
The Annals of Probability
2009, Vol. 37, No. 6, 2093–2134
DOI: 10.1214/09-AOP459
© Institute of Mathematical Statistics, 2009

VARIATIONS AND ESTIMATORS FOR SELF-SIMILARITY
PARAMETERS VIA MALLIAVIN CALCULUS

BY CIPRIAN A. TUDOR AND FREDERI G. VIENS1

University of Paris 1 and Purdue University

Using multiple stochastic integrals and the Malliavin calculus, we an-
alyze the asymptotic behavior of quadratic variations for a specific non-
Gaussian self-similar process, the Rosenblatt process. We apply our results to
the design of strongly consistent statistical estimators for the self-similarity
parameter H . Although, in the case of the Rosenblatt process, our estimator
has non-Gaussian asymptotics for all H > 1/2, we show the remarkable fact
that the process’s data at time 1 can be used to construct a distinct, compen-
sated estimator with Gaussian asymptotics for H ∈ (1/2,2/3).

1. Introduction.

1.1. Context and motivation. A self-similar process is a stochastic process
such that any part of its trajectory is invariant under time scaling. Self-similar
processes are of considerable interest in practice in modeling various phenomena,
including internet traffic (see, e.g., [32]), hydrology (see, e.g., [13]) or economics
(see, e.g., [12, 31]). In various applications, empirical data also shows strong cor-
relation of observations, indicating the presence, in addition to self-similarity, of
long-range dependence. We refer to the monographs [7] and [25] for various prop-
erties of, and fields of application for, such processes.

The motivation for this work is to examine non-Gaussian self-similar processes
using tools from stochastic analysis. We will focus our attention on a special
process of this type, the so-called Rosenblatt process. This belongs to a class of
self-similar processes which also exhibit long-range dependence and which appear
as limits in the so-called noncentral limit theorem: the class of Hermite processes.
We study the behavior of the quadratic variations for the Rosenblatt process Z,
which is related to recent results by [14, 16, 17], and we apply the results to
the study of estimators for the self-similarity parameter of Z. Recently, results
on variations or weighted quadratic variations of fractional Brownian motion were
obtained in [14, 16, 17], among others. The Hermite processes were introduced
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by Taqqu (see [27] and [28]) and by Dobrushin and Major (see [5]). The Hermite
process of order q ≥ 1 can be written, for every t ≥ 0, as

Z
q
H (t) = c(H,q)

(1.1)

×
∫

Rq

[∫ t

0

( q∏
i=1

(s − yi)
−(1/2+(1−H)/q)
+

)
ds

]
dW(y1) · · ·dW(yq),

where c(H,q) is an explicit positive constant depending on q and H , and such that
E(Z

q
H (1)2) = 1, x+ = max(x,0), the self-similarity (Hurst) parameter H belongs

to the interval (1
2 ,1) and the above integral is a multiple Wiener–Itô stochastic

integral with respect to a two-sided Brownian motion (W(y))y∈R (see [21]). We
note that the Hermite processes of order q > 1, which are non-Gaussian, have only
been defined for H > 1

2 ; how to define these processes for H ≤ 1
2 is still an open

problem.
The case q = 1 is the well-known fractional Brownian motion (fBm): this is

Gaussian. One recognizes that when q = 1, (1.1) is the moving average represen-
tation of fractional Brownian motion. The Rosenblatt process is the case q = 2.
All Hermite processes share the following basic properties:

• they exhibit long-range dependence (the long-range covariance decays at the
rate of the nonsummable power function n2H−2);

• they are H -self-similar, in the sense that for any c > 0, (Z
q
H (ct))t≥0 and (cH ×

Z
q
H (t))t≥0 are equal in distribution;

• they have stationary increments, that is, the distribution of (Z
q
H (t + h) −

Z
q
H (h))t≥0 does not depend on h > 0;

• they share the same covariance function,

E[Zq
H (t)Z

q
H (s)] =: RH(t, s) = 1

2(t2H + s2H − |t − s|2H), s, t ≥ 0,

so, for every s, t ≥ 0, the expected squared increment of the Hermite process is

E
[(

Z
q
H (t) − Z

q
H (s)

)2] = |t − s|2H(1.2)

from which it follows by Kolmogorov’s continuity criterion, and the fact that
each Lp(�)-norm of the increment of Z

q
H over [s, t] is commensurate with its

L2(�)-norm, that this process is almost surely Hölder continuous of any order
δ < H ;

• the qth Hermite process lives in the so-called qth Wiener chaos of the underlying
Wiener process W since it is a qth order Wiener integral.

The stochastic analysis of fBm has been developed intensively in recent years
and its applications are numerous. Other Hermite processes are less well studied,
but are still of interest due to their long-range dependence, self-similarity and sta-
tionarity of increments. The great popularity of fBm in modeling is due to these
properties and fBm is preferred over higher order Hermite processes because it is
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a Gaussian process and because its calculus is much easier. However, in concrete
situations, when empirical data attests to the presence of self-similarity and long
memory without the Gaussian property, one can use a Hermite process living in a
higher chaos.

The Hurst parameter H characterizes all of the important properties of a Her-
mite process, as seen above. Therefore, properly estimating H is of the utmost
importance. Several statistics have been introduced to this end, such as wavelets,
k-variations, variograms, maximum likelihood estimators and spectral methods.
Information on these various approaches can be found in the book by Beran [1].

In this paper, we will use variation statistics to estimate H . Let us recall the
context. Suppose that a process (Xt)t∈[0,1] is observed at discrete times {0, 1

N
,

. . . , N−1
N

,1} and let a be a “filter” of length l ≥ 0 and p ≥ 1 a fixed power; that is,
a is an l + 1-dimensional vector a = (a0, a1, . . . , al) such that

∑l
q=0 aqqr = 0 for

0 ≤ r ≤ p − 1 and
∑l

q=0 aqqp �= 0. The k-variation statistic associated to the filter
a is then defined as

VN(k, a) = 1

N − l

N−1∑
i=l

[ |Va(i/N)|k
E[|Va(i/N)|k] − 1

]
,

where, for i ∈ {l, . . . ,N},

Va

(
i

N

)
=

l∑
q=0

aqX

(
i − q

N

)
.

When X is fBm, these statistics are used to derive strongly consistent estimators
for the Hurst parameter and their associated normal convergence results. A de-
tailed study can be found in [8] and [11] or, more recently, in [4]. The behavior
of VN(k, a) is used to derive similar behaviors for the corresponding estimators.
The basic result for fBm is that, if p > H + 1

4 , then the renormalized k-variation
VN(k, a) converges to a standard normal distribution. The easiest and most natural
case is that of the filter a = {1,−1}, in which case p = 1; one then has the restric-
tion H < 3

4 . The techniques used to prove such convergence in the fBm case in the
above references are strongly related to the Gaussian property of the observations;
they appear not to extend to non-Gaussian situations.

