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We consider variationally consistent discretization schemes for mechanical
contact problems. Most of the results can also be applied to other variational
inequalities, such as those for phase transition problems in porous media, for
plasticity or for option pricing applications from finance. The starting point
is to weakly incorporate the constraint into the setting and to reformulate the
inequality in the displacement in terms of a saddle-point problem. Here, the
Lagrange multiplier represents the surface forces, and the constraints are re-
stricted to the boundary of the simulation domain. Having a uniform inf-sup
bound, one can then establish optimal low-order a priori convergence rates
for the discretization error in the primal and dual variables. In addition to the
abstract framework of linear saddle-point theory, complementarity terms have
to be taken into account. The resulting inequality system is solved by rewrit-
ing it equivalently by means of the non-linear complementarity function as a
system of equations. Although it is not differentiable in the classical sense,
semi-smooth Newton methods, yielding super-linear convergence rates, can
be applied and easily implemented in terms of a primal–dual active set strat-
egy. Quite often the solution of contact problems has a low regularity, and
the efficiency of the approach can be improved by using adaptive refinement
techniques. Different standard types, such as residual- and equilibrated-based
a posteriori error estimators, can be designed based on the interpretation of
the dual variable as Neumann boundary condition. For the fully dynamic
setting it is of interest to apply energy-preserving time-integration schemes.
However, the differential algebraic character of the system can result in high
oscillations if standard methods are applied. A possible remedy is to modify
the fully discretized system by a local redistribution of the mass. Numeri-
cal results in two and three dimensions illustrate the wide range of possible
applications and show the performance of the space discretization scheme,
non-linear solver, adaptive refinement process and time integration.



1. Introduction

In many industrial applications or engineering problems, contact between
deformable elastic bodies plays a crucial role. As examples we mention
incremental forming processes, the simulation of rolling wheels, braking
pads on tyres and roller bearings. Although early theoretical results go
back to Hertz (1882), there are still many open problems, and the numerical
simulation of dynamic contact problems remains challenging.

These problems are discussed in several monographs on contact mechan-
ics such as Fischer-Cripps (2000), Johnson (1985) and Kikuchi and Oden
(1988). More recent theoretical results on existence and uniqueness can be
found in Eck, Jarušek and Krbec (2005) and Han and Sofonea (2000), and
on mathematical models and numerical simulation techniques in Laursen
(2002), Willner (2003), Wriggers (2006), Wriggers and Nackenhorst (2007)
and the references therein. One of the main challenges relates to the fact
that the actual contact zone is not known a priori and has to be identified
by use of an iterative solver. Moreover, the transition between contact and
non-contact is characterized by a change in the type of the boundary con-
dition, and thus possibly results in a solution of reduced regularity. From
the mathematical point of view, contact problems can be formulated as free
boundary value problems and analysed within the abstract framework of
variational inequalities (Facchinei and Pang 2003a, 2003b, Glowinski, Lions
and Trémolières 1981, Harker and Pang 1990, Kinderlehrer and Stampac-
chia 2000).

This work is an overview of theoretical and numerical results obtained
in recent years. Most of the numerical examples are therefore taken from
the original papers which are cited in the reference list. The numerical
implementation is based on different software codes. In particular, DUMUX
(Flemisch, Fritz, Helmig, Niessner and Wohlmuth 2007), DUNE (Bastian,
Blatt, Dedner, Engwer, Klöfkorn, Kornhuber, Ohlberger and Sander 2008),
NETGEN (Schöberl 1997), PARAVIEW (Ahrens, Geveci and Law 2005),



PARDISO (Karypis and Kumar 1998, Schenk and Gärtner 2004, 2006), and
UG (Bastian, Birken, Johannsen, Lang, Neuß, Rentz-Reichert and Wieners
1997) have been used.

The structure of this paper is as follows. In Section 2, the governing equa-
tions and corresponding inequality constraints for frictional contact prob-
lems are stated. Different equivalent formulations are discussed and a weak
saddle-point formulation is presented. Section 3 is devoted to space dis-
cretization. Special emphasis is placed on uniformly inf-sup stable pairings
and a suitable approximation of the dual cone. Optimal a priori estimates
for the discretization error in the displacement and in the surface traction
are given for low-order finite elements in Section 4. Here, we restrict our-
selves to very simple contact settings with given friction bounds and do not
take non-matching contact zones into account, but allow for non-matching
meshes.

In Section 5, we survey different solver techniques for the non-linear in-
equality system. Of special interest are so-called semi-smooth Newton meth-
ods applied to an equivalent non-linear system of equations. We discuss in
detail the structure of the systems to be solved after consistent linearization.
In particular, in the case of no friction the Newton solver can easily be im-
plemented as a standard primal–dual active set strategy, updating in each
iteration step the type and the value of the boundary condition node-wise.

Section 6 is devoted to different aspects of adaptive refinement. Bear-
ing in mind that the mechanical role of the discrete Lagrange multiplier is
that of a surface traction, different error indicators can easily be designed.
However, the analysis is quite challenging and only a few theoretical results
exist, taking into account possibly non-matching meshes and the inequality
character of the formulation. Here, we provide upper and lower bounds for
a simplified setting and comment on possible generalizations.

Section 7 is devoted to aspects of time integration. For many applications
structure-preserving time-integration schemes are of special interest. In this
context, energy preservation is of crucial importance. Unfortunately most
of the standard techniques result either in very high oscillations in the dual
variable or in numerical dissipation. We apply a newly combined time and
space integration scheme which is motivated by a reduction of the index of
the differential algebraic system.

Finally, in Section 8 we illustrate the flexibility of the proposed approach
by considering applications from different areas. In particular, an exam-
ple from finance shows that the Lagrange multiplier approach based on a
(d − 1)-dimensional H1/2-duality pairing can also be applied to obstacle-
type inequalities reflecting a d-dimensional H1-duality pairing. Of special
interest are examples where d- and (d− 1)-dimensional constraints are im-
posed, such as phase transition problems in heterogeneous porous media
and elasto-plastic mechanical contact problems.



2. Problem setting for mechanical contact

In many applications involving several deformable bodies, frictional contact
has to be considered in conjunction with inelastic material behaviour such
as plasticity. A great deal of research has been done on both of these topics:
see for example Boieri, Gastaldi and Kinderlehrer (1987), Eck et al. (2005),
Johnson (1985), Laursen (2002), Willner (2003), Wriggers (2006) and the
references therein for an overview of contact problems. Characteristically,
this type of application leads to a constrained minimization problem or
more generally to a variational inequality (Harker and Pang 1990, Haslinger,
Hlavác̆ek, Nec̆as and Lov́ı̆sek 1988, Kikuchi and Oden 1988, Kinderlehrer
and Stampacchia 2000). Mathematical analyses of variational inequalities
and constrained minimization problems can also be found in Facchinei and
Pang (2003a, 2003b), Geiger and Kanzow (2002), Glowinski (1984), Glowin-
ski, Lions and Trémolières (1981) and Haslinger, Hlavác̆ek and Nec̆as (1996).
We refer to the recent monographs by Han and Reddy (1999) and Han and
Sofonea (2002) and the references therein for an overview of the mathe-
matical theory and numerical analysis for inequality problems in continuum
mechanics.

Our formulation will be based on a primal–dual pair of variables. In ad-
dition to the displacement which represents the primal variable, the surface
traction on the possible contact zone is introduced as dual variable: see,
e.g., Christensen, Klarbring, Pang and Strömberg (1998). This new pair of
variables has to be admissible, i.e., satisfy the inequality constraints arising
from the non-penetration condition and the friction law.

In this section, we provide the setting of a quasi-static frictional contact
problem between elastic bodies. Figure 2.1 shows the stress components
σxx and σxy for two different situations in the case of three elastic bodies
in contact.

Here, the contact of a deformable body with a rigid obstacle has been
taken into account as well as the contact between deformable bodies. A fully
symmetric situation is shown in Figure 2.1(a,b), and no Dirichlet bound-
ary condition is imposed. The rigid body motions are fixed by the non-
penetration condition and a zero tangential displacement of the centre of
the upper circle. In Figure 2.1(c,d), there is an additional rigid obstacle on
the right of the three circles. Then all rigid body modes are automatically
fixed by the contact conditions.

To simplify the notation, we restrict our attention to two bodies, linear
elasticity in the compressible range and a given constant Coulomb fric-
tion coefficient. However, most of our algorithmic results can easily be
extended to more complex situations. We refer to the early papers by
Laursen and Simo (1993a), Oden, Becker, Lin and Demkowicz (1985), Puso
and Laursen (2004a, 2004b), Puso, Laursen and Solberg (2008), Yang and
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Figure 2.1. Stress component σxx and σxy for a
symmetric (a,b) and a non-symmetric setting (c,d).

Laursen (2008a, 2008b) and Yang, Laursen and Meng (2005) for large defor-
mation contact discretizations on non-matching meshes and to the recent
contributions on solvers by Gitterle, Popp, Gee and Wall (2010), Popp,
Gitterle, Gee and Wall (2010), Popp, Gee and Wall (2009) and Krause and
Mohr (2011). Numerical examples also illustrate the performance of these
approaches in more general formulations, e.g., for nearly incompressible ma-
terials and the inclusion of thermal effects with a temperature-dependent
friction coefficient.

The two bodies in the reference configuration are given by two open
bounded domains Ωs and Ωm ⊂ R

d, d = 2, 3, with Lipschitz boundary
∂Ωs and ∂Ωm, respectively. The notation is adapted to the standard mor-
tar framework, i.e., the upper index s stands for the slave side, and the
index m refers to the master side. The contact conditions will be imposed
weakly in terms of Lagrange multipliers defined on the slave side. Thus the
displacement on the slave side has to follow the displacement of the master
side in the event that the constraints are active. This observation motivates
the terminology. The boundary ∂Ωk is partitioned into three open disjoint
measurable parts Γk

D,Γ
k
N, and Γk

C, k ∈ {m, s}. Dirichlet conditions will be
set on Γk

D and Neumann data on Γk
N. For simplicity of notation, we assume

firstly that meas(Γk
D) > 0, k ∈ {s,m}, secondly that Γs

D is compactly em-

bedded in ∂Ωs \ Γ
s
C, and thirdly that the actual contact zone Bn ⊂ Γs

C is
compactly embedded in Γs

C. The first assumption on the Dirichlet boundary
part means that Korn’s inequality holds on each body, and thus that we do
not have to deal with extra rigid body motions. The second assumption
guarantees that the trace space restricted to Γs

C does not see any boundary
condition originating from Γs

D. As we will see later, the third assumption on
the actual contact zone guarantees that the support of the surface traction
on Γs

C is compactly embedded in Γs
C.

Throughout this paper, we use the standard notation for the Sobolev
space Hs(ω), s ≥ 1, where ω is a suitable subdomain of Ωk, k ∈ {s,m},
and denote the associated norm with ‖ · ‖s;ω. The broken Hs-norm on Ω is
given by ‖v‖2s;Ω := ‖vs‖2s;Ωs+‖vm‖2s;Ωm for v := (vs, vm) ∈ Hs(Ωs)×Hs(Ωm).



On (d − 1)-dimensional manifolds γ such as Γs
C, we use the Sobolev space

Hs(γ), s ≥ 0, and its dual space H−s(γ). We point out that in our notation

H−1/2(γ) is not the dual space of H
1/2
00 (γ) but of H1/2(γ). The dual norm

is defined in the standard way by

‖μ‖−s;γ := sup
v∈Hs(γ)

〈μ, v〉s;γ
‖v‖s;γ

, s ≥ 0, (2.1)

where 〈·, ·〉s;γ denotes the duality pairing. We note that the second assump-

tion on the Dirichlet boundary part allows one to work with H1/2(Γs
C).

Otherwise, we would have to consider the more complex H
1/2
00 (Γs

C) space,
as in the mortar framework with cross-points (Bernardi, Maday and Pa-
tera 1993, 1994). We refer to the recent monograph on the theory and
implementation of mortar methods by Lacour and Ben Belgacem (2011)

In what follows, we shall frequently use the generic constants 0 < c,C <
∞, which are independent of the mesh size but possibly depend on the
regularity of the domain or the mesh. Vectorial quantities are written in
bold, e.g., x, y, and for simplicity of notation xy stands for the scalar
product between x and y. Tensorial quantities are represented by bold
greek symbols.

2.1. Problem formulation in its strong form

For the moment we restrict ourselves on each body to a homogeneous
isotropic linearized Saint Venant–Kirchhoff material and also to the small
strain assumption. Then, the strain-displacement relation is defined by
ε(v) := 1/2(∇v + (∇v)�) and the constitutive equation for the stress ten-
sor is given in terms of the fourth-order Hooke tensor C by

σ(v) := λ tr(ε(v))Id+ 2με(v) =: Cε(v). (2.2)

Here tr denotes the trace operator and Id the identity in R
d×d. The positive

coefficient λ and the shear modulus μ are the Lamé parameters, which are
assumed to be constant in each subdomain Ωk, k ∈ {s,m}, but have possibly
quite different values on the slave and master side. We note that the Lamé
parameters can be easily calculated from the Poisson ratio and Young’s
modulus.

Then, the linearized elastic equilibrium condition for the displacement
u := (um,us) can be written as

− divσ(u) = f in Ω,

u = uD on ΓD := Γm
D ∪ Γs

D,

σ(u)n = fN on ΓN := Γm
N ∪ Γs

N,

(2.3)

where n stands for the outer unit normal vector, which is almost every-
where well-defined. Here, the volume force f , the Neumann data fN, and



the Dirichlet condition uD are assumed to be in (L2(Ω))d, (L2(ΓN))
d and

(C(Γs
D) ∩ H1/2(Γs

D))
d × (C(Γm

D) ∩ H1/2(Γm
D))

d, respectively. Moreover, we
assume that Creg <∞ exists such that

sup
v∈(H1(Ωs))d

v|Γs
D

=0

∫
Ωs fv dx+

∫
Γs
N
fNv ds

‖v‖1;Ωs
≤ Creg sup

v∈(H1(Ωs))d

v|Γs
D
∪Γs

C

=0

∫
Ωs fv dx+

∫
Γs
N
fNv ds

‖v‖1;Ωs
.

(2.4)
These regularity assumptions on the data can be considerably weakened but
for most examples these hold.

In addition to (2.3), we have to satisfy the contact constraints on Γs
C:

the linearized non-penetration condition in the normal direction and the
friction law in the tangential direction. These constraints can be formulated
by means of the displacement and the surface traction λ := −σ(us)ns. The
linearized non-penetration condition reads as

[un] ≤ g, λn ≥ 0, λn([un]− g) = 0, (2.5)

where g ∈ H1/2(Γs
C) is the linearized gap function between the two de-

formable bodies. The linearized setting can be expressed in terms of the
normal contributions with respect to the reference configuration. Here
λn := λns is the normal component of the boundary stress, and [un] :=
(us − um ◦ χ)ns is the jump of the mapped boundary displacements, where
χ(·) denotes a suitable mapping from Γs

C onto Γm
C .

In addition to (2.5), we have to satisfy the quasi-static Coulomb law

‖λt‖ ≤ νλn, [u̇t]λt − νλn‖[u̇t]‖ = 0, (2.6)

where the tangential components are defined by λt := λ− λnn
s and [ut] :=

[u] − [un]n
s, [u] := us − um ◦ χ, ν ≥ 0 is the friction coefficient, and ‖ · ‖

stands for the Euclidean norm. We note that for the dynamic case, inertia
terms have to be included, and the volume mass density of the two bodies
has to be taken into account: see Section 7. For the moment we focus on the
static Coulomb law, i.e., we replace the tangential velocity by the tangential
displacement in (2.6). This problem type has then to be solved in each time
step if an implicit time-integration scheme is used.

Figure 2.2 illustrates the notation and the situation for finite deforma-
tions. In that case the Jacobian of the deformation mapping has to be taken
into account and the non-penetration has to be formulated with respect to
the actual configuration.

We recall that in the reference configuration Γs
C and Γm

C do not have
to be matching, and thus the displacement from the master side has to be
projected onto the slave side. Moreover, the contact surface tractions on the
master and slave body have to be in equilibrium in the actual configuration.
In the case of linear elasticity, reference and actual configuration can be
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Figure 2.3. Surface traction of a Hertz contact
problem with Coulomb friction for different values
of the friction coefficient ν ∈ {0, 0.05, 0.15, 0.3, 0.5}.

2.2. Formulation of the weak problem

We start with a detailed discussion of different but equivalent formulations
of the contact problem with no friction, i.e., ν = 0. Then the problem
is equivalent to a standard variational inequality of the first kind or to
an energy-minimization problem on a convex set. The frictionless contact
problem with a linearized non-penetration condition can be stated as fol-
lows. Find u ∈ K such that

J(u) = inf
v∈K

J(v), (2.7)

where the convex set K is given by all admissible solutions, and the energy
is defined by J(v) := 1

2a(v,v)−f(v). Here, the bilinear form a(·, ·) is given,
for v,w ∈ V := Vm ×Vs := (H1(Ωm))d × (H1(Ωs))d, by

a(w,v) := am(w
m,vm) + as(w

s,vs),

ak(w
k,vk) :=

∫
Ωk

σ(wk) : ε(vk) dx, k ∈ {m, s},

and the linear form f(·) is defined for all v ∈ V in terms of

f(v) := fs(v
s) + fm(v

m), fk(v
k) :=

∫
Ωk

fvk dx+

∫
Γk
N

fNv
k ds.

In addition to the Hilbert space V, we introduce the subset K ⊂ V:

K := {v ∈ V | v = uD on ΓD and [vn] ≤ g on Γs
C}.

By definition K is a closed convex non-empty set, f(·) is a continuous linear
functional on V, and the bilinear form a(·, ·) is continuous on V ×V and
elliptic with respect to the Hilbert space V0 := {v ∈ V,v = 0 on ΓD}.



Thus the constrained minimization problem (2.7) has a unique solution:
see, e.g., Glowinski (1984). Due to the symmetry of the bilinear form a(·, ·),
(2.7) can be equivalently written as a variational inequality of the first kind,
i.e., find u ∈ K such that

a(u,v − u) ≥ f(v − u), v ∈ K, (2.8)

or as a variational inequality of the second kind, i.e., find u ∈ V such that

a(u,v − u) + χK(v)− χK(u) ≥ f(v − u), v ∈ V, (2.9)

where χK is the indicator functional of K, i.e., χK(v) := ∞ if v �∈ K
and zero otherwise. We refer to Brezis (1971), Duvaut and Lions (1976),
Fichera (1964), Glowinski (1984), Glowinski et al. (1981), Kinderlehrer and
Stampacchia (2000) and the references therein for an abstract mathematical
framework on inequalities as well as for the so-called Signorini problem and
its physical and mechanical interpretation. It is easy to see that in the
special case of a variational inequality of the first kind with the convex set
being a Hilbert space, existence and uniqueness of a solution follow directly
from the Lax–Milgram theorem. Alternatively to the pure displacement-
based formulation, the Signorini problem can be characterized in terms of
the contact pressure as unknown variable; see, e.g., Demkowicz (1982).

We note that the convex set K can be characterized in terms of a dual
cone. To do so, we introduce the dual space M := (M)d := (W ′)d =: W′

of the trace space W := W d := (H1/2(Γs
C))

d and define the bilinear form
b(·, ·) by

b(μ,v) := 〈μ, [v]〉Γs
C
, v ∈ V,μ ∈ M,

where 〈·, ·〉Γs
C
stands for the H1/2-duality pairing on Γs

C, and [v] := vs −
vm ◦χ. It is assumed that χ is smooth enough such that for v ∈ V we have
[v] ∈ W. In terms of the bilinear form b(·, ·), the closed non-empty convex
cone M+ is set to

M+ :={μ ∈ M | 〈μ,w〉Γs
C
≥ 0,w ∈ W+

n }, (2.10a)

W+
n :={w ∈ W | wn ∈W+}, W+ := {w ∈W | w ≥ 0}. (2.10b)

Here, we assume that ns is smooth enough such that for w ∈ W and w ∈W
we also have wn ∈ W and wns ∈ W, respectively. Then the definitions of
μn ∈M for μ ∈ M and of μnn

s ∈ M for μn ∈M given by

〈μn, w〉Γs
C
:= 〈μ, wns〉Γs

C
, w ∈W,

〈μnns,w〉Γs
C
:= 〈μn, wn〉Γs

C
, w ∈ W,

respectively, are consistent in the sense that 〈μn, wn〉Γs
C
= 〈μnns, wnn

s〉Γs
C

for all μ ∈ M and w ∈ W. As a result the bilinear form b(·, ·) can be split



in a well-defined normal and tangential part,

b(μ,v) = bn(μ,v) + bt(μ,v) (2.11)

with bn(μ,v) := b(μnn
s,v), bt(μ,v) := b(μt,v), μt := μ− μnn

s.
The situation that ns is only piecewise well-defined on Γs

C can be handled
by decomposing the contact zone into non-overlapping subparts γj ⊂ Γs

C,
defining all quantities with respect to γj and using product spaces and
broken duality pairings.

Now, observing that K can be written as

K = {v ∈ V | v = uD on ΓD and b(μ,v) ≤ g(μ),μ ∈ M+},
where g(μ) := 〈μn, g〉Γs

C
, μ ∈ M, we obtain the saddle-point formulation of

(2.8). Find (u,λ) ∈ VD ×M+ such that

a(u,v) + b(λ,v) = f(v), v ∈ V0,

b(μ− λ,u) ≤ g(μ− λ), μ ∈ M+,
(2.12)

with the convex set VD := {v ∈ V,v = uD on ΓD}.
Lemma 2.1. The three inequality formulations (2.8), (2.9) and (2.12) are
equivalent in the sense that if (u,λ) solves (2.12), then u is the solution of
(2.8) and (2.9), and if u solves (2.8) or (2.9), then (u,λ), with λ ∈ M,

〈λ,w〉Γs
C
:= f(Hw)− a(u,Hw), w ∈ W (2.13)

satisfies (2.12). Here we have used Hw := (0,Hsw), where Hs is the har-
monic extension onto Vs

0 := {v ∈ Vs | v = 0 on Γs
D} with respect to the

bilinear form as(·, ·).
Proof. For convenience of the reader we recall some of the basic steps and
refer to the monographs by Glowinski (1984) and Glowinski et al. (1981)
for further details. In particular, we comment on the formula (2.13) for the
Lagrange multiplier. The equivalence between (2.8) and (2.9) is standard.

Let (u,λ) be a solution of (2.12); then for all μ ∈ M+ we have μ+λ ∈ M+

and thus u ∈ K, and moreover b(λ,u) = g(λ). For v ∈ K we find v−u ∈ V0

and thus a(u,v − u) = f(v − u)− b(λ,v − u) ≥ f(v − u) + g(λ)− g(λ).
Let u be the solution of (2.8). Then, for all w ∈ W+

n , we have v :=
u − Hw ∈ K. Now the definition (2.13) of λ yields 〈λ,w〉Γs

C
= a(u,v −

u)− f(v − u) ≥ 0 for all w ∈ W+
n and thus λ ∈ M+. Moreover, observing

that v± := u ± H((g − [un])n
s) is in K, we get a(u,H((g − [un])n

s)) =
f(H((g − [un])n

s)), from which we conclude that

0 = 〈λ, (g − [un])n
s〉Γs

C
= 〈λn, g〉Γs

C
− bn(λ,u) = g(λ)− b(λ,u).

Then the second line of (2.12) holds by the definition of K. To see that
(2.13) also satisfies the first line of (2.12), we set w := u± (v −H[v]) ∈ K



for v ∈ V0 and use w as a test function in (2.8), resulting in

0 = a(u,v −H[v])− f(v −H[v]) = a(u,v)− f(v) + 〈λ, [v]〉Γs
C
.

Remark 2.2. We note that the saddle-point formulation (2.12) also has a
unique solution. The uniqueness of the displacement is already established
by Lemma 2.1. For the uniqueness of the surface traction a suitable inf-
sup condition has to be satisfied. By definition, M is the dual space of
W, which is the trace space of Vs

0 := {v ∈ Vs | v = 0 on Γs
D}, and the

extension theorem yields that

inf
μ∈M

sup
v∈V0

b(μ,v)

‖μ‖− 1
2
;Γs

C
‖v‖1;Ω

≥ inf
μ∈M

sup
v∈Vs

0

b(μ,v)

‖μ‖− 1
2
;Γs

C
‖v‖1;Ωs

≥ Cinf inf
μ∈M

sup
w∈W

〈μ,w〉Γs
C

‖μ‖− 1
2
;Γs

C
‖w‖ 1

2
;Γs

C

= Cinf.

The case of Coulomb friction is more involved; we refer to Eck et al.
(2005) for existence and regularity results and only mention that, for ν small
enough, a unique solution exists. For contact problems in viscoelasticity we
refer to Eck and Jarušek (2003) and Han and Sofonea (2002). In particular,
the admissible solution space depends on the solution itself and cannot be
characterized without knowledge of the contact pressure.

After these preliminary remarks, we can now easily extend our saddle-
point formulation (2.12) for ν = 0 to ν ≥ 0. We observe that M+ defined
by (2.10a) can also be written as

M+ = {μ ∈ M | μn ∈M+,μt = 0},

with M+ := {μ ∈ M | 〈μ,w〉Γs
C
≥ 0, w ∈ W+}. For ν > 0 the tangential

part of the surface traction, in general, does not vanish, and thus one has
to work with a vectorial Lagrange multiplier, which is not necessary for a
frictionless contact problem. Replacing the convex cone M+ in (2.12) by

M(λn) := {μ ∈ M | 〈μ,v〉Γs
C
≤ 〈νλn, ‖vt‖〉Γs

C
,v ∈ W with − vn ∈W+},

(2.14)
we obtain the weak saddle-point formulation of a static Coulomb problem
between two linearly elastic bodies as follows. Find (u,λ) ∈ VD ×M(λn)
such that

a(u,v) + b(λ,v) = f(v), v ∈ V0,

b(μ− λ,u) ≤ g(μ− λ), μ ∈ M(λn).
(2.15)

In the case of the quasi-static version, one has to replace b(μ−λ,u) in the
second line of (2.15) by bn(μ− λ,u) + bt(μ− λ, u̇). Comparing (2.12) and
(2.15), we find that the only, but essential, difference is the solution cone
for the Lagrange multiplier λ. The key idea for the proof of existence is to



define a series of solutions (uk,λk) ∈ VD ×M(λk−1
n ) and apply Tikhonov’s

fixed-point theorem: see, e.g., Eck et al. (2005).
In the following we will frequently make use of the Karush–Kuhn–Tucker

(KKT) conditions.

Lemma 2.3. Let (u,λ) ∈ VD×M(λn) be the solution of (2.15); then the
non-penetration KKT condition

λn ∈M+, g − [un] ∈W+, bn(λ,u) = 〈λn, g〉Γs
C

(2.16)

holds. Moreover, under suitable regularity, the Coulomb law in its weak
form

λ ∈ M(λn), bt(λ,u) = 〈νλn, ‖[ut]‖〉Γs
C

(2.17)

is satisfied.

Proof. We observe that the constraint on λn in (2.16) follows directly from
the definition of M(λn). Using the additive splitting (2.11) and setting
as test function μ := λ ± λnn

s in (2.15), we get the equality in (2.16).
Observing that W+, defined in (2.10b), can also be characterized by W+ =
{w ∈W | 〈μ,w〉Γs

C
≥ 0, μ ∈M+}, it trivially holds that g− [un] ∈W+. For

(2.17) we assume that there exists a χ such that ‖χ‖ ≤ 1, χ[ut] = ‖[ut]‖,
and we have χv ∈W for v ∈ W. Then, we get μ := λnn

s+νλnχ ∈ M(λn)
and b(μ − λ,u) = b(νλnχ,u) − b(λt,u) = 〈νλn, ‖[ut]‖〉Γs

C
− bt(λ,u) ≤ 0,

from which the equality in (2.17) follows from the definition (2.14).

Remark 2.4. The special case of a contact problem between one elastic
body and a rigid obstacle can be obtained from the two-body situation. A
rigid body can be regarded as an infinitively stiff elastic body, and thus the
limit case λm, μm → ∞ results in a one-body case where formally um = 0.

To conclude this section, we briefly comment on numerical stability issues
in elasticity and on the extension to the case of a solution-dependent friction
coefficient.

2.3. Nearly incompressible materials

In the nearly incompressible case, the Poisson ratio tends to 0.5 and thus
the ratio between λ and μ tends to infinity. The definition of the bilinear
form a(·, ·) in terms of the linearized stress (2.2) shows that the continuity
constant depends on max(λ, μ), while the coercivity constant depends on μ.
As a consequence, a priori estimates for standard low-order finite elements
involve large constants, and volumetric locking can be observed numeri-
cally. To handle such a case appropriately, special discretization techniques
are required. Methods associated with the enrichment or enhancement of
the strain or stress field by the addition of carefully chosen basis functions
have proved to be highly effective and popular. The key work dealing with
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Figure 2.4. Von Mises stress and deformed mesh of a contact
between a soft nearly incompressible material (lower body) and
two hard compressible ones (upper bodies): standard low-order
(a,b) and Hu–Washizu-based (c,d) discretization.

enhanced assumed strain formulations is Simo and Rifai (1990). Figure 2.4
shows the setting of a contact problem between a nearly incompressible
soft rubber-like material and a compressible hard one. In Figure 2.4(a,b)
standard conforming low-order finite elements are applied, whereas in (c,d)
special low-order Hu–Washizu-based elements are used. Here the starting
point is the Hu–Washizu formulation (Hu 1955, Washizu 1955), in which
the unknown variables are displacement, strain, and stress. This formu-
lation (see also Felippa (2000) for some historical comments) can serve as
the point of departure for the development of enhanced strain formulations;
see also, e.g., Braess, Carstensen and Reddy (2004), Kasper and Taylor
(2000a, 2000b), Simo and Armero (1992), Simo, Armero and Taylor (1993)
and Simo and Rifai (1990).

For both discretization schemes the numerically obtained von Mises stress
and a zoom of the deformed meshes are depicted in Figure 2.4. As can
be clearly observed in the case of the standard scheme, volumetric lock-
ing occurs, resulting in a very stiff response of the soft material; only a
modified scheme can provide a good approximation. In the numerical ex-
periment, we use a pure displacement-based formulation obtained from local
static condensation of a three-field formulation: see Lamichhane, Reddy and
Wohlmuth (2006) for details.

To get a better feeling for the influence of Poisson’s ratio on the quality of
the discretization, we consider the classical Hertz contact problem between
a circle and a half-plane, which is approximated by a rectangle. In that
situation the maximum of the contact pressure as well as the contact radius
can be computed analytically in terms of the material parameters (Johnson
1985)

pmax =
2f

πrcont
, rcont = 2

√
fr(1− ν2Poisson)

Eπ
,



Table 2.1. Comparison of standard scheme (Q1) with a displacement-based
Hu–Washizu method (HW) for different values of the Poisson ratio.

Poisson ratio Contact pressure: pmax Contact radius: rcont
νPoisson Q1 HW ‘Exact’ Q1 HW ‘Exact’

0.1 16.7840 16.7708 17.1564 0.3437 0.3750 0.3709
0.45 19.0973 19.0460 18.9238 0.3125 0.3125 0.3363
0.49 19.9255 19.5690 19.3374 0.2812 0.3125 0.3291
0.499 21.5690 19.7007 19.4394 0.2500 0.3125 0.3274
0.4999 31.0458 19.7144 19.4497 0.1875 0.3125 0.3272
0.49999 52.2592 19.7158 19.4508 0.1250 0.3125 0.3272
0.499999 58.4622 19.7159 19.4509 0.0938 0.3125 0.3272

where r is the radius of the circle, f the applied point load, νPoisson the
Poisson number and E Young’s modulus.

A quantitative comparison of the two discretization schemes is given in
Table 2.1. In the compressible range, both schemes provide quite good and
accurate numerical approximations even for coarse meshes. However, the
situation is drastically changed if Poisson’s ratio tends to 0.5. From 0.49
on, from row to row, λ is increased by a factor of 10. In the case of standard
conforming low-order elements, the contact radius tends to zero, and thus
the maximal contact pressure tends to infinity. In contrast, the analytical
solution as well as the Hu–Washizu-based formulation yield convergence to a
non-zero contact radius, and the maximum of the contact pressure remains
finite. The limit of the standard scheme is an unphysical point contact, with
the surface traction being a delta distribution.

From now on, we assume that we are in the compressible range and that
we do not have to face numerical problems due to the material parameters.

2.4. Thermo-mechanical contact problem

Coupled contact problems where the coefficient of friction depends on the
solution itself are quite difficult to analyse. Although non-trivial from the
theoretical point of view, these generalized settings do fit perfectly well
into the computational framework. Figure 2.5 shows the temperature dis-
tribution of a sliding body undergoing thermo-mechanical contact. The
discretization in space is based on non-matching meshes and no re-meshing
has to be done. For the time integration we apply a simple mid-point rule
in combination with standard mass lumping techniques; see Hüeber and
Wohlmuth (2009) for details and further numerical results for this example.

In addition to the displacement, the temperature T is a primal variable,
and a bi-directionally coupled thermo-mechanical system has to be con-



Figure 2.5. Temperature distribution at time tk−1/2 for k = 14, 26, 38, 50.
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Figure 2.6. Friction coefficient and temperature at the
contact nodes on the cutting line y = 0 for k = 14, 26, 38, 50.

sidered. More precisely, the relative temperature enters in terms of the
thermal expansion coefficient in the definition of the mechanical stress. In
addition, we have to consider the first and second law of thermodynamics.
The heating from the Joule effect adds the source term div u̇ to the heat
equation, and thus a fully coupled system is obtained: see, e.g., Fluegge
(1972) and Willner (2003). From the theoretical point of view, thermo-
mechanical contact problems have been analysed in Eck (2002) and Eck
and Jarušek (2001)

Moreover a friction coefficient ν(T ) ≥ 0, which is monotone decreasing in
T , modelling a thermal softening effect, has been applied. It tends to zero
in the critical case that the temperature tends to the damage temperature:
see, e.g., Laursen (2002).

Figure 2.6 shows the evolution of the temperature-dependent friction co-
efficient and the temperature at the nodes in contact for different time steps.
The dashed horizontal line marks the static coefficient of friction, and the
two vertical lines indicate the actual contact zone. Due to the heating of the
two bodies, the temperature increases over time and thus ν(T ) decreases.
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Figure 3.4. Non-optimal error decay for a node-to
node coupling: scalar case (a) and linear elasticity (b).

contact stress vanishes. In the limit ε → ∞, the correct constrained solu-
tion is recovered but then the condition number of the system tends to be
extremely large. Figures 3.2(b) and 3.2(c) compare the numerical results
of a penalty approach with a large value for ε with a weakly consistent
Lagrange multiplier-based formulation. Both results show the same good
quality of approximation, but the latter approach has a much better con-
dition number and thus is more suitable for fast iterative solvers such as
multigrid or domain decomposition methods.

