activation energy. Nevertheless

the agreement with experiment is remarkably good. In general one hopes

that an ab initio surface is useful for force constants for bound generalized

normal modes but one expects to have to adjust the ad initio barrier height

to obtain such good agreement with experiment; in this case good
agreement was obtained without adjustment. More important is the insight

that the VTST/SAG calculation gives into the detailed dynamics. The
variational transition states occur 0.07~0.10 ao earlier along the reaction
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path (in scaled coordinates with a reduced mass of 1.8 amu) than the

saddlepoint, curvature of the reaction patl~ increases the SAG transmission

coefficient by a factor of 4.3 at 298 K, and the results are sensitive to

anharmonicity. The HE/D2 kinetic, isotope effect is larger than the

experimental one (151) at 298-600 K; we may speculate that this and the

too-low activation energy at these temperatures occur because the barrier

on the potential energy surface is slightly too thin and allows a little too

much tunneling, although several other explanatibns could also be given.

Truhlar et al (174) used a combination of VTST/SAG and trajectory

calculations to adjust a new potential energy surface for F + H2 to a variety

of experimental data for the reactions F + H2 and F + D2.
Garrett et al (67) presented detailed studies of the trends in variational

transition state locations for atom-diatom reactions with a variety of mass

combinations and potential energy surfaces, complementing earlier sys-

tematic studies (58, 59) of this subject that were limited to rotated-Morse.

bond-energy-bond-order surfaces. The main conclusions of these studies
are as follows. The ratio k~/kvTsT of rate constants calculated by the

conventional and variational theories is largest for symmetric or nearly

symmetric reactions in which a light particle is transferred between two
heavier ones. In these cases the saddlepoint tends to be symmetric or nearly

symmetric and small changes in geometry can cause large changes in the

zero point energy requirement for a bound stretching coordinate. (There is

only one such coordinate for atom-diatom collisions; for polyatomic

reactions the analogous stretching coordinate is the one involving atoms

participating in the bond changing.) The effect on k~/kws’r van be very large

(up to several orders of magnitude) and decreases with temperature. 

second important case is very asymmetric reactions with saddlepoints
located well into the reactant or product channel. In these cases the bending

effects become dominant. Since potential energy varies more slowly with
distance along the reaction coordinate, in these cases the variational

transition states may be much farther removed from the saddlepoint and
more temperature dependent. The ratio k~/kws~ increases with tempera-

ture in these cases but is usually only a factor of two to three.

In order to provide further evidence that the large k~/kv’rsT; ratio for

symmetric heavy-light-heavy systems are not artifacts of the potential

energy surfaces considered, Garrett et al (74) performed VTST calculations

for an ab initio potential energy surface for the reactions 37C1-I-H35C1 and

37C1 d- D35C1.. For three-dimensional 37C1 -I- H35C1 they obtained k:~/kv’rsT

values of 110, 28, and 9 at 200 K, 300 K, and 600 K, confirming the large

effect. The saddlepoint on the ab initio surface is symmetric with nearest-
neighbor distances at 1.47 A, potential energy 6.3 kcal/mol, and a bound

stretching frequency of 337 cm- 1. At the 300 K twin asymmetric variational
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transition states, these values are 1.60 A, 1.35 A, 5.8 kcal/mol, and 1682
cm 1. Tunneling calculations based on vibrational adiabaticity along the
minimum-energy path are not valid for these mass combinations because
the minimum-energy reaction path has large curvature in mass-scaled
coordinates. Instead, the authors used a new large-curvature tunneling
method, leading to the LCG transmission coefficient mentioned above. In
order to compare to experiment (92, 93), the surface was scaled along the
minimum-energy path (but not orthogonal to it, see the discussion above

for the OH ÷ H2 reaction) so that the VTST/LCG rate constant for 37C1

÷D35C1 agreed with experiment at 368.2 K; this yielded a collinear
saddlepoint potential energy of 9.0 kcal/mol and a noncollinear saddle-
point potential energy about 1.5 kcal/mol lower. The kinetic isotope effects
calculated for the scaled surface, as calculated by the conventional TST,
VTST, and VTST/LCG methods, are compared to experiment (92) in Table
1. Although both the conventional TST results and the VTST/LCG results
are in qualitative agreement with experiment, the physical factor control-
ling the kinetic isotope effect is entirely different in the two calculations. In
conventional TST this kind of isotope effect is determined by the
saddlepoint stretching force constants, as in the widely used Melander-
Westheimer model (110, 190). In the VTST calculations without tunneling,
the kinetic isotope effect at the temperatures of Table 1 is less than 1.03, so
essentially the entire effect in the VTST/LCG calculations is due to quantal