Our purpose here is to develop new techniques that can be applied to both the
fBm case and to other non-Gaussian self-similar processes. Since this is the first
attempt in such a direction, we keep things as simple as possible: we treat the case
of the filter a = {1,−1} with a k-variation order = 2 (quadratic variation), but
the method can be generalized. As announced above, we further specialize to the
simplest non-Gaussian Hermite process, that is, the one of order 2, the Rosenblatt
process. We now give a short overview of our results (a more detailed summary
of these facts is given in the next subsection). We obtain that, after suitable nor-
malization, the quadratic variation statistic of the Rosenblatt process converges to
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a Rosenblatt random variable with the same self-similarity order; in fact, this ran-
dom variable is the observed value of the original Rosenblatt process at time 1 and
the convergence occurs in the mean square. More precisely, the quadratic variation
statistic can be decomposed into the sum of two terms: a term in the fourth Wiener
chaos (i.e., an iterated integral of order 4 with respect to the Wiener process) and a
term in the second Wiener chaos. The fourth Wiener chaos term is well behaved, in
the sense that it has a Gaussian limit in distribution, but the second Wiener chaos
term is ill behaved, in the sense that its asymptotics are non-Gaussian and are,
in fact, Rosenblatt-distributed. This term, being of a higher order than the well-
behaved one, is responsible for the asymptotics of the entire statistic. But, since its
convergence occurs in the mean-square and the limit is observed, we can construct
an adjusted variation by subtracting the contribution of the ill-behaved term. We
find an estimator for the self-similarity parameter of the Rosenblatt process, based
on observed data, whose asymptotic distribution is normal.

Our main tools are the Malliavin calculus, the Wiener–Itô chaos expansions and
recent results on the convergence of multiple stochastic integrals proved in [10,
22, 23] and [24]. The key point is the following: if the observed process X lives in
some Wiener chaos of finite order, then the statistic VN can be decomposed, using
product formulas and Wiener chaos calculus, into a finite sum of multiple integrals.
One can then attempt to apply the criteria in [22] to study the convergence in law of
such sequences and to derive asymptotic normality results (or to demonstrate the
lack thereof) on the estimators for the Hurst parameter of the observed process.
The criteria in [22] are necessary and sufficient conditions for convergence to the
Gaussian law; in some instances, these criteria fail (e.g., the fBm case with H >

3/4), in which case, a proof of nonnormal convergence “by hand,” working directly
with the chaoses, can be employed. It is the basic Wiener chaos calculus that makes
this possible.

1.2. Summary of results. We now summarize the main results of this paper in
some detail. As stated above, we use quadratic variation with a = {1,−1}. We con-
sider the two following processes, observed at the discrete times {i/N}Ni=0: the fBm
process X = B and the Rosenblatt process X = Z. In either case, the standardized
quadratic variation and the Hurst parameter estimator are given, respectively, by

VN = VN(2, {−1,1}) := 1

N

N∑
i=1

( |X(i/N) − X((i − 1)/N)|2
N−2H

− 1
)
,(1.3)

ĤN = ĤN(2, {−1,1}) := 1

2
− 1

2 logN
log

N∑
i=1

(
X

(
i

N

)
− X

(
i − 1

N

))2

.(1.4)

We choose to use the normalization 1
N

in the definition of VN (as, e.g., in [4]),
although, in the literature, it sometimes does not appear. The H -dependent con-
stants cj,H (et al.) referred to below are defined explicitly in (3.2), (3.6), (3.12),
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(3.14), (3.21) and (3.33). Here, and throughout, L2(�) denotes the set of square-
integrable random variables measurable with respect to the sigma field generated
by W . This sigma-field is the same as that generated by B or by Z. The term
“Rosenblatt random variable” denotes a random variable whose distribution is the
same as that of Z(1).

We first recall the followings facts, relative to fractional Brownian motion:

1. if X = B and H ∈ (1/2,3/4), then:
(a)

√
N/c1,H VN converges in distribution to the standard normal law;

(b)
√

N log(N) 2√
c1,H

(ĤN − H) converges in distribution to the standard nor-

mal law;
2. if X = B and H ∈ (3/4,1), then:

(a)
√

N4−4H/c2,HVN converges in L2(�) to a standard Rosenblatt random
variable with parameter H0 = 2H − 1;

(b) N1−H log(N) 2√
c2,H

(ĤN − H) converges in L2(�) to the same standard

Rosenblatt random variable;
3. if X = B and H = 3/4, then:

(a)
√

N/(c′
1,H logN)VN converges in distribution to the standard normal law;

(b)
√

N logN 2√
c′

1,H

(ĤN(2, a) − H) converges in distribution to the standard

normal law.
The convergences for the standardized VN ’s in points 1(a) and 2(a) have

been known for some time, in works such as [28] and [9]. Lately, even stronger
results, which also give error bounds, have been proven. We refer to [19] for
the one-dimensional case and H ∈ (0, 3

4), [2] for then one-dimensional case
and H ∈ [3

4 ,1) and to [20] for the multidimensional case and H ∈ (0, 3
4).

In this paper, we prove the following results for the Rosenblatt process X =
Z as N → ∞:

4. if X = Z and H ∈ (1/2,1), then with c3,H in (3.12),
(a) N1−HVN(2, a)/(c3,H ) converges in L2(�) to the Rosenblatt random vari-

able Z(1);
(b) N1−H

2c3,H
log(N)(ĤN(2, a) − H) converges in L2(�) to the same Rosenblatt

random variable Z(1);
5. if X = Z and H ∈ (1/2,2/3), then, with e1,H and f1,H in (3.21) and (3.33),

(a)
√

N√
e1,H +f1,H

[VN(2, a) −
√

c3,H

N1−H Z(1)] converges in distribution to the stan-

dard normal law;
(b)

√
N√

e1,H +f1,H

[2 log(N)(H − ĤN(2, a)) −
√

c3,H

N1−H Z(1)] converges in distribu-

tion to the standard normal law.

Note that Z(1) is the actual observed value of the Rosenblatt process at time 1,
which is why it is legitimate to include it in a formula for an estimator. Points 4
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and 5 are new results. The subject of variations and statistics for the Rosen-
blatt process has thus far received too narrow a treatment in the literature, pre-
sumably because standard techniques inherited from the noncentral limit theorem
(and sometimes based on the Fourier transform formula for the driving Gaussian
process) are difficult to apply (see [3, 5, 28]). Our Wiener chaos calculus approach
allows us to show that the standardized quadratic variation and corresponding esti-
mator both converge to a Rosenblatt random variable in L2(�). Here, our method
has a crucial advantage: we are able to determine which Rosenblatt random vari-
able it converges to: it is none other than the observed value Z(1). The fact that
we are able to prove L2(�) convergence, not just convergence in distribution, is
crucial. Indeed, when H < 2/3, subtracting an appropriately normalized version
of this observed value from the quadratic variation and its associated estimator, we
prove that asymptotic normality does hold in this case. This unexpected result has
important consequences for the statistics of the Rosenblatt process since it permits
the use of standard techniques in parameter estimation and testing.

Our asymptotic normality result for the Rosenblatt process was specifically
made possible by showing that VN can be decomposed into two terms: a term
T4 in the fourth Wiener chaos and a term T2 in the second Wiener chaos. While
the second-Wiener-chaos term T2 always converges to the Rosenblatt random vari-
able Z(1), the fourth chaos term T4 converges to a Gaussian random variable for
H ≤ 3/4. We conjecture that this asymptotic normality should also occur for Her-
mite processes of higher order q ≥ 3 and that the threshold H = 3/4 is universal.
The threshold H < 2/3 in the results above comes from the discrepancy that ex-
ists between a normalized T2 and its observed limit Z(1). If we were to rephrase
results 4 and 5 above, with T2 instead of Z(1) (which is not a legitimate opera-
tion when defining an estimator since T2 is not observed), the threshold would be
H ≤ 3/4 and the constant f1,H would vanish.