Nowadays penalty techniques and simple node-to-node coupling strate-
gies are increasingly replaced by variationally consistent methods which
pass suitable patch tests in the case of non-matching meshes. The admis-
sibility of the discrete solution is then formulated in a weak variational
framework. Displacement and surface traction form a primal–dual pair of
unknown variables and have to be discretized.

Figure 3.3 illustrates the difference between a simple node-to-node cou-
pling strategy and a variationally consistent approach. A constant force
can only be mapped correctly from the slave to the master side if a weak
coupling is applied. The simple node-to-node coupling yields poor numeri-
cal results if non-matching meshes are used, whereas a sliding of the mesh
does not influence the approximation quality in the case of a variationally
consistent scheme.

Figure 3.4 shows the quantitative error decay for a node-to-node coupling
in the case of non-matching meshes. As a patch test, we select a linear
solution which can be represented exactly by standard low-order finite ele-
ments. In Figure 3.4(a), the scalar-valued Laplace operator is considered,
whereas in Figure 3.4(b) the results for the vector-valued system of linear
elasticity are presented; see Dohrmann, Key and Heinstein (2000) for the
parameter specifications. In both cases, the exact solution cannot be repro-
duced, and the error decay is sub-optimal. A first-order error decay can be
only observed for the L2-norm but not for the H1-norm. However, in the



case of a variationally consistent weak formulation, the exact solution can
be recovered and the error is equal to zero on all meshes. From the theo-
retical point of view, a node-to-node coupling is associated with a discrete
Lagrange multiplier being represented by a linear combination of delta dis-
tributions, which is not compatible with the required H1/2-duality pairing.
In the following, we restrict ourselves to discrete Lagrange multiplier spaces
being L2-conforming.
To obtain a stable and well-posed discrete setting, a uniform inf-sup condi-

tion has to be satisfied. Roughly speaking this means that the trace space of
the discrete displacement has to be well balanced with the finite-dimensional
space for the surface traction, also called the Lagrange multiplier. A neces-
sary condition is that the dimension of the Lagrange multiplier space is less
than or equal to the dimension of the jump of the trace spaces. There exists
a large variety of different construction principles, all leading to optimal
a priori estimates in the case of standard variational equalities. Quite often
such a condition is numerically verified by the Bathe–Chapelle inf-sup test
(Chapelle and Bathe 1993). A mathematically rigorous analysis can be per-
formed within the abstract framework of mortar settings on non-matching
meshes; see, e.g., Ben Belgacem and Maday (1997) and Bernardi, Maday
and Patera (1993, 1994). Early theoretical results on uniform stable dis-
cretization schemes for contact problems without friction can be found in
Ben Belgacem (2000) and Ben Belgacem, Hild and Laborde (1997, 1999).
When a vector-valued Lagrange multiplier is used, there is no algebraic dif-
ference between a contact problem with Coulomb friction and one without.
Thus, quite often solvers and error estimators designed for contact problems
without friction naturally apply to contact problems with Coulomb friction.
However, we recall that from the theoretical point of view there is a possi-
bly considerable difference, as for existence and uniqueness results; see, e.g.,
Eck et al. (2005) and Kikuchi and Oden (1988).

In this section, we illustrate the fact that a weakly consistent discretiza-
tion based on a biorthogonal set of displacement traces and surface tractions
is well suited to the numerical simulation of contact problems. While simple
node-to-node coupling strategies are known to show locking effects as well
as unphysical oscillations when applied to non-matching meshes, variation-
ally consistent formulations based on uniform inf-sup stable pairings do not
exhibit this behaviour. Moreover, the biorthogonality of the basis functions
of such a pairing yields a stable node-to-segment coupling concept where
the simple interpolation is replaced by a quasi-projection. This is quite
attractive because of the locality of the coupling constraints.

The discretization of the system is based on the saddle-point formulation
(2.15). Both cases, the frictionless case and that with Coulomb friction,
can be handled within the same abstract framework. In the case ν = 0,
we do not work with the primal variational inequality (2.8) but also use



the primal–dual variational inequality setting. A low-order pair of primal–
dual variables for the displacement u and the surface traction λ on the
contact zone will be applied. As usual in the mortar context, the Lagrange
multiplier space is associated with the (d − 1)-dimensional surface mesh
on Γs

C inherited from the volume mesh on the slave side. In addition, the
degrees of freedom from the master side will not be required for the inf-sup
condition to hold. Thus the inf-sup constant is independent of the ratio
between the mesh sizes of the master and slave sides and also independent
of the non-matching character of the meshes, which is quite attractive in
dynamic situations when sliding geometries occur.

In the linear saddle-point theory, it is well established (Brezzi and Fortin
1991, Nicolaides 1982) that a priori estimates in terms of the best approx-
imation error of the primal and dual variables can be obtained if stability
and continuity of the relevant bilinear forms are given. The norm for the
displacement is the product H1-norm, and for the surface traction, the
H−1/2-norm defined as the dual norm of the H1/2-norm on Γs

C. Thus, to
obtain first-order estimates for the best approximation error, the natural
choice for the displacement is the lowest-order conforming finite element
space on each of the two subdomains, whereas for the Lagrange multiplier
several interesting choices exist. Basically all existing possibilities from the
mortar literature can be used, e.g., piecewise constants associated with the
dual mesh or low-order conforming finite elements.

3.1. A pairing, not uniformly stable

Before going into the details of the discretization, we consider a counter-
example. We note that element-wise constants for the Lagrange multiplier
do not yield optimal estimates. Although the best approximation error of
element-wise constants with respect to the L2-norm is of order one, this
combination of primal and dual variables is not uniformly inf-sup stable.
A mesh-dependent inf-sup constant results in a reduced convergence rate.
Figure 3.5 illustrates this non-uniformly stable pairing in a one-dimensional
setting.

Let the unit interval I := (0, 1) be decomposed into Nl := 2l, l ∈ N,
sub-intervals Ii := (i− 1, i)/Nl, i = 1, . . . , Nl, of equal length and

Wl := {v ∈ C(I); v|Ii ∈ P1(Ii), i = 1, . . . , Nl},
Ml := {v ∈ L2(I); v|Ii ∈ P0(Ii), i = 1, . . . , Nl}.

Then each μl ∈ Ml can be written as μl =
∑Nl

i=1 αiψi, with αi ∈ R, and
where ψi stands for the characteristic function of the sub-interval Ii. Each
vl ∈Wl has the form vl =

∑Nl
i=0 biφi, with bi ∈ R, and where φi denotes the

standard hat function associated with the node xi := i/Nl, i = 0, . . . , Nl.





Moreover, a standard inverse estimate for finite elements and the fact that
the Euclidean norm of B−1

l is bounded in terms of Nl, i.e., ‖B−1
l ‖ ≤ CNl,

gives

‖Flv‖ 1
2
;I ≤ ‖w1‖ 1

2
;I + ‖w2‖ 1

2
;I ≤ C(‖v‖ 1

2
;I +

√
Nl‖w2‖0;I)

≤ C(‖v‖ 1
2
;I +

√
Nl‖B−1

l ‖‖Πl(v − w1)‖0;I)

≤ C(‖v‖ 1
2
;I +

√
NlNl‖v − w1‖0;I) ≤ CNl‖v‖ 1

2
;I ,

where Πl stands for the L
2-projection onto Ml.

To show that the estimate (3.1) is sharp, we have to specify a μl ∈ Ml

such that no better bound can be obtained. Let us consider the choice
αi := (−1)i(i − 1)(Nl − i): see Figure 3.5(b,c). The definition of the dual

norm (2.1) yields ‖μl‖− 1
2
;I ≥ c

∑Nl
i=1 |αi|/(Nl

√
Nl) ≥ cNl

√
Nl. Then, for

l ≥ 2 a straightforward computation and a standard inverse estimate shows∫
I
μlvl ds =

Nl∑
i=1

(−1)i(i− 1)(Nl − i)(bi−1 + bi)/(2Nl)

=

Nl−1∑
i=1

(−1)i(2i−Nl)bi/(2Nl)

=
1

2Nl

Nl/4∑
i=1

(Nl + 1− 4i)
(
(b2i−1 − b2i) + (bNl−2i − bNl+1−2i)

)
+

1

2Nl

Nl/2−1∑
i=1

(bi − bNl/2+i)

≤ C(|vl|1;I + ‖vl‖0;I) ≤ C
√
Nl‖vl‖ 1

2
;I ≤ C

Nl
‖vl‖ 1

2
;I‖μl‖− 1

2
;I .

Remark 3.2. A possible remedy would be to use a coarser mesh for the
Lagrange multiplier space. The pairing (Wl,Ml−1) is uniformly inf-sup sta-
ble. Alternatively, the spaceWl can be enriched by locally supported bubble
functions, as is done in Brezzi and Marini (2001) and Hauret and Le Tallec
(2007). Here we do not follow these possibilities, but use only Lagrange
multiplier spaces being defined on the same mesh as the trace space of the
slave side and having the same nodal degrees of freedom.

3.2. Stable low-order discretization

On each subdomain Ωk, k ∈ {m, s}, independent families of shape-regular
triangulations T k

l , l ∈ N0, will be used, and we set Tl := T m
l ∪ T s

l and

Ω
k
l := ∪T∈T k

l
T . The maximum element diameter of the triangulation Tl is







linear approach, respectively. As will be seen, the cubic dual Lagrange mul-
tiplier goes hand in hand with the definition of H(div)-conforming mixed
finite elements for linear elasticity and fits well into the construction of
a posteriori error estimators based on element-wise lifting techniques: see
Section 6.

The following two remarks briefly comment on more general formulations.
In particular, the construction of a dual Lagrange multiplier basis possibly
depends on the geometry in the case of cylinder coordinates or of sliding
meshes.

Remark 3.3. If a three-dimensional situation is reduced to a two-dimen-
sional setting by introducing cylinder coordinates and exploiting symmetry
arguments, then duality has to be formulated with respect to a weighted
scalar product. The distance to the symmetry axis enters as weight in the
local biorthogonality relation (3.3). As example, we consider the piecewise
affine case. Let r1 and r2 be the distances of the two face nodes to the
symmetry axis. Then the dual Lagrange multiplier restricted to a face can
be written as

ψ1 =
2r1 + r2

r21 + 4r1r2 + r22

(
(r1 + 3r2)φ1 − (r1 + r2)φ2

)
,

ψ2 =
r1 + 2r2

r21 + 4r1r2 + r22

(
(3r1 + r2)φ2 − (r1 + r2)φ1

)
,

where φ1 and φ2 are the two nodal basis function associated with the face.
We note that ψ1 + ψ2 = 1, and for r1 = r2 we fall back to the piecewise
affine dual Lagrange multiplier depicted in Figure 3.6(a).

Remark 3.4. A typical benchmark problem for large deformation contact
is a small cube sliding over a larger block. If the large block is defined as
slave side, then the integral over the face F ∈ F s

l in the local biorthogonality
relation (3.3) has to be replaced by the integral over F∩Γm

C;l. Let us consider

the 2D reference case F = (0, 1) and (s, 1) ⊂ Γm
C;l with s ∈ (0, 1). Then a

straightforward calculation shows

ψ1 =
2(1 + s+ s2)

1− s
φ1 − (1 + 2s)φ2,

ψ2 = −(1 + 2s)(1 + s)

1− s
φ1 + 2(1 + s)φ2,

where φ1 is the nodal basis function associated with the endpoint p = 0 and
φ2 is associated with p = 1.

The weak problem formulation will be based on suitable subsets of Vl

and Ml. For the displacement, we only impose the Dirichlet condition on
the space and use no constraint related to the non-penetration condition.



The convex set Vl;D is given by

Vl;D := Vm
l;D ×Vs

l;D, Vk
l;D :=

∑
p∈Pk

D;l

uD(p)φp +Vk
l ,

where Pk
D;l stands for the set of all vertices of the actual mesh T k

l on Γ
k
D. To

handle the contact conditions (2.5) and (2.6) in a weakly consistent form,
we have to impose constraints on the Lagrange multiplier space. The non-
penetration condition restricts the normal part of Ml, and the Coulomb law
requires a solution-dependent inequality bound for the tangential part.

Let the discrete solution λl ∈ Ml be given by

λl =
∑

p∈Ps
C;l

γpψp, γp ∈ R
d,

and denote the discrete normal component by

λnl :=
∑

p∈Ps
C;l

γnpψp, γnp := γpn
s
p.

Here ns
p stands for a discrete normal vector associated with the node p. In

the case of a non-planar contact surface, it can be obtained as a weighted
combination of the adjacent element centre normals. We observe that λnl ∈
M s

l but, in general, it is not equal to λln
s. Based on the discrete normal

surface traction λnl , we then define the convex set

Ml(λ
n
l ) :=

{
μl =

∑
p∈Ps

C;l

βpψp, βp ∈ R
d, βnp ≥ 0, ‖βt

p‖ ≤ νγnp

}
, (3.8)

as an approximation for the solution-dependent cone M(λn) defined in
(2.14). Here βnp := βpn

s
p, β

t
p := βp − βnpn

s
p. We assume that Γs

C;l is large
enough such that γp = 0 for p ∈ ∂Γs

C;l.

Remark 3.5. If ν = 0, the convex set Ml(λ
n
l ) is solution-independent,

and its definition reduces to

M+
l :=

{
μl =

∑
p∈Ps

C;l

βpψp, βp ∈ R
d, βnp ≥ 0, βt

p = 0

}
.

In this case it is sufficient to work with a scalar-valued Lagrange multi-
plier space as is often done in the literature. Here, we use a vector-valued
Lagrange multiplier to be in the same abstract framework for all ν ≥ 0.

If the standard nodal Lagrange multiplier basis is used to defineMl, there
are then two natural but different ways to discretizeM+; see also, e.g., Hild
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Figure 3.8. Two elements of M+
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and Renard (2010). The first yields M+
l;1 ⊂M+, whereas the second choice

is based on the definition of M+ as a dual cone:

M+
l;1 :=

{
μl ∈Ml | μl =

∑
p∈Ps

C;l

βpψp, βp ≥ 0, p ∈ Ps
C;l

}
,

M+
l;2 :=

{
μl ∈Ml |

∫
Γs
C;l

μlφp ds ≥ 0, p ∈ Ps
C;l

}
.

We note that these two definitions yield two different spaces, with M+
l;1

being a proper subspace of M+
l;2. Figure 3.8 shows elements of M+

l;2 which

are clearly not in M+
l;1. In Figure 3.8(a), the element μl ∈ Ml depends

on the parameter value a and, as a straightforward computation shows,
μl ∈M+

l;2 \M+
l;1 if and only if a ∈ [−0.5; 0). The function in Figure 3.8(b) is

obviously not in M+
l;1. Testing it with all nodal basis functions φp, p ∈ Ps

C;l,

yields the non-negative values (marked with bullets) and thus μl ∈M+
l;2.

Both choices of M+
l;i, i = 1, 2, can be applied in the discrete setting. The

first one yields a conforming approach, whereas in the second one the non-
conformity of M+

l has to be taken into account in the a priori estimates.
The difference in the spaces stems from the fact that the matrix given by∫
Γs
C;l
ψqφp ds is then the standard mass matrix, which is not an M-matrix.

The situation is different if our Lagrange multiplier basis, satisfying (3.6),
is applied. Then the mass matrix is diagonal and positive definite and
both definitions yield the same space M+

l . However, using a biorthogonal
basis automatically results in a non-conforming approach, i.e., M+

l �⊂M+.
To enforce conformity in that situation is not a good idea, since then the
locality of the elements in M+

l ∩M+ is lost; see also Figure 3.9.
Having the conforming finite element space Vl ⊂ V0 and the non-confor-

ming closed convex cone Ml(λ
n
l ), we can formulate the discrete weak version

of (2.15) as follows. Find ul := (um
l ,u

s
l ) ∈ Vl;D, λl ∈ Ml(λ

n
l ) such that

al(ul,vl) + bl(λl,vl) = fl(vl), vl ∈ Vl,

bl(μl − λl,ul) ≤ gl(μl − λl), μl ∈ Ml(λ
n
l ).

(3.9)



1

1/2

1/4

Figure 3.9. Elements in M+
l ∩M+ for different refinement levels.

The mesh-dependent bilinear and linear forms are obtained from the associ-
ated continuous ones in a natural way by replacing the volume and surface
terms by the corresponding discrete analogue, i.e., summing over the volume
and surface elements of the mesh.

3.3. Coupling in terms of the mortar projection

Although the given variational setting is a two-body formulation with pos-
sibly non-matching meshes, we can reformulate the contact conditions in a
way similar to a one-body system. To do so, we introduce the mortar pro-
jection Πl := (Πl)

d onto Ws
l and the dual mortar projection Π∗

l := (Π∗
l )

d

onto Ms
l ; see, e.g., Bernardi, Maday and Patera (1993, 1994). We recall

that due to the assumption on the Dirichlet boundary part, no modification
at the endpoints is required. For w ∈ H1/2(Γs

C;l) and μ ∈ H−1/2(Γs
C;l) we

set ∫
Γs
C;l

Πlwμl ds := 〈μl, w〉Γs
C;l
, μl ∈M s

l , (3.10a)∫
Γs
C;l

Π∗
l μwl ds := 〈μ,wl〉Γs

C;l
, wl ∈W s

l . (3.10b)

We note that Πl and Π∗
l restricted to Ws

l and Ms
l is the identity, respec-

tively. In terms of Πl, we can write Πl[ul] =
∑

p∈Ps
C;l

αpφp. Moreover,

we define gp :=
∫
Γs
C;l
glψp ds/mp with a suitable approximation gl for the

linearized gap, where mp is specified in (3.6). The following lemma shows
that Lemma 2.3 has a node-wise discrete analogue.

Lemma 3.6. For each node p ∈ Ps
C;l the following discrete node-wise

KKT conditions hold for non-penetration:

0 ≤ γnp , αn
p ≤ gp, γnp (α

n
p − gp) = 0. (3.11)

Moreover, a discrete static Coulomb law holds for each node:

‖γt
p‖ ≤ νγnp , αt

p γt
p − νγnp ‖αt

p‖ = 0. (3.12)



Figure 3.10. Discrete approximations Ωl of the domain Ω.

Proof. We observe that the constraints on γnp in (3.11) and on γt
p in (3.12)

follow directly from the definition of Ml(λ
n
l ). The biorthogonality (3.6)

plays an essential role in the proof. Using μl = λl ± γnpn
s
pψp ∈ Ml(λ

n
l ) as

test function in (3.9), we find ±γnp b(ns
pψp,ul) = ±γnpαn

pmp ≤ gpγ
n
pmp and

thus the complementarity condition in (3.11). (3.12) obviously holds for
αt

p = 0. For αt
p �= 0, we set μl = λl − γt

pψp + νγnp etψp ∈ Ml(λ
n
l ) with

et := αt
p/‖αt

p‖ as the test function in (3.9) and get (3.12).

The discrete contact conditions (3.11) and (3.12) only involve quantities
associated with the slave nodes and thus have the same structure as a one-
body system. However, to compute αp, we do have to evaluate the mortar
projection Πl applied on [ul]. Its algebraic representation can be obtained
from the entries of the mass matrix associated with bl(·, ·). For its imple-
mentation, we not only have to map the mesh elements on the possible
contact zone but also the basis functions.

In Figure 3.10, we show different possible matching and non-matching
situations in the case of a non-planar contact surface. We note that in
this situation standard triangulations do not resolve the domain exactly. In
contrast to the continuous setting where Γs

C = Γm
C , we find, in the discrete

setting, that the possible contact zones on the master and the slave sides
are not the same, i.e., Γs

C;l �= Γm
C;l.

Using hierarchical tree structures or front tracking techniques, the assem-
bly of the surface-based coupling matrices between master and slave side
can be realized quite efficiently and is of lower complexity, whereas in 3D
a naive approach results in a higher complexity compared to the assem-
bling process of the volume contributions. For the integration in 3D we
use quadrature formulas on surface sub-triangles. Figure 3.11 illustrates
different steps of the projection and partitioning procedure. This algorithm
goes back to Puso (2004) (see also Puso et al. (2008)) and, alternatively,
the recent papers by Dickopf and Krause (2009a, 2009b).

An analysis and a numerical study of the influence of curvilinear in-
terfaces in the mortar situation can be found in Flemisch, Melenk and
Wohlmuth (2005a). The abstract setting of blending elements (Gordon and
Hall 1973a, 1973b) plays a key role in establishing optimal upper bounds





elements but may also be true for low-order approaches. A proof purely
based on standard techniques will generally yield only O(

√
hl) a priori

bounds. We refer to the monograph by Han and Reddy (1999) for an intro-
duction into this area for applications in plasticity.

Mortar techniques for contact problems without friction have been intro-
duced in Ben Belgacem, Hild and Laborde (1998), Ben Belgacem (2000)
and Lhalouani and Sassi (1999). We also refer to Ben Belgacem and Re-
nard (2003), Coorevits, Hild, Lhalouani and Sassi (2001), Hild (2000) and
Hild and Laborde (2002), where standard Lagrange multiplier spaces have
been considered and analysed. In early papers on mortar, unilateral contact
problems have quite often been considered, taking no friction into account,
and using a scalar-valued Lagrange multiplier. The choice of the contact
pressure as Lagrange multiplier is motivated by the fact that in that case
the tangential component of the surface traction is zero. There is a se-
ries of papers on a priori estimates for two-body contact problems with
no friction on non-matching meshes starting with order 1/4 bounds for the
discretization error (Ben Belgacem et al. 1998). A priori error estimates for
the displacements in the H1-norm and for the Lagrange multiplier in the
H−1/2-norm of order 3/4 have been established; see, e.g., Ben Belgacem,
Hild and Laborde (1999), Ben Belgacem and Renard (2003), Coorevits et al.
(2001) and Lhalouani and Sassi (1999), under an H2-regularity assumption.
Using additional quite strong and restrictive regularity assumptions on the
Lagrange multiplier, order one has been shown; see, e.g., Coorevits et al.
(2001) and Hild (2000). These first a priori results have been considerably
improved over the last decade. Under suitable assumptions on the actual
contact zone and a H2-regular solution quasi-optimal, i.e., hl

√
| log hl| and

hl
4
√
| log hl| a priori estimates can be found in Ben Belgacem (2000) and Ben

Belgacem and Renard (2003). Most of the theoretical results are obtained
for standard Lagrange multipliers, no friction and in the two-dimensional
setting. Here, we apply these techniques to vector-valued dual Lagrange
multiplier spaces and provide a priori error estimates for the displacement
in the H1-norm and for the surface traction in the H−1/2-norm. In 3D,
only sub-optimal bounds can be obtained for a problem with non-trivial
friction. In 2D, we follow the lines of Hüeber, Matei and Wohlmuth (2005b)
and Hüeber and Wohlmuth (2005a) and establish in a simplified problem
setting optimal a priori bounds under some regularity assumption on the
actual contact part and on the sticky zone.

We assume that no variational crimes are committed, i.e., the discrete
bilinear and linear forms are exact. In particular, this implies that no
quadrature error occurs and that Ωk

l = Ωk; we refer to Ciarlet (1991, 1998)
for a rigorous mathematical analysis of the influence of quadrature formulas.
Moreover, we assume a zero gap, i.e.,

g = 0, ΓC := Γs
C = Γs

C;l ⊂ Γm
C = Γm

C;l





(a)

‖vtl‖

vtl

(b)

vtl

‖vtl‖l

(c)

‖vtl‖ − ‖vtl‖l

Figure 4.2. Absolute value in 2D ‖ · ‖ (a), discrete absolute
value ‖ · ‖l (b) and the difference ‖ · ‖ − ‖ · ‖l (c).
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Figure 4.3. Numerical results for a contact problem with
Tresca friction: normal displacement and contact pressure (a)
and surface traction in normal and tangential direction (b).

where the mesh-dependent Euclidean norm ‖ · ‖l is defined by

‖Πl[u
t
l ]‖l :=

∑
p∈Ps

C;l

‖αt
p‖φp ∈W+

l .

Figure 4.2 illustrates the difference between ‖ · ‖ and ‖ · ‖l. The dashed line
shows an element in Wl if ΓC is a straight line. It is easy to verify that
‖Πl[u

t
l ]‖ − ‖Πl[u

t
l ]‖l is equal to zero at all vertices of the slave-side mesh

and that, in general, we do not have ‖Πl[ut]‖ ∈Wl. Moreover, we find that
‖Πl[u

t
l ]‖ − ‖Πl[u

t
l ]‖l ≤ 0.

Figure 4.3 shows a simple numerical example for a contact problem with
a non-constant Tresca friction bound and a non-zero gap. Further, we ob-
serve that for such examples the discrete complementarity conditions hold
true. Figure 4.3(a) shows that the coefficients γnp are non-zero only on the
actual discrete contact zone and thus (4.2) is satisfied. In Figure 4.3(b),
the tangential displacement vanishes if the tangential stress component is
strictly below its given bound, and thus (4.3) holds.

In addition to the best approximation properties of the discrete Lagrange
multiplier space (3.4), our proof relies on the properties of Πl and Π∗

l : see



Wohlmuth (2001). For 1 ≤ s ≤ 2, we have

‖μ−Π∗
l μ‖− 1

2
;ΓC

≤ Chs−1
l |μ|s− 3

2
;ΓC
, μ ∈ Hs− 3

2 (ΓC), (4.4a)

‖w −Πlw‖ 1
2
;ΓC

≤ Chs−1
l |w|s− 1

2
;ΓC
, w ∈ Hs− 1

2 (ΓC). (4.4b)

Remark 4.1. We note that our regularity assumptions on the data and
geometry guarantee that for u ∈ (Hs(Ω))d, 1 ≤ s ≤ 2, we automatically
have λ = −σ(us)n ∈ (Hs−3/2(ΓC))

d, and moreover |λ|s−3/2;ΓC
≤ C|u|s;Ω.

For s = 2 this is obvious; for s = 1 this does not hold for all f ∈ V′
0 and

fN ∈ {w = v|ΓN
, v ∈ V0}. However, by increasing the regularity of the

data, as we do here, this holds true with a constant depending on Creg (see
(2.4)), and then a standard interpolation argument yields the result for all
s ∈ [1, 2].

4.1. Upper bound for the discretization error

The starting point is the following abstract lemma. A similar lemma can be
found in Hild and Laborde (2002) without friction and with quadratic finite
elements associated with standard Lagrange multipliers. Here, we also have
to consider the friction part and take into account the tangential component
of the bilinear form b(·, ·). Introducing the error El := (u− ul,λ− λl) and
its associated norm ‖El‖2V×M := ‖u−ul‖21;Ω+‖λ−λl‖2−1/2;ΓC

, the standard

saddle-point theory and the complementarity conditions (4.2) provide a first
a priori result.

Lemma 4.2. Let (u,λ) ∈ V×M(F) be the solution of (2.15) with M(λn)
replaced by M(F) and let (ul,λl) ∈ Vl × Ml(F) be the solution of the
discrete formulation (3.9) with Ml(λ

n
l ) replaced by Ml(F). Then, we have

‖El‖V×M ≤ C
{

inf
vl∈Vl

‖u− vl‖1;Ω + inf
μl∈Ml

‖λ− μl‖− 1
2
;ΓC

+max
(
bn(λl,u), 0

) 1
2 +max

(
bn(λ,ul), 0

) 1
2

+max
(
bt(λl − λ,u), 0

) 1
2 + inf

wl∈Ws
l

‖[ut]−wl‖ 1
2
;ΓC

}
.

Proof. Introducing el := u−ul, we find for the error el in the energy norm,
and for vl ∈ Vl

a(el, el) = a(el,u− vl)− b(λ,vl − ul) + b(λl,vl − ul)

= a(el,u− vl)− b(λ− λl,vl − u)− b(λ− λl, el).

Then Korn’s inequality, which holds on both subdomains by assumption,
and the continuity of the bilinear forms a(·, ·) and b(·, ·) yield an upper
bound for the H1-error of the displacement:

‖el‖21;Ω ≤ C
(
(‖el‖1;Ω + ‖λ− λl‖− 1

2
;ΓC

)
)
‖u− vl‖1;Ω − b(λ− λl, el). (4.5)



Using standard techniques from the saddle-point framework and applying
the discrete inf-sup condition (3.5), we get

‖μl − λl‖− 1
2
;ΓC

≤ C sup
wl∈Vl

b(μl − λl,wl)

‖wl‖1;Ω

= C sup
wl∈Vl

b(μl − λ,wl) + a(ul − u,wl)

‖wl‖1;Ω
≤ C

(
‖μl − λ‖− 1

2
;ΓC

+ ‖ul − u‖1;Ω
)
.

Then the triangle inequality and Young’s inequality applied on ‖λ−λl‖− 1
2
;ΓC

and (4.5), respectively, give

‖El‖2V×M ≤ C
(

inf
vl∈Vl

‖u− vl‖21;Ω + inf
μl∈Ml

‖λ− μl‖2− 1
2
;ΓC

− b(λ− λl, el)
)
.

We use the additive decomposition of b(·, ·) into bn(·, ·) + bt(·, ·) and recall
(4.2)

b(λl − λ, el) = bn(λl,u) + bn(λ,ul) + bt(λl − λ,u)− bt(λl − λ,ul).

Each of the first three terms on the right can be bounded by the maximum
of zero and the term itself. To bound the last term, we use (4.3) and the
H1/2-stability (see (4.4b)) of the mortar projection Πl defined by (3.10a).
For all μl ∈ Ml and wl ∈ Ws

l , we have

bt(λ− λl,ul) = 〈λt − λt
l , [u

t
l ]−Πl[u

t
l ]〉ΓC

+ 〈λt − λt
l ,Πl[u

t
l ]〉ΓC

≤ 〈λt − μl, [u
t
l ]−Πl[u

t
l ]〉ΓC

+ 〈F , ‖Πl[u
t
l ]‖ − ‖Πl[u

t
l ]‖l〉ΓC

≤ 〈λt − μl, [u
t
l ]−Πl[u

t
l ]〉ΓC

≤ C‖λ− μl‖− 1
2
;ΓC

(‖u− ul‖1;Ω + ‖[ut]−wl‖ 1
2
;ΓC

).

Now Young’s inequality gives the required bound.

The first two terms in the upper bound of Lemma 4.2 are the best ap-
proximation errors. They reflect the quality of the approximation of the
spaces Vl and Ml. The third, fourth and fifth term are consistency errors
of the approach. We remark that the term max(bn(λ,ul), 0) takes into ac-
count the discrete penetration of the two bodies on the actual contact set.
The term max(bn(λl,u), 0) can be greater than zero if the discrete Lagrange
multiplier λnl is negative on a part of the actual contact set. We recall that
M+

l is not a subspace ofM+, and thus λnl does not have to be non-negative.
To some extent this term measures the non-conformity of λnl with respect to
the physical requirement of a positive contact pressure. The fifth term sat-
isfies max(bt(λl −λ,u), 0) ≤ max(

∫
ΓC

(‖λt
l‖−F)‖ut‖ ds, 0). Using that the

maximum of a nodal dual Lagrange multiplier is larger than one, ‖γt
p‖ ≤ F

does not necessarily give ‖λt
l‖ ≤ F , and thus this term is in general non-



zero and measures the violation of the friction law. Finally, the last term
does not appear for contact problems without friction. A closer look into
the proof reveals that the H1/2-norm estimate on ΓC is too pessimistic for
Coulomb problems, and it would be sufficient to consider the H1/2-norm
on the actual contact zone. Moreover, this term does not occur if we work
with matching meshes.

4.2. Optimal a priori estimates

To prove optimal a priori error estimates under the Hs-regularity assump-
tion for the displacements u with 1 ≤ s ≤ 2, we have to consider in more
detail the three terms in the upper bound of Lemma 4.2 which involve the
bilinear form b(·, ·). We now give three lemmas providing upper bounds for
these consistency errors.

Lemma 4.3. Let (u,λ) ∈ V×M(F) be the solution of (2.15) with M(λn)
replaced by M(F) and let (ul,λl) ∈ Vl × Ml(F) be the solution of the
discrete formulation (3.9) with Ml(λ

n
l ) replaced by Ml(F). Under the reg-

ularity assumption u ∈ (Hs(Ω))d, 1 ≤ s ≤ 2, we then have the a priori
error estimate

bn(λ,ul) ≤ C
(
h
2(s−1)
l |u|2s;Ω + h

(s−1)
l |u|s;Ω‖u− ul‖1;Ω

)
.

Proof. For standard Lagrange multipliers, we refer to Hild and Laborde
(2002). Although our dual basis functions of Ml are not positive, we can
apply the same techniques. Using the discrete saddle-point formulation
(3.9) and the definition of the mortar projection, we find, in terms of the
approximation properties (4.4) and Remark 4.1, the upper bound

bn(λ,ul) = 〈λn, [unl ]−Πl[u
n
l ] + Πl[u

n
l ]〉ΓC

≤ 〈λn, [unl ]−Πl[u
n
l ]〉ΓC

≤ 〈λn −Π∗
l λn, [u

n
l ]−Πl[u

n
l ]〉ΓC

≤ ‖λn −Π∗
l λn‖− 1

2
;ΓC

‖[unl ]−Πl[u
n
l ]‖ 1

2
;ΓC

≤ Chs−1
l |λn|s− 3

2
;ΓC

(
‖[unl ]− [un]‖ 1

2
;ΓC

+ ‖[un]−Πl[un]‖ 1
2
;ΓC

)
≤ C

(
hs−1
l |u|s;Ω‖u− ul‖1;Ω + h

2(s−1)
l |u|2s;Ω

)
.

Before we focus on the terms bn(λl,u) and bt(λl − λ,u), we consider
a non-linear quasi-projection operator which preserves sign. This type of
operator was originally introduced in Chen and Nochetto (2000). We also
refer to Nochetto and Wahlbin (2002) for a negative result on the existence
of higher-order sign-preserving operators and for a detailed discussion of
the special role of extreme points. Let Ŝl : W −→ W s

l be a Clément-type
operator which is defined node-wise by

Ŝlw(p) :=
1

|Bp(creghl)|

∫
Bp(creghl)

w ds, p ∈ P int
C;l.



Here P int
C;l := {p ∈ Ps

C;l , p �∈ ∂ΓC}, and for all nodes p ∈ ∂ΓC, we use
a locally defined value depending only on the values of w restricted to
Bp(creghl) ∩ ΓC such that Ŝl is L2-stable and reproduces polynomials of
degree one. Standard arguments show that for 1 ≤ s ≤ 2 we get

‖Ŝlw − w‖ 1
2
;ΓC

≤ Chs−1
l |w|s− 1

2
;ΓC
.