effects on reaction coordinate motion. Furthermore, in the LCG model the
tunneling for these reactions occurs by rapid light-atom motions at fixed
C1-C1 distance, and most of it occurs for C1-C1 distances much larger than
the C1-C1 distance at the saddlepoint or even at the outer turning-point
distance of the C1-C1 symmetric-stretch zero-point motion of the conven-
tional transition state. These results cast strong doubts on the validity of the

common pra.ctice in physical organic chemistry of interpreting this kind of
isotope effect for H or H+ transfer in terms of transition state force
constants. In a more general context, our VTST calculations call for a
critical reexamination of conventional TST interpretations (110) of kinetic

isotope effects even in cases when tunneling effects on the kinetic isotope

Table 1 H/D kinetic isotope effects for 35C1+H37C1 on

scaled ab initio surface

T(K) * CVT CVT/LCG Experimental

368 2.8 1.0 4.2 5.0±0.7
423 2.5 1.0 3.4 4.1+0.4
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effect are small because we find in many cases that variational transition

states for different isotopic versions of a given reaction are different whereas
the basic principle of the conventional analysis is that they are not.

Bondi et al (17) tested the VTST/LCG method against accurate quantal

equilibrium rate constants for collinear CI+HC1, CI+DCI, and C1

+ MuC1, using not the ab initio or scaled ab initio surface but a similar

semiempirical surface with a collinear saddlepoint potential energy of 8.55
kcal/mol. The comparison for the C1 + MuC1 case is given in Table 2. Both

the variational effect, as measured by k*/kvvsr, and the quantal effect on

reaction-coordinate motion, as measured by kVTSWrCO/kwsT, are very large,

but the final results are accurate within 39~o over a factor of five in

temperature. The success of the VTST/LCG method in this case is a
consequence of the success of the tunneling calculations. To verify that the

VTST part of the calculation is also meaningful, Truhlar, Garrett, Hipes &

Kuppermann (1984, J. Chem. Phys. In press) tested the same methods

against accurate quantal equilibrium rate constants for the reaction I + HI

on a low-barrier surface for which tunneling effects are negligible. The

results are shown in Table 2, and they verify that the VTST and VTST/LCG
methods are reliable for heavy-light-heavy reactions in the low-barrier, no-

tunneling limit as well as the high-barrier, tunneling-dominated limit.

So far in this article we have considered primarily tight transition states

in which two bonds are simultaneously appreciably partially broken or

newly made. Variational transition state theory is also applicable to loose
and nearly loose transition states, and we now consider recent papers on

that subject.
Cates et al (24) considered the reactions ÷ +H2 ~ HC1+ +Hand

HC1÷ +H2 --, H2C1+ +H. Both reactions are exoergic but the authors

found a positive temperature dependence for the former and a negative

Table 2 Ratio of approximate rate constants to accurate

quantal equilibrium ones for eollinear reactions on semiempirical

surfaces

Reaction T (K) :~ ICVT ICVT/LCG

C1 + MuC1

I+HI

200 92300 0.003 0.68
400 581 0.081 1.02

1000 44 0.56 1.39

100 17500 0.77 0.77

200 214 0.99 0.99

400 96 1.1 1.1

1000 19 1.4 1.4
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temperature dependence for the latter. They interpreted this in terms of an

early barrier for the former and, following Farneth & Brauman (51),

Olmstead & Brauman (122), Asubioj o & Brauman (5), Jasinski & Brauman

(88), and Pellerite & Brauman (129), in terms of a tight variational

transition state for the latter. It would be interesting to see whether the

latter interpretation could be supported by actual VTST calculations on a

full potential energy surface.
Troe (170) provided a simplified version of the statistical adiabatic

channel model (145), which is similar to VTST, for unimolecular bond

fission reactions and the reverse radical association schemes. This work
addresses the difficult question of the correlation of vibrational, rotational,