Beyond our basic interest concerning parameter estimation problems, let us situ-
ate our paper in the context of some recent and interesting works on the asymptotic
behavior of p-variations (or weighted variations) for Gaussian processes, namely
the papers [14–17] and [26]. These recent papers study the behavior of sequences
of the type

N∑
i=1

h
(
X

(
(i − 1)/N

))( |X(i/N) − X((i − 1)/N)|2
N−2H

− 1
)
,

where X is a Gaussian process (fractional Brownian motion in [14, 16] and [17],
and the solution of the heat equation driven by a space-time white noise in [26])
or the iterated Brownian motion in [18] and h is a regular deterministic func-
tion. In the fractional Brownian motion case, the behavior of such sums varies
according to the values of the Hurst parameter, the limit sometimes being a con-
ditionally Gaussian random variable, sometimes a deterministic Riemann integral
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and sometimes a pathwise integral with respect to a Hermite process. We believe
that our work is the first to tackle a non-Gaussian case, that is, when the process
X above is a Rosenblatt process. Although we restrict ourselves to the case when
h ≡ 1, we still observe the appearance of interesting limits, depending on the Hurst
parameter: while, in general, the limit of the suitably normalized sequence is a
Rosenblatt random variable (with the same Hurst parameter H as the data, which
poses a slight problem for statistical applications), the adjusted variations (i.e., the
sequences obtained by subtracting precisely the portion responsible for the non-
Gaussian convergence) do converge to a Gaussian limit for H ∈ (1/2,2/3).

This article is structured as follows. Section 2 presents preliminaries on frac-
tional stochastic analysis. Section 3 contains proofs of our results for the non-
Gaussian Rosenblatt process. Some calculations are recorded as lemmas that are
proven in the Appendix. Section 4 establishes our parameter estimation results,
which follow almost trivially from the theorems in Section 3.

2. Preliminaries. Here, we describe the elements from stochastic analysis
that we will need in the paper. Consider H, a real, separable Hilbert space and
(B(ϕ),ϕ ∈ H), an isonormal Gaussian process, that is, a centered Gaussian family
of random variables such that E(B(ϕ)B(ψ)) = 〈ϕ,ψ〉H.

Denote by In the multiple stochastic integral with respect to B (see [21] and
[30]). This In is actually an isometry between the Hilbert space H
n (symmet-
ric tensor product) equipped with the scaled norm 1√

n! ‖ · ‖H⊗n and the Wiener
chaos of order n which is defined as the closed linear span of the random variables
Hn(B(ϕ)), where ϕ ∈ H,‖ϕ‖H = 1 and Hn is the Hermite polynomial of degree n.

We recall that any square-integrable random variable which is measurable with
respect to the σ -algebra generated by B can be expanded into an orthogonal sum
of multiple stochastic integrals,

F = ∑
n≥0

In(fn),

where fn ∈ H
n are (uniquely determined) symmetric functions and I0(f0) =
E[F ].

In this paper, we actually use only multiple integrals with respect to the standard
Wiener process with time horizon [0,1] and, in this case, we will always have
H = L2([0,1]). This notation will be used throughout the paper.

We will need the general formula for calculating products of Wiener chaos inte-
grals of any orders, p and q , for any symmetric integrands f ∈ H
p and g ∈ H
q ;
it is

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r (f ⊗r g),(2.1)
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as given, for instance, in Nualart’s book [21], Proposition 1.1.3; the contraction
f ⊗r g is the element of H⊗(p+q−2r) defined by

(f ⊗r g)(s1, . . . , sp−r , t1, . . . , tq−r )

=
∫
[0,T ]p+q−2r

f (s1, . . . , sp−r , u1, . . . , ur)(2.2)

× g(t1, . . . , tq−r , u1, . . . , ur) du1 · · ·dur .

We now introduce the Malliavin derivative for random variables in a chaos of finite
order. If f ∈ H
n, we will use the following rule to differentiate in the Malliavin
sense:

DtIn(f ) = nIn−1(fn(·, t)), t ∈ [0,1].
It is possible to characterize the convergence in distribution of a sequence of

multiple integrals to the standard normal law. We will use the following result (see
Theorem 4 in [22], also [23]).

THEOREM 2.1. Fix n ≥ 2 and let (Fk, k ≥ 1), Fk = In(fk) (with fk ∈ H
n

for every k ≥ 1), be a sequence of square-integrable random variables in the nth
Wiener chaos such that E[F 2

k ] → 1 as k → ∞. The following are then equivalent:

(i) the sequence (Fk)k≥0 converges in distribution to the normal law N (0,1);
(ii) E[F 4

k ] → 3 as k → ∞;
(iii) for all 1 ≤ l ≤ n − 1, it holds that limk→∞ ‖fk ⊗l fk‖H⊗2(n−l) = 0;
(iv) ‖DFk‖2

H → n in L2(�) as k → ∞, where D is the Malliavin derivative
with respect to B .

Criterion (iv) is due to [22]; we will refer to it as the Nualart–Ortiz-Latorre
criterion. A multidimensional version of the above theorem has been proven in
[24] (see also [22]).

3. Variations for the Rosenblatt process. Our observed process is a Rosen-
blatt process (Z(t))t∈[0,1] with self-similarity parameter H ∈ (1

2 ,1). This centered
process is self-similar with stationary increments and lives in the second Wiener
chaos. Its covariance is identical to that of fractional Brownian motion. Our goal is
to estimate its self-similarity parameter H from discrete observations of its sample
paths. As far as we know, this direction has seen little or no attention in the litera-
ture and the classical techniques (e.g., the ones from [5, 27] and [28]) do not work
well for it. Therefore, the use of the Malliavin calculus and multiple stochastic
integrals is of interest.
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The Rosenblatt process can be represented as follows (see [29]): for every t ∈
[0,1],

ZH(t) := Z(t)

= d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂1K
H ′

(u, y1)(3.1)

× ∂1K
H ′

(u, y2) du

]
dW(y1) dW(y2),

where (W(t), t ∈ [0,1]) is some standard Brownian motion, KH ′
is the standard

kernel of fractional Brownian motion of index H ′ (see any reference on fBm, such
as [21], Chapter 5) and

H ′ = H + 1

2
and d(H) = (2(2H − 1))1/2

(H + 1)H 1/2 .(3.2)

For every t ∈ [0,1], we will denote the kernel of the Rosenblatt process with
respect to W by

LH
t (y1, y2) := Lt(y1, y2)

(3.3)

:= d(H)

[∫ t

y1∨y2

∂1K
H ′

(u, y1) ∂1K
H ′

(u, y2) du

]
1[0,t]2(y1, y2).

In other words, in particular, for every t ,

Z(t) = I2(Lt (·)),
where I2 denotes the multiple integral of order 2 introduced in Section 2.