More importantly, Ŝlw preserves the sign of w ∈W+ in the mesh-dependent
interior Γint

C;l := ΓC \ (∪p∈Ps
C;l\P int

C;l
suppφp), i.e., we have for w ∈ W+ that

Ŝlw(p) ≥ 0 for p ∈ P int
C;l.

In terms of the linear operator Ŝl, we define the non-linear operator Sl:

Slw(p) :=

{
Ŝlw(p) suppφp ⊂ suppw or p ∈ ∂ΓC,

0 otherwise,
p ∈ Ps

C;l, (4.6)

the definition of which guarantees that suppSlw∩Γint
C;l ⊂ suppw. Moreover,

for w ∈W+ we have Slw(p) ≥ 0 for p �∈ ∂ΓC.

Assumption 4.4. Let us define Σn
l := {x ∈ ΓC | dist (x, ∂Bn) ≤ 2hl},

where Bn is the actual contact zone, i.e., Bn := suppλn. Then, we assume
that Σn

l and Bn are compactly embedded in ΓC and Γint
C;l, respectively, and

moreover that

‖[un]‖0;Σn
l
≤ Ch

s− 1
2

l |[un]|s− 1
2
;ΓC
.

Let us briefly comment on different aspects of this assumption. We note
that for hl small enough, Σn

l and Bn are compactly embedded in ΓC and
Γint
C;l, respectively, due to the assumption that Bn is compactly embedded

in ΓC. This assumption can be weakened, but then the notation would

become more technical. Setting Bc
n := ΓC \Bn and defining H

s−1/2
00 (Bc

n) :=

{w ∈ L2(Bc
n) | w = v|Bc

n
for v ∈ Hs−1/2(ΓC) and supp v ⊂ Bc

n}, we get

[un] ∈ H
s−1/2
00 (Bc

n) if u ∈ (Hs(Ω))d. Now, if Bc
n is regular enough, the

assumption is followed by a Poincaré–Friedrichs-type argument, together
with suitable interpolation and a scaling. We refer to Li, Melenk, Wohlmuth
and Zou (2010), where similar estimates for interfaces have been used, and
to Melenk and Wohlmuth (2011), where these types of estimates are used to
obtain quasi-optimal a priori L2-norm estimates for the Lagrange multiplier
in a linear mortar setting. In particular, an order-hl estimate is given for
H1-functions with vanishing trace. The assumption is naturally satisfied
if Bn is regular enough. If the boundary ∂Bn is smooth enough, we can
locally flatten ∂Bn, use the fact that Sobolev spaces are invariant under
smooth changes of variables and apply the 1D Sobolev embedding result
‖v‖L∞(I) � ‖v‖Hs(I), s >

1
2 recursively, where I is a fixed interval and

v ∈ Hs(I) (see, e.g., Adams (1975)).
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Figure 4.6. Tangential displacement for contact
problems with friction: d = 2 (a) and d = 3 (b,c).

u−t ∈ W+: see Figure 4.6(a). In 3D, the tangential part [ut] is a vector-
valued function, for which we cannot apply the friction law component-wise.

In Figure 4.6, we show typical numerical results for a contact problem
with friction. We note that for these considerations there is no difference
between a Tresca and a Coulomb problem. In Figure 4.6(a) a Hertz contact
problem with a given but non-constant friction bound is simulated in 2D.
In Figure 4.6(b), we show a visualization of the tangential displacement for
d = 3 and Coulomb friction. The nodes in the centre marked with black
bullets are sticky and do not carry a relative tangential displacement. For
these nodes the tangential component of the stress satisfies the inequality
of the Coulomb law strictly. The nodes situated in the outer ring do slide,
and the sliding direction is possibly changing from node to node. As can
be seen in the zoom in Figure 4.6(c), the sliding direction is, as required by
the friction law, opposite to the tangential stress.

Assumption 4.7. (2D setting) Let us define

Σ±;t
l := {x ∈ ΓC | dist (x, ∂B±

t ) ≤ 2hl},
where ∂B+

t ∪∂B−
t is the boundary of the actual sticky zone. More precisely,

we set ∂B±
t := ∂ suppu±t ∩ ΓC. Then, we assume that Σ±;t

l and B±
t are

compactly embedded in ΓC, and moreover that for p ∈ ∂ΓC ∩ suppu±t we
have γtp = ±F ,

‖u±t ‖0;Σ±;t
l

≤ Ch
s− 1

2
l |[ut]|s− 1

2
;ΓC
.

We note that for a Coulomb problem, we have Bt ⊂ Bn, and thus Bt is
automatically compactly embedded ΓC if Bn is so. This is not necessarily
the case for a Tresca friction problem. We point out that this assumption
rules out the case s = 2 and λt = λtt with λt being a function which
jumps from plus to minus of the friction bound. In that case u+t and u−t
have a lower regularity than ut. To be more precise ut ∈ H3/2(ΓC), whereas



u±t ∈ H3/2−ε(ΓC) for all ε > 0, and thus only an order h
3/2−ε
l can be expected

to hold true. Figure 4.7 shows the numerical solution for a Coulomb problem
in 2D with two different friction coefficients. In Figure 4.7(a) the case
ν = 0.8 is shown whereas in Figure 4.7(b,c) the case ν = 0.3 is presented.
The close-up in Figure 4.7(c) reveals that ut is zero not only in the centre
point but also in a non-trivial sub-interval, and thus Assumption 4.7 is
satisfied for both cases.

The following lemma is the counterpart of Lemma 4.5 for the tangential
component. Due to the partition ut = u+t − u−t it only holds true for d = 2.

Lemma 4.8. Let (u,λ) ∈ V×M(F) be the solution of (2.15) with M(λn)
replaced by M(F) and let (ul,λl) ∈ Vl × Ml(F) be the solution of the
discrete formulation (3.9) with Ml(λ

n
l ) replaced by Ml(F). Under Assump-

tion 4.7 and the regularity assumption u ∈ (Hs(Ω))2, 1 ≤ s ≤ 2, we then
have the a priori error estimate for d = 2:

bt(λl − λ,u) ≤ Chs−1
l |u|s;Ω‖λ− λl‖− 1

2
;ΓC
.

Proof. The proof follows the lines of the proof of Lemma 4.5. We start with
the observation that bt(λl − λ,u) =

∫
ΓC

(λtl −F)u+t ds−
∫
ΓC

(λtl +F)u−t ds,

where λt
l := λtlt. Now we apply the operator Sl to u

+
l and u−l . Then, under

Assumption 4.7 we get

‖u+t − Slu
+
t ‖ 1

2
;ΓC

+ ‖u−t − Slu
−
t ‖ 1

2
;ΓC

≤ Chs−1
l ‖[un]‖s− 1

2
;ΓC
.

The construction of Sl yields that

bt(λl − λ,u) = 〈λtl − λt, u
+
t − Slu

+
t 〉+ 〈λtl − λt, Slu

−
t − u−t 〉

+ 〈λtl − λt, Slu
+
t 〉 − 〈λtl − λt, Slu

−
t 〉

≤ Chs−1
l ‖[un]‖s− 1

2
;ΓC

‖λtl − λt‖− 1
2
;ΓC

+ 〈λtl −F , Slu+t 〉 − 〈λtl + F , Slu−t 〉
= Chs−1

l ‖[un]‖s− 1
2
;ΓC

‖λtl − λt‖− 1
2
;ΓC

+
∑

p∈Ps
C;l

(γtp −F)Slu
+
t (p)mp

−
∑

p∈Ps
C;l

(γtp + F)Slu
−
t (p)mp.

Moreover, by definition of Ml(F), it is easy to see that γtp − F ≤ 0 and
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Figure 4.7. Tangential displacement for different friction coefficients.

γtp + F ≥ 0, and thus we get∑
p∈P int

C;l

[
(γtp −F)Slu

+
t (p)− (γtp + F)Slu

−
t (p)

]
mp ≤ 0.

For p ∈ Ps
C;l\P int

C;l, we have that (γ
t
p−F)Slu

+
t (p) = 0 = (γtp+F)Slu

−
t (p). We

note that these last arguments are typical for d = 2 but cannot be applied
in 3D.

We now combine the previous results and formulate an optimal a priori
error estimate for a two-body contact problem with Tresca friction in 2D.

Theorem 4.9. Let (u,λ) ∈ V × M(F) be the solution of (2.15), with
M(λn) replaced by M(F), and let (ul,λl) ∈ Vl × Ml(F) be the solution
of the discrete formulation (3.9), with Ml(λ

n
l ) replaced by Ml(F). Under

Assumptions 4.4, 4.7 and the regularity assumption u ∈ (Hs(Ω))2, 1 ≤ s ≤
2, we then have the a priori error estimate for d = 2:

‖u− ul‖1;Ω + ‖λ− λl‖− 1
2
;ΓC

≤ Chs−1
l |u|s;Ω.

Proof. Using the well-known approximation property for the spacesVl, Ml

and Ws
l , the proof is a direct consequence of Lemmas 4.2–4.8 by applying

Young’s inequality.

Let us briefly comment on the three-dimensional case. Lemma 4.8 is the
only one where we have explicitly used a 2D construction. All the other
results hold true for d = 2 and d = 3. In 3D, we do still get a priori
bounds for the discretization error, although the optimal order is lost if
u ∈ (Hs(Ω))d, 3/2 < s ≤ 2. We introduce the operators Z∗

l : M → Ws
l

and Zl : W → Ws
l by Z∗

l := (Z∗
l )

d and Zl := (Zl)
d, Z∗

l : M → W s
l and

Zl :W →W s
l :

Z∗
l μ :=

∑
p∈Ps

C;l

〈μ, φp〉ΓC

mp
φp, Zlw :=

∑
p∈Ps

C;l

〈φp, w〉ΓC

mp
φp. (4.7)



Obviously, both Zl and Z∗
l are locally defined and reproduce constants.

Moreover, Zl is L2- and H1-stable. From the H1/2-stability we get the
H−1/2-stability of Z∗

l with the same stability constant

‖Z∗
l μ‖− 1

2
;ΓC

= sup
w∈W

〈Z∗
l μ,w〉ΓC

‖w‖ 1
2
;ΓC

= sup
w∈W

〈μ,Zlw〉ΓC

‖w‖ 1
2
;ΓC

.

In terms of these operators, we obtain the following non-optimal a priori
bound for a Tresca friction problem in 3D with non-trivial but constant
friction coefficient.

Theorem 4.10. Let (u,λ) ∈ V × M(F) be the solution of (2.15), with
M(λn) replaced by M(F), and let (ul,λl) ∈ Vl × Ml(F) be the solution
of the discrete formulation (3.9), with Ml(λ

n
l ) replaced by Ml(F). If u ∈

(Hs(Ω))d, 1 ≤ s ≤ 3/2, we then have the a priori error estimate

‖u− ul‖1;Ω + ‖λ− λl‖− 1
2
;ΓC

≤ Chs−1
l |u|s;Ω.

Proof. We have to re-examine the two terms bn(λl,u) and bt(λl −λ,u) in
the upper bound of Lemma 4.2. To do so, we apply the operators Z∗

l and
Z∗
l and remark that Z∗

l λ
n
l =

∑
p∈Ps

C;l
γnp φp ∈W+ and

‖Z∗
l λ

t
l‖ − F =

∥∥∥∥∥ ∑
p∈Ps

C;l

γt
pφp

∥∥∥∥∥−F ≤
∑

p∈Ps
C;l

‖γt
p‖φp −F ≤

∑
p∈Ps

C;l

Fφp −F = 0.

These preliminary observations in combination with (3.7) yield for the nor-
mal part

bn(λl,u) = 〈λnl − Z∗
l λ

n
l , [un]〉ΓC

+ 〈Z∗
l λ

n
l , [un]〉ΓC

≤ 〈λnl − Z∗
l λ

n
l , [un]〉ΓC

= 〈λnl − Z∗
l λ

n
l , [un]−Π0;l[un]〉ΓC

≤ Ch
s− 1

2
l ‖λnl − Z∗

l λ
n
l ‖0;ΓC

|[un]|s− 1
2
;ΓC

≤ Chs−1
l ‖λnl − Z∗

l λ
n
l ‖− 1

2
;ΓC

|u|s;Ω,

where Π0;l is the L
2-projection onto element-wise constants. Here we have

also used additionally the inverse estimate for ‖λnl − Z∗
l λ

n
l ‖0;ΓC

, which re-
sults from standard inverse estimates for finite elements and the fact that
Z∗
l λ

n
l ≥ 0.

Keeping in mind that bt(λ,u) =
∫
ΓC

F‖[u]t‖ ds, the tangential part can
be estimated in the same way:

bt(λl − λ,u) = bt(λl − Z∗
l λl,u) + bt(Z

∗
l λl − λ,u)

≤ bt(λl − Z∗
l λl,u) ≤ Chs−1

l ‖λt
l − Z∗

l λ
t
l‖− 1

2
;ΓC

|u|s;Ω.

In a last step, we have to consider ‖λl − Z∗
l λl‖− 1

2
;ΓC

in more detail and



bound it. The stability of Z∗
l in the H−1/2-norm gives

‖λl − Z∗
l λl‖− 1

2
;ΓC

≤ C‖λl − λ‖− 1
2
;ΓC

+ ‖λ− Z∗
l λ‖− 1

2
;ΓC

≤ C(‖λl − λ‖− 1
2
;ΓC

+ hs−1
l |u|s;Ω).

Now, Lemma 4.3 in combination with Young’s inequality yields the required
a priori bound.

Remark 4.11. We note that in contrast to Theorem 4.9 no additional
assumptions on the actual contact zones are made in Theorem 4.10.

The main advantage of the dual Lagrange multiplier space is the possibil-
ity of computing λl by a local post-process from the discrete displacement.
Taking the local residual and using a simple scaling directly yield the coeffi-
cients. However, for the visualization in general Z∗

l λl is plotted and not λl.
However, both quantities have the same order of convergence. For 1 ≤ s ≤ 2
and u ∈ (Hs(Ω))d we obtain in terms of the H−1/2-stability of Z∗

l and its
approximation property

‖λ− Z∗
l λl‖− 1

2
;ΓC

≤ ‖λ− Z∗
l λ‖− 1

2
;ΓC

+ ‖Z∗
l (λ− λl)‖− 1

2
;ΓC

≤ C(‖λ− λl‖− 1
2
;ΓC

+ hs−1
l |u|s;Ω).

Remark 4.12. Quite often in the context of mortar methods (see, e.g.,
Braess and Dahmen (2002)), one prefers to work with a norm that is easier
to handle than the H−1/2-norm. Thus this is replaced by a weighted mesh-
dependent L2-norm,

‖μ‖2Ml
:=

∑
F∈Fs

C;l

hF ‖μ‖20;F μ ∈ L2(Γs
C) or μ ∈ (L2(Γs

C))
d. (4.8)

Then all our theoretical results also cover ‖λ − λl‖Ml
if the regularity of

the solution is good enough. The proof follows exactly the same lines as for
the H−1/2-norm and uses an inverse estimate. It is known from the linear
mortar setting that in the case of weighted L2-norms, a uniform inf-sup
condition also holds. Moreover, one can replace, in the proof of the best
approximation properties of the constrained space, the discrete harmonic
extension by a discrete zero extension to the interior nodes.

4.3. Numerical results

We note that in all our numerical results the mesh-dependent norm (4.8)
has been used to measure the discretization error in the Lagrange multiplier
and Z∗

l λl has been used to make the plots. To illustrate the convergence
rates of low-order finite elements numerically, we consider two simple two-
dimensional test settings. As a reference solution, we use the numerical
solution on Tlmax+2.
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Figure 4.8. Problem setting (a), tangential Lagrange multiplier
(b) and tangential displacement (c) on Γs

C;l.

Our first example is a scalar-valued model problem for anti-plane fric-
tion; we refer to Hüeber et al. (2005b) for details regarding the problem
formulation. The friction bound is set to F = 0.6. Figure 4.8 shows the
geometry as well as the tangential Lagrange multiplier and the displace-
ment on master and slave sides. In Figure 4.8(b), we can clearly observe
the discrete complementarity (3.12) with νγnp being replaced by the given
bound F . In Figure 4.8(c) the tangential displacements are shown. For
‖γt

p‖ strictly smaller than F , the two bodies have to stick together. Sliding

is possible only on a part of the contact zone where ‖γt
p‖ = F .

Table 4.1 shows the convergence rates for this simplified frictional contact
problem. We show the L2-norm and the H1-norm of the displacement error
and the mesh-dependent norm of the error in the Lagrange multiplier. Our
numerical results confirm the theoretical ones, and the computed rates are
fairly close to the optimal order of convergence. Although we do not have a
theoretical result for the L2-norm, the numerical results also show a signif-
icantly better rate compared to the H1-norm. Standard duality techniques
such as the Aubin–Nitsche approach are tricky to apply in the setting of
variational inequalities since they depend on regularity assumptions of the
dual problem.

Our second test example is the classical Hertz problem (Hertz 1882,
Johnson 1985, Kikuchi and Oden 1988) with Coulomb friction. Although
our theoretical results do not cover the case of a Coulomb contact problem,
Table 4.2 shows that also for this case we obtain almost optimal convergence
rates. In that case, the convergence order for the error in the Lagrange
multiplier in the weighted L2-norm is close to the best approximation order
of 3/2.

Remark 4.13. This effect is also numerically well observed for mortar
problems in the linear setting (Wohlmuth 2001). A theoretical analysis can
be found in the recent contribution by Melenk and Wohlmuth (2011), where
it is shown that quasi-optimal L2-norm estimates for the Lagrange multiplier
hold in the linear mortar setting under suitable regularity assumptions.



Table 4.1. Convergence rates for a contact problem with given friction bound.

Level
‖ul−uref‖0;Ω

‖uref‖0;Ω

‖ul−uref‖1;Ω

‖uref‖1;Ω
‖λl − λref‖∗

0 8.9343e−02 − 3.2317e−01 − 7.7185e−02 −
1 3.0960e−02 1.53 1.8933e−01 0.77 2.2162e−02 1.80
2 8.6519e−03 1.84 1.0343e−01 0.87 8.1336e−03 1.45
3 2.4272e−03 1.83 5.6431e−02 0.87 3.7816e−03 1.10
4 6.6657e−04 1.86 3.0414e−02 0.89 1.3031e−03 1.54
5 1.7918e−04 1.90 1.6132e−02 0.91 3.5214e−04 1.89
6 4.6522e−05 1.95 8.3113e−03 0.96 1.6712e−04 1.08

Table 4.2. Convergence rates for a Hertz contact problem
with Coulomb friction, ν = 0.5.

Level
‖ul−uref‖1;Ω

‖uref‖1;Ω
‖λl − λref‖∗

1 4.465867e−01 − 5.065628 −
2 3.056095e−01 0.55 2.381819e+01 1.09
3 1.693210e−01 0.85 1.037995e+01 1.20
4 9.155008e−02 0.89 3.909448e+00 1.41
5 4.857727e−02 0.91 1.493191e+00 1.39
6 2.450933e−02 0.99 0.523946e+00 1.51

Finally, we briefly comment on higher-order elements; see also Belhachmi
and Ben Belgacem (2000) for an analysis and Fischer and Wriggers (2006)
and Puso et al. (2008) for simulation results in applications, and the influ-
ence of the choice of the Lagrange multiplier space. Recently, hp-techniques
have also been applied for contact problems in combination with bound-
ary elements (Chernov, Maischak and Stephan 2008). The p-version in the
boundary element method for contact is discussed in Gwinner (2009). From
the algorithmic point of view, higher-order elements can be easily applied.
As we will see, quadratic elements do yield higher-order a priori estimates,
but optimal quadratic order cannot be achieved. This results from the fact
that there exists no monotonicity-preserving operator of higher order; see
also Nochetto and Wahlbin (2002). In addition, the solution of a contact
problem is, in general, not in H3(Ω), and thus also, from the point of view
of best approximation, no second-order error decay can be expected. Nev-
ertheless, a higher-order a priori estimate can be obtained by replacing
Vl by quadratic finite elements. Quadratic finite elements and linear dual



Table 4.3. Relative error for the displacement in the H1-norm for linear and
quadratic finite elements.

Level (i, j) = (1, 1) (i, j) = (2, 1) (i, j) = (2, 2)

0 4.663632e−01 − 3.159307e−01 − 3.903263e−01 −
1 3.214737e−01 0.54 1.592747e−01 0.99 1.376072e−01 1.50
2 1.807130e−01 0.83 6.777325e−02 1.23 5.656398e−02 1.28
3 9.735853e−02 0.89 2.992646e−02 1.18 2.422295e−02 1.22
4 5.111965e−02 0.93 1.340727e−02 1.16 1.028243e−02 1.23
5 2.584391e−02 0.98 − − − −

Table 4.4. Mesh-dependent L2-error for the Lagrange multiplier in the linear and
quadratic approach.

Level (i, j) = (1, 1) (i, j) = (2, 1) (i, j) = (2, 2)

0 5.845412e+01 − 5.849757e+01 − 1.323412e+02 −
1 4.999477e+01 0.23 4.129640e+01 0.50 3.621992e+01 1.87
2 2.121223e+01 1.24 1.814467e+01 1.19 1.389391e+01 1.38
3 8.378905e+00 1.34 7.316218e+00 1.31 5.230080e+00 1.41
4 3.269796e+00 1.36 2.813967e+00 1.38 2.015976e+00 1.38
5 1.168347e+00 1.48 − − − −

Lagrange multipliers yield an order hs−1, 1 ≤ s < 5
2 , upper bound for the

discretization error if the solution is Hs-regular. Replacing the linear La-
grange multiplier space by quadratic Lagrange multipliers does not give a
higher order: see, e.g., Hild and Laborde (2002). Revising the proof of
Theorem 4.9 shows that the crucial steps are Lemma 4.5 and Lemma 4.8.
These parts do not yield estimates of order two even if the spaces used have
higher-order best approximation properties. For a proof and more detailed
numerical results, comparing quadratic finite elements with linear Lagrange
multipliers and with quadratic Lagrange multipliers, we refer to Hüeber,
Mair and Wohlmuth (2005a). As a test example, we choose the simple
Hertz contact problem without friction.

Table 4.3 shows the convergence rates for the relativeH1-norm of the error
in the displacement, whereas Table 4.4 refers to the error of the Lagrange
multiplier in the mesh-dependent L2-norm. Here, we illustrate the influence
of linear and quadratic finite elements. The indices i = 1 and i = 2 stand
for the use of standard conforming linear and quadratic finite elements for
the displacement, respectively. The indices j = 1 and j = 2 indicate the



use of biorthogonal basis function of lowest and second order, respectively.
We note that the pairing (i, j) = (1, 2) is not uniformly inf-sup stable with
respect to the slave side and thus is not considered. Moreover j = 1 already
gives a best approximation property of the Lagrange multiplier space of
order 3/2, and thus we do not expect a qualitative increase in the case j = 2
compared to j = 1 for the Lagrange multiplier. Although the convergence
order in the H1-norm for i = 2 is not equal to two, it is much higher than
compared to i = 1. A more efficient strategy, however, is to combine higher-
order elements in the interior with adaptive refinement techniques on the
contact part. We refer to the recent hp-strategy for a simplified Tresca
problem in 2D (Dörsek and Melenk 2010).

The last test shows that the numerical solution is quite insensitive to
the choice of the dual Lagrange multiplier basis. We test the discontinuous
piecewise constant and linear one (see Figure 3.6(a,b)) and the continuous
piecewise cubic one (see Figure 3.7(a)). Table 4.5 shows a comparison of the
maximum contact pressure for different Lagrange multipliers. From the very
first levels, the maximal value for all the three tested Lagrange multipliers
is in very good agreement. Thus the choice of the Lagrange multiplier basis
is not relevant as long as the conditions (3.2)–(3.5) are satisfied.

Table 4.5. Maximum contact pressure for
different low-order dual Lagrange multipliers.

Level Linear Constant Cubic

1 382.057 382.057 382.057
2 514.166 514.172 514.172
3 504.190 504.229 504.229
4 496.765 496.755 496.755
5 494.805 494.809 494.809
6 494.264 494.266 494.266
7 494.174 494.175 494.175
8 494.202 494.202 494.202

5. Semi-smooth Newton solver in space

Early numerical approaches for two-body contact problems on non-matching
meshes and for contact problems with Coulomb friction often tried to weaken
the non-linearity by suitable fixed-point or decoupling strategies. Following
the proof of existence, a Coulomb friction problem can be reduced to a se-
quence of simplified problems with given bound for the tangential traction,





Figure 5.2. Oscillation of an undamped Dirichlet–Neumann contact solver.

Monotone multigrid methods have been shown to be very attractive due
to guaranteed convergence, if the underlying system is equivalent to a con-
strained minimization problem. Early references on multigrid methods
for variational inequalities or free boundary problems such as the obsta-
cle problem are given by Brandt and Cryer (1983), Hackbusch and Mit-
telmann (1983), Hoppe (1987), Hoppe and Kornhuber (1994), Kornhuber
(1994, 1996), Kornhuber and Krause (2001) and the monograph by Ko-
rnhuber (1997). Nowadays these techniques have been applied very suc-
cessfully to more challenging contact problems including two bodies with
non-matching meshes, finite deformations and complex geometries in 3D
(Dickopf and Krause 2009a, Krause 2008, 2009, Krause and Mohr 2011,
Wohlmuth and Krause 2003).

Domain decomposition-based solvers such as FETI techniques are also
widely applied. An excellent overview of these techniques applied to varia-
tional inequalities can be found in the recent monograph by Dostál (2009);
see also the original research papers of Dostál, Friedlander and Santos
(1998), Dostál, Gomes Neto and Santos (2000), Dostál and Horák (2003),
Dostál, Horák, Kučera, Vondrák, Haslinger, Dobiaš and Pták (2005), Dostál,
Horák and Stefanica (2007, 2009) and Schöberl (1998). Different alter-
natives exist, e.g., interior point methods (Wright 1997), SQP algorithms
(Pang and Gabriel 1993), the radial return mapping or the catching-up
algorithm (Moreau 1977, Simo and Hughes 1998), as well as penalty or
augmented Lagrangian approaches (Glowinski and Le Tallec 1989, Laursen
2002, Simo and Laursen 1992). We refer to the recent monograph by Ito
and Kunisch (2008a) for an overview of Lagrange multiplier-based methods
for variational problems.

Here we choose an abstract and very flexible framework within which
many different applications can be handled. The starting point is the obser-
vation that most inequality constraints can be equivalently stated in terms of
a non-linear system. This holds true not only for contact problems but also



for other problems involving variational inequalities. The weak form of the
underlying partial differential equation and the non-linear complementarity
(NCP) function then form a coupled non-linear system on which a Newton
scheme can be applied and easily combined with fast iterative solvers, such
as multigrid (Hackbusch 1985) or domain decomposition techniques (Toselli
and Widlund 2005), for the consistent linearized system. Due to the char-
acteristic lack of classical differentiability of the NCP function, the assump-
tions for standard Newton methods (Deuflhard 2004) are not satisfied, but
the so-called semi-smooth Newton methods (Facchinei and Pang 2003a, Ito
and Kunisch 2003, Hintermüller, Kovtunenko and Kunisch 2004) can be ap-
plied; see also Pang (1990) and Pang and Qi (1993). Early applications of
this type of method can be found in the engineering literature. The classical
radial return mapping in plasticity (see Moreau (1977) for an early variant
of it) can be handled within this abstract framework, but it has also been
successfully applied to contact problems for roughly two decades (Alart and
Curnier 1991, Christensen 2002a, 2002b, Christensen and Pang 1999, De
Saxcé and Feng 1991, Simo and Laursen 1992). It is well established that
the semi-smooth Newton method converges locally super-linearly: see, e.g.,
the monograph by Facchinei and Pang (2003b). Global convergence can
be shown for some special cases, e.g., the Laplace operator-based obstacle
problem: see Ito and Kunisch (2008a). A simplified Signorini problem has
been analysed in Ito and Kunisch (2008b). For contact problems no global
convergence holds, but the pre-asymptotic robustness can, in particular in
3D, be widely improved by a suitable local rescaling of an NCP function and
a local node-wise regularization of the Jacobian. In each Newton step, the
contact condition and its boundary type have to be updated locally, e.g., a
Robin-type condition applies in the case of a sliding node. As a consequence,
the semi-smooth Newton method can be implemented as a primal–dual ac-
tive set strategy (Hintermüller, Ito and Kunisch 2002, Hüeber, Stadler and
Wohlmuth 2008, Ito and Kunisch 2004). The use of active sets allows for
local static condensation of either the dual variable or the corresponding
primal degrees of freedom, such that only a system of the size of the dis-
placement has to be solved in each Newton step. One of the attractive
features of this class of algorithms is that it can be easily combined with
other types of non-linearities, such as non-linear material laws, for example.
No inner and outer iteration loop is required even in the presence of the
different types of non-linearities.

5.1. Equivalent formulation as a non-linear equation system

In a first step, we rewrite the inequality constraints associated with the
discrete static Coulomb friction problem as a non-linear system. For sim-
plicity of notation, we present the algebraic form only for homogeneous



Dirichlet boundary conditions. Thus, after discretization the weak formula-

tion (3.9) has the following algebraic structure. Find (ũl,λl) ∈ R
NV

l ×R
NM

l ,
NV

l := dimVl, N
M
l := dimMl, such that

Ãlũl + B̃lλl = f̃l,

C̃l(λl, ũl) = 0.
(5.1)

Here we use the same symbol for λl ∈ Ml and its vector representation

λl ∈ R
NM

l . The matrices Ãl ∈ R
NV

l ×NV
l , B̃l ∈ R

NV
l ×NM

l and the right-

hand side f̃l ∈ R
NV

l result from the bilinear forms al(·, ·), bl(·, ·) and the
linear form fl(·), respectively, and are assembled with respect to the nodal
basis functions φp, ψp. We note that d#Ps

C;l =: N s
l = NM

l . The NCP

function C̃l(·, ·) ∈ R
NM

l reflects the non-penetration condition (3.11) and
the static Coulomb law (3.12). It has a node-wise form and can be written

as (C̃l(λl, ũl))p = C̃p(γp, ũl) ∈ R
d, p ∈ Ps

C;l.
There exist many different choices for NCP functions in the literature.

Quite often generalizations of the Fischer–Burmeister approach (Fischer
1992) are used. We refer to Chen, Chen and Kanzow (2000) for a penalized
version and to Chen (2007), Hu, Huang and Chen (2009), Kanzow, Ya-
mashita and Fukushima (1997) and Sun and Qi (1999) for the introduction
and analysis of a family of NCP functions. An excellent overview can be
found in the monograph by Facchinei and Pang (2003a). Here we use a dif-
ferent type of NCP function, which is based not on the root function but on
the max function: see Alart and Curnier (1991). The main advantage of this
type of NCP function is that the generalized derivatives are extremely easy
to compute. This is quite important if not only the simple non-penetration
law is considered but also more complex situations such as Coulomb friction
or finite deformations. We refer to the series of recent papers by Gitterle
et al. (2010) and Popp et al. (2009, 2010), where the concept of dual La-
grange multipliers and semi-smooth Newton schemes have been applied to
finite deformation problems. Moreover, it can be implemented easily in
terms of an active set strategy which switches off and on different types of
non-linear boundary conditions on the possible contact zone.

As is standard in the case of radial return mappings, we introduce trial
test vectors. Here we need two of them, one in the normal and one in the
tangential direction, that is,

γnp;tr := γnp +
2μcn
mp

(αn
p − gp), γt

p;tr := γt
p +

2μct
mp

αt
p, (5.2)

where cn and ct are two positive mesh-independent constants. Keeping
in mind that αp, p ∈ Ps

C;l, are the coefficients with respect to the nodal

basis functions on the slave side of Πl[ul], we find that αp is a function



of ũl. In terms of these trial vectors, which depend on γp and ũl, one can
easily reformulate the inequality constraints (3.11) and (3.12) as equality
conditions.

Lemma 5.1. The inequality constraints (3.11) and (3.12) for each node

p ∈ Ps
C;l are equivalent to C̃p(γp, ũl) := Cp(γp,αp(ũl)) = 0, where the

normal component Cn
p (γ

n
p , α

n
p ) of Cp(γp,αp) is given by

Cn
p (γ

n
p , α

n
p ) := γnp −max(0, γnp;tr), (5.3)

and the tangential component of Cp(γp,αp) is defined by Ct
p(γp,αp) :=⎧⎨⎩

γt
p Fp;tr = 0,

max
(
‖γt

p;tr‖,Fp;tr

)s(
γt
p −min

(
1,

Fp;tr

‖γt
p;tr‖

)
γt
p;tr

)
otherwise,

(5.4)

where s ≥ 0 stands for a scaling parameter and Fp;tr := νmax(0, γnp;tr).

Proof. The proof is a rather straightforward calculation, but for conve-
nience of the reader it is given. If Cn

p (γ
n
p , α

n
p ) = 0, then obviously γnp ≥ 0. If

γnp = 0, we get αn
p−gp ≤ 0, and for γnp > 0, we have αn

p = gp, and thus (3.11)

is satisfied. Let Cn
p (γ

n
p , α

n
p ) = 0 and Ct

p(γp,αp) = 0; then Fp;tr = νγnp . In
the case Fp;tr = 0, (3.12) trivially holds. For Fp;tr > 0, the scaling factor
max

(
‖γt

p;tr‖,Fp;tr

)s
is non-zero, and thus from Ct

p(γp,αp) = 0 it follows
that

γt
p = min

(
1,

Fp;tr

‖γt
p;tr‖

)
γt
p;tr.

If ‖γt
p;tr‖ ≤ νγnp , then γt

p − γt
p;tr = 0, and thus αt

p = 0 and ‖γt
p‖ ≤ νγnp .

For ‖γt
p;tr‖ > νγnp , we get ‖γt

p‖ = νγnp . Moreover, γt
p;tr = (1 + β)γt

p with

some positive value for β. Using the definition (5.2) of γt
p;tr, we find that

αt
p points in the same direction as γt

p and thus (3.12) is satisfied.
Let (3.11) be true; then a straightforward computation shows that we have

Cn
p (γ

n
p , α

n
p ) = 0. The situation is more complex for the discrete Coulomb

law. If (3.11) and (3.12) hold, then either αt
p = 0 or it points in the

same direction as γt
p or γnp = 0. In the first two cases, we can thus write

γt
p;tr = (1 + β)γt

p with some non-negative β. For β = 0, we trivially find

that γt
p;tr = γt

p and thus Ct
p(γp,αp) = 0. For β > 0, we have ‖γt

p‖ = νγnp
and moreover ‖γt

p;tr‖ > νγnp , yielding

γt
p −min

(
1,

Fp;tr

‖γt
p;tr‖

)
γt
p;tr = γt

p −
1

1 + β
γt
p;tr = γt

p −
1 + β

1 + β
γt
p = 0.