and orbital (centrifugal) energies between the two limits of tight and loose

generalized transition states. The properties of the potential energy surface

are interpolated by a scheme similar to that originally applied by Quack &

Troe (145).
In the section on classical VTST we discussed the work of J. Miller (111)

on H+O2--, HO+O. This is an endoergic reaction whose dynamical

bottleneck lies in the exit channel ; it is equivalent but more straightforward

to consider the early generalized transition states of the reaction O + OH.
Rai & Truhlar (150) applied quantized VTST to this case using the ab initio

potential energy surface of Melius & Blint (201), and the semiempirical

reaction-path correlation scheme of Quack & Troe (148). For the Melius-Blint

surface the variational transition state for 300 K occurs at an O-to-OH

distance of 5.4 A, which is much larger than the range of O-to-OH distances

for which most of the electronic structure calculations were performed. One

advantage of VTST calculations over collision theory calculations is that

this kind of information about critical geometries is available and may serve

as a guide to future electronic structure calculations so that they may be
carried out at the dynamically most important geometries. For 300 K the

VTST rate constants, as well as the trajectory calculations of Miller (111),

are larger than the experimental rate constants (42), presumably because

the ab initio surface is too attractive. It is not clear whether this is a fault of

the electronic structure calculations or the extrapolation to large O-to-OH

distances. The calculations based on the Quack-Troe scheme were more
successful, but it is not known whether this is fortuitous or meaningful,

especially since the calculations are sensitive to how the rotational-orbital-

motion correlations are treated, and this is quite uncertain.
Clearly further progress on the transition state theory of systems with

loose and nearly loose transition states will require better knowledge of
potential energy surfaces for such systems. Duchovic et al (45) have recently

performed state-of-the-art electronic structure calculations for the poten-
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tial energy along the dissociation coordinate in CH,~ --, CH3 q- H. Further

work along this line is sorely needed.

VTST concepts have also been applied to a few reactions involving more

than four atoms. See the work of Brauman and co-workers mentioned

above and also Agmon (1, 2), Chesnavich et al (29), and Jarrold et al (86).

Bowers and co-workers proposed a transition-state switching model for

ion-molecule reactions involving tight and orbiting generalized transition

states. In this model the existence of tight generalized transition states is

postulated even for reactions without a saddlepoint; for such reactions

there may be a local maximum in the free-energy of activation for tight

geometries because, as the system moves along the reaction coordinate in
the exoergic .direction, rotational-orbital motions of the reactants are

converted to vibrations. Such dynamical bottlenecks were found by Garrett
& Truhlar (58) for neutral reactions with very small barrier heights in the

entrance channel and by Rai & Truhlar (150) for the no-saddlepoint

O+OH radical-radical reaction discussed above. As the temperature

increases, the canonical variational transition state becomes tighter in such

systems; in some cases there may be a tighter and a looser bottleneck even
at a single temperature.

The central barriers in long-lived ion-molecule complexes have been

further characterized by Wolfe et al (195) and Squires et al (164).

In attempting to use VTST concepts in a qualitative sense one should be

careful to distinguish free energies of activation from free energies of

formation. Thus, as the generalized transition state tends to reactants or

products, it should not be assumed that the free energy of activation tends to

zero and to the free energy of reaction, respectively. The difference arises

because the free energy of activation is a quasithermodynamic quantity

referring to transition states, which are missing one degree of freedom,

whereas free energies of reaction and formation include all degrees of

freedom.

RELATED TOPICS

Above we have reviewed recent developments in transition state theory. We

now briefly consider recent developments in a few closely related subjects.

We do not attempt to present self-contained discussions of these subjects in

their own context but rather discuss them in relation to VTST concepts.