Now, consider the filter a = {−1,1} and the 2-variations given by

VN(2, a) = 1

N

N∑
i=1

(Z(i/N) − Z((i − 1)/N))2

E(Z(i/N) − Z((i − 1)/N))2 − 1

= N2H−1
N∑

i=1

[(
Z

(
i

N

)
− Z

(
i − 1

N

))2

− N−2H

]
.

The product formula for multiple Wiener–Itô integrals (2.1) yields

I2(f )2 = I4(f ⊗ f ) + 4I2(f ⊗1 f ) + 2‖f ‖2
L2([0,1]2)

.

Setting, for i = 1, . . . ,N ,

Ai := Li/N − L(i−1)/N ,(3.4)

we can thus write(
Z

(
i

N

)
− Z

(
i − 1

N

))2

= (I2(Ai))
2 = I4(Ai ⊗ Ai) + 4I2(Ai ⊗1 Ai) + N−2H
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and this implies that the 2-variation is decomposed into a fourth chaos term and a
second chaos term:

VN(2, a) = N2H−1
N∑

i=1

(
I4(Ai ⊗ Ai) + 4I2(Ai ⊗1 Ai)

) := T4 + T2.

A detailed study of the two terms above will shed light on some interesting facts:
if H ≤ 3

4 , then the term T4 continues to exhibit “normal” behavior (when renor-
malized, it converges in law to a Gaussian distribution), while the term T2, which
turns out to be dominant, never converges to a Gaussian law. One can say that the
second Wiener chaos portion is “ill behaved”; however, once it is subtracted, one
obtains a sequence converging to N (0,1) for H ∈ (1

2 , 2
3), which has an impact on

statistical applications.

3.1. Expectation evaluations.

3.1.1. The term T2. Let us evaluate the mean square of the second term,

T2 := 4N2H−1
N∑

i=1

I2(Ai ⊗1 Ai).

We use the notation Ii = ( i−1
N

, i
N

] for i = 1, . . . ,N . The contraction Ai ⊗1 Ai is
given by

(Ai ⊗1 Ai)(y1, y2)

=
∫ 1

0
Ai(x, y1)Ai(x, y2) dx

= d(H)2
∫ 1

0
dx 1[0,i/N](y1 ∨ x)1[0,i/N](y2 ∨ x)

×
(∫ i/N

x∨y1

∂1K
H ′

(u, x) ∂1K
H ′

(u, y1) du

− 1[0,(i−1)/N](y1 ∨ x)(3.5)

×
∫ (i−1)/N

x∨y1

∂1K
H ′

(u, x) ∂1K
H ′

(u, y1) du

)

×
(∫ i/N

x∨y2

∂1K
H ′

(v, x) ∂1K
H ′

(v, y2) dv

− 1[0,(i−1)/N](y2 ∨ x)

×
∫ (i−1)/N

x∨y2

∂1K
H ′

(v, x) ∂1K
H ′

(v, y2) dv

)
.
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Defining

a(H) := H ′(2H ′ − 1) = H(H + 1)/2,(3.6)

note the following fact (see [21], Chapter 5):∫ u∧v

0
∂1K

H ′
(u, y1) ∂1K

H ′
(v, y1) dy1 = a(H)|u − v|2H ′−2;(3.7)

in fact, this relation can easily be derived from
∫ u∧v

0 KH ′
(u, y1)K

H ′
(v, y1) dy1 =

RH ′
(u, v) and will be used repeatedly in the sequel.

To use this relation, we first expand the product in the expression for the con-
traction in (3.5), taking care to keep track of the indicator functions. The resulting
initial expression for (Ai ⊗1 Ai)(y1, y2) contains four terms, which are all of the
following form:

Ca,b := d(H)2
∫ 1

0
dx 1[0,a](y1 ∨ x)1[0,b](y2 ∨ x)

×
∫ a

u=y1∨x
∂1K

H ′
(u, x) ∂1K

H ′
(u, y1) du

×
∫ b

v=y2∨x
∂1K

H ′
(v, x) ∂1K

H ′
(v, y2) dv.

Here, to perform a Fubini argument by bringing the integral over x inside, we first
note that x < u∧ v while u ∈ [y1, a] and v ∈ [y2, b]. Also, note that the conditions
x ≤ u and u ≤ a imply that x ≤ a and thus 1[0,a](y1 ∨ x) can be replaced, after
Fubini, by 1[0,a](y1). Therefore, using (3.7), the above expression equals

Ca,b = d(H)21[0,a]×[0,b](y1, y2)

∫ a

y1

∂1K
H ′

(u, y1) du

∫ b

y2

∂1K
H ′

(v, y2) dv

×
∫ u∧v

0
∂1K

H ′
(u, x) ∂1K

H ′
(v, x) dx

= d(H)2a(H)1[0,a]×[0,b](y1, y2)

∫ a

u=y1

∫ b

v=y2

∂1K
H ′

(u, y1) ∂1K
H ′

(v, y2)

× |u − v|2H ′−2 dudv

= d(H)2a(H)

∫ a

u=y1

∫ b

v=y2

∂1K(u,y1) ∂1K
H ′

(v, y2)|u − v|2H ′−2 dudv.

The last equality comes from the fact that the indicator functions in y1, y2 are re-
dundant: they can be pulled back into the integral over dudv and, therein, the func-
tions ∂1K

H ′
(u, y1) and ∂1K

H ′
(v, y2) are, by definition as functions of y1 and y2,

supported by smaller intervals than [0, a] and [0, b], namely [0, u] and [0, v], re-
spectively.
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Now, the contraction (Ai ⊗1 Ai)(y1, y2) equals Ci/N,i/N + C(i−1)/N,(i−1)/N −
C(i−1)/N,i/N − Ci/N,(i−1)/N . Therefore, from the last expression above,

(Ai ⊗1 Ai)(y1, y2)

= a(H)d(H)2
(∫ i/N

y1

du

∫ i/N

y2

dv ∂1K
H ′

(u, y1)

× ∂1K
H ′

(v, y2)|u − v|2H ′−2

−
∫ i/N

y1

du

∫ (i−1)/N

y2

dv ∂1K
H ′

(u, y1)

× ∂1K
H ′

(v, y2)|u − v|2H ′−2(3.8)

−
∫ (i−1)/N

y1

du

∫ i/N

y2

dv ∂1K
H ′

(u, y1)

× ∂1K
H ′

(v, y2)|u − v|2H ′−2

+
∫ (i−1)/N

y1

du

∫ (i−1)/N

y2

dv ∂1K
H ′

(u, y1)

× ∂1K
H ′

(v, y2)|u − v|2H ′−2
)
.

Since the integrands in the above four integrals are identical, we can simplify the
above formula, grouping the first two terms, for instance, to obtain an integral of v

over Ii = ( i−1
N

, i
N

], with integration over u in [y1,
i
n
]. The same operation on the

last two terms gives the negative of the same integral over v, with integration over
u in [y1,

i−1
n

]. Then, grouping these two resulting terms yields a single term, which
is an integral for (u, v) over Ii × Ii . We obtain the following, final, expression for
our contraction:

(Ai ⊗1 Ai)(y1, y2)
(3.9)

= a(H)d(H)2
∫ ∫

Ii×Ii

∂1K
H ′

(u, y1) ∂1K
H ′

(v, y2)|u − v|2H ′−2 dudv.