The case that γnp = 0 yields Fp;tr = 0 and γt
p = 0 and thus Ct

p(γp,αp) = 0.



Remark 5.2. We note that (3.11) and (5.3) are equivalent but (3.12) and
(5.4) are not. In particular, the trial vector in the normal direction enters
into the definition of Ct

p(γp,αp).

5.2. Basis transformation: from nodal to constrained

As already mentioned, from the algebraic point of view each two-body prob-
lem can be rewritten formally as a one-body problem by introducing a new
basis. The weak inequalities then result in node-wise inequalities for the
slave side, even in the case of non-matching meshes. One of the main ad-
vantages of the choice of a dual Lagrange multiplier space is that the basis
transformation is a local operator with a sparse matrix representation. This
is not the case for standard Lagrange multipliers.

Although C̃p(γp, ũl) only depends on the nodal coefficient of λl at p,
it does not have this simple structure with respect to ũl. A more local
and thus implementationally attractive representation can be obtained by
a suitable basis transformation. This transformation was introduced in
Wohlmuth and Krause (2001) to construct a multigrid scheme for mortar
finite element discretizations. The V-cycle analysis of a level-independent
convergence rate can be found in Wohlmuth (2005).

Introducing the nodal block structure for the displacement

ũl = (ũi
l, ũ

m
l , ũ

s
l )

�, ũi
l ∈ R

N i
l , ũm

l ∈ R
Nm

l , ũs
l ∈ R

Ns
l ,

where Nm
l := d#Pm

C;l and N
i
l := NV

l − Nm
l − N s

l (see also Figure 5.3), we

obtain the following structure for Ãl and B̃l:

Ãl =

⎛⎜⎝ Ãi,i
l Ãi,m

l Ãi,s
l

Ãm,i
l Ãm,m

l 0

Ãs,i
l 0 Ãs,s

l

⎞⎟⎠, B̃l =

⎛⎝ 0
−M�

l
Dl

⎞⎠,
where the entries of the coupling matrices Dl and Ml are defined by

dpp := mpIdd×d, mpq :=

∫
Γs
C;l

ψpφq ◦ χl ds Idd×d, p ∈ Ps
C;l, q ∈ Pm

C;l.

The diagonal structure of Dl is a consequence of (3.6). In the case of stan-
dard Lagrange multipliersDl has the band-structure of a (d−1)-dimensional
mass matrix, and thus D−1

l is dense.
We recall that, with respect to the nodal basis functions, the coefficient

αp in (3.11) and (3.12) does depend on the coefficients of the master and
the slave nodes. The definition (3.10) of the mortar projection yields that

(αp)p∈Ps
C;l

=: α = ũs
l −D−1

l Mlũ
m
l .

To eliminate the dependence of the coefficient vector on the master side, we
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Figure 5.3. Partitioning of the nodes into the three blocks.

use a basis transformation. The nodal basis function φp, p ∈ Pm
C;l, will be

replaced by a constrained basis function

φ̃p := φp +
∑

q∈Ps
C;l

rpqφq, (5.5)

while all other basis functions remain unchanged, i.e., φ̃p := φp, p ∈ Pl\Pm
C;l.

Lemma 5.3. Setting rpq := ((D−1
l Ml)qp)11, q ∈ Ps

C;l, p ∈ Pm
C;l in (5.5)

gives

Πl[φ̃p] = 0, p ∈ Pm
C;l.

Proof. The definition of the mortar projection (3.10a) shows that Πl, re-
stricted to W s

l , is the identity and that

Πl(φp ◦ χl) =
∑

q∈Ps
C;l

rpqφq, p ∈ Pm
C;l

and thus

Πl[φ̃p] =
∑

q∈Ps
C;l

rpqφq −Πl(φp ◦ χl) = 0.

Algebraically this basis transformation can be realized very efficiently in
a local pre-process. The coefficients with respect to the constrained basis
multiplied by the matrix

Ql =

⎛⎝Id 0 0
0 Id 0
0 D−1

l Ml Id

⎞⎠ (5.6)

yield the coefficients with respect to the nodal basis. If vl =
∑

p∈Pl
β̃pφp,

then vl =
∑

p∈Pl
βpφ̃p with (β̃p)p∈Pl

= Ql(βp)p∈Pl
. To obtain the stiff-

ness matrices Al, Bl and the right-hand side fl with respect to the new
constrained basis, we have to apply Ql in a suitable way on Ãl, B̃l and f̃l:

Al = Q�
l ÃlQl, Bl = Q�

l B̃l, fl = Q�
l f̃l.



Due to the definition (5.6) of Ql, it is easy to verify that the block struc-
ture of the matrix Bl, with respect to this new basis, has the form Bl =
(0, 0, Dl)

�. The non-linear system to be solved is equivalent to (5.1), and
can be written as

Alul +Blλl = fl,

Cp(γp,up) = 0, p ∈ Ps
C;l.

(5.7)

Here we have used that, with respect to the new basis, αp = up, p ∈ Ps
C;l.

We point out that the same notation for ul ∈ Vl is applied as for its coeffi-

cient vector ul ∈ R
NV

l with respect to the new constrained basis. Finally, we
mention that, with respect to this new basis, the p-component of the NCP
function only depends on the p-component of λl and ul. The coefficients
in the new basis with respect to the slave nodes no longer specify the total
nodal displacement but now describe the movement of the underlying finite
element node relative to the master side. Having ul, the Lagrange multiplier
can easily be obtained, from the node-wise residual, by a diagonal scaling

λl = D−1
l (f sl −Asi

l u
i
l −Asm

l um
l −Ass

l u
s
l ). (5.8)

Remark 5.4. Such a basis transformation can be carried out for all types
of Lagrange multiplier spaces as long as a discrete inf-sup condition holds.
In most cases, it will result in a dense block corresponding to the possibly
global character of the mortar projection. However, in our situation the
basis transformation is a local operator for all space dimensions and thus
inexpensive. Moreover, for uniformly stable pairs (Vl,Ml), the basis trans-
formation does not influence the order of the condition number of Al, which
is then comparable to that of Ãl.

5.3. Semi-smooth Newton solver

As can be easily seen from (5.3) and (5.4), the NCP function Cp(γp,up) is
not globally but only piecewise smooth. Thus, to solve (5.7), a Newton-type
solver can be implemented in terms of an active set strategy. The active
and inactive sets are defined by the different cases of Cp(·, ·) and can be
selected node-wise.

Let (λk−1
l ,uk−1

l ) be the previous iterate. We then obtain the new iterate

(λk
l ,u

k
l ) = (λk−1

l ,uk−1
l ) + (δλk−1

l , δuk−1
l )

of the semi-smooth Newton step by solving a linear system for the update
(δλk−1

l , δuk−1
l ). For each node p ∈ Ps

C;l, the local system

DCp

(
γk−1
p ,uk−1

p

)(
δγk−1

p , δuk−1
p

)�
= −Cp

(
γk−1
p ,uk−1

p

)
(5.9)

has to be satisfied. Here, DCp denotes the Jacobian of the local NCP
function Cp(·, ·). We note that due to our basis transformation, DCp can



be regarded as a d× 2d matrix. Defining the trial vectors of the increment
(δγp, δup), in a way similar to (5.2), by

δγnp;tr := δγnp +
2μcn
mp

δunp , δγt
p;tr := δγt

p +
2μct
mp

δut
p,

we introduce three sets in terms of Sn(γp,up) := Sn := max(0, γnp;tr):

In := In(γp,up) :=
{
p ∈ Ps

C;l : Sn = 0
}
,

It := It(γp,up) :=
{
p ∈ Ps

C;l : ‖γt
p;tr‖ < νSn

}
,

A := A(γp,up) :=
{
p ∈ Ps

C;l : ‖γt
p;tr‖ ≥ νSn, Sn > 0

}
.

(5.10)

Now, we can easily define the generalized derivative DCp(·, ·) for each p ∈
Ps
C;l in the direction of the update

(
δγp, δup

)
. We observe that In, It and A

form a non-overlapping partition of Ps
C;l. On In the nodes are free and not

in contact and no boundary forces apply. On It ∪A the nodes are actually
in contact and sliding on A.

Before we discuss the general case, we focus on ν = 0. Here It = ∅, and
the Newton algorithm simplifies considerably. Observing that the tangential
component of Cp(·, ·) is then linear, we get

DCp(γp,up)(δγp, δup) =

{
(δγnp , δγ

t
p)

� p ∈ In,
(δγnp − δγnp;tr, δγ

t
p)

� p ∈ A.

The Newton update (5.9) then gives (γp)
k = 0 for p ∈ Ik

n := In(γk−1
p ,uk−1

p )

and (γt
p)

k = 0, (unp )
k = gp for p ∈ Ak := A(γk−1

p ,uk−1
p ). For all possible

contact nodes, we have a homogeneous Neumann boundary condition in the
tangential direction, whereas in the normal direction we have a Dirichlet or
Neumann condition. Thus, the implementation can be easily realized as a
primal–dual active set strategy.

The situation is more involved for ν > 0. For a Coulomb problem with a
non-trivial friction coefficient, we obtain three different situations for Cp :=
Cp(γp,up) and DCp := DCp(γp,up)(δγp, δup). Using the differential

∂
x

‖x‖ =
1

‖x‖

(
Id − x⊗ x

‖x‖2
)
, x �= 0,

a straightforward computation shows the following.

• If p ∈ In, then Cp = (γnp ,γ
t
p)

� and

DCp =

(
δγnp
δγt

p

)
.



• If p ∈ It, then Cp = (γnp − γnp;tr, (νγ
n
p;tr)

s(γt
p − γt

p;tr))
�,

DCp =

(
δγnp − δγnp;tr

(νγnp;tr)
s
(
δγt

p − δγt
p;tr +

s
γn
p;tr
δγnp;tr(γ

t
p − γt

p;tr)
)).

• If p ∈ A, then Cp = (γnp − γnp;tr, ‖γt
p;tr‖s(γt

p + α2γ
t
p;tr))

�,

DCp =

(
δγnp − δγnp;tr

‖γt
p;tr‖s

(
δγt

p + α1γ
t
p + α2δγ

t
p;tr + α3γ

t
p;tr

)),
where the factors α1, α2 and α3 are given by

α1 :=s
γt
p;trδγ

t
p;tr

‖γt
p;tr‖2

, α2 := −
νγnp;tr
‖γt

p;tr‖
,

α3 :=(1− s)
νγnp;tr

‖γt
p;tr‖3

(δγt
p;trγ

t
p;tr)−

νδγnp;tr
‖γt

p;tr‖
.

For all cases, the normal component of the NCP function is linear; this is
not the case for the tangential component. Only for p ∈ In do we have a
linear tangential component. Here, we restrict ourselves to s ∈ [0, 1] and
note that for s = 0 or s = 1 some of the terms cancel.

Lemma 5.5. The semi-smooth Newton solver applied to (5.7) can be im-
plemented as a primal–dual active set strategy, where in each Newton step
we have to update for each node p ∈ Ps

C;l the type and the value of the
boundary condition. Moreover, for ν > 0 we have the following.

• Homogeneous Neumann conditions for p ∈ Ik
n := In(γk−1

p ,uk−1
p ):

(γp)
k = 0 (5.11)

• Inhomogeneous Dirichlet conditions for p ∈ Ik
t := It(γk−1

p ,uk−1
p ):

(unp )
k = gp and (ut

p)
k =

−s(δγnp;tr)k−1

(γnp;tr)
k−1

(ut
p)

k−1, (5.12)

where the condition in the tangential direction also depends on the
update of the normal surface traction.

• Dirichlet conditions in the normal and Robin conditions in the tangen-
tial direction for p ∈ Ak := A(γk−1

p ,uk−1
p ):

(unp )
k = gp and (5.13a)

(Id + Lk−1
p;s )(γt

p)
k + ĉtL

k−1
p;s (ut

p)
k −

ν(γnp )
k(γt

p;tr)
k−1

‖(γt
p;tr)

k−1‖ = gk−1
p , (5.13b)

where gk−1
p := Lk−1

p;s (γt
p;tr)

k−1, the mesh-dependent scaling factor ĉt is



given by ĉt :=
2μct
mp

and the matrix Lk−1
p;s by

Lk−1
p;s := βk−1

p

(
αk−1
2 Id +

sLk−1
1 + (s− 1)αk−1

2 Lk−1
2

‖(γt
p;tr)

k−1‖2
)
,

αk−1
2 := −

ν(γnp;tr)
k−1

‖(γt
p;tr)

k−1‖ , βk−1
p := 1, ωk−1

p := 1,

Lk−1
1 := ωk−1

p (γt
p)

k−1 ⊗ (γt
p;tr)

k−1, Lk−1
2 := (γt

p;tr)
k−1 ⊗ (γt

p;tr)
k−1.

Proof. The proof is based on (5.9) and the partitioning (5.10). For each
node p ∈ Ik

n, we get (
(δγnp )

k−1

(δγt
p)

k−1

)
= −

(
(γnp )

k−1

(γt
p)

k−1

)
and thus (5.11). From now on, to simplify the notation we suppress the
upper index k − 1 of the Newton iteration.

If p ∈ Ik
t , then(

δγnp − δγnp;tr(
δγt

p − δγt
p;tr +

s
γn
p;tr
δγnp;tr(γ

t
p − γt

p;tr)
))

= −
(
γnp − γnp;tr
(γt

p − γt
p;tr)

)
.

Observing that

γnp − γnp;tr =
2μcn
mp

(gp − unp ) and δγnp − δγnp;tr = −2μcn
mp

δunp ,

we get the normal part of (5.12). For the tangential part, we use

γt
p − γt

p;tr = −2μcn
mp

ut
p and δγt

p − δγt
p;tr = −2μcn

mp
δut

p.

For p ∈ Ak, we find the same condition as in (5.12) for the normal part
and thus (5.13a). Using the tangential component of the system (5.9), we
find

∂γt
p + α1γ

t
p + α2δγ

t
p;tr + α3γ

t
p;tr = −γt

p − α2γ
t
p;tr. (5.14)

Unfortunately, the new unknown updates are hidden in the coefficients α1

and α3. Using the definition of the matrix Lp;s and applying the formula
(x⊗ y)z = (yz)x, we get

α1γ
t
p + α3γ

t
p;tr = (Lp;s − α2Id)δγ

t
p;tr −

νδγnp;tr
‖γt

p;tr‖
γt
p;tr

= (Lp;s − α2Id)δγ
t
p;tr −

ν(γnp;tr)
k

‖γt
p;tr‖

γt
p;tr − α2γ

t
p;tr.

Using (5.13a), which guarantees that (γnp;tr)
k = (γnp )

k, and inserting the

equality for α1γ
t
p + α3γ

t
p;tr in (5.14), we get (5.13b).



Remark 5.6. If a non-local friction law or a simple combination of Cou-
lomb friction and Tresca friction is applied, possibly more cases have to
be considered, we refer to Hager and Wohlmuth (2009b) for an abstract
framework. If the friction bound depends not only on the contact pressure,
then nodes which are not in contact are not automatically surface traction-
free nodes.

Table 5.1 shows the convergence rate of the semi-smooth Newton scheme
with s = 1 applied to the 2D contact problem with given friction bound
depicted in Figure 4.3. Here we have used a discrete mesh-dependent norm
for the Lagrange multiplier. The third column shows the ratio of the error
in step k and k − 1. As expected, from the theoretical point of view, this
ratio tends to zero.

Table 5.1. Super-linear convergence for the
semi-smooth Newton scheme applied to a
contact problem with given friction bound.

k ek := ‖λk
l − λl‖ ek/ek−1

1 5.622e+02 −
2 2.553e+02 4.541e−01
3 1.087e+02 4.257e−01
4 3.515e+01 3.233e−01
5 5.761e+00 1.638e−01
6 2.362e−01 4.100e−02
7 3.360e−03 1.422e−02
8 1.760e−07 5.239e−05
9 1.004e−12 5.707e−06

For now, we do not comment on the solvability of the global system. How-
ever, we note that if convergence can be achieved, then the Newton update
will converge to zero and thus (5.12) yields that the physical condition of
a sticky node is satisfied, i.e., the relative tangential displacement is equal
to zero. However, in contrast to the physical non-penetration condition,
it is not directly imposed as one might expect from a primal–dual active
set strategy. A value for s strictly smaller than one provides an additional
damping. Moreover, (5.12) and (5.13b) show that the Newton solver couples
the tangential and normal parts in the boundary conditions.

Figure 5.4 shows the influence of the friction coefficient ν on the con-
vergence rate of the semi-smooth Newton scheme applied to a 3D contact
problem. A comparison between a fixed-point approach and the Newton
solver is given. For all three cases, super-linear rates are obtained for the
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Figure 5.6. Geometry (a), error decay of the semi-smooth
Newton iteration for different values of s (b) and total
number of iterations for t1 to t4 with respect to s (c).

Figure 5.6(a) illustrates the geometry of a dynamic two-body contact
problem in 3D with Coulomb friction. In Figure 5.6(b) we show the conver-
gence of the semi-smooth Newton method for different scaling parameters.
As can be clearly seen for small s, we do not have convergence. Numerically
optimal convergence can be observed for s = 0.75. The convergence is also
more robust for s = 1 than for smaller values of s. Figure 5.6(c) shows
that for s ∈ [0.75, 1], the global number of iterations required is almost con-
stant. For s > 1, we observe a linear increase in the number of iteration
steps, whereas for s ≤ 0.5 we see divergence. From now on we will restrict
ourselves to the case s ∈ [0, 1].

5.5. Stabilization in the pre-asymptotic range

Numerical experience shows that the use of the Robin boundary condition
in the form of (5.13b) does not necessarily yield a robust and stable al-
gorithm. Similar observations have been made in totally different fields of
applications. We refer to Chan, Golub and Mulet (1999) and Hintermüller
and Stadler (2006) for the use of primal–dual active set strategies in the
field of image restoration and to the early work by Andersen, Christiansen,
Conn and Overton (2000).

To get a better feeling, we consider the definition of Lk−1
p;s in more detail.

Let us assume that the Newton iterates converge towards a solution satis-
fying (3.11) and (3.12). Then, for a sliding node, we find that Lk−1

1 and

−αk−1
2 Lk−1

2 tend to the same limit and thus Lk−1
p;s tends to the limit L∞

p

independently of s:

L∞
p :=

1

‖γt
p;tr‖‖γt

p‖
γt
p ⊗ γt

p −
‖γt

p‖
‖γt

p;tr‖
Id.

Noting that a rank-one matrix of the form x⊗x has exactly one non-trivial
eigenvalue, namely ‖x‖2, we find that Id+Lk−1

p;s tends to a symmetric matrix



with eigenvalues 1 and 1−‖γt
p‖/‖γt

p;tr‖, which are strictly larger than zero

for a physically correct sliding node. If no sliding occurs then ‖γt
p‖ = ‖γt

p;tr‖,
and the matrix is singular. In that situation, we face a standard Dirichlet
boundary condition for ut

p. Recalling that γt
p stands for the negative surface

traction in the tangential direction acting on node p, we find in the limit of
a non-degenerate Robin boundary condition that

−(γt
p)

k + Lp;R(u
t
p)

k = gk
R, Lp;R :=

2μct
mp

(−L∞
p )

1
2 (Id + L∞

p )−1(−L∞
p )

1
2 .

Here the Robin boundary data vector gk
R itself depends on the solution (γnp )

k

and the previous iterate. The matrix Lp;R is symmetric and positive definite,
and thus yields a well-posed Robin condition for elliptic systems, and unique
solvability for the linearized system is established. Unfortunately, these
observations do not necessarily hold true in the pre-asymptotic range. Then
it might occur that Id+Lk−1

p;s is non-singular but that −(Id+Lk−1
p;s )−1Lk−1

p;s

is not positive semi-definite. This may result in no convergence.
To stabilize our approach, we introduce two modifications such that in

each Newton step we obtain a well-defined system. This will be done by
modifying ωk−1

p and βk−1
p , introduced in Lemma 5.5, so that

ωk−1
p :=

ν(γnp;tr)
k−1

max
(
ν(γnp;tr)

k−1, ‖(γt
p)

k−1‖
) , (5.15)

βk−1
p := min

(
1,

1

s(1− χk−1
p ζk−1

p )

)
, (5.16)

where χk−1
p and ζk−1

p are defined by

χk−1
p :=

(γt
p)

k−1(γt
p;tr)

k−1

‖(γt
p)

k−1‖‖(γt
p;tr)

k−1‖ , ζk−1
p := min

( ‖(γt
p)

k−1‖
ν(γnp;tr)

k−1
, 1

)
.

Let us briefly comment on the definition of the two parameters ωk−1
p and

βk−1
p . As we will see by our numerical results, both parameters play impor-

tant roles in the pre-asymptotic range but do tend to 1 within the first few
iterates if the algorithm converges. Thus asymptotically the exact Newton
method is recovered. The damping parameter ωk−1

p can be regarded as a
penalty term and only differs from 1 if the friction bound is violated. It
is obvious that ζk−1

p ∈ [0, 1] and that χk−1
p , being the cosine of the angle

between (γt
p)

k−1 and (γt
p;tr)

k−1, is in [−1, 1].

It is now easy to see that βk−1
p is equal to 1 if s ∈ [0, 0.5] or if χk−1

p ≥ 0.
The last condition is equivalent to the fact that the angle between the actual
and the trial tangential stress is bounded by π/2. Figure 5.7 shows βk−1

p

as a function of χk−1
p ∈ [−1, 1] and ζk−1

p ∈ [0, 1] for s ∈ {0.5, 0.75, 1}. For
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If −1 < eZ := βk−1
p (αk−1

2 + xy) < 0, then Z is negative definite. The

definition of Lk−1
p;s in Lemma 5.5 shows that we can set

x := sωk−1
p (γp)

k−1 + (s− 1)αk−1
2 (γp;tr)

k−1, y :=
(γp;tr)

k−1

‖(γp;tr)
k−1‖2 .

Then, the value eZ can be rewritten as

eZ = βk−1
p

(
αk−1
2 + sωk−1

p χk−1
p

‖(γp)
k−1‖

‖(γp;tr)
k−1‖ + (s− 1)αk−1

2

)
= sβk−1

p

(
ωk−1
p χk−1

p

‖(γp)
k−1‖

‖(γp;tr)
k−1‖ + αk−1

2

)
= sβk−1

p αk−1
2

(
1− ωk−1

p χk−1
p

‖(γp)
k−1‖

ν(γnp;tr)
k−1

)
= sβk−1

p αk−1
2 (1− χk−1

p ζk−1
p )

≥ αk−1
2 ≥ −1.

The case eZ = −1 is ruled out by the assumption that Id + Lk−1
p;s is non-

singular, since eZ + 1 is an eigenvalue of this matrix.
These considerations show that the Robin boundary condition, given by

(5.13b), reduces to a Neumann or Dirichlet condition in the direction of
the kernel of Lk−1

p;s or Id + Lk−1
p;s , respectively. For all other cases it forms a

well-defined Robin condition.

Remark 5.8. We note that the proposed modifications are just one pos-
sibility. An alternative choice is to symmetrize and rescale Lk−1

p;s . All these
modifications work well as long as they correctly normalize and, in the limit,
tend to the original version; see also Hüeber et al. (2008) and Hüeber (2008).

To illustrate the effect of the modification, we consider different test ex-
amples in 3D. Figure 5.8 shows the case of a Tresca friction problem. We
select a representative node and depict the value for ωk−1

p and βk−1
p . As

can be seen, the modification actually applies only in the first few iteration
steps.
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Figure 5.10. Number of required iterations (a) and convergence
rates for two different time steps (b,c).
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p at iteration step k.

if s ≤ 0.5. Then the correct sliding direction cannot be identified and
ωk−1
p and χk−1

p do not tend to 1, reflecting the fact that no convergence is
obtained.

5.6. Mesh-dependent convergence rates

Although the abstract framework of semi-smooth Newton methods is very
flexible and quite attractive for a large class of problems, there is one bottle-
neck. The convergence rate is, in general, mesh-dependent. Numerical re-
sults show that the number of Newton steps increases linearly with the
refinement level. Several strategies exist to overcome this problem, depend-
ing on the type of application. One of the most efficient ones is to embed
the solver in a nested iteration. This is extremely easy to realize with
time-dependent problems or with adaptive refinement techniques. In both
situations the initial guess can be interpolated from the previous time step
or mesh. This simple pre-processing is quite often sufficient to obtain a
level-independent number of non-linear solver steps. Alternatively, or ad-
ditionally, we can combine the Newton approach with an inexact solution
strategy. Quite often the arising linear system is not solved by a fast di-
rect solver but by preconditioned Krylov or subspace correction methods
such as multigrid or FETI techniques. Then it is only natural to make the
Newton update after a small number of steps of the linear solver. To avoid



over-solving, during the first non-linear iteration steps, the number of inner
iterations should be set dynamically.

We consider the same example as shown in Figure 4.3 to illustrate the
effect of the mesh-dependent convergence rates. We use a hierarchy of uni-
formly refined meshes and compare three different strategies. The ‘exact’
one starts with a randomly chosen initial guess on each level and solves
the resulting linearized system in each Newton step by a multigrid method
with fixed small tolerance. By Kl, we denote the number of Newton steps
required. As can be seen in Table 5.2, Kl depends linearly on l, and thus
the total number NMG

l of multigrid steps on level l increases linearly with l.
The situation is different if we apply an inexact strategy, using the same bad
initial guess, but do a Newton update after each multigrid step. This results
in an ‘inexact’ strategy where the correct Jacobian of the NCP function is
used but the system stiffness matrix is replaced by its multigrid approxima-
tion. Here, Ml stands for the number of iterations required to identify the
correct active sets. As before, this number increases linearly, but the total
number of multigrid steps is significantly reduced. Finally we combine this
inexact strategy with a good initial guess obtained by interpolation from
the solution on the previous level. We call this the ‘nested’ approach. Then
the total number of multigrid steps is bounded independently of the refine-
ment level and is comparable to the number required to solve one linearized
problem.

Table 5.2. Number of total multigrid steps for different strategies.

Strategy Exact Inexact Nested
Level l DOF Kl MG Ml NMG

l Ml NMG
l

1 27 3 46 3 12 3 12
2 125 3 62 3 16 3 16
3 729 4 72 4 17 4 15
4 4913 6 86 6 17 6 14
5 35937 7 106 9 19 6 16

In more complex 3D situations, or for non-linear material laws, more
than one multigrid step is required before an update can be performed. In
a last test, we combine semi-smooth Newton techniques and inexact solvers
for the linearized system with an overlapping two-scale domain decompo-
sition method in 3D. We refer to Brunßen, Hager, Wohlmuth and Schmid
(2008) and Brunßen and Wohlmuth (2009) for details of the model and the
specification of the data. In addition to the contact formulation, plastic-
ity effects are taken into account. The approach is motivated by possible
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Figure 5.12. Surface mesh of the two-scale domain decomposition
approach (a), convergence rates for the non-linear Newton solver (b,c).

applications to incremental metal cold forming processes. Here, the forming
zone is small, but very mobile, and the work tool is contacting almost every
point of the workpiece at some time in the process. To avoid expensive
re-meshing and to reduce the complexity of the elasto-plastic constitutive
equations, an operator splitting technique in space can be introduced. A
small local but mobile subdomain, with a fine mesh and the fully non-linear
contact and plasticity model, will interact with the global coarse mesh asso-
ciated with a simplified model. To solve the fully coupled non-linear system,
semi-smooth Newton techniques in combination with a block Gauss–Seidel
solver are quite efficient. This is in particular true if inexact strategies are
applied. To avoid over-solving during the first non-linear iteration steps,
the number of inner iteration should be set dynamically. Here, the stopping
criterion is based on Dembo, Eisenstat and Steinhaug (1982) and Eisenstat
and Walker (1996).

Figure 5.12 shows the increase in efficiency of the non-linear solver if,
within each Newton step, the linearized coupled domain decomposition sys-
tem is not solved exactly but by a few block Gauss–Seidel steps. The num-
ber of inner iteration steps is set dynamically depending on the non-linear
residual. As can be seen from Figure 5.12(c), during the first few Newton
iterations, there is no need to solve the linearized system up to very high
accuracy. To obtain the full efficiency of the approach, the accuracy of the
linear solver has to be gradually improved during the non-linear solution
process.

6. A posteriori error estimates and adaptivity

Adaptive techniques based on a posteriori error estimators play an impor-
tant role in enhancing the performance of the numerical simulation algo-
rithm and are well established for finite element methods: see the mono-
graphs by Ainsworth and Oden (2000), Babuška and Strouboulis (2001),
Han (2005), Repin (2008), Verfürth (1996) and the references therein. For
abstract variational inequalities we refer to Ainsworth, Oden and Lee (1993),



Bostan, Han and Reddy (2005), Erdmann, Frei, Hoppe, Kornhuber and
Wiest (1993), Fuchs and Repin (2010), Liu and Yan (2000), Nochetto, von
Petersdorff and Zhang (2010), Moon, Nochetto, von Petersdorff and Zhang
(2007) and Suttmeier (2005), whereas obstacle-type problems are considered
in Bildhauer, Fuchs and Repin (2008), Braess (2005), Chen and Nochetto
(2000), French, Larsson and Nochetto (2001), Hoppe and Kornhuber (1994),
Johnson (1992), Kornhuber and Zou (2011), Nochetto, Siebert and Veeser
(2003, 2005) and Veeser (2001), and early approaches for contact problems
can be found in Blum and Suttmeier (2000), Buscaglia, Duran, Fancello,
Feijoo and Padra (2001), Carstensen, Scherf and Wriggers (1999), Lee and
Oden (1994) and Wriggers and Scherf (1998). A residual-type error esti-
mator is introduced and analysed in Hild and Nicaise (2005, 2007) and in
Bostan and Han (2006) and Hild and Lleras (2009) for a one-sided contact
problem without friction and with Coulomb friction, respectively. In ad-
dition to standard face and volume residual terms, extra terms reflecting
the non-conformity of the approach are taken into account. For boundary
element discretizations, we refer to Eck and Wendland (2003) and Mais-
chak and Stephan (2005, 2007). Although the error estimator in Hild and
Lleras (2009) provides a mesh-independent upper bound for the discretiza-
tion error, not all terms result in optimal lower bounds. Thus the efficiency
of the error estimator cannot be guaranteed from the theoretical point of
view. Early results on hp-techniques for frictional contact problems can be
found in Lee and Oden (1994), whereas in the recent contribution of Dörsek
and Melenk (2010) a simplified Tresca problem with a given surface normal
traction equal to zero has been studied.

As it turns out, the saddle-point approach (2.15) and its discrete version
(3.9) provide an excellent starting point for the construction of an error
indicator. In Wohlmuth (2007) an estimator was introduced for the case
of no friction and non-matching meshes. A theoretical analysis shows that
a constant-free global upper bound and local lower bounds for the error
can be established. However, in contrast to the standard linear conforming
setting, the additional higher-order term is solution-dependent and cannot
be controlled within the adaptive refinement process.

These first results can be improved considerably by following a more gen-
eral construction principle. Firstly, we use the equilibrium of the saddle-
point approach to construct our indicator. Secondly, we consider the influ-
ence of the discretization (3.8) of (2.14). For the special case of a one-sided
contact problem without friction, it is shown in Weiss and Wohlmuth (2009)
that an indicator, constructed in this way, provides upper and local lower
bounds for the discretization error and is thus an efficient error estimator.
Moreover, the higher-order terms are standard data oscillation terms and
can be controlled within the adaptive refinement strategy. The results are
shown for a flux-based approach but can easily be generalized to cover the



case of a residual-based error estimator: see Hüeber and Wohlmuth (2010)
for numerical results. Here, we follow these lines and extend the approach
and the analysis to contact problems with friction.

In this section, we discuss different element-oriented error indicators, i.e.,
η2 :=

∑
T∈Tl η

2
T , and analyse the influence of the variational inequality. We

focus both on the theoretical bounds and on computational aspects. Due
to the variational inequality character of the given problem, we have to
include a term which measures the non-conformity of the Lagrange mul-
tiplier. This contribution can be decomposed into a contact and friction
term. For ease of presentation and analysis, we restrict ourselves to the
two-dimensional setting, polygonal domains, a zero gap and a constant con-
tact normal. Moreover, we do not analyse the influence of non-matching
meshes but do provide the construction of the error indicator.

As is standard, we use a data oscillation term,

ξ2i :=
∑
T∈Tl

h2T
2μ

‖f −Πif‖20;T , i = 0, 1. (6.1)

To keep the notation simple, we further assume that we are working with
simplicial meshes and that the given boundary data is compatible with the
discretization, i.e., ul|ΓD

= uD and fN is piecewise cubic and continuous
on each straight segment γi of ΓN. Moreover, we assume that njfN|γi(p) =
nifN|γj (p) with ∂γi∩∂γj = p and that nfN|ΓN

(p) = 0 where p = ∂ΓC∩∂ΓN,
and n is the outer unit normal on ΓC. Otherwise, as is standard, additional
boundary face terms have to be included, measuring the weighted L2-norms
of the boundary error: see, e.g., Repin, Sauter and Smolianski (2003). The
weight

√
hf/(2μ) for the Neumann term is the inverse of the weight for the

Dirichlet term, reflecting the H1/2-duality between displacement trace and
surface tractions. Here hf stands for the diameter of the boundary face
f . In the following, we use the piecewise cubic biorthogonal basis function
shown in Figure 3.7(a).

As a first preliminary step, we reformulate the coupled problem (3.9)
by introducing a weakly consistent Neumann force in Mm

l on the master
side. To do so, we introduce Π∗;m

l := (Π∗;m
l )d as the dual mortar projection

Π∗;m
l :M →Mm

l with respect to the master side,∫
ΓC

Π∗;m
l μvl ds = 〈μ, vl〉ΓC

, vl ∈Wm
l . (6.2)

Keeping in mind that Mm
l and Wm

l reproduce constants and have a locally
defined basis, a straightforward Bramble–Hilbert argument implies the ap-
proximation properties

‖μ−Π∗;m
l μ‖2− 1

2
;ΓC

≤
∑

f∈Fm
l

hf‖μ−Π∗;m
l μ‖20;f , μ ∈ L2(ΓC), (6.3)



where Fm
l stands for the set of all contact faces of the master subdomain.