Related Dynamical Approximations

The unified statistical (US) theory provides a generalization of VTST to the

case of two (113) or more (114) dynamical bottlenecks. Unlike VTST, 

unified statistical theory does not give a bound even in classical mechanics.
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Pollak & Levine [(140, 141), see also Davis (44)] have emphasized that 

US theory for classical systems can be derived by information theory where

the average number of crossings of a critical surface is imposed as a

constraint, and they have also proposed a generalization involving a second

constraint, which may be computed from the entropies of the reactive and

nonreactive state-to-state probability matrices. They (141) also suggested 

canonical generalization by replacing microcanonical fluxes by canonical

ones. A canonical unified statistical theory was also suggested by Garrett &
Truhlar (63), who tested its predictions against accurate classical dynamics

for several collinear atom-transfer reactions. Garrett et al (68) tested the

original classical unified statistical theory against accurate dynamics for a
reaction with two saddlepoints and found that it overestimates the extent

of recrossing and hence underestimates the rate constant. Truhlar et al (180)

discussed the incorporation of quantization and tunneling effects in the

original and canonical unified statistical theories. They also reported that
the quantized canonical unified statistical theory does not systematically

improve on the canonical variational theory in accuracy tests against

accurate quantal equilibrium rate constants for collinear reactions, al-

though it can change predicted kinetic isotope effects by a non-negligible

amount. In the limit of a strongly bound intermediate between the

dynamical bottlenecks, the unified statistical theory reduces to the statis-

tical theory of Pechukas & Light (126) and Nikitin (121). That statistical
theory was originally formulated f~or loose dynamical bottlenecks so

that the fluxes through the dividing surfaces were proportional to the

asymptotically available phase space, but it was generalized to tight

generalized transition states by Lin & Light (99). Webb & Chesnavich (189)

have used models involving both tight and orbiting transition states in

generalized statistical phase-space theory calculations on the energy

dependence of the cross sections for the reaction C+ + D2.
Chesnavich (28) proposed a theory related to VTST in which, rather than

varying the dividing surface location, he fixed its location in the entrance

channel and varied its boundary. He obtained upper bounds on cross

sections for atom-diatom exchange reactions.
An important remaining problem in generalized transition state theory is

to estimate recrossing corrections. It would be very convenient if these
could be estimated from local properties of the potential surface. Miller

(114a) attempted to do this using the curvature of the minimum-energy

reaction path at the saddlepoint or the point of maximum curvature;

unfortunately, as discussed elsewhere (180), the predictions of his formulas

do not correlate well with accurate classical dynamics. Global trajectories
provide a more reliable, but more expensive, guide to recrossing effects.
Bowman et al (19) have evaluated transmission coefficients from trajec-
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tories starting in asymptotic regions, and Truhlar & Garrett I-as discussed

in (180, 181)] have evaluated them from trajectories beginning at vari-

ational transition states. Further work using this approach is in progress.

Lee, Bowman, and colleagues (18, 97) suggested using reduced-

dimensionality accurate quantal calculations to obtain transmission

coefficients for full-dimensional TST calculations. In further work, Walker

& Hayes (187) and Bowman et al (21) presented reduced-dimensionality

calculations for reaction of H with vibrationally excited H2. The reduction

in dimensionality was achieved by treating bending degrees of freedom

adiabatically, and it corresponds to using generalized transition state

theory for bending and rotational degrees of freedom and full dynamics for

the two most strongly coupled degrees of freedom. Miller & Schwartz (119)

and Skodje & Truhlar (161) have presented improved system-bath

decompositions of reaction-path Hamiltonians that might be used for this

kind of approximation.

Kuppermann (94), Christov (34), and Truhlar et al (180) have provided

discussions of the relation of transition state theory to accurate collision

theory. The goal of this kind of analysis is to provide further insight into the

dynamical corrections to TST, such as those considered in the previous

paragraphs.
In microcanonical transition state theory one calculates a rate constant

for each total energy of the transition state. Miller (115-117) has pointed

out that one should calculate a distinct microcanonical rate constant for
each irreducible representation of the transition state in the symmetry

group that applies along the reaction path, since states of different

symmetry are decoupled. The difference between the rate constants for

different symmetries is largest for energies near threshold. A related

practical point is that it is sometimes better to base transition state theory

on a reference path through a saddlepoint with two imaginary frequencies.

This kind of reference path has been used for the unimolecular de-

composition of H2CO (116) and for 37C1 q-H35C1 (74). Celli et al (202) 

Sakimoto (203) have calculated ion-dipole capture rate constants using 

average-free-energy-function method and an adiabatic method, respect-

ively; both methods are closely related to/~VT (31).