Now, since the integrands in the double Wiener integrals defining T2 are sym-
metric, we get

E[T 2
2 ] = N4H−216 · 2!

N∑
i,j=1

〈Ai ⊗1 Ai,Aj ⊗1 Aj 〉L2([0,1]2).

To evaluate the inner product of the two contractions, we first use Fubini with
expression (3.9); by doing so, one must realize that the support of ∂1K

H ′
(u, y1) is

{u > y1}, which then makes the upper limit 1 for the integration in y1 redundant;
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similar remarks hold with respect to u′, v, v′ and y2. In other words, we have

〈Ai ⊗1 Ai,Aj ⊗1 Aj 〉L2([0,1])2

= a(H)2d(H)4
∫ 1

0

∫ 1

0
dy1 dy2

∫
Ii

∫
Ii

∫
Ij

∫
Ij

du′ dv′ dudv

× |u − v|2H ′−2|u′ − v′|2H ′−2 ∂1K
H ′

(u, y1) ∂1K
H ′

(v, y2)

× ∂1K
H ′

(u′, y1) ∂1K
H ′

(v′, y2)

= a(H)2d(H)4
∫
Ii

∫
Ii

∫
Ij

∫
Ij

|u − v|2H ′−2|u′ − v′|2H ′−2 du′ dv′ dv du(3.10)

×
∫ u∧u′

0
∂1K

H ′
(u, y1) ∂1K

H ′
(u′, y1) dy1

×
∫ v∧v′

0
∂1K

H ′
(v, y2) ∂1K

H ′
(v′, y2) dy2

= a(H)4d(H)4
∫
Ii

∫
Ii

∫
Ij

∫
Ij

|u − v|2H ′−2|u′ − v′|2H ′−2|u − u′|2H ′−2

× |v − v′|2H ′−2 du′ dv′ dv du,

where we have used the expression (3.7) in the last step. Therefore, we immedi-
ately have

E[T 2
2 ] = N4H−232a(H)4d(H)4

×
N∑

i,j=1

∫
Ii

∫
Ii

∫
Ij

∫
Ij

du′ dv′ dv du(3.11)

× |u − v|2H ′−2|u′ − v′|2H ′−2|u − u′|2H ′−2|v − v′|2H ′−2.

By Lemma 5 in the Appendix, we conclude that

lim
N→∞ E[T 2

2 ]N2−2H = 64a(H)2d(H)4
(

1

2H − 1
− 1

2H

)

= 16d(H)2(3.12)

:= c3,H .

3.1.2. The term T4. Now, for the L2-norm of the term denoted by

T4 := N2H−1
N∑

i=1

I4(Ai ⊗ Ai),
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by the isometry formula for multiple stochastic integrals, and using a correction
term to account for the fact that the integrand in T4 is nonsymmetric, we have

E[T 2
4 ] = 8N4H−2

N∑
i,j=1

〈Ai ⊗ Ai;Aj ⊗ Aj 〉L2([0,1]4)

+ 4N4H−2
N∑

i,j=1

4〈Ai ⊗1 Aj ;Aj ⊗1 Ai〉L2([0,1]2) =: T4,0 + T4,1.

We separate the calculation of the two terms T4,0 and T4,1 above. We will see that
these two terms are exactly of the same magnitude, so both calculations must be
performed precisely.

The first term, T4,0, can be written as

T4,0 = 8N4H−2
N∑

i,j=1

∣∣〈Ai,Aj 〉L2([0,1]2)

∣∣2.
We calculate each individual scalar product 〈Ai,Aj 〉L2([0,1]2) as

〈Ai,Aj 〉L2([0,1]2)

=
∫ 1

0

∫ 1

0
Ai(y1, y2)Aj (y1, y2) dy1 dy2

= d(H)2
∫ 1

0

∫ 1

0
dy1 dy2 1[0,i/N∧j/N](y1 ∨ y2)

×
(∫ i/N

y1∨y2

∂1K
H ′

(u, y1) ∂1K
H ′

(u, y2) du − 1[0,(i−1)/N](y1 ∨ y2)

×
∫ (i−1)/N

y1∨y2

∂1K
H ′

(u, y1) ∂1K
H ′

(u, y2) du

)

×
(∫ j/N

y1∨y2

∂1K
H ′

(v, y1)∂1K
H ′

(v, y2) dv − 1[0,(j−1)/N](y1 ∨ y2)

×
∫ (j−1)/N

y1∨y2

∂1K
H ′

(v, y1) ∂1K
H ′

(v, y2) dv

)

= d(H)2
∫ i/N

(i−1)/N

∫ j/N

(j−1)/N
dudv

[∫ u∧v

0
∂1K

H ′
(u, y1) ∂1K

H ′
(v, y1) dy1

]2

.

Here, (3.7) yields

〈Ai,Aj 〉L2([0,1]2) = d(H)2a(H)2
∫
Ii

∫
Ij

|u − v|2H−2 dudv,
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where, we have again used the notation Ii = ( i−1
N

, i
N

] for i = 1, . . . ,N . We finally
obtain

〈Ai,Aj 〉L2([0,1]2)
(3.13)

= d(H)2a(H)2

H(2H − 1)

1

2

[
2
∣∣∣∣ i − j

N

∣∣∣∣
2H

−
∣∣∣∣ i − j + 1

N

∣∣∣∣
2H

−
∣∣∣∣ i − j − 1

N

∣∣∣∣
2H ]

,

where, more precisely, d(H)2a(H)2(H(2H − 1))−1 = 2. Specifically, with the
constants c1,H , c2,H and c′

1,H given by

c1,H := 2 +
∞∑

k=1

(
2k2H − (k − 1)2H − (k + 1)2H )2

,

c2,H := 2H 2(2H − 1)/(4H − 3),(3.14)

c′
1,H := (

2H(2H − 1)
)2 = 9/16,

using Lemmas 3, 4 and an analogous result for H = 3/4, we get, asymptotically
for large N ,

lim
N→∞N T4,0 = 16c1,H , 1/2 < H < 3

4 ,(3.15)

lim
N→∞N4−4H T4,0 = 16c2,H , H > 3

4 ,(3.16)

lim
N→∞

N

logN
T4,0 = 16c′

1,H = 16, H = 3

4
.(3.17)

The second term, T4,1, can be dealt with by obtaining an expression for

〈Ai ⊗1 Aj ;Aj ⊗1 Ai〉L2([0,1]2)

in the same way as the expression obtained in (3.10). We get

T4,1 = 16N4H−2
N∑

i,j=1

〈Ai ⊗1 Aj ;Aj ⊗1 Ai〉L2([0,1]2)

= 16d(H)4a(H)4N−2
N∑

i,j=1

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dy dzdy′ dz′

× |y − z + i − j |2H ′−2|y′ − z′ + i − j |2H ′−2

× |y − y′ + i − j |2H ′−2|z − z′ + i − j |2H ′−2.