In terms of (6.2), we now define the discrete contact forces of the slave
and master sides by

fC :=

{
f sC := −λl on Γs

C,

fmC := Π∗;m
l λl on Γm

C .
(6.4)

Provided that the Lagrange multiplier λl on the slave side is known, we can
rewrite the first line of (3.9). Recalling the definition of Π∗;m

l , we obtain

a standard variational problem for uk
l on each subdomain Ωk, k ∈ {m, s}.

Find uk
l ∈ Vk

l;D such that

ak(u
k
l ,vl) = fk(vl) +

∫
Γk
C

fkCvl ds, vl ∈ Vk
l . (6.5)

Then (6.5) shows that us
l and um

l are conforming finite element approxima-
tions of a linear elasticity problem on Ωs and Ωm, respectively. Here the
unknown contact stresses on Γs

C and Γm
C are replaced by the numerical ap-

proximation fC as defined by (6.4). Thus the contact zone Γk
C, k ∈ {m, s},

can be regarded as a Neumann boundary part where, additionally, the error
in the Lagrange multiplier has to be taken into account. Unfortunately, in
contrast to given Neumann data, this error cannot be estimated a priori
and has to be controlled by the error indicator.

There is a huge variety of different types of error estimators. One of
the most simple approaches is based on the residual equation. A more re-
cent and quite attractive alternative construction is related to local lifting
techniques in combination with equilibrated fluxes. These element-wise con-
servative fluxes have a long tradition in structural mechanics and go back
to the early papers by Brink and Stein (1998), Kelly (1984), Kelly and
Isles (1989), Ladevèze and Leguillon (1983), Ladevèze and Maunder (1996),
Ladevèze and Rougeot (1997), Prager and Synge (1947) and Stein and Ohn-
imus (1997, 1999). We refer to the monograph by Repin (2008) and to Luce
and Wohlmuth (2004), where such techniques have been applied successfully
and constant-free upper bounds have been established. Recently these ideas
have been generalized to many situations and are widely applied: see, e.g.,
Braess, Hoppe and Schöberl (2008), Braess, Pillwein and Schöberl (2009b),
Cheddadi, Fuč́ık, Prieto and Vohraĺık (2008, 2009), Ern and Vohraĺık (2009),
Nicaise, Witowski and Wohlmuth (2008) and Vohraĺık (2008).

6.1. Construction of the equilibrated error indicator

The construction of such type of indicators is done in two steps. Firstly,
equilibrated fluxes on the faces are defined locally and secondly a local
volume lifting is performed.

For low-order finite elements the equilibrated fluxes g are defined on the
set of all faces Fl and for each simplicial face f in P1(f)

d. A unit face



normal nf is fixed for each face f . If f is a boundary face of the domain
Ωk, then we set nf to be the outer unit normal on ∂Ωk. Then the global
problem reads as follows. Find g := (gf )f∈Fl

∈∏f∈Fl
P1(f)

d such that, for

all elements T ∈ Tl and all v ∈ (P1(T ))
d,∫

T
σ(ul) : ε(v) dx =

∫
T
fv dx+

∑
f⊂∂T

∫
f
(nTnf )gfv ds, (6.6)

where nT stands for the outer unit normal on ∂T . Moreover, for all Neu-
mann and contact faces, the fluxes have to satisfy∫

f
gfv ds =

∫
f
fNv ds, f ∈ FN

l , v ∈ (P1(f))
d, (6.7a)∫

f
gfv ds =

∫
f
fCv ds, f ∈ FC

l , v ∈ (P1(f))
d, (6.7b)

where Fk
l is the set of faces on Γs

k and on Γm
k , k ∈ {N,C}. We note that

formally (6.7a) and (6.7b) have the same structure but in contrast to fN, fC
is not a priori known but depends on the dual variable λl given by (5.8). A
simple counting argument shows that in (6.6) and (6.7), we have to satisfy
(d + 1)dNT and dd(NN

f +NC
f ) equations, respectively. Here NT stands for

the number of elements in Tl, and NN
f and NC

f denote the number of faces
on the Neumann and contact boundary part, respectively.

Remark 6.1. We note that from the point of view of approximation prop-
erties, there is no need to work with gf ∈ P1(f)

d. A face-wise constant
approximation in combination with v ∈ (P0(T ))

d in (6.6) and v ∈ (P0(f))
d

in (6.7) would be good enough. However, then the system cannot be decou-
pled easily and a global system has to be solved. This is not very attractive
from the computational point of view.

It is well known (see the monograph by Ainsworth and Oden (2000)) that
a possible solution can be constructed locally by introducing the moments
of the fluxes gf . An abstract framework for the vertex-based patch-wise
computation of the moments can be found in Ainsworth and Oden (1993).
In particular, the size of the local system depends on the shape-regularity
of the mesh but not on the mesh size. Depending on the type of the vertex,
i.e., Neumann, or interior, Dirichlet, the system has a unique solution or the
system matrix is singular but solvability is guaranteed. Then the solution is
fixed by imposing an additional constraint resulting from a local minimiza-
tion problem for the moments. Here, we briefly recall the main steps and
provide the structure of the vertex-based patch system in 2D. Figure 6.1
illustrates the notation for an interior vertex patch.



T1 T2

f1
f2

nf1
nf2

nfnp

Tnp

fnp

p

Figure 6.1. Enumeration of the elements and faces sharing a vertex in 2D.

The moments μp
f ∈ R

d are given for each face f and vertex p by

μp
f :=

∫
f
gfφp ds

and uniquely define the fluxes gf by gf =
∑

p∈Pf
μp
fϕp, where ϕp is the nor-

malized linear dual basis with respect to φp on the face f , i.e.,
∫
f φpϕq ds =

δpq. Here Pf stands for all vertices of f .
Here, we only work out the details for an interior vertex p in 2D and refer

to Ainsworth and Oden (2000) for a discussion of the local system in the
case of boundary vertices. Using φp|Tiej , j = 1, 2, i = 1, . . . , np, where np
stands for the number of elements sharing the vertex p, as a test function
in (6.6), in 2D we get the linear system⎛⎜⎜⎜⎜⎜⎝

−Id Id
−Id Id

. . .
. . .

−Id Id
Id −Id

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
μp
1

μp
2
...

μp
np−1

μp
np

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
rp1
rp2
...

rpnp

rpnp−1

⎞⎟⎟⎟⎟⎟⎠ =: rp, (6.8)

where (rpi )j :=
∫
Ti
fφpej dx −

∫
Ti
σ(ul) : ε(φpej) dx, j = 1, 2, i = 1, . . . , np,

and μp
i := μp

fi
, i = 1, . . . , np. It is easy to see that this system is singular,

and the dimension of its kernel is independent of np and equal to two.
The two eigenvectors v1 and v2 associated with the eigenvalue zero are
given by v1 = (1, 0, 1, 0, . . . , 1, 0)� and v2 = (0, 1, 0, 1, . . . , 0, 1)�. Since
vjr

p = f(φpej)−a(ul, φpej) = 0, j = 1, 2, the solvability of (6.8) is granted.
We note that, in the linear setting, each solution of (6.8) will provide an

upper bound for the discretization error but will, in general, not be suitable
for getting lower bounds. Thus the solution of (6.8) has to be selected care-
fully. The flux gf will enter directly into the definition of the error estimator,
and discrete norm equivalences show that the error estimator depends on
gf − {σ(ul)nf}, where {·} stands for the average face contribution. This



observation motivates us to obtain μp := (μp
1,μ

p
2, . . . ,μ

p
np)

� as the unique
solution of a local constrained minimization problem. We identify the index
i = np + 1 with i = 1 and introduce the quadratic functional

Jp(μ
p) :=

np∑
i=1

i+1∑
j=i

|Ti|
2μi
(∫

fj
φp ds

)2 ‖μp
i − τ p

i;j‖2, (6.9)

where μi is the shear modulus of the element Ti, |Ti| stands for the element
volume and τ p

i;j :=
∫
fj
σ(ul)|Tinfjφp ds. Based on Jp(·), we impose an

additional constraint for each vertex p. Find μp such that μp is a solution
of (6.8) and satisfies

Jp(μ
p) = min

ηp solves (6.8)
Jp(η

p).

We point out that in our setting the factor 2μi in the weight of (6.9) is
constant on each vertex patch and thus can be removed without influencing
the result. Moreover, for meshes with no anisotropy, the weight itself can
be replaced by one.

Remark 6.2. We note that the difference μp
i − τ p

i;j can also be used to

define error estimators (see the monograph by Ainsworth and Oden (2000)),
but then the upper bound is, in general, not constant-free.

The second step, in the construction of our error indicator, is to map
the surface fluxes in terms of local lifting techniques to volume H(div)-
conforming fluxes. In many cases, up to higher-order data oscillation terms,
upper bounds for the discretization error with constant one can then be
obtained. Thus these equilibration techniques form a flexible and an attrac-
tive class of error estimators and are of special interest if a reliable stopping
criterion is required.

For scalar elliptic equations it is quite easy to construct this type of esti-
mator. Basically two types of approach exist. The first one works on a dual
mesh and uses a sub-mesh for the recovery in terms of standard mixed finite
elements, e.g., Raviart–Thomas (RT) or Brezzi–Douglas–Marini (BDM) el-
ements: see Brezzi and Fortin (1991). Here the vertex patches are non-
overlapping, and the fluxes are simply given by the discrete finite element
flux which is well-defined in the interior of each element: see, e.g., Luce
and Wohlmuth (2004). Alternatively one can use the standard overlapping
vertex patches and the face flux moments from the equilibrated approach
as described above; see, e.g., Vohraĺık (2008).

The situation is more involved in the case of linear elasticity. Firstly,
the dual mesh approach cannot be applied in the linear elasticity setting
due to the local rotations, which act as rigid body mode. Secondly, classi-
cal mixed finite elements for each row of the stress tensor cannot be used



because they violate the symmetry. Thus special mixed finite elements for
symmetric tensor approximations have to be applied. This can be done
by selecting Arnold–Winther-type mixed finite elements (Arnold, Falk and
Winther 2006, Arnold and Winther 2002). Here, we only work with the two-
dimensional setting, but these types of elements do also exist in 3D (Arnold,
Awanou and Winther 2008, Arnold and Winther 2003), and on hexahedral
meshes (Arnold and Awanou 2005). Using the equilibrated fluxes and an
H(div)-conforming lifting, as in Nicaise et al. (2008) for a linear elasticity
problem, we define a globally H(div)-conforming approximation σl of the
stress σ(u). Then the error indicator is defined by

η2L :=
∑

k∈{m,s}

∑
T∈T k

l

η2L;T , η2L;T := ‖C−1/2(σl − σ(ul))‖20;T . (6.10)

We note that once σl is known, η
2
L;T can be easily evaluated by

η2L;T =
1

2μ

(
‖σl − σ(ul)‖20;T − λ

2μ+ dλ
‖tr(σl − σ(ul))‖20;T

)
.

Before we specify σl, we recall the basic properties of the Arnold–Winther
elements in 2D. The element space XT for a simplicial T ∈ Tl is given by

XT :=
{
τ ∈ (P3(T ))

2×2, τ 12 = τ 21, div τ ∈ (P1(T ))
2
}

and has dimension 24. Based on this, we can define the global space by
Xl := Xm

l ×Xs
l , where

Xk
l := {τ l ∈ H(div; Ωk) | τ l|T ∈ XT , T ∈ T k

l }, k ∈ {m, s}.
By definition Xk

l is H(div)-conforming on each subdomain Ωk, and the
degrees of freedom are given by (see Arnold and Winther (2002)):

• the nodal values (3 dof) at each vertex p,
• the zero- and first-order moments of τ lnf (4 dof) on each face f ,
• the mean value (3 dof) on each element T .

We define our stress approximation σl of σ(u) by setting∫
T
σl : ε(v) dx :=

∫
T
σ(ul) : ε(v) dx, v ∈ (P1(T ))

2, (6.11a)∫
f
(σlnf )v ds :=

∫
f
gfv ds, v ∈ (P1(f))

2, (6.11b)

σl(p) :=
1

np

np∑
i=1

σ(ul)|Ti (p) +αp. (6.11c)

In contrast to Nicaise et al. (2008), where only homogeneous Dirichlet
boundary conditions have been considered, we have to include a suitable



αp in (6.11c). For each node p not on ΓN ∪ ΓC, we set αp := 0. Other-
wise, it is a symmetric 2 × 2 matrix with minimal Euclidean norm under
the constraint

αpn :=

⎧⎪⎪⎨⎪⎪⎩
fN − 1

np

np∑
i=1

σ(ul)|Ti (p)n p ∈ ΓN,

fC − 1
np

np∑
i=1

σ(ul)|Ti (p)n p ∈ ΓC,

(6.12)

where, for corner-points p, (6.12) has to be satisfied for both normal vectors.
Our assumptions on the given data, the actual contact zone and our choice
for Ml guarantee that αp is well-defined. Moreover, due to the symmetry of
σl, (6.11a) reduces to three independent conditions on each element. This
definition has already been applied to contact problems in Wohlmuth (2007)
and Weiss and Wohlmuth (2009).

Lemma 6.3. The subdomain-wise H(div)-conforming Arnold–Winther
element σl is well-defined and satisfies

− divσl = Π1f , on Ω,

σln =

{
fN on ΓN,

fC on ΓC,

where Πj stands for the L2-projection on piecewise polynomials of degree
at most j ∈ N0.

Proof. By definition of Xl, divσl is element-wise in (P1(T ))
2. Integration

by parts and the symmetry of σl shows that, for all v ∈ (P1(T ))
2,∫

T
divσlv dx = −

∫
T
σl : ε(v) dx+

∫
∂T

(σlnT )v ds.

Now we can use the definition (6.6) of the fluxes gf and the definitions
(6.11a) and (6.11b) for the Arnold–Winther element σl, and we obtain∫

T
divσlv dx = −

∫
T
σ(ul) : ε(v) dx+

∑
f⊂∂T

∫
f
(nfnT )gfv ds

= −
∫
T
fv dx.

The stress σl is in Xl, and thus σln restricted to each face f is in (P3(f))
2.

Let p1 and p2 be the two endpoints of f ; then (6.11c) and (6.12) show that we
have σln(pi) = fC(pi) and σln(pi) = fN(pi) for f ⊂ ΓC and f ⊂ ΓN, i = 1, 2,
respectively. Moreover, by assumption on the data fN and by choice of Ml,
σln− fk, k ∈ {C,N}, is cubic with zero value at the endpoints. Then (6.7)
in combination with (6.11c) shows that the zero- and first-order moments



of σln− fk vanish, from which we can conclude that σln− fk = 0 on each
Neumann or contact boundary face.

Remark 6.4. We note that Lemma 6.3 does not hold for other choices of
biorthogonal Lagrange multiplier basis functions such as, e.g., the piecewise
affine but discontinuous one.

The error indicator ηL, defined by (6.10), is motivated by the observa-
tion that the discrete Lagrange multiplier λl acts as a Neumann boundary
condition on the contact part. It takes into account neither the inequality
constraints resulting from the non-penetration nor the friction law. To have
the equality σln = fC on the contact zone, it is crucial that λl is mapped by
Π∗;m

l onto Mm
l . In the case of matching meshes we have λl −Π∗;m

l λl = 0,
but in a more general situation this difference is non-zero and has to be
estimated and controlled within the adaptive refinement process. To do so,
we introduce an extra term, which is restricted to the master side of the
contact zone,

ηS :=
∑

f∈Fm
l

η2S;f , η2S;f :=
hf
2μm

‖λl −Π∗;m
l λl‖20;f , (6.14)

where μm is the Lamé parameter associated with the master body.
We now provide a first preliminary result, which is the starting point for

our a posteriori analysis. The error in the displacement will be estimated
in the energy norm ||| · |||, which is defined by

|||v|||2 := a(v,v), v ∈ V.

Lemma 6.5. The upper bound for the error in the energy norm satisfies

|||u− ul|||2 ≤ (ηL + CηS + Cξ1)|||u− ul|||+ 〈λl − λ, [u]− [ul]〉ΓC
.

Proof. We start with the definition of the energy norm and apply integra-
tion by parts. The assumptions on the Dirichlet and Neumann boundary
conditions yield that u − ul = 0 on ΓD and that (σl − σ(u))n = 0 on
ΓN. We then obtain in terms of Lemma 6.3 and (6.3) for el := (eml , e

s
l ) :=

(um − um
l ,u

s − us
l )

|||el|||2 =
∫
Ω
(σ(u)− σ(ul)) : ε(el) dx

≤ ηL|||el|||+
∫
Ω
(σ(u)− σl) : ε(el) dx

= ηL|||el|||+
∫
Ω
(f −Π1f)el dx

+

∫
∂Ωs

(σ(u)− σl)n
sel ds+

∫
∂Ωm

(σ(u)− σl)n
mel ds



≤ (ηL + Cξ1)|||el|||+ 〈λl − λ, esl 〉ΓC
− 〈Π∗;m

l λl − λ, eml 〉ΓC

= (ηL + Cξ1)|||el|||+ 〈λl − λ, [el]〉ΓC
− 〈Π∗;m

l λl − λl, e
m
l 〉ΓC

= (ηL + CηS + Cξ1)|||el|||+ 〈λl − λ, [el]〉ΓC
.

Remark 6.6. We note that ηS is equal to zero in the case of a one-sided
contact problem or for matching meshes. We refer to Section 6.7 for more
comments on non-matching meshes.

In the following subsection, we introduce two extra terms which allow for
the variational inequality. Although we restrict our analyses to very simple
two-dimensional settings and to matching meshes, the definitions are given
for the more general case, including non-matching meshes, a non-zero gap,
and d = 3. As our numerical results will show, the error indicator can also
be applied to such more general settings.

6.2. Influence of the contact constraints

To bound the variational crime resulting from the non-penetration condition
and the friction law, we introduce two additional terms ηC and ηF. Both
terms are restricted to the slave side of the contact zone and are associated
with the faces

ηj :=
∑
f∈Fs

l

η2j;f , j ∈ {C,F}. (6.15)

Here F s
l stands for the set of all faces f on Γs

C of the actual mesh. The term
ηC measures the violation of the physical condition of a positive contact
pressure and is associated with λCl := λnl ∈ M+

l . The term ηF;f measures
the violation of the friction law and is associated with the scalar-valued
tangential part λFl . For a Coulomb law, we set

λFl :=
∑

p∈Ps
C;l

(νγnp − ‖γt
p‖)ψp =:

∑
p∈Ps

C;l

γfpψp, (6.16a)

and for a Tresca law, we set

λFl :=
∑

p∈Ps
C;l

(F − ‖γt
p‖)ψp =:

∑
p∈Ps

C;l

γfpψp. (6.16b)

The local face contribution ηj;f is then defined in terms of a non-linear

operator P j
l and uses a correctly weighted L2-norm,

ηj;f :=
hfδf

2min(μs, μm)
‖λjl − P j

l λ
j
l ‖20;f , j ∈ {C,F}, (6.17)

where μs and μm are the Lamé parameters associated with the slave and
master body, respectively. Here hf stands for the face diameter and δf ∈
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{1, 1/hf}. The choice of δf and the definition of P j
l will be specified in

(6.20) and (6.19), respectively, and depend on the mesh and actual discrete
contact zone.

Although both λCl and λFl are, by definition ofMl(λ
n
l ) andMl(F), inM+

l ,
they are not inM+ for non-trivial cases. As the a priori analysis has already
shown, we have to face terms coupling the discrete Lagrange multiplier
with the continuous relative displacement. We associate two scalar-valued
relative displacements with the discrete Lagrange multipliers λCl and λFl

uCl := Πl([u
n
l ]− g) =

∑
p∈Ps

C;l

(αn
p − gp)φp, (6.18a)

uFl := ‖Πl[u
t
l ]‖l :=

∑
p∈Ps

C;l

‖αt
p‖φp. (6.18b)

We recall that γnp (α
n
p − gp) = 0 and ‖αt

p‖γfp = 0, but that λCl u
C
l and λFl u

F
l

are, in general, non-zero. Figure 6.2 shows for a numerical example λC3 , u
C
3

and λF3 , u
F
3 as functions and the product λC3 u

C
3 and λF3u

F
3 . For symmetry

reasons, we plot only the left half of Γs
C. We note that both products are

only non-zero on two faces of Γs
C.

To get a better understanding, we illustrate the situation for d = 3
in Figure 6.3. The possible support of λFl and uFl is sketched in Fig-
ure 6.3(a,b). Then λFl u

F
l does not vanish on the grey-shaded ring depicted

in Figure 6.3(c). Starting with λFl , we construct a PF
l λ

F
l such that the sup-

port of it is given as the grey-shaded region of Figure 6.3(d). Then it is
obvious that PF

l λ
F
l u

F
l = 0. Moreover, we will require that PF

l λ
F
l ∈M+.

To measure the non-conformity of λCl and λFl , we introduce mapped func-
tions PC

l λ
C
l , P

F
l λ

F
l ∈ M+. The construction is based on a decomposition

of Γs
C into disjoint simply connected macro-faces F := ∪f⊂F f , where f

is an element of F s
l . The set Fl;j , j ∈ {C,F}, of macro-faces forms a

partition of Γs
C, i.e., Γ

s
C = ∪F∈Fl;j

F . Moreover, we require that the macro-
faces satisfy hF := diamF ≤ Cminf⊂F hf for all F ∈ Fl;j and F = f if

F ⊂ suppujl \ suppλ
j
l . The following assumption plays a crucial role in the

proper scaling of the additional contact terms.
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where | · | stands for the (d− 1)-dimensional area of its argument. Recalling
the definition (4.7) of Z∗

l , it is easy to see that Z∗
l maps M+

l onto W+
l . We

note that P j
l λ

j
l , j ∈ {C,F} is always well-defined. However, Assumption 6.7

guarantees that P j
l λ

j
l �= 0 if λjl �= 0.

Figures 6.4 and 6.5 show λj3, P
j
3λ

j
3 and λj3−P

j
3λ

j
3, j ∈ {C,F}, for the first

example discussed in Section 6.8 and ν = 0.8. We note that λj3 − P j
3λ

j
3 �= 0

only on four faces of Γs
C. For this example this also holds true for all

refinement levels l ≥ 1. Our numerical results show that for all our examples
Assumption 6.7 is asymptotically satisfied.

Now, we specify our choice for δf in (6.17):

δf :=

{
1 if f ⊂ F j

f such that
∫
F j
f
P j
l λ

j
l ds =

∫
F j
f
λjl ds,

1
hf

otherwise.
(6.20)

Lemma 6.9. Under Assumption 6.7, the following properties hold for
P j
l λ

j
l , j ∈ {C,F}:

(i) P j
l λ

j
l u

j
l = 0,

(ii) P j
l λ

j
l ≥ 0,

(iii)
∫
F P

j
l λ

j
l ds =

∫
F λ

j
l ds for all F ∈ Fl;j ,

(iv) ‖λjl − P j
l λ

j
l ‖2− 1

2
;ΓC

≤ C
∑

f∈Fs
l
hf‖λjl − P j

l λ
j
l ‖20;hf

.



Proof. Property (i) follows directly from the first line in the definition

(6.19) of P j
l λ

j
l . Recalling that λjl ∈M+

l and thus Z∗
l λ

j
l ≥ 0 and

∫
f λ

j
l ds ≥ 0

for all faces f , we find property (ii). For F ⊂ Γs
C \ suppujl , the required

equality follows from
∫
f λ

j
l ds =

∫
f Z

∗
l λ

j
l ds. For F = f ⊂ suppujl \ suppλ

j
l ,

we have P j
l λ

j
l = λjl = 0. The only non-trivial case yields∫

F
P j
l λ

j
l ds =

∑
f⊂F

∫
f
P j
l λ

j
l ds =

∑
f⊂F\suppuj

l

∫
f
P j
l λ

j
l ds

=

∫
F λ

j
l ds

|F ∩ (Γs
C \ suppujl )|

∑
f⊂F\suppuj

l

|f | =
∫
F
λjl ds.

Here we have used the fact that, by Assumption 6.7, the sum is not empty.
To show property (iv), we use (iii). For v ∈ H1/2(ΓC), we find∫

Γs
C

(λjl − P j
l λ

j
l )v ds =

∑
F∈Fl;j

∫
F
(λjl − P j

l λ
j
l )(v −Π0v) ds

≤ C
∑

F∈Fl;j

√
hF ‖λjl − P j

l λ
j
l ‖0;F ‖v‖ 1

2
;F ,

where Π0 is the L2-projection onto macro-elementwise constants.

Property (iii) in Lemma 6.9 yields that δf = 1 for all faces. We note that
the properties specified in Lemma 6.9 are also satisfied by more sophisticated
operators. As in the case of dual basis functions, we can start from the
existing choice and add suitable functions. By adding a quadratic function,
we can make the result continuous. In Figure 6.6, we show two different
alternatives for d = 2. Figure 6.6(a–c) illustrates a part of the contact zone
and λC3 and PC

3 λ
C
3 . In (a,d), the operator defined by (6.19) is given. In (b,e)

and (c,f), we depict an alternative definition using a piecewise affine and
quadratic modification, respectively. By using polynomials of higher order
in the definition (6.19), we can guarantee that λjl −P j

l λ
j
l is continuous, and

that P j
l λ

j
l also satisfies the properties of Lemma 6.9.

Although the piecewise quadratic modification results in a continuous
λC3 −PC

3 λ
C
3 , the implementation of it in 3D is technically more involved and

does not bring any qualitative benefit. Thus, from now on we only use the
definition given by (6.19).

Having introduced PC
j and PF

j , we can improve the upper bound for
|||u−ul||| for the special situation of a contact problem in 2D with matching
meshes. However, an additional assumption is required.

Assumption 6.10. We assume that for d = 2, there exists a χ ∈W 1
∞(ΓC)

such that |[ut]| = χ[ut] and moreover |[utl ]| = χ[utl ].
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Let us briefly comment on this assumption. The first part is closely
related to Assumption 4.7 and is also reasonable to make in 3D. In both
assumptions, the case that [ut] changes its sign by passing through zero at
a single point of ΓC is ruled out. The second part of the assumption is
only reasonable in 2D. In fact, it follows from the first part and the a priori
estimates for s > 1 for hl < H0. But there is no possibility of estimating
H0. A direct consequence of Assumption 6.10 is the estimate

‖|[ut]| − |[utl ]|‖ 1
2
;ΓC

= ‖[ut − utl ]χ‖ 1
2
;ΓC

≤ C‖[ut]− [utl ]‖ 1
2
;ΓC
.

Lemma 6.11. Under Assumptions 6.10 and 6.7, we obtain the following
upper bound in 2D, for the error in the energy norm for matching meshes,
and a zero gap

|||u− ul|||2 ≤(ηL + C(ηC + ηF + ξ1))|||u− ul|||
+ Cν‖λnl − λn‖− 1

2
;ΓC

‖[unl ]− [un]‖ 1
2
;ΓC
,

where we formally set ν = 0 for a Tresca friction problem.

Proof. We decompose the surface stress into a normal and a tangential part
and recall that 〈λn, [un]〉ΓC

= 0 = 〈PC
l λ

n
l , u

C
l 〉ΓC

and that 〈PC
l λ

n
l , [un]〉ΓC

≤
0. Furthermore, on matching meshes, (6.18a) states that uCl = [unl ] and
thus [unl ] ≤ 0. In terms of Lemma 6.9, the normal part in Lemma 6.5 can



then be bounded by

〈λnl − λn, [un]− [unl ]〉ΓC
≤ 〈λnl , [un]− [unl ]〉ΓC

≤ 〈λnl − PC
l λ

n
l , [un]− [unl ]〉ΓC

≤ CηC|||u− ul|||.
For the tangential part, we have in 2D

〈λt
l − λt, [ut]−Πl[u

t
l ]〉ΓC

= 〈λtl − λt, [ut]−Πl[u
t
l ]〉ΓC

.

Assumption 6.10 and the fact that we are working with matching meshes
guarantee that ‖Πl[u

t
l ]‖l = ‖Πl[u

t
l ]‖ = |Πl[u

t
l ]| = |[utl ]| and that uFl defined

by (6.18b) is equal to χutl .
In a first step, we consider the case of Tresca friction. We then find that,

since λ ∈ M(F),

〈λtl − λt,−Πl[u
t
l ]〉ΓC

≤ −〈F , |[utl ]|〉ΓC
+ 〈|λt|, |[utl ]|〉ΓC

≤ 0.

Using Assumption 6.10 in combination with Lemma 6.9 and the definition
of λFl given by (6.16b), we finally obtain

〈λtl − λt,[ut]〉ΓC
= 〈λtl , χ|[ut]|〉ΓC

− 〈F , |[ut]|〉ΓC
= 〈−λFl , |[ut]|〉ΓC

= 〈PF
l λ

F
l − λFl , |[ut]|〉ΓC

− 〈PF
l λ

F
l , |[ut]|〉ΓC

≤ 〈PF
l λ

F
l − λFl , |[ut]|〉ΓC

= 〈PF
l λ

F
l − λFl , |[ut]| − |[utl ]|〉ΓC

= 〈PF
l λ

F
l − λFl , ([ut]− [utl ])χ〉ΓC

≤ C‖PF
l λ

F
l − λFl ‖− 1

2
;ΓC

‖([ut]− [utl ])χ‖ 1
2
;ΓC

≤ C‖PF
l λ

F
l − λFl ‖− 1

2
;ΓC

‖[ut]− [utl ]‖ 1
2
;ΓC

≤ CηF|||u− ul|||.

In a second step, we consider the case of Coulomb friction. We observe that
our assumptions guarantee

〈λtl , [ut]〉ΓC
= 〈λtl , χ2[ut]〉ΓC

= 〈νλnl − λFl , |[ut]|〉ΓC
.

Using definition (6.16a) and applying the same techniques as before, we get

〈λtl − λt,[ut]− [utl ]〉ΓC
≤ 〈−λFl , |[ut]|〉ΓC

+ ν〈λnl − λn, |[ut]| − |[utl ]|〉ΓC

≤ C
(
ηF|||u− ul|||+ ν‖λnl − λn‖− 1

2
;ΓC

‖[ut]− [utl ]‖ 1
2
;ΓC

)
.

We note that Lemma 6.11 also holds true in 3D if we consider a contact
problem on non-matching meshes and without friction.

6.3. Error bound for the Lagrange multiplier

We now consider the error in the Lagrange multiplier. From the abstract
theory of saddle-point problems, it is well known that the discretization error
in the Lagrange multiplier can be bounded in terms of its best approximation
error and the discretization error in the primal variable. Unfortunately, the



best approximation error is not computable and thus cannot be directly
controlled within the adaptive refinement process. Therefore, we provide
an estimate where the best approximation is replaced by the error indicator
ηL. Of crucial importance for the stability of a saddle-point problem is the
inf-sup constant. The bilinear form b(·, ·) reflects the H1/2-duality pairing.
This observation motivates the use of a parameter-dependent norm for the
Lagrange multiplier, which is equivalent to the H1/2-dual norm

|||μ||| := sup
v=(0,vs),vs∈Vs

0

b(μ,v)√
a(v,v)

. (6.21)

We note that the norm of the Lagrange multiplier only depends on the Lamé
parameters of the slave side but not on the master side. Alternatively, a
different scaling can be used.

Lemma 6.12. The error in the Lagrange multiplier is bounded by

|||λ− λl||| ≤ |||u− ul|||+ ηL + Cξ1,

where ξ1 is the data oscillation term defined by (6.1).

Proof. We start with the observation that b(·,v) restricted to v ∈ 0×Vs
0

is equal to 〈·,vs〉ΓC
and recall that (u,λ) satisfies the equilibrium (2.15) and

that ΓC = Γs
C. Using the definition (6.21), Lemma 6.3 and the symmetry

of σl, we find

〈λ− λl,v
s〉ΓC

= fs(v
s)− as(u

s,vs) +

∫
Γs
C

σlnv
s ds

=

∫
Ωs

(σl − Cε(us)) : ε(vs) dx+

∫
Ωs

(f −Π1f)v
s ds.

Here, we have used the fact that, by assumption, the Arnold–Winther space
can exactly resolve the given Neumann data. Otherwise, an additional data
oscillation term on the Neumann boundary has to be taken into account.
Inserting the primal finite element approximation on the slave side, we get

〈λ− λl,v
s〉Γs

C
≤
(√

as(us
l − us,us

l − us) + ηL + Cξ1

)√
as(vs,vs).

Thus if ηL is an error estimator for the primal discretization error, it also
provides an upper bound for the discretization error in the dual variable.

6.4. Upper bounds for the friction and contact terms

In this subsection, we provide upper bounds for the terms ηC and ηF defined
by (6.15) and (6.17). We recall that λjl is a numerical approximation of a

non-negative functional, and λjl −P
j
l λ

j
l measures the variational crime of the

approximation λjl , j ∈ {C,F}. Due to our assumption that we work with



simplicial meshes, σ(ul)n
s is constant on each face. In general, this does

not hold for quadrilateral/hexahedral meshes. In that case, the estimates
are technically more involved.

Lemma 6.13. Under Assumption 6.7, we have for Tresca and Coulomb
friction

ηC + ηF ≤ CηL.

Proof. We recall λCl = λnl and start with the normal contact term ηC. This
term is naturally associated with the normal stress. For each face f ∈ F s

l
and its associated macro-face FC

f , we then obtain, in terms of Lemma 6.3
and Lemma 6.9,

‖λCl − PC
l λ

C
l ‖20;f ≤ ‖λCl − PC

l λ
C
l ‖20;FC

f
≤ Ch2

FC
f
|λnl |21;FC

f

≤ C
∑

f̃⊂FC
f

h2
f̃
|n(σl − σ(us

l ))n|21;f̃

≤ C
∑

f̃⊂FC
f

‖n(σl − σ(us
l ))n‖20;f̃

≤ C
∑

f̃⊂FC
f

‖(σl − σ(us
l ))n‖20;f̃ ≤ C

1

hf
‖σl − σ(us

l )‖20;ω̃f
.

In the last step, we have used the properties of the macro-faces and a scaled
inverse-type inequality for polynomials. Here ω̃f stands for the union of all
elements T ∈ T s

l such that ∂T ∩ FC
f is non-trivial. Using the weighting of

‖λCl − PC
l λ

C
l ‖20;f in the definition (6.17) of ηC;f , and (6.20) in combination

with Assumption 6.7, we get η2C;f ≤ C
∑

T⊂ω̃f
η2L;T . Summing over all faces,

and noting that each element T is contained in at most a bounded number
of ω̃f , we have ηC ≤ CηL.