Tunneling

As discussed above, accurate transmission coefficients that account for
tunneling contributions are an important ingredient in transition state

theory calculations for many cases. We have already mentioned some

aspects of new developments in the theory of tunneling in conjunction with

variational transition state theory calculations.
The most significant qualitative points to emerge from recent work on

tunneling in chemical reactions are: 1. Thc tunneling contributions are
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usually larger than would bc expected by most workers. 2. Reaction-path

curvature effects are often very large, i.e., accurate transmission coefficients

can be calculated only by using dominant tunneling paths systematically

displaced from the minimum-energy reaction path. 3. Tunneling prob-

abilities for multidimensional systems can nevertheless bc calculated

reliably in most or all cases by rcduccd-dimensionality semi-classical

methods.

The simplest and most commonly used methods for approximating

tunneling effects in conventional TST are the methods of Wigner (191) and

Bell (10). In both these methods the potential along the minimum energy

path in the vicinity of the saddlepoint is approximated as a truncated

parabola. The transmission coefficient is obtained by BoltzmannTaveraging

the scmiclassical barrier penetration probabilities. Wigncr’s tunneling
correction is a semiclassical approximation to lowest order in h. This

correction factor is valid only when the correction is small, typically less
than a factor of 2. Bell’s method has a larger region of validity but the

expressions arc discontinuous and contain divergences. Rcccntly, Skodjc &

Truhlar (160) have presented a continuous, divcrgcncc-frcc analytic

expression for the transmission coefficient for a truncated parabolic barrier

that approximates the accurate uniform semiclassical transmission co-

efficients over a wide range of parameters (see also 11). The method is also

applicable to unsymmetric barriers and is shown to bc useful for barriers
with shapes other than parabolic. They also found that it is best to fit the

barrier to a parabola using the effective parabolic width of the nonparabolic

barrier at energies that contribute appreciably to the transmission

coefficient.

The first successful approximation for tunneling in systems with

significant reaction-path curvaturc was dcvelopcd by Marcus & Coltrin

(108) and extended by Garrctt & Truhlar (54, 57, 60, 62). This method

calculates the tunneling action integral along the caustic envelope of a

family of unbound trajectories with quantized adiabatic vibrations; this is
called the Marcus-Coltrin path (MCP). More recently, Gray and co-

workers (76) developed a semiclassical adiabatic model using the reaction-

path Hamiltonian (118) and treating the kinetic energy terms containing
curvature coupling by second-order classical perturbation theory. They

used this second-order (SO) tunneling method involving the adiabatic

barrier to study the unimolecular isomerization of HNC to HCN (76) and

the unimolecular decomposition of formaldehyde (77). Forst (52) 
treated tunneling in formaldehyde decomposition; however, he used the

classical barrier and neglected reaction-path curvature. Ccrjan ct al (25)
unified the semiclassical perturbation approximation with the infinite order

sudden approximation applied to the reaction-path Hamiltonian to obtain

an expression for the total reaction probability that takes the form of a zero-
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curvature adiabatic reaction probability times a curvature-dependent

correction factor.

Skodje et al (162, 163) developed a semiclassical adiabatic model that 

valid for systems with small reaction-path curvature, and they derived a

criterion for the validity of the adiabatic approximation in curvilinear
natural collision coordinates. The small-curvature (SC) tunneling method

is similar to the collinear-reaction method of Marcus & Coltrin (108) but

can be applied without singularities to systems with large reaction-path

curvature, and it is expected to be more accurate for small-curvature

systems. In addition it is applicable to noncollinear systems with reaction-

path curvature components in more than one degree of freedom, for

example it has been applied to calculate large tunneling corrections for the

reactions OH+H2 and isotopic analogs, which have curvature com-

ponents in four of the five vibrational coordinates (84, 181). Skodje et al also

compared, both formally and numerically, the MCP, SC, and SO tunneling

methods, a previously suggested method [the phase average (PA) method

(118)], and three new methods [the vibrational average (VA), 

dynamical-path vibrational average (DA), and the semiclassical optical

potential (SOP) methods]. These adiabatic methods may be classified into

two general groups, depending upon the method used to remove from the

kinetic energy term the dependence upon the coordinates of the bound

degrees of freedom orthogonal to the reaction coordinate. One class of

models (PA, SO, VA, DA, and SOP) accomplishes this by "averaging" the

reaction-path Hamiltonian over the vibrational coordinates either classi-

cally or quantally. The other class (MCP and SC), which is systematically

more successful, defines single values of the vibrational coordinates for each

value along the reaction coordinate. These "vibrational-collapse" models

have the physical interpretation that the tunneling is forced to occur along a

specified path through the interaction region.