Now, similarly to the proof of Lemma 5, we find the the following three asymptotic
behaviors:
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• if H ∈ (1
2 , 3

4), then τ−1
1,HN T4,1 converges to 1, where

τ1,H := 16d(H)4a(H)4c1,H ;(3.18)

• if H > 3
4 , then τ−1

2,HN4−4H T4,1 converges to 1, where

τ2,H := 32d(H)4a(H)4
∫ 1

0
(1 − x)x4H−4 dx;(3.19)

• if H = 3
4 , then τ−1

3,H (N/ logN)T4,1 converges to 1, where

τ3,H := 32d(H)4a(H)4.(3.20)

Combining these results for T4,1 with those for T4,0 in lines (3.15), (3.16) and
(3.17), we obtain the asymptotics of E[T 2

4 ] as N → ∞:

lim
N→∞NE[T 2

4 ] = e1,H , if H ∈ (1
2 , 3

4

);
lim

N→∞N4−4H E[T 2
4 ] = e2,H , if H ∈ (3

4 ,1
);

lim
N→∞

N

logN
E[T 2

4 ] = e3,H , if H = 3

4
,

where, with τi,H , i = 1,2,3, given in (3.18), (3.19) and (3.20), we defined

e1,H := (1/2)c1,H + τ1,H ,

e2,H := (1/2)c2,H + τ2,H ,(3.21)

e3,H := c3,H + τ3,H .

Taking into account the estimations (3.15), (3.16) and (3.17), with c3,H in
(3.12), we see that E[T 2

4 ] is always of smaller order than E[T 2
2 ]; therefore, the

mean-square behavior of VN is given by that of the term T2 only, which means that
we obtain, for every H > 1/2,

lim
N→∞ E

[(
N1−HVN(2, a)

1√
c3,H

)2]
= 1.(3.22)

3.2. Normality of the fourth chaos term T4 when H ≤ 3/4. The calculations
for T4 above prove that limN→∞ E[G2

N ] = 1 for H < 3/4, where e1,H is given in
(3.21) and

GN := √
NN2H−1e

−1/2
1,H I4

(
N∑

i=1

Ai ⊗ Ai

)
.(3.23)
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Similarly, for H = 3
4 , we showed that limN→∞ E[G̃2

N ] = 1, where e3,H is given in
(3.21) and

G̃N :=
√

N

logN
N2H−1e−1

3,H I4

(
N∑

i=1

Ai ⊗ Ai

)
.(3.24)

Using the criterion of Nualart and Ortiz-Latorre [part (iv) in Theorem 2.1], we
prove the following asymptotic normality for GN and G̃N .

THEOREM 3.1. If H ∈ (1/2,3/4), then GN given by (3.23) converges in dis-
tribution as

lim
N→∞GN = N (0,1).(3.25)

If H = 3/4, then G̃N given by (3.24) converges in distribution as

lim
N→∞ G̃N = N (0,1).(3.26)

PROOF. We will denote by c a generic positive constant not depending on N .

STEP 0 (Setup and expectation evaluation). Using the derivation rule for mul-
tiple stochastic integrals, the Malliavin derivative of GN is

DrGN = √
NN2H−1e

−1/2
1,H 4

N∑
i=1

I3
(
(Ai ⊗ Ai)(·, r))

and its norm is

‖DGN‖2
L2([0,1])

= N4H−116e−1
1,H

N∑
i,j=1

∫ 1

0
dr I3

(
(Ai ⊗ Ai)(·, r))I3

(
(Aj ⊗ Aj)(·, r)).

The product formula (2.1) gives

‖DGN‖2
L2([0,1])

= N4H−116e−1
1,H

×
N∑

i,j=1

∫ 1

0
dr

[
I6

(
(Ai ⊗ Ai)(·, r) ⊗ (Aj ⊗ Aj)(·, r))

+ 9I4
(
(Ai ⊗ Ai)(·, r) ⊗1 (Aj ⊗ Aj)(·, r))

+ 9I2
(
(Ai ⊗ Ai)(·, r) ⊗2 (Aj ⊗ Aj)(·, r))

+ 3!I0
(
(Ai ⊗ Ai)(·, r) ⊗3 (Aj ⊗ Aj)(·, r))]

=: J6 + J4 + J2 + J0.
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First, note that, for the nonrandom term J0 that gives the expected value of the
above, we have

J0 = 16e−1
1,H N4H−13!

N∑
i,j=1

∫
[0,1]4

Ai(y1, y2)Ai(y3, y4)Aj (y1, y2)

× Aj(y3, y4) dy1 dy2 dy3 dy4

= 96N4H−1e−1
1,H

N∑
i,j=1

∣∣〈Ai,Aj 〉
L2([0,1]2)

∣∣2.
This sum has already been treated: we know from (3.15) that J0/4 converges to 1,
that is, that lim

N→∞ E[‖DGN‖2
L2([0,1])] = 4. This means, by the Nualart–Ortiz-

Latorre criterion, that we only need to show that all other terms J6, J4, J2 converge
to zero in L2(�) as N → ∞.

STEP 1 (Order-6 chaos term). We first consider the term J6:

J6 = cN4H−1
N∑

i,j=1

∫ 1

0
dr I6

(
(Ai ⊗ Ai)(·, r) ⊗ (

Aj ⊗ Aj(·, r)))

= cN4H−1
N∑

i,j=1

I6
(
(Ai ⊗ Aj) ⊗ (Ai ⊗1 Aj)

)
.

We study the mean square of this term. We have, since the L2-norm of the sym-
metrization is less than the L2-norm of the corresponding unsymmetrized function,

E

[(
N∑

i,j=1

I6
(
(Ai ⊗ Aj) ⊗ (Ai ⊗1 Aj)

))2]

≤ 6! ∑
i,j,k,l

〈(Ai ⊗ Aj) ⊗ (Ai ⊗1 Aj), (Ak ⊗ Al) ⊗ (Ak ⊗1 Al)〉L2([0,1]6)

= 6! ∑
i,j,k,l

〈Ai,Ak〉L2([0,1]2)〈Aj ,Al〉L2([0,1]2)〈Ai ⊗1 Aj,Ak ⊗1 Al〉L2([0,1]2).

We get

E[J 2
6 ] ≤ cN8H−2

∑
i,j,k,l

∫
Ii

du

∫
Ij

dv

∫
Ik

du′
∫
Il

dv′

× |u − v|2H ′−2|u − u′|2H ′−2|v − v′|2H ′−2|u′ − v′|2H ′−2

×
[
2
∣∣∣∣ i − k

N

∣∣∣∣
2H

−
∣∣∣∣ i − k + 1

N

∣∣∣∣
2H

−
∣∣∣∣ i − k − 1

N

∣∣∣∣
2H ]

×
[
2
∣∣∣∣j − l

N

∣∣∣∣
2H

−
∣∣∣∣j − l + 1

N

∣∣∣∣
2H

−
∣∣∣∣j − l − 1

N

∣∣∣∣
2H ]

.
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First, we show that for H ∈ (1/2,3/4), we have, for large N ,

E[J 2
6 ] ≤ cN8H−6.(3.27)

With the notation as in Step 1 of this proof, making the change of variables
ū = (u − i−1

N
)N , and similarly for the other integrands, we obtain

E[J 2
6 ] ≤ cN8H−2 1

N8H ′−8

1

N4

1

N4H

× ∑
i,j,k,l

∫
[0,1]4

dudv du′ dv′

× |u − v + i − j |2H ′−2|u − u′ + i − k|2H ′−2

× |u′ − v + j − k|2H ′−2|v − v′ + k − l|2H ′−2

× (2|i − k|2H − |i − k + 1|2H − |i − k − 1|2H )

× (2|j − l|2H − |j − l + 1|2H − |j − l − 1|2H )

= c
1

N2

∑
i,j,k,l

∫
[0,1]4

dudv du′ dv′

× |u − v + i − j |2H ′−2|u − u′ + i − k|2H ′−2

× |u′ − v + j − k|2H ′−2|v − v′ + k − l|2H ′−2

× (2|i − k|2H − |i − k + 1|2H − |i − k − 1|2H )

× (2|j − l|2H − |j − l + 1|2H − |j − l − 1|2H ).