Now, we focus on the term ηF, which is associated with the friction law
and thus involves the tangential stress component. We can follow the lines
of the proof for ηC;f directly. Using the definition (6.16) for λFl , and formally
setting ν = 0 in the case of a Tresca friction, both definitions (6.16a) and
(6.16b) guarantee that

‖λFl − PF
l λ

F
l ‖20;f ≤ C

∑
f̃⊂FF

f

h2
f̃
|λFl |21;f̃ ≤ C

∑
f̃⊂FF

f

h2
f̃

(
ν|λnl |21;f̃ + |λ̃tl |21;f̃

)

with λ̃tl :=
∑

p∈Ps
C;l

‖γtp‖ψp. The first term on the right-hand side has already

been discussed, and we only have to consider the second term in more detail.
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Figure 6.7. λCl −PCλ
C
l , l = 5 (a), l = 8 (b), l = 11 (c).

Using a discrete norm equivalence and noting that |‖γt
p‖−‖γt

q‖| ≤ ‖γt
p−γt

q‖,
we find that

|λ̃tl |1;f̃ ≤ C|λt
l |1;f̃ ≤ C|λl|1;f̃ ≤ C|(σl − σ(us

l ))n|1;f̃
and the same arguments as before apply.

Remark 6.14. We note that if Assumption 6.7 is violated, the different
scaling factor δf results in a mesh-dependent upper bound.

Although we obtain ηC + ηF ≤ CηL theoretically, we observe for all our
numerical tests that ηC+ηF decreases more rapidly than ηL. To get a better
feeling for the role of ηC and ηF, we illustrate the decrease in the value of
λCl − PCλ

C
l for different refinement levels in Figure 6.7. It can be observed

that only two neighbouring faces have a non-trivial contribution on the
left part of the contact zone. Due to the scaling by

√
hf of the L2-norm of

λCl −PCλ
C
l in the definition of ηC, this contribution decreases rapidly within

the adaptive refinement process. In particular, in this test example, ηC is
equivalent to hmin

l ‖λCl − PCλ
C
l ‖∞, where ‖ · ‖∞ is the L∞-norm on Γs

C and
hmin
l := minT∈T s

l
hT . Due to the decrease of ‖λCl −PCλ

C
l ‖∞ with respect to

the refinement level l, we expect that ηC can be asymptotically neglected
compared to ηL.

Theorem 6.15. Under Assumptions 6.7 and 6.10, for matching meshes
and in 2D or in 3D with no friction, we obtain the upper bound

|||u− ul||| ≤ C(ηL + ξ1)

for a Tresca or Coulomb friction problem provided that ν is small enough.

Proof. The result follows by Lemmas 6.11 and 6.13, the application of
Young’s inequality and Lemma 6.12 in the case of a Coulomb problem.

We note that Assumption 6.10 is quite strong and cannot be verified
within the adaptive refinement process. However, for all our numerical test



examples it is satisfied. We refer to Hild and Lleras (2009) for an alternative
approach. However, additional terms then enter into the definition of the
error estimator, which cannot be bounded with optimal lower constants.
This is not the case for the approach we propose.

6.5. Lower bound for the discretization error

In this subsection, we provide a local upper bound for our error estimator.
For a one-sided contact problem without friction this result can be found in
Weiss and Wohlmuth (2009); see Nicaise et al. (2008) for the linear elasticity
setting. Here, we generalize it to Tresca and Coulomb friction problems in
2D and also to non-matching meshes. We restrict ourselves to d = 2, but
the same type of argumentation can be applied to d = 3.

We start with a preliminary result which bounds, in the discrete setting,
the jump of the stress across a face by the jump of its surface traction.

Lemma 6.16. For each face f ∈ Fl, we have

‖[σ(ul)]‖0;f ≤ C‖[σ(ul)nf ]‖0;f .
Proof. The proof is based on the observation that [∇ultf ] = 0 on each
face. Here tf is a normalized fixed orthogonal vector to nf . For each face
f , the set {nf ⊗nf ,nf ⊗tf , tf ⊗nf , tf ⊗tf} forms an orthonormal basis for
the space of 2 × 2 constant tensors. Then, due to the symmetry of σ(ul),
we have (σ(ul)tf )nf = (σ(ul)nf )tf , and thus

‖[σ(ul)]‖20;f = ‖[σ(ul)nf ]‖20;f + ‖[σ(ul)tf ]‖20;f
= ‖[σ(ul)nf ]‖20;f + ‖[(σ(ul)tf )tf ]‖20;f + ‖[(σ(ul)nf )tf ]‖20;f .

Recalling (2.2) and that we have constant Lamé parameters on each body,
we have

[(σ(ul)tf )tf ] = 2μ[(ε(ul)tf )tf ] + λ[tr ε(ul)] = 2μ[(∇ultf )tf ] + λ[tr ε(ul)]

= λ[tr ε(ul)] = λ[div ul] = λ[(∇ulnf )nf ].

For the normal contribution [(σ(ul)nf )nf ], we can proceed in an analogous
way. Using [(ε(ul)nf )nf ] = [(∇ulnf )nf ], we get [(σ(ul)nf )nf ] = (2μ +
λ)[(∇ulnf )nf ] and thus the jump of the discrete stress across a face is
bounded by the jump of its surface traction,

‖[σ(ul)]‖20;f = ‖[σ(ul)nf ]‖20;f + ‖[(σ(ul)nf )tf ]‖20;f

+

(
λ

2μ+ λ

)2

‖[(σ(ul)nf )nf ]‖20;f ≤ 2‖[σ(ul)nf ]‖20;f .

In our proof for the lower bound, we start with an estimate for the contact
term.





F ∈ Fk
f , stands for the element in T k

l such that F ⊂ ∂T . Keeping in mind
that all involved quantities are element-wise defined and constant on each
element, the jump at the vertices can be bounded by the jump across the
faces. Lemma 6.16 then gives

‖(σ(ul)|Tf (pF )− σ(ul)|TF (pF ))‖ ≤
∑

f̂∈Fk
pF

‖[σ(ul)]|f̂‖ ≤
∑

f̂∈Fk
pF

‖[σ(ul)nf̂ ]|f̂‖.

Here Fk
pF

stands for the set of all interior faces in Ωk sharing the node pF .

Moreover, we introduce F i
f as the union of sets Fk

pF
where pF is an endpoint

of f ; see Figure 6.8(b). The two endpoints of f are marked with a bullet.
To bound the second term on the right-hand side of (6.22), we use the fact

that the local norm of an element in Mk
l can be bounded by testing it with

an element of Wk
l = tr Vk

l |ΓC
with local support. Keeping in mind that

σln−Π∗;kσ(ul)n ∈ Mk
l , we can then write it as α1ψpf1

+α2ψpf2
on f , where

pfi , i = 1, 2, are the two endpoints of f . We now set vh = α̂1φpf1
+ α̂2φpf2

,

where ‖α̂i‖ = 1 and α̂iαi = ‖αi‖, i = 1, 2. Using the biorthogonality of φp
and ψq, a simple calculation shows

‖σln−Π∗;k
l σ(ul)n‖0;f ≤ C√

hf

∫
Γk
C

(σln
k −Π∗;k

l σ(uk
l )n

k)vl ds

=
C√
hf

∫
Γk
C

(fkC − σ(uk
l )n

k)vl ds.

We note that the definition of vl yields that its support is in ωf and that its
L2-norm on Ωk is bounded by Chf and its L2-norm on F ∈ F i

f is bounded

by
√
hf . We now apply Green’s formula on each element and find, in terms

of (6.5),∫
Γk
C

(fkC − σ(uk
l )n

k)vl ds = ak(u
k
l ,vl)− fk(vl)−

∫
Γk
C

σ(uk
l )n

kvl ds

=

∫
Ωk

fvl dx−
∑
F∈F i

f

∫
F
[σ(ul)nF ]vl ds

≤ C

(
hf‖Π1f‖0;ωf

+
√
hf
∑
F∈F i

f

‖[σ(ul)nF ]‖0;F
)
.

To obtain an upper bound for ηL;T , a discrete norm equivalence for
Arnold–Winther elements is of crucial importance. For τ ∈ XT , we have

c‖τ‖20;T ≤ m0;T (τ ) +m1;T (τ ) +m2;T (τ ) ≤ C‖τ‖20;T . (6.23)



Here m0;T (·), m1;T (·) and m2;T (·) are given by

m0;T (τ ) := |T |
∑
p∈PT

‖τ (p)‖2 ,

m1;T (τ ) :=
∑
f∈FT

∥∥∥∥∫
f
τnf ds

∥∥∥∥2 + ∥∥∥∥∫
f
τnf (φ

f
1 − φf2) ds

∥∥∥∥2,
m2;T (τ ) :=

1

|T |

∥∥∥∥∫
T
τ dx

∥∥∥∥2,
in terms of the degrees of freedom. The set PT stands for all vertices of

T , FT is the set of all faces of T , and φfi , i = 1, 2, are the two nodal
Lagrange basis functions associated with the two endpoints of f . Basically
the proof is reduced to a scaling argument, the use of the matrix valued Piola
transformation and the fact that in finite-dimensional spaces all norms are
equivalent; see Arnold and Winther (2002) for details.

Observing that σ(ul)|T ∈ XT , we can use (6.23) to bound the local
contribution ηL;T . We do so by considering the three parts separately. Using
(6.11), we get

m2;T (σl − σ(ul)) = 0,

m1;T (σl − σ(ul)) ≤ C
∑
f∈FT

hf‖gf (nTnf )− σ(ul)nT ‖20;f ,

m0;T (σl − σ(ul)) ≤ C
∑
p∈PT

∑
f∈Fp

hf‖[σ(ul)]‖20;f ,

where Fp is the set of all faces sharing the vertex p. For interior faces,
[σ(ul)nf ] is the jump across the face, for Dirichlet boundary faces we define
[σ(ul)nf ] := 0, for Neumann faces we set [σ(ul)nf ] := σ(ul)nT − fN, and
for contact faces [σ(ul)nf ] := σ(ul)nT − fC. We note that the constant in
the bound ofm0;T (σl−σ(ul)) depends on the maximum number of elements
sharing a vertex but not on the mesh size.

Let us briefly comment on the given bounds for mi;T (σl−σ(ul)), i = 0, 1.
Recalling that the equilibrated fluxes are consistent for each face, we find
the upper bound

‖gf (nTnf )− σ(ul)nT ‖0;f ≤ ‖gf − {σ(ul)nf}‖0;f +
1

2
‖[σ(ul)nf ]‖0;f ,

and thus the bound for m1;T (σl − σ(ul)) has the same structure as in the
linear setting.

The terms on the right are known from residual and equilibrated error
estimators. In the linear setting (see Ainsworth and Oden (2000), Babuška
and Strouboulis (2001) and Verfürth (1994)), they can be bounded by the
element and face residuals, and thus by the local discretization error and by





where TT is the set of all elements sharing a vertex with T .

We note that the number of elements in TT does not depend on the mesh
size but only on the shape-regularity of the triangulation.

Remark 6.19. As the construction of ηL;T is not restricted to 2D, and
since all the proofs in this subsection also work out in 3D, Theorem 6.18
can also be shown to hold true in 3D. Moreover, in contrast to many other
results, for the proof it does not make any difference if friction or no friction
is applied. And as the proof shows, the results are also valid in the case of
non-matching meshes.

6.6. Residual-type error estimator

Lemma 6.13 and Theorem 6.18 justify that it is sufficient to take a stan-
dard estimator for linear elasticity problems and use λl as the Neumann
condition on the possible contact boundary in the case of matching meshes
or a one-sided contact problem. These considerations show that ηL can be
replaced by any other error estimator suitable for the Lamé equation. Of
special interest is a residual-type indicator ηR. Following the definition of
the classical residual-based error estimator for the Laplace operator, we set

η2R;T :=
h2T
2μ

‖f + divσ(ul)‖20;T +
1

2

∑
f⊂Γint

T

hf
2μ

‖[σ(ul)nf ]‖20;f +
∑

f⊂Γext
T

hf
2μ
r2f ,

(6.25)
where hT and hf stand for the element and face diameter, respectively, nf

denotes a unit face normal, and Γint
T := {f ⊂ ∂T, f ⊂ Ω}, Γext

T := ∂T \ Γint
T .

The term r2f depends on the type of the boundary part,

r2f :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 f ⊂ ΓD,

‖σ(ul)n− fN‖20;f f ⊂ ΓN,

‖σ(us
l )n

s + λl‖20;f f ⊂ Γs
C,

‖σ(um
l )n

m −Π∗;m
l λl‖20;f f ⊂ Γm

C .

The case f ⊂ ΓD ∪ΓN is standard. For f ∈ ΓC, we apply the interpretation
of λl as Neumann boundary data.
It is possible to show that both error indicators ηR defined by (6.25) and

ηL given in (6.10) are up to higher-order data oscillations locally equivalent.
To do so, it is sufficient to consider the case of linear elasticity and given
λl. Using the discrete norm equivalence (6.23) for Arnold–Winther-type
elements, it is easy to see that ηL;T is equivalent to the sum of patch-wise
contributions of ηR;T̃ and the face contributions of the difference between
the equilibrated and the discrete fluxes. This difference satisfies a local
system with a system matrix independent of the mesh size (see also (6.8)),



and the right-hand side is defined in terms of local face and element residual
contributions. Then an algebraic argument and a correct scaling yield the
equivalence.

Remark 6.20. We point out that a numerical study shows that the ratio
between ηC, ηF and ηL tends asymptotically to zero. As a result the terms
ηC and ηF do not contribute significantly to the total estimated error and
can thus often be neglected in the stopping criteria. The situation may
be different if we only consider the local influence of ηC;f and ηF;f on the
adaptive refinement process. Then these terms help the estimator to resolve,
already on quite coarse meshes, the transfer between contact and no contact
and the sliding and sticky part.

6.7. Non-matching meshes

Let us briefly comment on the more general case of non-matching meshes.
Then Lemma 6.5 still holds and shows that we also have to consider ηS
defined by (6.14). Following the lines of a posteriori error estimates for a
linear mortar setting (see, e.g., Belhachmi (2003, 2004), Bergam, Bernardi,
Hecht and Mghazli (2003), Bernardi and Hecht (2002), Wheeler and Yotov
(2005), Pousin and Sassi (2005) and Wohlmuth (1999a, 1999b)), suitable
upper bounds can be shown for ηS. We note that in the case of non-matching
meshes, mesh-independent upper and lower bounds always rely on some
assumptions on the ratio of the coefficients and mesh sizes from master and
slave side. In the case of globally constant Lamé parameters, we can bound
ηS by ηL if the local ratio between the mesh size on the master and the slave
side is bounded, i.e.,

max
fm∈Fm

l

hfm

minf s∈Fs
l ;f

m∩f s 	=∅ hf s
< C.

The proof follows the lines of Section 6.4.
However, Lemma 6.11 no longer holds. A more detailed look into the

proof reveals, that then the term [ul]−Πl[ul] enters into the estimate. This
term is zero if the mesh on the slave side of the contact is a refinement of the
one on the master side, but on general non-matching meshes this term does
not vanish. To obtain an upper bound for the error in the energy norm, an
additional term of the form

η̂2D :=
∑
f∈Fs

l

2μs

hf
‖[ul]−Πl[ul]‖20;f

is a possibility. But then, the lower bound is tricky and will not work out.
This can be explained by the difference in the structure of the exact solution.
In the linear mortar setting, we can exploit the fact that the jump of the
exact solution vanishes across the interfaces and Πl[ul] = 0. This no longer
holds for contact problems. The jump in the normal direction is only zero



on the actual contact zone and in the tangential direction only on the sticky
part but, in general, not on all of ΓC. A more careful analysis shows that
one has to bound 〈PC

l λ
C
l −λn,Πl[u

n
l ]− [unl ]〉ΓC

for the normal contribution.
We refer to Coorevits, Hild and Pelle (2000) and Wohlmuth (2007) for some
results on contact problems with non-matching meshes. However, we note
that none of those is fully satisfying from the theoretical point of view.
In particular, certain ‘higher-order’ terms depend on the unknown solution
and are not accessible during the refinement process. Alternatively one can
include in the indicator terms depending on

η2D :=
∑
f∈Fs

l

2μs

hf
‖max(0, [unl ])‖20;f , (6.26)

to take into account the possible discrete penetration. But then the ra-
tio between upper and lower bound will be not independent of the mesh
size. We refer to Bernardi and Hecht (2002), Pousin and Sassi (2005) and
Wohlmuth (1999a, 1999b) for error indicators and estimators in the case of
non-matching meshes.

One of the problems with non-matching meshes is that standard inverse
estimates for finite elements do not necessarily apply for [vl] on ΓC, vl ∈ Vl.
A priori error estimates use the best approximation property of the spaces
and the stability of mortar projections, while a posteriori error estimates
work with duality and the residual. In the linear elasticity setting of a
glueing problem, the jump [ul] across the interfaces characterizes the non-
conformity of the approach. The natural norm to associate with is the
H1/2-norm. Unfortunately, in the case of non-matching meshes no inverse
inequality holds. To get a better understanding of the influence of non-
matching meshes, we consider a simplified setting. Let I := (−1, 1); then
we introduce two different globally quasi-uniform partitions given by the
nodes p1 := −1, p2 := 0 and p3 := 1 and q1 := −1, q2 := t ∈ [−1/2; 1/2]
and q3 := 1. Associated with these nodes are two finite element functions
vp :=

∑3
i=1 αiφ

p
i and vq :=

∑3
i=1 βiφ

q
i , where φ

p
i and φqi are the standard

hat functions associated with the nodes pi, and qi, 1 ≤ i ≤ 3, respectively.
Then the standard inverse estimates applied to this very special situation
gives ‖w‖s;I ≤ C‖w‖0;I for s ∈ [0, 1] and w = vp or w = vq. Here the
constant does not depend on s, or on the coefficient, or on t ∈ [−1/2; 1/2].
The situation is drastically different if we consider w = vp− vq. Figure 6.10
shows φp2 − φq2 for different values of t ∈ {−1/2,−2/3,−1/6, 0}.
Lemma 6.21. For t ∈ [−1/2; 1/2] and t �= 0, we obtain

‖φp2 − φq2‖s;I ≤

⎧⎪⎪⎨⎪⎪⎩
C‖φp2 − φq2‖0;I s ∈ [0; 12),

C
√

− log |t|‖φp2 − φq2‖0;I s = 1
2 ,

C

|t|s− 1
2
‖φp2 − φq2‖0;I s ∈ (12 , 1].



Figure 6.10. Influence of the node q2 on the basis function φq2 and φp2 −φq2.

Proof. Due to symmetry arguments, it is sufficient to consider the case t ∈
[−1/2, 0). A straightforward computation then shows that Δφ2 := φp2 − φq2
is given by

Δφ2(x) =

⎧⎪⎨⎪⎩
t

t+1(x+ 1) −1 ≤ x ≤ t,

x+ 1
1−t(x− t) t < x < 0,

t
1−t(x− 1) 0 ≤ x ≤ 1,

and that ‖Δφ2‖20;I = O(t2) whereas ‖Δφ2‖21;I = O(|t|). For 0 < s < 1, we
use the standard definition of the Aronstein–Slobodeckij norm in 1D; see,
e.g., Adams (1975). Introducing I1 := (−1, t), I2 := (t, 0) and I3 := (0, 1),
we get

|Δφ2|2s;I =

3∑
i,j=1

∫
Ii

∫
Ij

(Δφ2(x)−Δφ2(y))
2

(x− y)2s+1
dx dy.

Using that Δφ2 is piecewise affine, we find by a simple interpolation argu-
ment that

3∑
i=1

∫
Ii

∫
Ii

(Δφ2(x)−Δφ2(y))
2

(x− y)2s+1
dx dy = O(|t|2 + |t|3−2s).

Integration of the remaining terms yields for s ∈ (0, 1)

3∑
i,j=1,j 	=i

∫
Ii

∫
Ij

(Δφ2(x)−Δφ2(y))
2

(x− y)2s+1
dx dy =

{
O(|t|3−2s) s �= 1

2 ,

O(−|t|2 log(|t|)) s = 1
2 .

Figure 6.11 illustrates the inverse inequality for different parameters s ∈
{0.1, 0.25, 0.5, 0.51, 0.75, 0.95}. The straight line is ‖φp2 − φq2‖s;I evaluated
analytically, and the markers indicate qualitatively the upper bound. For
s = 0.1 and s = 0.25, the upper bound in the inverse inequality is bounded
independently of t. For s = 0.5 logarithmic growth can be observed, and
for s > 0.5 the singularity is the more dominant the closer s is to 1.
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Figure 6.11. Influence of the parameter s on the
inverse inequality for t ∈ [−0.5, 0.5], t �= 0.

This lemma shows that on non-matching meshes we cannot simply apply
inverse estimates to go from one norm to another. As a possible remedy, one
first has to apply approximation properties and secondly inverse estimates
for the faces on the interface between master and slave side. But then the
ratio between the mesh sizes on master and slave side must be considered.

Although we do not give a rigorous mathematical analysis of the terms
associated with the influence of non-matching meshes, we provide some
numerical results. We consider the same numerical example as illustrated
in the paragraph on different materials of Section 6.8 and set i = 3. The
normal contact pressure has a mild singularity at the left endpoint of the
contact interface.

Figure 6.12 illustrates the normal displacement and the normal contact
stress at the contact zone of the slave and the master body for Levels 3, 5
and 7.

As can be seen from Figure 6.12, there is almost no penetration, although
we do work on non-matching meshes. Thus we can expect ηD defined by
(6.26) to be very small compared to ηL. The situation is different for the
contact stress. Due to the choice of a biorthogonal set of basis functions,
the visualization of λnl as a function shows oscillations. Figure 6.12(d–
f) illustrates how the difference λnl − Π∗;m

l λnl decays with respect to the
refinement level.

Figure 6.13(a) shows the error decay of the different contributions. From
the very beginning the term ηD is much smaller than ηL and can thus be
neglected. We note, however, that it has the same convergence order as
ηL. For the term ηS defined by (6.14), we observe that it is quantitatively
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Figure 6.12. Normal displacement (a–c) and normal contact
stress (d–f) for different refinement levels.
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Figure 6.13. Normal contact stress for different refinement levels.

and qualitatively of the same order as ηC. This might be surprising since
only a few faces contribute to ηC, whereas all contact faces contribute to
ηS. We note, however, that closer to the singularities the face diameter hf ,
which enters as weight into the definition of ηS, is much smaller than at the
end of the actual zone of contact. Figures 6.13(b) and 6.13(c) show Z∗

l λ
n
l ,

Z∗;m
l Π∗;m

l λnl and the difference Z∗
l λ

n
l −Z

∗;m
l Π∗;m

l λnl . Here, the operator Z
∗;m
l

is defined similarly to (4.7) but with respect to the master side. As can be
clearly observed, much smaller values for the difference are obtained and
the plotted functions exhibit fewer oscillations. Thus, using these values to
define ηS would result in a smaller value, but then the equilibrium (6.5) is
no longer satisfied, and our proof does not apply.



Remark 6.22. The term ηS measures how well the mesh on the master
side can resolve the discrete surface traction provided by the Lagrange mul-
tiplier on the slave side. The weight corresponds to the case of a Neumann
boundary. Correspondingly, the term η̂D reflects the consistency error of a
linear mortar approach and quantifies the difference in the discrete solution
on master and slave sides. It has the standard weight of a Dirichlet bound-
ary term. We recall that for contact problems, the principle of equilibrium
of forces holds and thus ηS is also appropriate. This is not the case for η̂D.
Here one should use the modified definition ηD given in (6.26), which takes
into account the contact constraints.

6.8. Numerical results for adaptive mesh refinement

We consider a series of different test examples. A detailed discussion and
the specific problem settings can be found in Hüeber and Wohlmuth (2010),
Weiss and Wohlmuth (2009) and Wohlmuth (2007). We start with one-sided
contact problems where ηL is a mathematically sound error estimator.

One-sided two-dimensional Coulomb problem

In a first test, we consider a one-sided Coulomb friction problem in 2D with
the friction coefficient given by ν = 0, ν = 0.3 and ν = 0.8. Using ηL and
a mean value strategy to define the adaptively refined meshes, we compute
ηR, ηL, ηC and ηF on each refinement level and show the decay with respect
to the number of elements in Figure 6.14. The normal and tangential stress
for ν = 0.3 and ν = 0.8 is given in Figure 4.7. For ν = 0.0, the term ηF is
equal to zero.

For all three settings, we observe that we recover an optimal decay of the
residual and equilibrated error estimator. As expected, the two additional
terms ηC and ηF can be neglected asymptotically compared to ηL and ηR.
These numerical results show that ηL yields a reliable stopping criteria. For
ν = 0.8, we observe, from the very beginning, that both terms ηC and
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Figure 6.14. Error decay for adaptive refinement
using ηL for ν = 0.0 (a), ν = 0.3 (b), ν = 0.8 (c).



(a) (b) (c)

Figure 6.15. Distorted meshes after 8 adaptive refinement steps for different
values of the coefficient of friction ν = 0.0 (a), ν = 0.3 (b), ν = 0.8 (c).

ηF tend with h2l to zero where we set hl := (#Tl)1/d. The situation is
different for ν = 0.3. Here we observe, during the first refinement steps, a
reduced decay order of ηF compared to ηC. This effect can be explained by
Figure 4.7(b). For ν = 0.3, we have a very small sticky zone, and thus on
coarse meshes Assumption 6.7 is violated, and we have only one vertex p
with |γtp| − νγnp �= 0. Then PF

l λ
F
l = 0 and δf = 1/hf on the two boundary

faces sharing the vertex p. As soon as the sticky part is resolved, the friction
term ηF drops down.
The meshes obtained from the error indicator ηL after 8 refinement steps

are shown in Figure 6.15. We remark that the interior of the contact bound-
ary Γs

C will be refined considerably more at the sticky part of the boundary.
This effect arises from the high gradient of the tangential component of
the Lagrange multiplier. Furthermore, the boundary region of the contact
boundary actually in contact is detected and thus refined by the error indi-
cator.

In the next test series, we illustrate the influence of the choice of error
indicator on the adaptive refinement process for ν = 0.3. We compare ηL,
ηL + ηC + ηF and ηR. Figure 6.16(a) shows a zoom of the very small sticky
zone with the normal and the tangential components of the Lagrange multi-
plier as well as the friction bound νλn and the difference νλn−‖λt‖. The last
expression is positive at all sticky nodes; for the sliding nodes it vanishes.
Figure 6.16(b) shows that there is no significant difference in ηL and that the
adaptive refinement process is not sensitive to the selected error indicator.
In particular, a standard residual-based error indicator provides very good
results, and no additional terms resulting from the contact situation with
Coulomb friction are required. The only difference can be observed in ηF.
In this example, the sticky zone is very small, and thus it cannot be well
resolved on lower refinement levels. Using ηL + ηC + ηF as the indicator for
the adaptive marking gives quite large element contributions for elements
having both sticky and sliding vertices. Thus, these elements are within the
pre-asymptotic range and all elements with δf �= 1 are selected to be refined
in the next step. As a consequence, the sticky contact zone can be resolved
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Figure 6.16. Zoom of Lagrange multiplier (a), estimated error ηL (b)
and ηF (c) for different refinement strategies for ν = 0.3.
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Figure 6.17. Distorted meshes at contact boundary after 6 adaptive
refinement steps for ηL (a,b) and ηL + ηC + ηF (c,d) refinement for
the coefficients of friction ν = 0.3 (a,c) and ν = 0.8 (b,d).

for a smaller refinement level compared to the case where the refinement is
only controlled by ηL or ηR. However, this influence is quite small on the
global estimated error, as can be seen in Figure 6.16(b). For all three series
of adaptively refined meshes, we observe qualitatively and quantitatively
the same results.

To show the effect of ηF in more detail, we consider in Figure 6.17 a zoom
of the meshes at the contact boundary for ηL and ηL + ηC + ηF used as the
marking indicator for the two cases of ν = 0.3 and ν = 0.8. In both cases,
we observe that the intersection between the sticky and the sliding zone as
well as the intersection between contact and no contact is well resolved by
the error indicator. The first one is resolved more accurately when the term
ηF is used in the refinement strategy.

Influence of the regularity of the solution
To test the influence of the regularity of the solution on the adaptive refine-
ment, we consider a parameter-dependent one-sided contact problem with
no friction. The unit square is pushed onto a triangle with different opening
angles α at the contact vertex. In our tests, we use α = 2/3π, α = π/2
and α = π/3. Due to the decreasing regularity of the solution for decreas-
ing α, we observe that for α = π/3, the mesh is much more locally refined
compared to α = 2π/3.
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Figure 6.18. Square on triangle: mesh on level 12
for α = 2π/3 (a), α = π/2 (b), α = π/3 (c).
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Figure 6.19. Square on triangle α = 2π/3, π/2, π/3: Estimated
error ηL for adaptive and uniform refinement (a–c) and
comparison of ηL, ηC and ηcontactC (d–f).

The regularity of the solution is known and our numerical convergence
rates for uniform refinement are in good agreement with the theory: see
Figure 6.19. The slope in the estimated error decay is approximatively 0.7
for α = 2π/3, 0.5 for α = π/2 and 0.3 for α = π/3. Thus, with respect to
the total degrees of freedom, we have only a sub-optimal convergence. The
situation is drastically improved if adaptive mesh refinement techniques are
applied. We then observe O(hl) behaviour for all three cases.

As in the first example, we observe for all α that the error contribution
ηC decreases much faster compared to ηL. However, for low regularity, we



do not observe that ηC is of order O(h2l ). To get a better understanding of
the situation, we define

ηcontactC :=

( ∑
f∈Fs;b

l

η2C;f

)1/2

≤ ηC,

where F s;b
l ⊂ F s

l is the set of all faces being separated from supp(Πl[u
n
l ] −

gl) by at most m faces, where m ∈ N is a small and fixed number. If
the singularity in λn is weak enough, we find asymptotically ηcontactC =
ηC. However, for strong singularities, there are non-trivial contributions of
PC
l λ

C
l − λCl , whereas (P

C
l λ

C
l − λCl )([un]− g) = 0 in a neighbourhood of the

singularity: see, e.g., the case α = π/3 in Figure 6.19(f).

Two-sided contact problem with a corner singularity

We use a geometry such that there is a zero gap between the two bodies
and set ν = 0. Figure 6.20(c) shows how the error decays for uniform and
adaptive refinement. Asymptotically we find better convergence rates for
the adaptive setting. This results from the presence of the singularities
which can be found at the two endpoints of the contact boundary. Due to
the singularities at (−0.5, 0) and (0.5, 0), we observe strong local refinement
at these points.
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Figure 6.20. Deformed meshes after 3 and 6 adaptive
refinement steps (a,b) and error decay (c).

Two-sided contact problem with different materials

In this test setting we consider the influence of the material parameters on
the adaptive refinement process. Two unit squares in contact are considered.
Our initial mesh on the upper body consists of 9 uniform quadrilaterals, and
on the lower body we have 4 uniform quadrilateral elements. Thus, we have
non-conforming meshes at the contact boundary. In this example, we study
the influence of the material parameters on the error indicator. We consider
five different situations (i = 1, . . . , 5) for the material parameters. For the



upper subdomain, we select Young’s modulus as

Eup
1 = Eup

2 = Eup
3 = 2× 105, Eup

4 = 2× 106, Eup
5 = 2× 109,

and for the lower body we define

Elow
1 = 2× 109, Elow

2 = 2× 106, Elow
3 = Elow

4 = Elow
5 = 2× 105.

We remark that for i = 3, both subdomains have the same material param-
eters, whereas for i = 1, 2 the upper subdomain is softer and for i = 4, 5 the
lower subdomain is softer. For i = 1, 2, 3 the upper subdomain plays the
role of the slave side, and for i = 4, 5 the lower subdomain is the slave side.

Figure 6.21 shows the adaptively refined meshes after 8 refinement steps
using ηL as error indicator. As expected, the adaptive refinement strongly
depends on the material parameters. The softer the domain, the more it
is refined. Having the same material parameters on both sides, we get the
same level of mesh refinement on both sides; see Figure 6.21(c).

In addition, we compare the estimated error decay between uniform and
adaptive refinement using ηL as the error indicator. The decay of ηL and
ηC for both approaches are shown in Figure 6.22 for i = 1, 3, 5. In all three
situations, we observe that the error decay for the adaptive refinement shows
the expected order. The different orders in the error decay of uniform and
adaptive refinement can also be observed in the contact term ηC.

(a) (b) (c) (d) (e)

Figure 6.21. Influence of the material parameter on
the adaptive refinement, 1 ≤ i ≤ 5 (left to right).
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Figure 6.22. Error decay for uniform and adaptive refinement.



In the rest of this section, we show that the error indicator can also be
applied to more general situations such as non-matching meshes in 3D and
large deformation.

Dynamical contact problem
We now apply our error indicator to a dynamic contact problem with
Coulomb friction and use a refinement and coarsening strategy. We use
a modified mid-point rule and a stabilized active set strategy as the time-
integration scheme and non-linear solver. In the case of a mesh which is
constant in time, the total energy including contact work is preserved within
each time step. As the initial condition, we have zero displacements and
a constant velocity. The resulting adaptively refined meshes at different
time steps are depicted in Figure 6.23. Here, a co-rotational formulation
for the contact has been used (see Hauret, Salomon, Weiss and Wohlmuth
(2008) and Salomon, Weiss and Wohlmuth (2008)), and the displacement
is decomposed in each time step into a rotation and a small displacement
which can be handled within the theory of linearized elasticity.

(a) (b) (c) (d) (e)

Figure 6.23. Adaptive grid at time step tk: k = 0 (a),
k = 20 (b), k = 40 (c), k = 80 (d), k = 120 (e).

Three-dimensional contact problem
We consider the situation of a torus between two rectangular plates. The
plates are considered as the slave sides defining the mesh for the Lagrange
multiplier λ. We apply Coulomb’s law with ν = 0.8 and assume the plates
to be softer. Figures 6.24(a) and 6.24(b) show the refined meshes with the
effective von Mises stress. As can be observed, a local adaptive refinement
occurs at the contact zone, resulting in highly non-matching meshes.

Contact problem with large deformation
In our last numerical example, we consider a contact problem without fric-
tion but with finite deformations in the two-dimensional setting. Instead of
the linearized stress tensor σ (see (2.2)), we use a well-known neo-Hookean
material law. In the definition of the error indicator, we replace σ by the
first Piola–Kirchhoff stress tensor given by

P =
λ

2

(
J2 − 1

)
F−� + μ

(
F− F−�),
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Figure 6.24. Adaptively generated mesh (a,b) and error decay (c).

with the deformation gradient F = Id + ∇u and its determinant J :=
det(F). Due to this additional nonlinearity in the material, the first line
in the discretized algebraic problem formulation (5.1) is no longer linear
and the semi-smooth Newton scheme automatically takes into account the
non-linear material law. Using the semi-smooth Newton method to treat
nonlinear contact conditions has the main advantage that both nonlinear-
ities, the contact conditions and the material nonlinearity, can be handled
within one iteration loop.