For reactions with large reaction-path curvature, the adiabatic ap-

proximation breaks down. Large reaction-path curvature occurs, for
example, in systems in which a light atom is transferred between two heavy

atoms or molecules. Babamov, Marcus, and Lopez (6-8) developed 

method for computing the reaction probability for this type of system, and

they applied it to study tunneling probabilities in the threshold region as

well as the oscillations of the reaction probability as a function of energy for

energies above threshold. Garrett, and co-workers (74) developed a similar

method, which they called the large-curvature (LC) method, and they used

it to calculate thermally averaged tunneling correction factors for VTST.
The physical model for a collinear atom-diatom reaction is that the

tunneling occurs by the most direct path (a straight line) connecting the

reactant and product regions. Motion in the bound vibrational coordinate

(rather than translational motion along the reaction coordinate) promotes
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tunneling, and for a fixed total energy, tunneling can begin at a wide range

of geometries along the caustic parallel to the reaction coordinate from the

asymptotic reactant region to the turning point in the adiabatic potential.

This method was demonstrated to work well for the C1 + HC1 reaction and

isotopic variants in both 1D (17) and 3D (74).

Garrett & Truhlar (65) unified the LC method with the vibrational-

collapse adiabatic models by developing a least-action (LA) tunneling
method. In this method the optimum tunneling path is chosen from a set of

parameterized paths by requiring it to be the one that accumulates the

least imaginary action along the tunneling path. This method was found to

be extremely successful for a system with small-to-large reaction-path

curvature. In practice, transmission coefficients based on the LC and LA

approximations are based on the ground state and are called LCG and

LAG, respectively. See 080) for formulas for applying these methods to

general polyatomic systems.

The methods described above have been applied to reactions with

barriers in the regions of large reaction-path curvature, and reaction-path

curvature effects on tunneling probabilities have been found to be very
important in many cases. For reactions with no barrier, or barriers far into

the reactant and product regions, it is possible to simplify the treatment of

reaction-path curvature. Illies, Jarrold, and Bowers (83, 87) proposed 

tunneling model to describe the unimolecular fragmentation of CH,~ and

NH~-, which are reactions with loose transition states. They approximated

the potential in the tunneling region by a dipole term plus a rotational

barrier from free internal rotation of the molecular fragments and orbital

rotation. Using this model they obtained good agreement between

calculated rate constants and experimental ones.

Heller & Brown (80) presented a method to estimate surface-hopping
probabilities from a bound state on an upper surface to a bound state on a

steep lower surface that does not cross (or avoids crossing) the upper surface

in the classically allowed region, for the case in which a single path

dominates the tunneling. Although the problem is formally quite different

from the problem of single-surface reactive scattering for which the LA

method was developed, the semiclassical solution has some points in

common, especially with our small-curvature limit. Cross-fertilization of

the two methods may provide clues as to how to extend both to a wider

range of problems.

Transition state theory with tunneling has also been used to examine

intramolecular hydrogen-transfer reactions. LeRoy (98) used a phenomeno-
logical model to calculate the rate of transfer of hydrogen atoms between

two nonequivalent sites in large polyatomic molecules. The physical model

is that vibrational stretching of the bond being broken initiates the reaction,
although it is not necessary that 100~ of the energy in the vibration is
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available for promoting the reaction. The effects of the degrees of freedom

orthogonal to the reaction coordinate enter the rate expression through a

steric factor. Adjusting the steric factor, the percentage of vibrational

energy available to the reaction coordinate, and the effective one-

dimensional potential along the tunneling path~ LeRoy found he could
reproduce experimental data for several intramolecular H atom transfer

reactions. Bicerano et al (12) studied a similar problem, the transfer of 

hydrogen atom between equivalent sites in malonaldehyde. For this

symmetric system the potential along the minimum energy path between

the two .equilibrium geometries is a symmetric double well potential.

Tunneling was included in the vibrationally adiabatic approximation with

potential parameters taken from ab initio electronic structure calculations.