Again, we use the fact that the dominant part in the above expression is the one in
where all indices are distant by at least two units. In this case, up to a constant, we
have the upper bound |i − k|2H−2 for the quantity (2|i − k|2H − |i − k + 1|2H −
|i − k − 1|2H ). By using Riemann sums, we can write

E[J 2
6 ] ≤ c

1

N2 N4
(

1

N4

∑
i,j,k,l

f

(
i

N
,

j

N
,

k

N
,

l

N

))
N8H ′−8N4H−4,

where f is a Riemann integrable function on [0,1]4 and the Riemann sum con-
verges to the finite integral of f therein. Estimate (3.27) follows.

STEP 2 (Chaos terms of orders 4 and 2). To treat the term

J4 = cN4H−1
N∑

i,j=1

∫ 1

0
dr I4

(
(Ai ⊗ Ai)(·, r) ⊗1 (Aj ⊗ Aj)(·, r)),
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since I4(g) = I4(g̃), where g̃ denotes the symmetrization of the function g, we can
write

J4 = cN4H−1
N∑

i,j=1

〈Ai,Aj 〉L2(0,1]2I4(Ai ⊗ Aj)

+ cN4H−1I4

N∑
i,j=1

(Ai ⊗1 Aj) ⊗ (Ai ⊗1 Aj)

=: J4,1 + J4,2.

Both terms above have been treated in previous computations. To illustrate it, the
first summand J4,1 can be bounded above as follows:

E|J4,1|2 ≤ cN8H−2
N∑

i,j,k,l=1

〈Ai,Aj 〉L2([0,1]2)〈Ai,Ak〉L2([0,1]2)

× 〈Ak,Al〉L2([0,1]2)〈Aj ,Al〉L2([0,1]2)

= cN8H−2
N∑

i,j,k,l=1

[(
i − j + 1

N

)2H

+
(

i − j − 1

N

)2H

− 2
(

i − j

N

)2H ]

×
[(

i − k + 1

N

)2H

+
(

i − k − 1

N

)2H

− 2
(

i − k

N

)2H ]

×
[(

j − l + 1

N

)2H

+
(

j − l − 1

N

)2H

− 2
(

j − l

N

)2H ]

×
[(

k − l + 1

N

)2H

+
(

k − l − 1

N

)2H

− 2
(

k − l

N

)2H ]

and, using the same bound c|i − j |2H−2 for the quantity |i − j + 1|2H + |i − j −
1|2H − 2|i − j |2H when |i − j | ≥ 2, we obtain

E|J4,1|2 ≤ cN8H−2N−8H
N∑

i,j,k,l=1

|i − j |2H−2|i − k|2H−2|j − l|2H−2|k − l|2H−2

≤ cN8H−6 1

N4

2∑
i,j,k,l=1

|i − j |2H−2|i − k|2H−2|j − l|2H−2|k − l|2H−2

N4(2H−2)
.
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This tends to zero at the speed N8H−6 as N → ∞ by a Riemann sum argument
since H < 3

4 .
One can also show that E|J4,2|2 converges to zero at the same speed because

E|J4,2|2 = cN8H−2
N∑

i,j,k,l=1

〈(Ai ⊗1 Aj), (Ak ⊗1 Al)〉2
L2([0,1]2)

≤ N8H−2N−2(8H ′−8)N−8

×
N∑

i,j,k,l=1

(∫
[0,1]4

(|u − v + i − j |

× |u′ − v′ + k − l|
× |u − u′ + i − k|

× |v − v′ + j − l|)2H ′−2 dv′ du′ dv du

)2

≤ cN8H−6.

Thus, we obtain

E[J 2
4 ] ≤ cN8H−6.(3.28)

A similar behavior can be obtained for the last term J2 by repeating the above
arguments:

E[J 2
2 ] ≤ cN8H−6.(3.29)

STEP 3 (Conclusion). Combining (3.27), (3.28) and (3.29) and recalling the
convergence result for E[T 2

4 ] proven in the previous subsection, we can apply the
Nualart–Ortiz-Latorre criterion and use the same method as in the case H < 3

4 for
H = 3/4, to conclude the proof. �

3.3. Nonnormality of the second chaos term T2 and limit of the 2-variation.
This paragraph studies the asymptotic behavior of the term denoted by T2 which
appears in the decomposition of VN(2, a). Recall that this is the dominant term,
given by

T2 = 4N2H−1I2

(
N∑

i=1

Ai ⊗1 Ai

)
,

and, with
√

c3,H = 4d(H) given in (3.12), we have shown that

lim
N→∞ E[(N1−HT2c

−1/2
3,H )2] = 1.
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With TN := N1−HT2c
−1/2
3,H , one can show that in L2(�),

lim
N→∞‖DTN‖2

L2([0,1]) = 2 + c,

where c is a strictly positive constant. As a consequence, the Nualart–Ortiz-Latorre
criterion can be used to deduce that the TN do not converge to the standard normal
law. However, it is straightforward to find the limit of T2, and thus of VN , in L2(�),
in this case. We have the following result.

THEOREM 3.2. For all H ∈ (1/2,1), the normalized 2-variation N1−HVN(2,

a)/(4d(H)) converges in L2(�) to the Rosenblatt random variable Z(1). Note that
this is the actual observed value of the Rosenblatt process at time 1.

PROOF. Since we already proven that N1−HT4 converges to 0 in L2(�), it is
sufficient to prove that N1−HT2/(4d(H)) − Z(1) converges to 0 in L2(�). Since
T2 is a second-chaos random variable, that is, is of the form I2(fN), where fN is a
symmetric function in L2([0,1]2), it is sufficient to prove that

N1−H

4d(H)
fN

converges to L1 in L2([0,1]2), where L1 is given by (3.3). From (3.9), we get

fN(y1, y2) = 4N2H−1a(H)d(H)2

×
N∑

i=1

(∫ ∫
Ii×Ii

|u − v|2H ′−2(3.30)

× ∂1K
H ′

(u, y1) ∂1K
H ′

(v, y2) dudv

)
.