We press a half-ring onto a bar by applying suitable Dirichlet boundary
conditions. The half-ring, being the lower half-part of a full ring, is assumed
to be the slave side Ωs with inner radius ri = 80 and outer radius ro = 100
having its mid-point at the origin. The numerical results are presented in
Figure 6.25. We adapt ηR to the non-linear material law and obtain an error
indicator which can be easily evaluated. Figure 6.25(c) shows the estimated
error decay. We also observe order-hl convergence in that situation.

(a) (b) (c)
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Figure 6.25. Distorted meshes after 2 and 4 adaptive
refinement steps (a,b) and error decay (c).



6.9. AFEM strategies

Finally, we point out that AFEM refinement strategies can also be designed
for variational inequalities such as contact- or obstacle-type problems. These
refinement strategies were originally designed for conforming finite elements
applied to the Laplace operator. We refer to the original work by Dörfler
(1996) and the surveys of Morin, Nochetto and Siebert (2002) and No-
chetto, Siebert and Veeser (2009). Nowadays these techniques have been
widely generalized and successfully applied to other types of equations and
elements. Special refinement rules, in combination with a control over the
data oscillation terms, lead to a guaranteed error decay. Moreover, optimal
convergence results, under mild regularity assumptions, have been stated
in Binev, Dahmen and DeVore (2004) and Stevenson (2005, 2007); see also
Cascon, Kreuzer, Nochetto and Siebert (2008). For variational inequalities,
the first theoretical results can be found in Braess, Carstensen and Hoppe
(2007, 2009a) for obstacle problems. For one-sided contact problems and no
friction, a guaranteed decay in the energy can be achieved: see Weiss and
Wohlmuth (2009). Here we only show some numerical results. We point
out that the proof relies on the fact that the discrete solution ul satisfies
the non-penetration condition [unl ] ≤ 0 strongly. Thus the analysis can be
based on the constrained minimization problem (2.7) for contact without
friction. The discrete convex cone Kl is then a subset of K, and so we have

J(u) ≤ J(ul).

This does not hold for two-body contact problems on non-matching meshes,
and there is no straightforward way to generalize the result to non-matching
meshes.

The main difficulty in the application of AFEM results to variational
inequalities is the loss of the Galerkin orthogonality compared to a standard
conforming finite element discretization for linear problems. It is shown in
Braess, Carstensen and Hoppe (2007) that a possible remedy is to consider
the error in the energy δl := J(ul) − J(u) and not the error in the energy
norm. For the most simple case of ν = 0 and no gap, we get

δl − δl+1 = J(ul)− J(ul+1)

=
1

2
|||ul − ul+1|||2 + a(ul − ul+1,ul+1)− f(ul − ul+1)

=
1

2
|||ul − ul+1|||2 − b(λl+1,ul − ul+1)

≥ 1

2
|||ul − ul+1|||2.

Figure 6.26 shows the energy reduction for the second example in Sec-
tion 6.8. The mean value of the energy decay per refinement step is between
0.7 and 0.8 for all three settings.



(a)

10 102 103 10

10−3

10−2

10−

100

No. of elements

Ap
pr

. e
ne

rg
y 

di
ffe

re
nc

e 
δ

Energy reduction
δ
O(h2)

(b)

10 102 103 10
10−3

10−2

10−

100

No. of elements

Ap
pr

. e
ne

rg
y 

di
ffe

re
nc

e 
δ

Energy reduction
δ
O(h2)

(c)

10 102 103 10
10−3

10−2

10−

100

No. of elements

Ap
pr

. e
ne

rg
y 

di
ffe

re
nc

e 
δ

Energy reduction
δ
O(h2)

Figure 6.26. Energy reduction for α = 2π/3 (a), α = π/2 (b), α = π/3 (c).

6.10. Conclusion

Based on the variational formulation (6.5), we have introduced an error
indicator ηL, which is shown to be an error estimator for some simplified
situations. For contact problems without friction this is true for matching
meshes or one-sided contact problems with a zero gap and constant normal
on the contact zone. Assumption 6.7 depends only on the discrete solution
and can be checked easily for each pair (ul,λl). The situation is more
challenging for friction problems with Tresca or Coulomb friction. In that
case, we have to restrict ourselves to 2D and the additional Assumption 6.10
is required. Our theoretical and numerical results show that there is no
need to add terms related to the variational inequality, such as ηC and ηF,
to the estimator. These observations provide an interesting and attractive
general construction principle of a posteriori error estimators for variational
inequalities. In a first step, the weak variational inequality for the primal
variable has to be reformulated by means of a locally defined Lagrange
multiplier as a variational equality. We recall that the Lagrange multiplier
acts as an additional external source term, volume or surface, on the system.
Then, in a second step, we apply any type of well-known a posteriori error
estimator. If the pairing between discrete Lagrange multiplier and discrete
finite element solution is suitable, we can then recover upper and lower
bounds for the discretization error in the primal but also the dual variable.
This is a very strong result and also applies to obstacle-type problems. As a
by-product, we find that for a linear setting with inhomogeneous Neumann
data, the boundary terms in the residual error estimator can be removed,
and only the data oscillation enters the bounds.

7. Energy-preserving time-integration scheme

In the previous sections, an abstract framework was provided to solve nu-
merically a stationary contact problem efficiently in terms of Lagrange mul-
tipliers. The discretization is realized as weakly consistent and uniformly
stable saddle-point formulation, and the Lagrange multiplier plays an es-
sential role in the definition of the non-linear solver as well as in the design



of the error estimator. However, it is well known that these multipliers of-
ten show oscillations and numerical instabilities in dynamic situations: see,
e.g., Borri, Bottasso and Trainelli (2001), Hauret and Le Tallec (2006), Bal-
lard, Léger and Pratt (2006), Martins, Barbarin, Raous and Pinto da Costa
(1999) and Raous, Barbarin and Vola (2002). Figure 7.1 illustrates this ef-
fect if a classical Newmark scheme is applied on a saddle-point formulation
for a dynamical Hertz contact problem.

0 0 2 0.4 0.6 0.8 1
x 10−3
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0

2

4

6

8

10

Time

Normal Lagrange multiplier

Figure 7.1. Oscillations of the Lagrange
multiplier in normal direction.

Thus there is huge demand for more robust numerical schemes. Recently,
different techniques have been introduced for coping with these instabilities.
The most promising approaches are based on a mass redistribution and go
back to the early work by Khenous, Laborde and Renard (2006a, 2006b,
2008), and alternatively on a predictor–corrector scheme (see Deuflhard,
Krause and Ertel (2008), Klapproth, Deuflhard and Schiela (2009), Klap-
proth, Schiela and Deuflhard (2010), Kornhuber, Krause, Sander, Deuflhard
and Ertel (2007), Krause and Walloth (2009)), which is motivated by well-
established two-stage schemes in plasticity; see the overview by Simo (1998).
Although quite different, from the initial perspective, the proposed modi-
fications in Khenous, Laborde and Renard (2006b) and Kornhuber et al.
(2007) both require an additional global L2-type projection step. The al-
gorithm in the latter work involves per time step a global projection which
is equivalent to solving a uniformly well-conditioned constrained minimiza-
tion problem, whereas the mass redistribution can be worked out in a global
pre-process.

Stability is obviously of crucial importance, but in many engineering ap-
plications energy conservation is also essential. We refer to the early contri-
butions of Armero and Petöcz (1998, 1999), Demkowicz and Bajer (2001),
Laursen and Chawla (1997) and Pandolfi, Kane, Marsden and Ortiz (2002),
and to the more recent work by Betsch and Hesch (2007), Gonzales, Schmidt
and Ortiz (2010) and Hesch and Betsch (2009, 2010). Special emphasis on
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Figure 7.2. Deformation: no friction (a) and stick condition (b).
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Figure 7.3. Energy: no friction (a) and stick condition (b).

the DAE aspect of mechanical systems with constraints can be found in
Betsch and Steinmann (2002a, 2002b), Lunk and Simeon (2006) and Simeon
(2006), and we refer to Gonzalez (2000), Hilber, Hughes and Taylor (1977)
and Simo and Tarnow (1992) for time-integration schemes in non-linear
elasto-dynamics.

Figure 7.2 (see Hartmann, Brunßen, Ramm and Wohlmuth (2007) for
details) illustrates the application of an energy-preserving method which is
a combination of a velocity update motivated by the persistency condition
of Laursen and Love (2002), and the generalized energy-momentum method
proposed in Kuhl and Ramm (1999).

The energy is shown in Figure 7.3(a,b). As can be seen from the two
pictures, the total energy as the sum of the kinetic and strain energy is
constant with respect to time.

Although these approaches are energy-conserving, no reliable numerical
results for the contact stresses can be obtained without additional post-
processing and stabilization. Here, we combine different techniques, a mass
redistribution for its stabilization effect and the persistency condition for
its role in the energy evolution.

To start with, we extend our simple quasi-static model (2.3)–(2.6) to the
dynamic case and include the density of the body, and we refer to Eck
et al. (2005), Hüeber, Matei and Wohlmuth (2007), Hüeber and Wohlmuth
(2005b) and Kikuchi and Oden (1988). The problem under consideration



can be written in its weak form as follows. Find u ∈ L∞((0, T ),VD) and
λ ∈ L2((0, T ),M(λn)) such that

u̇ ∈ H1/2((0, T ),V), ü ∈ L2((0, T ),V′
0)

and

m(ü,v) + a(u,v) + b(λ,v) = f(v), v ∈ V0 t ∈ (0, T ],

bn(μ− λ,u) + bt(μ− λ, u̇) ≤ g(μ− λ), μ ∈ M(λn), t ∈ (0, T ],

(u(0, ·),v) = (u0,v), v ∈ V0,

(u̇(0, ·),v) = (v0,v), v ∈ V,

where the zero-order bilinear form m(·, ·) is given by m(u,v) :=
∫
Ω �uv dx,

and we assume that ρ is constant on each subdomain.
Using the notation of Section 5 and the basis transformation of Sec-

tion 5.2, we then obtain the following semi-discrete problem:

Mlül +Alul +Blλl = fl,

Cn
p (γ

n
p , u

n
p ) = 0, p ∈ Ps

C;l,

Ct
p(γp, u̇p) = 0, p ∈ Ps

C;l.

(7.1)

Comparing (5.7) with (7.1), we find that both systems have a similar struc-
ture. The main difference is that in the dynamic case we have to use
the already introduced splitting of the NCP function into its normal and
tangential part. Formally, the semi-discrete system can be classified as a
differential-algebraic equation with index three: see Brenan, Campbell and
Petzold (1989) and Hairer and Wanner (1991). For this type of problem,
standard time-integration schemes can result in strong oscillations; see also
Figure 7.1.

We do not follow the original approach of Khenous et al. (2006a, 2006b)
but apply a locally defined mass modification, which can be directly as-
sembled within the standard framework of finite element technology and
does not require a global projection. Introducing a combined space–time
integration, we have to replace the mass matrix Ml in (7.1) by a modified
one, Mmod

l . The presentation here follows the lines of Hager and Wohlmuth
(2009a) and Hager, Hüeber and Wohlmuth (2008); see also the more recent
contributions of Doyen and Ern (2009), Hager (2010) and Renard (2010).

Using an Mmod
l such that mmod

pq = mmod
qp = 0 for all p ∈ Ps

C;l reduces the

index of the DAE system (7.1) from three to one and has a stabilization and
regularization effect on the modified solution. Thus such an approach seems
to be very attractive provided the computational cost is of low complexity
and the order of the discretization is not reduced. To recover the motion r
of a rigid body, we have to make sure that r�Mmod

l r = r�Mlr. Sufficient
conditions are formulated in Khenous et al. (2006a) as preservation of the



total mass
∫
Ω � dx, of the centre of gravity

∫
Ω �x dx and of the moments of

inertia
∫
Ω �xx

� dx:

(M0) 1�Mmod
l 1 = 1�Ml 1,

(M1) 1�Mmod
l xi = 1�Ml xi, 1 ≤ i ≤ d,

(M2) x�
i M

mod
l xj = x�

i Ml xj , 1 ≤ i, j ≤ d.

Here we use the notation 1 = (1, . . . , 1)� ∈ R
Nl , Nl := dimVl, and xi =

((x�
p ei)ei)p∈Pl

∈ R
Nl , with xp being the coordinate vector of the vertex p

and ei ∈ R
d the ith unit vector.

7.1. Local construction of Mmod
l

As standard in the finite element context, we assume that the elements of
Ml are obtained by an element-wise assembling process and by the use of
quadrature formulas on each element t ∈ Tl. Our definition of the modified
mass matrix is based on a second triangulation which groups elements on
the slave side near the contact zone into macro-elements. As a preliminary
step, we introduce the strip Sl by

Sl := ∪p∈Ps
C;l

suppφp and ΩSl
:= Ω \ Sl.

In the following, we assume that a fixed macro-triangulation TH is associated
with Tl. By this we understand that there exists a second triangulation,
possibly with hanging nodes, such that each element of TH can be written
as the union of elements in Tl. Moreover TH has the following properties.

• If T ∈ TH with T ⊂ ΩSl
then T ∈ Tl.

• If T ∈ TH \ Tl, then there exists exactly one element tT ∈ Tl with
tT ⊂ ΩSl

∩ T and at most M elements t ∈ Tl with t ⊂ Sl ∩ T , where
M is a fixed small number and not depending on l. Furthermore, all
sub-elements of T can be accessed starting from tT by crossing only
faces of sub-elements of T .

We note that for a given Tl, there exists more than one macro-triangulation.
Figure 7.4 illustrates different possibilities of TH for a given Tl. The elements
of the original mesh are marked with dashed lines, whereas the elements of
the macro-triangulation are given by bold lines. The shaded subdomains
show the different types of elements in TH \ Tl and the strips Sl, Dl :=
∪T∈TH\TlT and D̃l, which is defined as the union of all elements t in Tl such
that ∂t ∩Dl �= ∅.
Remark 7.1. If Tl is obtained from Tl−1 by uniform refinement based
on a decomposition of each element into 2d sub-elements, then a natural
construction for TH is straightforward: see Figure 7.4(b).
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Figure 7.6. Different quadrature rules for a quadrilateral macro-element.

respectively. Both local matrices are obviously singular but have rank three
and are positive semi-definite.

We briefly comment on the properties specified in Lemma 7.2 and recall
that the first one guarantees that the rigid body motions are not affected by
the modification. The second one reduces the index from three to one, and
the third is essential to guarantee stability. For quadrilateral finite elements
in 2D, we can also select different quadrature rules. The quadrature formula
has to satisfy the properties (1) and (2) of Lemma 7.2. In addition, all
elements in Q2(tT ) extended as polynomials onto T have to be integrated

exactly. Here Qj(tT ) := Qj(T̂ ) ◦ F−1
tT

, where FtT is the element mapping

from the reference quadrilateral T̂ onto tT , and Qj(T̂ ) is the space of all
bi-linear elements for j = 1 and of all bi-quadratic elements for j = 2. This
condition is very natural and results from the fact that Q1(t), t ∈ Tl, is
the local low-order finite element space. We refer to Ciarlet (1998) for a
rigorous mathematical analysis of the influence of quadrature errors on the
quality of the finite element approach. Then property (3) of Lemma 7.2 is
automatically satisfied.

Figure 7.6 shows a typical macro-element T for a quadrilateral mesh and
four different quadrature formulas. All of them guarantee that quadratic
functions on T are integrated exactly, but only the first three yield stable
numerical results.

The quadrature nodes are given as shown in Figure 7.6. Case I follows the
specified construction principle. The weights for this special macro-element
are given by w1 = w3 = 5/9|tT |, w2 = 20/9|tT |, w4 = w6 = −4/9|tT |,
w5 = −16/9|tT |, w7 = w9 = 2/9|tT | and w8 = 8/9|tT | in Case I. Cases II
and III are based on Gauss nodes in the tangential direction, whereas in the
normal direction we use equilibrated spaced nodes. In Case II, the weights
are w1 = w2 = 2/3|tT |, w3 = w4 = −4/3|tT |, and w5 = w6 = 5/3|tT |. The
weights for Case III are given by w1 = w2 = 4|tT |, w3 = w4 = −15/2|tT |,
w5 = w6 = 6|tT | and w7 = w8 = −3/2|tT |. Case II can only be used if the
element mappings are affine. For the more general case of detF−1

tT
∈ Q1(tT ),

Case I or Case III should be used. Both cases can also be easily applied in the



Table 7.1. Energy and displacement results for Case IV.

Time Kinetic energy Elastic energy Total energy x2-displacement

4.0 · 10−6 9.3 · 10−2 7.3 · 10−3 1.0 · 10−1 −3.4 · 10−2

5.0 · 10−6 −3.1 3.2 1.0 · 10−1 −4.1 · 10−2

6.0 · 10−6 −1.4 · 105 1.4 · 105 1.0 · 10−1 1.8 · 10−1

6.5 · 10−6 −2.9 · 107 2.9 · 107 1.0 · 10−1 −3.4
7.0 · 10−6 −6.1 · 109 6.1 · 109 1.0 · 10−1 4.9 · 101

3D setting. The negative weights do not disturb the computation as long as
all local mass matricesMT for T ∈ TH are positive semi-definite. Case IV is
based on triangular-distributed second-order Lagrange interpolation nodes.
The weights are defined by w1 = w3 = 1/3, w2 = 1, w4 = w5 − 2/3 and
w6 = 2/3, and give rise to the following local mass matrix:

MT =
|tT |
24

⎛⎜⎜⎜⎜⎜⎜⎝
23 9 −5 −3 0 0
9 23 −3 −5 0 0
−5 −3 3 5 0 0
−3 −5 5 3 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠.

A straightforward computation shows that MT has rank four but has one
negative eigenvalue. Moreover, a closer look reveals that the global mass
matrix can also have a negative eigenvalue. Thus, even for simple contact
problems a non-physical negative kinetic energy can occur: see Table 7.1.
Although the total energy is preserved, the numerical results are of no use.
From the very beginning the kinetic energy is negative and exponentially
increasing. The vertical displacement at a selected node is highly oscillating
and far too big. This effect is a result of the negative eigenvalue of the local
mass matrixMT . Thus Case IV cannot be used for numerical computations.

7.2. Analysis in terms of an interpolation operator

We do not provide a full analysis for the mass modification. In Hager and
Wohlmuth (2009a) it has been shown that for a linear elasticity problem,
one can show O(hl +Δt2) a priori estimates for the fully discretized prob-
lem in the H1(Ω)-norm in space and the discrete L∞-norm in time for the
displacement and in the L2(ΩSl

)-norm in space and the discrete L∞-norm
in time for the velocity. Moreover, under some additional regularity, an or-
der (h2l +Δt2) can be obtained in the L2(Ω)-norm in space and the discrete
L∞-norm in time for the displacement. We restrict ourselves to families of
quasi-uniform shape-regular triangulations. Figure 7.7 shows a qualitative
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Figure 7.7. Energy (a), horizontal (b) and
vertical displacement at a selected node (c).

(a) (b)

4 8 16 32

10−3

10−2

10−1

1/h

Error at time t = 3e−4

L2 error
H1 error
c*h
c*h2

4 8 16 32

10−8

10−6

1/h

Error difference at time t = 3e−4

diff L2
diff H1
c*h4

c*h5

Figure 7.8. Error decay in the L2- and H1-norm in space
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comparison between the modified mass approach and the standard one for a
geometrically non-linear elasticity problem without contact: see Hager et al.
(2008) for details. As can be observed, there is no significant difference in
the displacement and in both settings the energy is preserved.

The same parameter and geometry setting but for the linearized strain
formulation is considered for a quantitative comparison in Figure 7.8. In
Figure 7.8(b) we show that the difference between the two approaches can
be asymptotically neglected and is of higher order than the discretization
error. For the discretization error in space an order h2l and an order hl in
the L2- and H1-norm can be observed, respectively, whereas the difference
decreases with order h5l and order h4l , respectively.
The analysis of the modified formulation applies ideas from the analysis

of the influence of quadrature errors as well as of the influence of a stan-
dard mass lumping. Here we only provide two results that are essential to
obtaining a priori estimates.

In the previous subsection, the modified bilinear form mH(·, ·) was intro-
duced in terms of a quadrature formula based on the macro-triangulation.
Now, we define an interpolation operator IH such that

mH(vl,wl) = m(IHvl, IHwl), wl,vl ∈ Vl. (7.2)
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Figure 7.9. (a,b) Nodal values of two modified basis
functions on the macro-element T ; (c) support of (a).

To do so, we introduce a set of modified basis functions φmod
p which are

possibly discontinuous. The new basis functions are defined for each macro-
element and are associated with the vertices p ∈ Pl\Ps

C;l. If T ∈ TH∩Tl, then
φmod
p |T := φp|T for all vertices p of T . If T ∈ TH\Tl, then φmod

p |T := E(φp|tT )
for all vertices p of tT , where E stands for the polynomial extension of
φp|tT onto T . Figures 7.9 and 7.10 illustrate the two-dimensional case for a
simplicial mesh.

In Figure 7.9 the macro-element T is the union of two elements in Tl,
whereas in Figure 7.10 the macro-element T is the union of four elements
in Tl. In both cases, only three basis functions are locally associated with
the macro-element. The support of the modified basis function is still local
but can be enlarged: see Figures 7.9(c) and 7.10(c).

In terms of these modified basis functions, we define our interpolation
operator IH : Vl → span {φmod

p ei; 1 ≤ i ≤ d, p ∈ Pl \ Ps
C;l} by

IHvl :=
∑

p∈Pl\Ps
C;l

vl(p)φ
mod
p .

The construction of the quadrature formula and the operator IH are both
based on the macro-elements such that it is easy to see that (7.2) holds. In
terms of the properties of the operator IH , the semi-discrete system (7.1)
can be analysed. We refer to the recent contributions of Doyen and Ern
(2009) and to Hager and Wohlmuth (2009a) in the case of a linear problem
with given surface traction on ΓC. We do not provide any details but remark
that the analysis follows the lines of mass lumping techniques. We refer to
Thomée (1997) for the parabolic case and to Baker and Dougalis (1976)
for the second-order hyperbolic case. The main difference is that in our
situation Mmod

l is singular and does not define a matrix that is spectrally
equivalent to Ml. Thus the analysis is more technical and relies on some
additional arguments. Firstly, the semi-discrete system has to be considered
and Gronwall’s lemma plays an important role. Secondly the fully discrete
system has to be analysed and Taylor expansion with respect to time enters
into the proof. Although these two steps are quite technical they are well
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Figure 7.10. (a,b) Nodal values of two modified basis
functions on the macro-element T ; (c) support of (a).

established; see also Baker and Dougalis (1976), Evans (1998), Dautray and
Lions (1992), Raviart and Thomas (1983) and Thomée (1997).

One crucial ingredient is the following lemma, which bounds the quadra-
ture error introduced by the bilinear form mH(·, ·):

Δm(vl,wl) := mH(vl,wl)−m(vl,wl).

Lemma 7.3. If vl,wl ∈ Vl then

|Δm(vl,wl)| ≤ Chl
(
‖vl‖0;Dl

‖wl‖1;Dl
+ ‖wl‖0;Dl

‖vl‖1;Dl

)
, (7.3a)

and if v,w ∈ V then

|Δm(Zlv,Zlw)| ≤ Ch2l
(
‖v‖1;Ω‖w‖2;Ω + ‖w‖1;Ω‖vl‖2;Ω

)
, (7.3b)

where Zl is a locally defined Scott–Zhang-type operator (Scott and Zhang
1990).

Proof. The proof is based on the properties of the operator IH . Using (7.2)
and noting that (IHvl)|ΩSl

= vl|ΩSl
, we find

Δm(vl,wl) = m(IHvl − vl, IHwl) +m(vl, IHwl −wl)

≤ C(‖IHvl − vl‖0;Sl
‖IHwl‖0;Sl

+ ‖vl‖0;Sl
‖IHwl −wl‖0;Sl

)

≤ Chl(‖vl‖1;Dl
‖wl‖0;Dl

+ ‖vl‖0;Sl
‖wl‖1;Dl

).

To show (7.3b), we apply (7.3a), the local L2- and H1-stability of Zl, and
a 1D Sobolev embedding

Δm(Zlv,Zlw) ≤ Chl(‖Zlv‖1;Dl
‖Zlw‖0;Dl

+ ‖Zlv‖0;Sl
‖Zlw‖1;Dl

)

≤ Chl(‖v‖1;D̃l
‖w‖0;D̃l

+ ‖v‖0;D̃l
‖w‖1;D̃l

)

≤ Chl(
√
hl‖v‖2;Ω

√
hl‖w‖1;Ω +

√
hl‖v‖1;Ω

√
hl‖w‖2;Ω),

where Dl ⊂ D̃l, and the diameter of the strip D̃l perpendicular to ΓC is
bounded by Chl.



Remark 7.4. The bound (7.3b) can be weakened by using Besov space
norms with index 1/2 and 3/2; see, e.g., Li et al. (2010).

Remark 7.5. In the proof of Lemma 7.3, we do not use that IH repro-
duces macro-element-wise affine functions. The same arguments hold true
if IH is replaced by a locally defined operator which reproduces vl ∈ Vl

on ΩSl
, and on t ⊂ Sl it reproduces vl if it is constant. This observa-

tion motivates the use of a more simple quadrature formula based on the
triangulation Tl to define the bilinear form mH(·, ·); see also Section 7.4.

As can be easily seen, the modified bilinear formmH(·, ·) is continuous and
coercive with respect to the L2(ΩSl

)-norm but not coercive with respect to
the L2(Ω)-norm. Thus Aubin–Nitsche-type arguments provide only a pri-
ori estimates in the L2(ΩSl

)-norm, which is a semi-norm on L2(Ω). The
following lemma shows that a priori estimates in the L2(Ω)-norm can also
be obtained and have the same order.

Lemma 7.6. For v ∈ V, we have

‖v‖0;Ω ≤ C(‖v‖0;ΩSl
+ hl‖v‖1;Ω).

Proof. We start with the non-overlapping decomposition of Ω into Sl and
ΩSl

. To bound ‖v‖0;Sl
, we apply element-wise a Poincaré–Friedrichs-type

inequality and a scaling argument. In terms of

‖v‖20;t ≤ C
(
h2l ‖v‖21;t + hl‖v‖20;f

)
,

‖v‖20;f ≤ C

(
1

hl
‖v‖20;t + |v|1;t · ‖v‖0;t

)
,

where f ⊂ ∂t is a face of the element t ∈ Tl, we find

‖v‖20;Sl
≤ C

(
h2l ‖v‖21;Sl

+ hl‖v‖20;∂Sl∩∂ΩSl

)
≤ C

(
h2l ‖v‖21;Ω + ‖v‖20;ΩSl

)
.

7.3. Energy-preserving time integration

For many applications energy is one of the quantities of interest to preserve.
Here, we present an energy-conserving time-integration scheme based on the
standard Newmark method (Hughes 1987, Kane, Marsden, Ortiz and West
2000) in combination with a persistency condition introduced in Laursen and
Chawla (1997); see also Bajer and Demkowicz (2002), Chawla and Laursen
(1998), Demkowicz and Bajer (2001), Laursen and Meng (2001) and Laursen
and Simo (1993b). The discrete displacement at time tk := t0+kΔt is given
by uk

l and the velocity by vk
l .

The Newmark scheme with γ := 1
2 and β := 1

4 applied to the first line of



(7.1), where we replace Ml by M
mod
l , then yields(

2

(Δt)2
Mmod

l +
1

2
Al

)
Δuk+1

l +Blλ
k+ 1

2
l = f

k+ 1
2

l +
2

Δt
Mmod

l vk
l −Alu

k
l ,

(7.4a)

vk+1
l =

2

Δt
Δuk+1

l − vk
l , (7.4b)

where the time increment Δuk+1
l of the displacement is defined by Δuk+1

l :=

uk+1
l − uk

l , and we set f
k+1/2
l := 1

2(f
k+1
l + fkl ).

To obtain an energy-conserving scheme for frictionless contact problems,
we have to discretize the non-penetration condition in a suitable way: see
the second line in (7.1). As is well known, the complementarity condition
λn([un] − g) = 0 is not suitable, but has to be replaced by the persistency
condition λn([u̇n]− ġ) = 0: see Laursen and Chawla (1997). Letting gkp be
the space- and time-discretized gap function, we replace the non-penetration
condition by

gkp > 0 ⇒ (γnp )
k+1/2 = 0,

gkp ≤ 0 ⇒

⎧⎪⎪⎨⎪⎪⎩
(γnp )

k+1/2 ≥ 0,

Δ(unp )
k+1 ≤ gkp ,

Δ(unp )
k+1(γnp )

k+1/2 = 0.

This discrete version of the persistency condition can then be rewritten in
the NCP function framework, and reads as

Cn
p ((γ

n
p )

k+1/2,Δ(unp )
k+1) := (γnp )

k+1/2 −max
{
0, (γnp )

k+1/2 + cng̃
k
p

}
= 0,

(7.4c)

for all p ∈ Ps
C;l, where

g̃kp :=

⎧⎨⎩ − (γn
p )

k+1/2

cn
− gkp if gkp > 0,

Δ(unp )
k+1 if gkp ≤ 0.

The tangential part of the NCP function (see the third line of (7.1)) is
discretized in time by

Ct
p

(
γ
k+ 1

2
p ,Δuk

p

)
= 0, p ∈ Ps

C;l (7.4d)

(see also Chawla and Laursen (1998)). Now the space- and time-discretized
system of a two-body contact problem with Coulomb friction is given in
each time step by the non-linear system of equations (7.4a)–(7.4d).

Introducing the discrete energy Ek
l = (Ekin

l )k + (Epot
l )k at time tk as

the sum of the kinematic (Ekin
l )k := 1

2v
k
lM

mod
l vk

l and the potential energy



(Epot
l )k := 1

2u
k
l Alu

k
l , we can show that the time-integration scheme pre-

serves energy.

Lemma 7.7. The contact algorithm defined by (7.4a)–(7.4d) guarantees
energy preservation in the sense that

Ek+1
l − Ek

l = Δtv
k+ 1

2
l (f

k+ 1
2

l −Bl(λ
t
l)
k+ 1

2 ),

where v
k+ 1

2
l := 1

2(v
k+1
l + vk

l ). Moreover, in the case of ν = 0, we have

v
k+ 1

2
l Blλ

k+ 1
2

l = 0.

Proof. We start with the observation that (7.4b) yields for the mass con-
tribution

v
k+ 1

2
l Mmod

l

(
Δuk+1

l

Δt
− vk

l

)
=

1

4
(vk+1

l + vk
l )M

mod
l (vk+1

l − vk
l )

=
1

4
(vk+1

l Mmod
l vk+1

l − vk
lM

mod
l vk

l )

=
1

2
(Ekin

l )k+1 − 1

2
(Ekin

l )k,

and for the stiffness term

v
k+ 1

2
l Al

(
1

2
Δuk+1

l + uk
l

)
=

uk+1
l − uk

l

2Δt
Al(u

k+1
l + uk

l )

=
1

2Δt
(uk+1

l Alu
k+1
l − uk

l Alu
k
l )

=
1

Δt

(
(Epot

l )k+1 − (Epot
l )k

)
.

Using v
k+ 1

2
l as the test function in (7.4a), we then obtain

Ek+1
l − Ek

l = Δtv
k+ 1

2
l (f

k+ 1
2

l −Blλ
k+ 1

2
l ).

In the last step, we consider v
k+ 1

2
l Blλ

k+ 1
2

l in more detail. It can be decom-
posed into its normal and tangential contribution, i.e.,

v
k+ 1

2
l Blλ

k+ 1
2

l = v
k+ 1

2
l Bl

(
(λt

l)
k+ 1

2 + (λn
l )

k+ 1
2
)
.

For the normal part, we find, in terms of the discrete persistency condi-
tion, which is realized by (7.4c), that it vanishes. In the case ν = 0, (5.4)

yields that Ct
p(γ

k+ 1
2

p ,Δuk
p) = (γt

p)
k+ 1

2 and thus (7.4d) guarantees that the
tangential part is equal to zero for ν = 0.



7.4. Numerical results

In this subsection, we provide some numerical results which illustrate the
performance of the applied mass modification. We refer to Hager et al.
(2008), Hüeber (2008) and Hager and Wohlmuth (2009a) for the problem
setting and parameter choices. These techniques can also be generalized to
an overlapping two-scale domain decomposition approach: see Hager (2010)
and Hager, Hauret, Le Tallec and Wohlmuth (2010a).

The introduction of the macro-element triangulation is motivated by theo-
retical and computational aspects. It allows a local assembling process while
at the same time the properties (M0)–(M2) can easily be satisfied. Our the-
oretical considerations show however that the same order of convergence in
the a priori estimates can be obtained with less restrictive assumptions:
see Remark 7.5. Therefore, we use a second type of quadrature formula
associated with the elements of the original mesh Tl.

If t ∈ Tl is in ΩSl
, we use a standard quadrature rule such that

∫
t ρφpφq dx

is exactly evaluated by it. If t ∈ Tl is in Sl, we use a quadrature formula
such that all nodes are placed on ∂t ∩ (∂Sl ∩ ΩSl

). Moreover, we require
that on each element constants are integrated exactly and that the resulting
element mass matrices are positive semi-definite. Figure 7.11 illustrates the
situation for simplicial elements in 2D.

(a) (b) Case I (c) Case II (d) Case III
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Figure 7.11. Different positions of t with respect to ∂Sl ∩ ΩSl
.

In the situation in Figure 7.11(a), i.e., the element has one face on the
contact boundary, there is no other option than placing the quadrature
node on the opposite vertex and setting the weight w1 to |t|. If the element
t shares only one vertex with Γs

C, we have several options: see Cases I–III.
For Case I, we define w1 := w3 := 1/12|t| and w2 := 5/6|t|. The weights in
Case II are set equal and thus are 1/2|t|. And in Case III, we have w1 := |t|.
Then in all cases constant functions are integrated exactly and the local
mass matrices are given by

MT =
|t|
24

⎛⎝7 5 0
5 7 0
0 0 0

⎞⎠, MT =
|t|
18

⎛⎝5 4 0
4 5 0
0 0 0

⎞⎠, MT =
|t|
18

⎛⎝1 1 0
1 1 0
0 0 0

⎞⎠
for Case I to Case III. It is obvious that only the first two matrices have
rank two and are positive semi-definite. Thus Case III is not recommended.





As the initial conditions are given by a constant velocity and zero dis-
placement, the total energy can be captured exactly by all our discussed
quadrature rules on simplicial meshes. The situation is different for the
presented quadrilateral mesh. Here, we have a non-constant Jacobian for
the element mappings and thus a small difference is obtained if the simpli-
fied quadrature rule based on the original mesh is applied. However, this
difference is not significant, in particular on fine meshes.