Instead of calculating the rate of transfer from one well to another, they

computed the effect of tunneling upon the energy level splitting, obtaining a

result within a factor of two of the experimental one. The polyatomic VTST

formalism discussed above can also be applied to multidimensional
unimolecular isomerizations, with SC, LC, or LA tunneling corrections

(180; F. B. Brown and D. G. Truhlar 1984, unpublished).

Vibrationally Adiabatic Barriers

The free energy of activation curve as a function of reaction coordinate

reduces at 0 K to the vibrationally-rotationally adiabatic ground-state,

s-wave potential curve, or, for short, the vibrationally adiabatic ground-
state potential curve Vf(s). When the shape of this curve is dominated by

the s dependence of high-frequency modes, then the barriers of V~(s)

provide a guide to the location of dynamical bottlenecks at nonzero

temperature or nonzero microcanonical energy. Similarly, the barriers of

vibrationally adiabatic excited-state curves may provide dynamical bot-

tlenecks for reactions of vibrationally excited species.

Agmon (3) suggested using analternative coordinate system to calculate

V~(s), with the goal of improving the accuracy of the separability of the

reaction coordinate that must be assumed in TST or VTST. A difficulty

with Agmon’s coordinate system is that the kinetic energy operator of the

generalized transition state is complicated because the vibrational coordi-

nates are curved. Reaction-path Hamiltonians based on the minimum-

energy path and non-curved vibrational coordinates (56, 57, 70, 84, 104-

107, 118) allow for more convenient calculations of the vibrational energies

of the generalized transition states ; yet, in a quadratic expansion about any

point on the reaction path, the potential energy contains no cross-term

coupling the reaction coordinate to the vibrational coordinates.

Pollak (130, 132-134) calculated vibrationally adiabatic potential curves

and transmission probabilities for the vibrationally excited collinear
H-t-HE reaction and isotopic analogs by quantizing pods, and also, in
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Jacobi coordinates, by treating the one-dimensional bound vibrational

motion quantum mechanically and the reaction-coordinate motion by a

parabolically uniformized semiclassical approximation. He obtained

qualitatively similar results to earlier state-selected vibrationally adiabatic

calculations (57), but better agreement with accurate quantal results for

reaction probabilities of vibrationally excited species. The earlier calcu-

lations had been carried out by the Morse I approximation applied to

locally straight dividing surfaces in coordinates based on the minimum-

energy reaction path. The quantitative differences were attributed to the

Morse I approximation and to the neglect of important curvature

corrections that are contained in pods. Garrett & Truhlar (1984, J. Chem.

Phys. In press) have performed calculations employing straight-line

dividing surfaces perpendicular to the minimum-energy path and using the

WKB approximation for vibrational energies; the new calculations yield

excellent agreement with adiabatic barrier heights obtained by quantizing

pods and also with accurate quantal rate constants for the vibrationally

excited case. This shows that curved generalized transition states are not
necessary for high accuracy. As mentioned in a previous section, the Morse

I approximation, which is very convenient, is usually adequate for thermal

reactions, but WKB or quantal vibrational eigenvalues may be required for

good accuracy for excited states.

Pollak (130, 132), Lee et al (96), and Ron et al (153) also used pods 

vibrational energy calculations in Jacobi coordinates to evaluate adiabatic

barriers for collinear and reduced-dimensionality calculations on the

reactions F + H2 and isotopic analogues and O + Hz. A disadvantage of

Jacobi coordinates is that they yield accurate adiabatic barriers only

relatively far out in the reactants and products channels; and a dis-

advantage of pods is that they exist only for collinear atom-diatom
reactions. Methods based on minimum£energy reaction paths are more

general, although they may be inappropriate in regions of very large

reaction-path curvature; fortunately we have found in applications that

this is not a problem because the variational transition state tends not to be

located in such regions.

Garrett & Truhlar (57) and Pollak (132) also used adiabatic transmission

probabilities to calculate the cumulative reaction probability, which has a

step-like character due to channel openings; these steps should not be

confused with oscillations in the state-selected reaction probabilities, which

are due to interference effects such as resonances, but may sometimes be

explained (46) by invoking only quantal discreteness.
The main reason that quantized VTST is more reliable than standard

trajectory calculations for thermal rate constants is that it incorporates

quantized energy requirements at dynamical bottlenecks, i.e. it incorpor-

ates the constraints of quantized adiabatic barriers. Schatz (154) suggested
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incorporating such energy constraints for low-frequency, classically non-

adiabatic bending modes as ad hoc additions to the potential energy surface

for three-dimensional trajectory calculations.