2 4 6 8 10
x 10−4

−2

0

2

4

6

8

10

Time

Normal LM for triangular grid

standard
constant

2 4 6 8 10
x 10−4

−2

0

2

4

6

8

10

Time

Normal LM for quadrilateral grid

standard
constant
modified

Figure 7.14. LM for simplicial and quadrilateral
grid at the bottom slave node.

In Figure 7.14 we compare the results in the Lagrange multiplier. For
the standard discretization with no mass modification, a highly oscillating
Lagrange multiplier in the normal direction is obtained. The amplitude
and frequency is rather independent of the applied mesh and is not reduced
for smaller time steps. The numerical results are drastically improved if
the modified mass matrix approach is applied. The numerical results do
not show a significant difference between the different proposed quadrature
rules.

Index reduction

In the original mass modification approach, the mass modification was only
carried out with respect to the normal components. From the theoretical
point of view this is sufficient to reduce the index. We recall that the al-
gebraic constraints are given in the displacement for the non-penetration
which involves the normal components. The friction law works on the tan-
gential velocity, and these constraints result in an index-two system, which,
compared to the original index-three system, has better stability properties.
However, as our numerical results show, the index-two system still shows
oscillations in the Lagrange multiplier.

As can be seen from Figure 7.15, only the mass modification in both
directions is able to remove the oscillations from the Lagrange multiplier.
However, the mass modification in the normal direction not only removes
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Figure 7.15. Normal and tangential Lagrange multiplier with respect to
time at two different selected nodes: mass modification in both directions
(a,d), in the normal direction (b,e) and no mass modification (c,f).

the oscillations in normal directions but also reduces the oscillations in the
tangential direction compared to the unmodified approach.

Finite deformations

As we have seen in Section 6.8 for the adaptive refinement process, the
proposed algorithms naturally generalize to finite deformations. The same
holds true for the time-integration scheme. The simple Newmark method
has to be replaced by a generalized scheme: see, e.g., Chung and Hulbert
(1993), Gonzalez (2000) and Hulbert (1992). We refer to Hesch and Betsch
(2006) for a comparison between a simple node-to-node and a Lagrange
multiplier-based simulation of dynamic large-deformation contact problems.
Figure 7.16 shows the influence of the friction on the numerical results. We
consider the two cases ν = 0 and ν = 0.3. In the long range the results
are quite different, whereas in the short range almost no difference can be
observed.

The total contact work up to time tk is set to be equal to

(W con
l )k :=

k−1∑
j=0

Δtv
j+ 1

2
l Bl(λ

t
l)
j+ 1

2 .







7.5. Conclusion

Although the Lagrange multiplier-based formulation has many attractive
features, it requires a careful handling of time-integration schemes. A naive
application may result in high oscillation in the contact stresses and thus the
non-linear solver possibly breaks down. As shown, a local modification of the
mass matrix at the contact nodes in both normal and tangential directions
reduces the oscillations significantly. In many applications, the quadrature
rule based on the original mesh gives satisfying results and is easier to
handle. On the other hand, the first- and second-order moments can only
be preserved if a quadrature rule associated with a macro-triangulation is
applied. We note that neither proposed mass matrix modification requires
any global operator, and both fit into standard assembling procedures for
finite elements. Moreover, in the case of linear elasticity problems an a priori
analysis shows that optimal convergence can be obtained under suitable
regularity, and numerical results indicate that the difference from a standard
finite element scheme in space is negligible and asymptotically of higher
order. The analysis follows the lines of variational crimes and standard mass
lumping techniques. However, we point out that in contrast to lumping
techniques, the resulting modified mass matrix is singular and thus the
proof of the theoretical results is more involved and technical. From the
differential-algebraic point of view the reduction of the DAE system from
index three to one results in a stable algorithm.

8. Further applications from different fields

In this section, we provide some more complex applications with inequal-
ity constraints from different application areas. For each problem a brief
introduction into its physical or financial interpretation is given; the de-
tails about the physical and mathematical models are, however, omitted.
For each selected example, it is characteristic that the solution of a partial
differential equation system has to satisfy additionally an inequality con-
straint. For the discretization in space we use volume- and/or surface-based
Lagrange multipliers such that in space we have a variationally consistent
discretization. In time, we apply a suitable finite difference scheme, possibly
modified according to Section 7. As in Section 5, the fully discretized varia-
tional inequality system in terms of a pair of variables can be rewritten as a
non-linear equality system. The constraints are taken nodally into account
by suitable problem-dependent non-linear complementarity functions.

8.1. Mathematical finance: American options

Our first application stems from the field of financial economics. The appli-
cation of a semi-smooth Newton method as a numerical solver for obstacle-



type variational inequalities obtained by the mathematical model of an
American option can be found in Hager, Hüeber and Wohlmuth (2010b),
where more numerical results are also presented, including sparse grid tech-
niques. We refer to the monograph by Achdou and Pironneau (2005) and to
Pironneau and Achdou (2009) for an introduction to mathematical models
for option pricing and for a discussion of numerical and implementational
issues. An American option is a contract which permits its owner to receive
a certain pay-off ψ = ψ(x) ≥ 0 at any time τ between 0 and the expiry
date T , depending on the value of the underlying assets x at time τ . In
this subsection, we consider options on a set of two assets x = (x1, x2) and
ask for its fair price. A simple mathematical model is based on the Black–
Scholes equation (Black and Scholes 1973) and the no-arbitrage principle
(Hull 2006, Wilmott, Dewynne and Howison 1997). The symmetric and
positive definite volatility matrix

Ξ =

(
σ21

2�
1+�2

σ1σ2
2�

1+�2
σ1σ2 σ22

)
,

the volatilities σk, the correlation rate � ∈ (−1, 1), the interest rate r and
the dividend rates qk on the asset xk, k ∈ {1, 2}, enter as parameters into
the model. In the case of an American option, the no-arbitrage principle
implies that its fair value can never be below its pay-off as the option can
always be exercised. Further, a hedging argument yields that the Black–
Scholes equation becomes an inequality (Hull 2006, Wilmott et al. 1997).
Thus, the price P of an American put with pay-off function ψ satisfies the
following set of conditions for x ∈ R

2
+, t ∈ (0, T ] with t := T − τ :

Ṗ − LP ≥ 0, P − ψ ≥ 0, (Ṗ − LP )(P − ψ) = 0, (8.1)

with the initial conditions P |t=0 = ψ. Here the partial differential operator
L is given by

L :=
1

2

2∑
k,l=1

Ξk,lxkxl
∂2

∂xk∂xl
+

2∑
k=1

(r − qk)xk
∂

∂xk
− r. (8.2)

To solve this problem numerically, we truncate the semi-infinite domain R
2
+

to a bounded one Ω := (0, X1) × (0, X2) and impose artificial boundary
conditions on it. We refer to the monograph by Achdou and Pironneau
(2005) for a discussion of possible choices for these boundary conditions
depending on the pay-off function ψ. Here we apply a strategy where on
the boundary a 1D variational inequality has to be solved, and the solution
of it imposes appropriate Dirichlet boundary conditions at time ti: see Hager
et al. (2010b) for details.

In contrast to our contact formulations, the inequality constraints are
not imposed on part of the boundary but in the domain itself. As a con-



sequence, we have to replace the surface-based Lagrange multiplier by a
volume-based one, and the H1/2-duality by the H1-duality. However, for
the numerical solution strategy, this difference does not matter. As be-
fore, we use a biorthogonal Lagrange multiplier and transform (8.1) into a
non-linear equality system based on a weak variational formulation. Using
low-order conforming finite elements on a family of simplicial meshes, we
arrive at the discrete system in saddle-point form. Find (Pi

l,λ
i
l),

1

Δt
Ml(P

i
l −Pi−1

l ) +
1

2
Al(P

i
l +Pi−1

l )−Dlλ
i
l = 0, (8.3)

with Ml, Al and Dl being the lumped mass, the stiffness and the diagonal
duality matrix associated with the mesh on level l, respectively. Given Pi−1

l ,

(8.3) has to be solved for (Pi
l,λ

i
l) together with the node-wise complemen-

tarity condition

λi
l −max(0,λi

l − c(Pi
l −ψl)) = 0, (8.4)

where ψl is a finite element representation of the pay-off function on level
l and c a fixed positive constant. From the algebraic point of view, there is
no structural difference to a contact formulation without friction, and thus
a semi-smooth Newton method can be easily applied as solver. We note
that the situation here is simple. Firstly the inequality is the only source
of a non-linearity, secondly the NCP function given by (8.4) is piecewise
affine, and thirdly we can use the solution from the previous time step as
initial guess. Thus the implementation of the solver is directly based on
the equivalent primal–dual active set strategy. The adaptive refinement
strategy follows the same lines as discussed in Section 6. Here two essential
differences have to be taken into account. In the case of an obstacle problem,
the value of the Lagrange multiplier is a priori known if the actual zone of
contact between solution and obstacle is known. Thus this extra information
can be used to redistribute element-wise the computed discrete Lagrange
multiplier. Using such a post-processed Lagrange multiplier on the right
side of the vertex-based equation system for the flux moments gives much
better results. Details can be found in Weiss and Wohlmuth (2010).

Following the construction principle of Section 6 and applying mixed RT0,
RT1 or BDM1 elements will result in robust and reliable adaptive mesh
refinement in the case of smooth obstacles. From the theoretical point of
view, the use of RT0 elements is sufficient. Then the divergence and the
face fluxes are obtained from the right side of the PDE and the moments by
the element-wise and face-wise L2-projection onto constants, respectively.
For RT1 or BDM1 elements, the face-wise linear moments will be exactly
reproduced by the face fluxes of the mixed element. Moreover, for RT1

elements, we obtain that the divergence is given by the element-wise L2-
projection onto polynomials of degree at most one.



However, a naive application of the proposed construction principle fails
in the case of a non-smooth obstacle. To get a better understanding, we
consider firstly a simple obstacle problem on the unit square where the
obstacle has the form of a pyramid.

Obstacle-type problem

The obstacle is non-differentiable at the two axes. Figure 8.1(a) shows the
solution and the obstacle. Ignoring the kinks in the obstacle, the definition
of ηL results in a non-optimal estimated error decay: see Figure 8.1(b).
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Figure 8.1. Non-smooth obstacle: obstacle and solution (a), and
comparison of the unmodified and the modified estimated error (b).

To see what goes wrong, we consider additionally the adaptively refined
meshes on Level 3 and Level 6. In Figure 8.2(a,b), we observe a strong
over-refinement at the kinks of the obstacle, where the solution is actually
in contact with the obstacle. This highly over-refined zone results from
the fact that the local contribution ηL;T measures the distance between
the finite element solution and a globally H(div)-conforming mixed finite
element, although the solution is not in H(div; Ω). Thus one cannot expect
ηL to be efficient.

A possible remedy can be quite easily constructed. The Lagrange multi-
plier is additively decomposed into a volume part inH−1(Ω) and an interface
part in H−1/2(γ), where the obstacle ψ has kinks on γ. The interface part
depends only on the obstacle and is given by the jump of its normal fluxes.
Then the lifting of the fluxes is not globally H(div; Ω)-conforming but does
correctly reflect the jump. In Figure 8.2(c,d), we illustrate the positive effect
of the decomposition of the Lagrange multiplier on the adaptive refinement
process. In terms of the proposed modification, the estimated error in the
interior of the contact zone is zero, and therefore no overestimation of the
error occurs. Moreover, as can be seen in Figure 8.1(b), the obtained error
decay has the correct slope.



(a) (b) (c) (d)

Figure 8.2. Non-smooth obstacle: refined mesh on Level 3 and Level
6, naive application of ηL (a,b) and with suitable modification (c,d).

American basket option

We are now in the setting to apply an adaptive algorithm for the numer-
ical solution of pricing American basket options. An error estimator in
space and time designed for parabolic variational inequalities with special
focus on American options is introduced in Moon et al. (2007); see also
the more recent contribution of Nochetto et al. (2010). As is standard
for time-dependent systems, we include a coarsening strategy in the adap-
tive refinement process. In addition, we apply the previously discussed
modification in the error indicator, because of the kinks in the pay-off
function, and take note of the different structure of the PDE (8.2) com-
pared to the Laplace operator. Two different pay-off functions are tested,
ψmax := max(0,K−max(x1, x2)) and ψmin := max(0,K−min(x1, x2)), and
we refer to Weiss and Wohlmuth (2010) for the problem specification.

(a)

(c)

(b)

(d)

Figure 8.3. American put option: solution (a,b) and adaptive
mesh (c,d) at times t = 0.5 and t = 0.9; (a,c) ψmax, (b,d) ψmin.

The adaptively refined meshes in Figure 8.3 show that the error estima-
tor does not over-refine at the kinks of the pay-off functions and that the
proposed modification also works well for much more complex situations.



8.2. Porous media: multi-phase flow problems

As second example, we consider an incompressible multi-phase flow process
in porous media. Here we can identify two different sources for inequalities
in the mathematical model. To simplify the notation, both of them will
be described separately. The first one results from heterogeneous media
and is associated with interior interfaces: see Helmig, Weiss and Wohlmuth
(2009). The second one is related to a phase transition process and yields
inequality constraints on the simulation domain: see Lauser, Hager, Helmig
and Wohlmuth (2010).

Interface inequalities: heterogeneous media with entry pressure

The mathematical model for a two-phase one-component system we are
using here lives on the macro-scale and is based on mass conservation, mo-
mentum balance and Darcy’s law for each phase: see, e.g., Helmig (1997).
Here we consider two phases in isothermal equilibrium, the wetting phase
(α = w) and the non-wetting phase (α = n). Originally Darcy’s law was ob-
tained for slow laminar flow of a single phase but can be easily extended to
the two-phase setting by using the relative permeability (Scheidegger 1960).
Then the phase velocity vα, α ∈ {w, n}, is given by

vα = −ξα(Sα)K(∇pα − ραg), ξα(Sα) :=
krα(Sα)

μα
,

where K, g, krα, μα and ρα stand for the intrinsic permeability, the gravity,
the relative permeability, the dynamic viscosity and the density of phase α,
respectively. Moreover, pα denotes the unknown phase pressure. Then the
mass balance yields

∂(ΦραSα)

∂t
+ div(ραvα) = ραqα, α ∈ {w, n}, (8.5)

where Sα is the unknown saturation of the phase α, Φ is the porosity, and
qα denotes the source/sink term.
To close the system, we have to add two additional relations: a capillary

pressure-saturation relation, i.e., pn−pw = pc(Sn), and a saturation balance,
i.e., Sn + Sw = 1. Here we use a non-standard dynamic capillary pressure
relation including a retardation term (Hassanizadeh and Gray 1993, Has-
sanizadeh, Celia and Dahle 2002):

pn − pw = pc(Sn) = pstatc (Sn) + τ
∂Sn
∂t

, τ ≥ 0. (8.6)

The static capillary pressure function pstatc is assumed to be continuously
differentiable, non-negative, strictly increasing and pstatc (Sn) tends to p

entry
c

for Sn → 0. Typical choices for pstatc are the Brooks–Corey (Brooks and
Corey 1964) or the Van Genuchten model (Van Genuchten 1980). We note
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Figure 8.4. Comparison of the Van Genuchten and Brooks–Corey
model: relative permeability (a) and capillary pressure (b).

that the Van Genuchten model with zero entry pressure can be regarded
as a regularization of the Brooks–Corey approach (see Figure 8.4), and the
parameters in both models are related (Lenhard, Parker and Mishra 1989).

Equation (8.5) for α = n and α = w yields a strongly coupled highly
non-linear system. Next, we describe how the heterogeneity of the material
is accounted for. For simplicity, we assume that the domain Ω is split into
two subdomains Ωm, Ωs with the interface Γ := ∂Ωm ∩ ∂Ωs, such that the
parameters Φ and K are constant on each subdomain. Further, the domains
are chosen such that the master subdomain has a lower entry pressure, i.e.,
a higher relative permeability, than the slave domain. The flow at the
interface Γ has to be modelled correctly. Here, we describe only the more
interesting case when the non-wetting phase penetrates into the subdomain
with the higher entry pressure. The mathematical model introduced in
de Neef (2000) gives rise to the following transmission conditions at the
material interface:

[pc] ≥ 0, Ss
n ≥ 0, [pc]S

s
n = 0, (8.7)

where Ss
n = 1 − Ss

w stands for the saturation of the non-wetting phase on
the slave side, and [pc] denotes the jump of the capillary pressure. Then,
(8.7) states that the capillary pressure at the interface is continuous if the
non-wetting phase is present on the side with the higher entry pressure.

In order to solve the above problem numerically, we apply a node-centred
conservative finite volume scheme in space in combination with upwind
techniques: see Huber and Helmig (2000). We remark that the meshes used
do not need to be matching at the interface Γ. Then, in terms of the mortar
projection, we can define node-wise inequality constraints for the saturation
Sn and the capillary pressure pc on the slave side. In contrast to the previous
application, the non-linearity of the system is not restricted to the inequality
constraints (8.7). A popular approach to reduce the complexity is based on
a fractional flow formulation. It is equivalent to the original system but can
be more efficiently solved by block decoupling strategies. In the case of the
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Figure 8.5. Comparison of different time-integration and decoupling schemes.

classical fractional flow formulation, the total velocity vt is introduced by
vt := vw + vn. Then a coupled but considerably simplified system with
a much more moderate non-linearity is obtained for the so-called global
pressure and the saturation: see, e.g., Binning and Celia (1999), Chavent
and Jaffré (1986), Rivière (2008) and Wooding and Morel-Seytoux (1976).
Here, we cannot directly apply this approach since the interface model has
no equivalence in terms of the non-physical variable of the global pressure.
We work with an alternative fractional flow formulation which is based on
a pressure equation for pw and a saturation equation for Sw. The interface
condition is then directly formulated in these primary variables, and we
obtain, by replacing (8.7) by the equality to zero of an NCP function, a fully
coupled system for (pw, Sw) having possibly two different pressure values on
the interface.

For the discretization in time, different strategies can be applied; see Fig-
ure 8.5 for a comparison of the numerical results. Here, we illustrate the
algorithm for a matrix with three inclusions of lower relative permeability.
In Figure 8.5(a), the wetting velocity vw is not at all updated in time, re-
sulting in a significant different solution compared to the two alternative ap-
proaches shown in Figure 8.5(b,c). This strategy is the most simple one, and
we have to solve in a pre-process a linear elliptic pressure equation and then
in each time step a non-linear equation for the saturation. In Figure 8.5(b),
the fully non-linear and coupled system for the pressure and saturation is
solved by an implicit Euler scheme. This approach is the most expensive
one since in each time step a fully coupled system has to be solved, where
the non-linearities result from the PDE and the inequality constraints at the
interfaces. In Figure 8.5(c) a suitable decoupling strategy is applied. An
explicit time integration is used for the pressure equation, whereas an im-
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Figure 8.6. Pair of solutions for τ = 0 and τ = 60 at three different
time steps and number of active nodes with respect to time.

plicit scheme is selected for the saturation equation. This explicit–implicit
method can also be regarded as one step of a non-linear block Gauss–Seidel
solver applied to the fully coupled implicit time-integration system. As can
be seen, this inexact approach is quite attractive. It gives highly accurate
results and is considerably less expensive than the solution of the fully cou-
pled system. The sequential solution of a linear pressure equation and a
non-linear saturation equation is required.

Figure 8.6 shows the influence of the dynamic parameter τ on the solution
and on the active set. Here we denote the faces on which we have continuity
of the pressure as active and mark these faces by white squares. In the
short and middle time range there is a significant difference in the results.
First of all, a non-zero τ has a retardation effect on the wave front. Thus
the penetration of the non-wetting phase into the subdomains with lower
regularity starts later, and in the short range we observe a smaller number
of active faces. Secondly, due to the dynamic capillary pressure, a non-
monotonous wave profile is created with a sharper wave front, resulting in a
larger active set in the middle time range. In the long range, we will reach
a stationary equilibrium, and thus there is no difference between τ = 0 and
τ = 60. This is reflected by the fact that, for sufficiently large times, the
number of active faces is equal.

So far we have described the mathematical model of a heterogeneous
material interface resulting in a surface-based inequality. In the next step,
we describe how a volume-based inequality enters into the model.



Volume inequalities: phase transition processes

We now extend the model from the simple two-phase one-component sit-
uation to an Mp–Nc system with N different components and with M
different phases. In the following, we use the lower index α = 1, . . . ,M
for the phase, ordered by their wettability, i.e., α = 1 denotes the gas
phase, and the upper index j = 1, . . . , N stands for the component. Assum-
ing that the fugacity of any component is the same in all phases, we have
a priori MN + 2M +N + 1 unknowns. As before, pα and Sα stand for the
phase pressure and for the saturation of phase α, α = 1, . . . ,M . In addi-
tion, we have for a non-isothermal system the temperature T . Related to
the different components is the fugacity f j and the mole fraction xjα of com-
ponent j in phase α, j ∈ {1, . . . , N}, α ∈ {1, . . . ,M}. We refer to Acosta,
Merten, Eigenberger, Class, Helmig, Thoben and Müller-Steinhagen (2006),
Class and Helmig (2002), Class, Helmig and Bastian (2002) and Niessner
and Helmig (2007) for the description of general non-isothermal multi-phase
systems. For each component one mass balance equation has to hold, and
for the temperature the energy balance equation has to be satisfied, resulting
in a coupled highly non-linear system of (N + 1) partial differential equa-
tions. In addition to the coupled PDE system, we have to observe suitable
constitutive relations, such as, for the saturations,

M∑
α=1

Sα = 1, (8.8)

and for the phase pressures pα,

pα−1 − pα = pc,(α−1)α, 2 ≤ α ≤M,

with the capillary pressure pc,(α−1)α = pc,(α−1)α(Sα) depending on the satu-
ration Sα of the phase with higher wettability (Niessner and Helmig 2007).
As in the first example (see (8.6)), different models can be used to define
pc,(α−1)α(·). In addition MN constitutive relations between fugacities and
mole fractions have to be provided. These relations are in general quite
complex and rely on additional assumptions on the nature of the system.
In many applications from these relations, we can completely eliminate f j

and obtain the mole fractions xjα, 1 ≤ j ≤ N and 2 ≤ α ≤ M explicitly in
terms of p1, x

j
1, 1 ≤ j ≤ N , T , i.e.,

xjα = gjα(p1, x
1
1, . . . , x

N
1 , T ), 1 ≤ j ≤ N, 2 ≤ α ≤M (8.9)

with some given functions g(·) depending on the law of Henry and Raoult
(Class 2001).

In terms of the constitutive equations, the number of unknowns can then
be reduced from MN + 2M + N + 1 to M + N + 1. One possibility is to
set the pressure of the gas phase, its mole fractions with respect to the N



components,M−1 saturations and the temperature as primary variablesX:

X :=
(
p1, x

1
1, . . . , x

N
1 , S2, . . . , SM , T

)
. (8.10)

To close the (N + 1)-dimensional PDE system, we have to include compat-
ibility conditions for the different phases. The component sum of the mole
fractions xjα is equal to one if the phase α is actually present, i.e., Sα > 0.
This observation yields the following complementarity conditions:

1−
N∑
j=1

xjα ≥ 0, Sα ≥ 0, Sα

(
1−

N∑
j=1

xjα

)
= 0, 1 ≤ α ≤M, (8.11)

where we have included the physical condition of a non-negative saturation.
Replacing the inequality constraints (8.11) by the equivalent form

Ĉα(Sα, x
1
α, . . . , x

N
α ) := Sα −max

(
0, Sα − cα

(
1−

N∑
j=1

xjα

))
= 0 (8.12)

with a fixed positive constant cα > 0, we obtain a highly non-linear system.
Although at first glance the derivatives of the non-complementarity function
seem to be as easy to calculate as those in the case of the normal contact
conditions of Section 5, there is an essential difference. We note that in
(8.12), the NCP functions Ĉα, 1 ≤ α ≤ M , depend on all variables and
not only on the primary variable X. All unknowns that are not a primary
variable (see (8.10)) have to be replaced by (8.8) and (8.9) before the Newton

scheme is applied, and thus the partial derivatives of gjα(·) appear. In the
primary variable X, we thus define the NCP function

C(X) :=

(
(1−∑N

j=1 x
j
1)

(Sα)
M
α=2

)
for X such that Sα−cα(1−

∑N
j=1 g

j
α(X)) ≤ 0 for 2 ≤ α ≤M , and otherwise

we set

C(X) :=

(
1−∑M

α=2 Sα −max(0, 1−∑M
α=2 Sα − c1(1−

∑N
j=1 x

j
1))

(Sα −max(0, Sα − cα(1−
∑N

j=1 g
j
α(X))))Mα=2

)
.

Let us consider now the more simple case of a two-phase two-component
system, where the phase index α = 1 stands for the non-wetting phase and
α = 2 denotes the wetting phase. Moreover, we assume that component
j = 1 is air and j = 2 is water. In this simplified setting, we have three PDEs
to satisfy, two NCP functions have to be zero, and the primary variables
are X = (p1, x

1
1, x

2
1, S2, T ). Assuming the gas phase behaves as an ideal gas,

the fugacities are given by

f1 = x11p1, f2 = x21p1.





Figure 8.8. Evolution of the different ‘active’ zones.
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Figure 8.7 shows the geometry of the problem considered and the perfor-
mance of the semi-smooth Newton applied to the fully coupled non-linear
PDE system enriched by the algebraic NCP functions. Here, a polynomial
capillary pressure function has been used: see Leverett (1941).

In Figure 8.8, we plot the three possible cases for different time steps.
The light grey circles mark the region where both phases are present. The
dark grey ones show the region where only the water phase is present, and
the grey ones mark the region where only the gas phase is present. During
the simulation the gas phase is more and more displaced by the water phase.

For a similar example in 2D and a more realistic three-phase seven-com-
ponent example in 3D simulating the injection of CO2 into the soil and the
subsequent extraction of methane, we refer to Lauser et al. (2010).

8.3. Structural mechanics: frictional contact of elasto-plastic bodies

Our final example is the modelling of frictional contact between several
elasto-plastic bodies (Hager and Wohlmuth 2009b). This application in-
cludes several pairs of complementarity conditions, a volume-based one
describing the plastification process, and a surface-based one for the con-
tact. We restrict ourselves to infinitesimal associative plasticity and lin-
ear hardening and point out that the framework is much more general
and can be extended to non-linear material or hardening laws (Han and
Reddy 1995, Han and Reddy 1999, Simo and Hughes 1998). We refer to
Wieners and Wohlmuth (2011) for an application of a semi-smooth Newton



solver to non-local gradient plasticity. In contrast to linear elasticity, the
stress is now decomposed additively into an elastic and plastic part

σ := Cεel := C(ε(u)− εpl),

where εpl is assumed to be symmetric and trace-free. Now both contact and
plasticity can be formulated within the same abstract framework. Here we
use a combination of Tresca and Coulomb law with the friction bound given
by F + νλn and apply the rules for linear isotropic or kinematic hardening,
respectively. To see the structure, we recall on the left the contact and on
the right we introduce the plasticity setting:

λ := −σn, η := devσ − a−2
0 Kεpl, (8.15a)

Y co(λn) := F + νλn,

f co(λn,λt) := ‖λt‖ − Y co(λn),

Y pl(α) := a−1
0 (σ0 +Hα),

fpl(α,η) := ‖η‖ − Y pl(α),
(8.15b)

u̇t‖λt‖ = γcoλt, ε̇pl‖η‖ = γplη, (8.15c)

γco ≥ 0,

−f co(λn,λt) ≥ 0,

γcof co(λn,λt) = 0,

γpl ≥ 0,

−fpl(α,η) ≥ 0,
γplfpl(α,η) = 0,

(8.15d)

λn ≥ 0,

g(u) := gn − un ≥ 0,

λng(u) = 0,

α̇ = a−1
0 γpl. (8.15e)

Comparing the contact relations with the rules of plasticity, many paral-
lels can be seen. In (8.15a), the dual variable λ for the contact and the
inner variable η for the plasticity is given. The yield functions defined in
(8.15b) have the same structure, and depend on the friction parameters F
and ν and the hardening parameter H and the yield stress σ0, respectively.
The flow rule specified in (8.15c) imposes in each case a condition on the
direction. Furthermore, the yield function fpl and the consistency parame-
ter γpl satisfy the same complementarity conditions (8.15d) as f co and γco.
The constant scaling factor a20 := d

d−1 is used in order to have a consistent
notation for both the two- and three-dimensional case.

One of the main differences between the conditions for contact and plas-
ticity is the evolution law (8.15e), which causes the plasticity law to be
associative, in contrast to the complementarity conditions for the normal
contact.

The discrete version of the system is derived similarly to the previous
examples. The plastic inner variables (α, εpl) are approximated by the dis-

crete space Qpl
h , spanned by the piecewise constant indicator functions χT ,

T ∈ Tl. Hence we have one degree of freedom per element, which is a spe-
cial case of the widely used approach associating the plastic variables with
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Figure 8.9. (a) Geometry, (b) inner variable, (c,d) active sets.
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Figure 8.10. (a) Section view of the geometry; (b–d) active sets for
plasticity; (e) convergence history; (f–h) active sets for contact.

Gauss integration points (Simo and Hughes 1998, Wieners 2007). We refer
to Alberty, Carstensen and Zarrabi (1999) for the convergence analysis of a
similar discretization. This leads to the discrete inner variables

αl =
∑
T∈Tl

χTαT , εpll =
∑
T∈Tl

χTε
pl
T , devσl = 2μ

∑
T∈Tl

χT dev (Π0ε(ul)T ),

on which the definition of the NCP function is based. Because of the similar
structure of contact and plasticity, all results of Section 5 can be applied.

We apply these discretization techniques to two examples in the three-
dimensional setting. In Figure 8.9, the stress and the active sets are illus-
trated. Here we have the plastification as well as the contact zone. The
geometry of the setting is shown in Figure 8.9(a). Figure 8.9(d) illustrates
the contact zone whereas in Figure 8.9(c) the region with plastification is
depicted.



In Figure 8.10, we apply an exponential hardening law, and thus an extra
source of non-linearity appears. Figure 8.10(b–d) shows the nodes where
plastification occurs for three different time steps. The volume nodes are
projected onto the surface. In Figure 8.10(f–h), we show the actual contact
nodes. Here we provide the results for t5, t10 and t15; the results for t3,
t6 and t9 are given in Hager and Wohlmuth (2010), where details on the
problem specification can also be found.

In Figure 8.10(e), we show the convergence history of the semi-smooth
Newton method. The iteration in which the correct active sets are detected
for the first time are marked by a circle for plasticity and by a diamond for
contact. We point out that it depends on the time step which set is found
first. For all time steps a super-linear convergence rate can be observed.

8.4. Conclusion

In this section, we have illustrated that variationally consistent Lagrange
multiplier formulations for PDE systems with algebraic constraints provide
a flexible and powerful discretization technique. Of special interest are ap-
plications where both types of constraint, surface- and volume-based, enter
into the setting. Both types can be handled within the same abstract frame-
work of generalized saddle-point-type problems. The use of NCP functions
allows a consistent linearization of the inequality constraints and is thus
of special interest in combination with Newton-type solvers. Global con-
vergence can only be guaranteed in special situations; however, for most
problems local super-linear convergence is obtained. Rescaling of the NCP
function and regularization of the Jacobian might significantly improve the
robustness of non-linear solvers in the pre-asymptotic range.
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M. Ohlberger and O. Sander (2008), ‘A generic grid interface for parallel
and adaptive scientific computing II: Implementation and tests in DUNE’,
Computing 82, 121–138.

G. Bayada, J. Sabil and T. Sassi (2002), ‘Neumann–Dirichlet algorithm for uni-
lateral contact problems: Convergence results’, CR Math. Acad. Sci. Paris
335, 381–386.

G. Bayada, J. Sabil and T. Sassi (2008), ‘Convergence of a Neumann–Dirichlet
algorithm for tow-body contact problems with nonlocal Coulomb’s friction
law’, ESAIM: Math. Model. Numer. Anal. 42, 243–262.

Z. Belhachmi (2003), ‘A posteriori error estimates for the 3D stabilized mortar
finite element method applied to the Laplace equation’, Math. Model. Numer.
Anal. 37, 991–1011.

Z. Belhachmi (2004), ‘Residual a posteriori error estimates for a 3D mortar finite-
element method: The Stokes system’, IMA J. Numer. Anal. 24, 521–546.

Z. Belhachmi and F. Ben Belgacem (2000), ‘Finite elements of order two for Signor-
ini’s variational inequality’, CR Acad. Sci. Paris, Sér. I: Math. 331, 727–732.

F. Ben Belgacem (2000), ‘Numerical simulation of some variational inequalities
arisen from unilateral contact problems by the finite element methods’, SIAM
J. Numer. Anal. 37, 1198–1216.

F. Ben Belgacem and Y. Maday (1997), ‘The mortar element method for three
dimensional finite elements’, M2AN:Math. Model. Numer. Anal. 31, 289–
302.

F. Ben Belgacem and Y. Renard (2003), ‘Hybrid finite element methods for the
Signorini problem’, Math. Comp. 72, 1117–1145.

F. Ben Belgacem, P. Hild and P. Laborde (1997), ‘Approximation of the unilateral
contact problem by the mortar finite element method’, CR Acad. Sci. Paris,
Sér. I 324, 123–127.

F. Ben Belgacem, P. Hild and P. Laborde (1998), ‘The mortar finite element method
for contact problems’, Math. Comput. Modelling 28, 263–271.

F. Ben Belgacem, P. Hild and P. Laborde (1999), ‘Extension of the mortar finite el-
ement method to a variational inequality modeling unilateral contact’, Math.
Models Methods Appl. Sci. 9, 287–303.

A. Bergam, C. Bernardi, F. Hecht and Z. Mghazli (2003), ‘Error indicators for the
mortar finite element discretization of a parabolic problem’, Numer. Algo-
rithms 34, 187–201.

C. Bernardi and F. Hecht (2002), ‘Error indicators for the mortar finite element
discretization of the Laplace equation’, Math. Comput. 71, 1371–1403.



C. Bernardi, Y. Maday and A. Patera (1993), Domain decomposition by the mor-
tar element method. In Asymptotic and Numerical Methods for Partial Dif-
ferential Equations With Critical Parameters (H. Kaper et al., eds), Reidel,
pp. 269–286.

C. Bernardi, Y. Maday and A. Patera (1994), A new nonconforming approach
to domain decomposition: The mortar element method. In Nonlinear Partial
Differential Equations and their Applications (H. Brezis and J.-L. Lions, eds),
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