State-selected Reactions

The discussion in the main part of this review is centered on thermal rate

constants, which are the traditional domain for transition state theory. The

methods of variational transition state theory and related methods are also

useful for understanding excited-state reactivity in certain cases. For

example, adiabatic barriers, as discussed above, may be used to interpret

excited-state reactivity and product-state distributions (130, 133, 197). Full

rate constant calculations for vibrationally excited species may also be

performed by invoking the vibrationally adiabatic or diabatic approxim-

ation for one degree of freedom and variational transition state theory for
others; such calculations have been performed for several collinear

reactions (57, Garrett & Truhlar 1984, J. Chem. Phys. In press), for three-
dimensional H÷H2 and D+H2 (B. C. Garrett and D. G. Truhlar 1984,

unpublished), and for three-dimensional OH + z (179). F or OH +2 (n
= 1), conventional TST predicts a vibrational rate enhancement of > 104,

whereas state-selected VTST predicts 102, which is in good agreement with

experiment (75, 199). State-selected VTST calculations (179) for OH 

also imply that the large-non-Arrhenius behavior for OH + H2 is not a

consequence of the rate enhancement for vibrationally excited H2, as had

been suggested (198).

Pollak & Pechukas (143) showed that one may map out the reactant and

product classical vibrational energy distributions by studying trajectories

initiated in the immediate vicinity of variational transition states.

Resonances

The vibrationally adiabatic potential curves of variational transition state

theory are also very useful for predicting and classifying collisional

resonances in many chemical reactions, especially for thermoneutral and

nearly thermoneutral reactions for which reaction-path curvature is small

or intermediate (9, 64, 71, 158, 159). Variational transition states provide the

barriers to decay of the resonance in the one-dimensional vibrationally
adiabatic model. For large reaction-path curvature or strongly exothermic

reactions, approaches based on resonant periodic orbits or on adiabaticity
in hyperspherical coordinates appear more useful [see, for example, (139,

144, 152) and references therein].

Vibrational Bondin9

Vibrational bonding has received considerable attention in the last couple

of years, and it is interesting to point out how, like resonance phenomena, it

can often be predicted and understood in terms of the same concepts and
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quantities as developed for variational transition state theory. In particular,

vibrational bonding may be considered as the extreme of a pre-threshold

resonance. For example, we observed pre-threshold resonances for col-

linear reactions with mass combinations H + FH and D ÷ FD on a low-

barrier potential energy surface, and these can be understood vibrationally
adiabatically (71, 159). If the mass combination is changed to heavy-light-

heavy, for which generalized-transition-state vibrational energy require-

ments show the most pronounced minimum in the interaction region (58),
the vibrational energy of the resonance will decrease, and the resonance

energy may drop below the zero point energy of the atom-diatom reactants

and thus become a true bound state, even though the lowest point on the

potential surface still occurs for the asymptotic atom-diatom reactants.

This is called vibrational bonding, as opposed to ordinary bonding, with an

equilibrium geometry corresponding to the minimum in the potential

energy surface. A vibrational bonding state was first reported for collinear
IHI (101), and shortly thereafter a vibrational bonding state for three-

dimensional IHI was calculated (39, see also 101, 137). Variational
transition states may serve as effective barriers that contribute to localizing

a vibrational-bonding state in the strong interaction region. Adiabatic

bonding is expected more generally in excited-state vibrationally adiabatic

curves than in ground-state ones; if the adiabatically bound state in an

excited-state vibrationally adiabatic potential curve lies below the asymp-

tote, it may still decay nonadiabatically (158, 159), and thus the state is only

quasibound. Only when vibrational effects are largest does one expect to

find states below the asymptote of Vff(s), and hence vibrational bonding will

occur far less frequently than the similar resonance effect.

CONCLUDING REMARKS

In the last few years it has been shown that variational transition state

theory can be implemented usefully for practical calculations of chemical

reaction rates from potential energy surfaces. When combined with

accurate semiclassical tunneling calculations, VTST is the most accurate

practical method available for such calculations. Variational-transition-

state constructs are also useful for quantitative interpretations of excited-
state reactivity and resonances.
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