We now show that N1−H

4d(H)
fN converges pointwise, for y1, y2 ∈ [0,1], to the ker-

nel of the Rosenblatt random variable. On the interval Ii × Ii , we may replace the
evaluation of ∂1K

H ′
and ∂1K

H ′
at u and v by setting u = v = i/N . We then get

that fN(y1, y2) is asymptotically equivalent to

4N2H−1a(H)d(H)2
N∑

i=1

1i/N≥y1∨y2 ∂1K
H ′

(i/N,y1) ∂1K
H ′

(i/N,y2)

×
∫ ∫

Ii×Ii

dudv |u − v|2H ′−2

= 4NH−1d(H)2 1

N

N∑
i=1

1i/N≥y1∨y2 ∂1K
H ′

(i/N,y1) ∂1K
H ′

(i/N,y2),

where we have used the identity
∫∫

Ii×Ii
dudv |u − v|2H ′−2 = a(H)−1N−2H ′ =

a(H)−1N−H−1. Therefore, we can write, for every y1, y2 ∈ (0,1)2, by invoking a
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Riemann sum approximation,

lim
N→∞

N1−H

4d(H)
fN(y1, y2)

= d(H) lim
N→∞

1

N

N∑
i=1

1i/N≥y1∨y2 ∂1K
H ′

(i/N,y1) ∂1K
H ′

(i/N,y2)

= d(H)

∫ 1

y1∨y2

∂1K
H ′

(u, y1)∂1K
H ′

(u, y2) du = L1(y1,y2).

To complete the proof, it suffices to check that the sequence (4d(H))−1N1−H ×
fN is Cauchy in L2([0,1]2) [indeed, this implies that (4d(H))−1N1−HfN has a
limit in L2([0,1]2), which obviously coincides with the a.e. limit L1 and then the
multiple integral I2((4d(H))−1N1−HfN) will converge to I2(L1)]. This can be
checked by means of a straightforward calculation. Indeed, one has, with C(H) a
positive constant not depending on M and N ,

‖N1−HfN − M1−HfM‖2
L2([0,1]2)

= C(H)N2H
N∑

i,j=1

∫
Ii

∫
Ii

∫
Ij

∫
Ij

|u − v|2H ′−2|u′ − v′|2H ′−2

× |u − u′|2H ′−2|v − v′|2H ′−2 du′ dv′ dudv

+ C(H)M2H

×
M∑

i,j=1

∫ i/M

(i−1)/M

∫ i/M

(i−1)/M

∫ j/M

(j−1)/M

∫ j/M

(j−1)/M
|u − v|2H ′−2|u′ − v′|2H ′−2

× |u − u′|2H ′−2(3.31)

× |v − v′|2H ′−2 du′ dv′ dudv

− 2C(H)M1−HN1−HM2H−1N2H−1

×
N∑

i=1

M∑
j=1

∫
Ii

∫
Ii

∫ j/M

(j−1)/M

∫ j/M

(j−1)/M
du′ dv′ dudv

× |u − v|2H ′−2|u′ − v′|2H ′−2

× |u − u′|2H ′−2|v − v′|2H ′−2.

The first two terms have already been studied in Lemma 5. We have shown that

N2H
N∑

i,j=1

∫
Ii

∫
Ii

∫
Ij

∫
Ij

|u − v|2H ′−2|u′ − v′|2H ′−2

× |u − u′|2H ′−2|v − v′|2H ′−2 du′ dv′ dudv
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converges to (a(H)2H(2H − 1))−1. Thus, each of the first two terms in (3.31)
converge to C(H) times that same constant as M,N go to infinity. By the change
of variables which has already been used several times, ū = (u − i

N
)N , the last

term in (3.31) is equal to

C(H)(MN)H
1

N2M2 (NM)2H ′−2

×
N∑

i=1

M∑
j=1

∫
[0,1]4

dudv du′ dv′

× |u − v|2H ′−2|u′ − v′|2H ′−2

×
∣∣∣∣ u

N
− u′

M
+ i

N
− j

M

∣∣∣∣
2H ′−2

×
∣∣∣∣ v

N
− v′

M
+ i

N
− j

M

∣∣∣∣
2H ′−2

= C(H)

MN

N∑
i=1

M∑
j=1

∫
[0,1]4

dudv du′ dv′

× |u − v|2H ′−2|u′ − v′|2H ′−2

×
∣∣∣∣ u

N
− u′

M
+ i

N
− j

M

∣∣∣∣
2H ′−2

×
∣∣∣∣ v

N
− v′

M
+ i

N
− j

M

∣∣∣∣
2H ′−2

.

For large i, j , the term u
N

− u′
M

in front of i
N

− j
M

is negligible and can be ignored.
Therefore, the last term in (3.31) is equivalent to a Riemann sum than tends, as
M,N → ∞, to the constant (

∫ 1
0

∫ 1
0 |u−v|2H ′−2 dudv)2 ∫ 1

0
∫ 1

0 |x−y|2(2H ′−2). This
is precisely equal to 2(a(H)2H(2H −1))−1, that is, the limit of the sum of the first
two terms in (3.31). Since the last term has a leading negative sign, the announced
Cauchy convergence is established, completing the proof of the theorem. �

REMARK 1. One can show that the 2-variations VN(2, a) converge to zero al-
most surely as N goes to infinity. Indeed, the results in this section already show
that VN(2, a) converges to 0 in L2(�), and thus in probability, as N → ∞; the
almost sure convergence is obtained by using an argument in [4] (proof of Propo-
sition 1) based on Theorem 6.2 in [6] which gives the equivalence between the
almost sure convergence and the mean-square convergence for empirical means of
discrete stationary processes. This almost-sure convergence can also be proven by
hand in the following standard way. Since VN(2, a) is in the fourth Wiener chaos, it
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is known that its 2pth moment is bounded above by cp(E[(VN(2, a))2])p/2, where
cp depends only on p. By choosing p large enough, via Chebyshev’s inequality,
the Borel–Cantelli lemma yields the desired conclusion.

3.4. Normality of the adjusted variations. According to Theorem 3.2, which
we just proved, in the Rosenblatt case, the standardization of the random vari-
able VN(2, a) does not converge to the normal law. But, this statistic, which can
be written as VN = T4 + T2, has a small normal part, which is given by the as-
ymptotics of the term T4, as we can see from Theorem 3.1. Therefore, VN − T2
will converge (under suitable scaling) to the Gaussian distribution. Of course, the
term T2, which is an iterated stochastic integral, is not practical because it cannot
be observed. But, replacing it with its limit Z(1) (this is observed), one can define
an adjusted version of the statistic VN that converges, after standardization, to the
standard normal law.

The proof of this fact is somewhat delicate. If we are to subtract a multiple of
Z(1) from VN in order to recuperate T4 and hope for a normal convergence, the
first calculation would have to be as follows:

VN(2, a) −
√

c3,H

N1−H
Z(1) = VN(2, a) − T2 + T2 −

√
c3,H

N1−H
Z(1)

= T4 +
√

c3,H

N1−H

[
N1−H

√
c3,H

T2 − Z(1)

]
(3.32)

:= T4 + U2.

The term T4, when normalized as
√

N√
e1,H

T4, converges to the standard normal law,

by Theorem 3.1. To get a normal convergence for the entire expression in (3.32),

one may hope that the additional term U2 :=
√

c3,H

N1−H [N1−H√
c3,H

T2 − Z(1)] goes to 0

“fast enough.” It is certainly true that U2 does go to 0, as we just saw in Theo-
rem 3.2. However, the proof of that theorem did not investigate the speed of this
convergence of U2. For this convergence to be “fast enough,” one must multiply
the expression by the rate

√
N which is needed to ensure the normal convergence

of T4: we would need U2 � N−1/2. Unfortunately, this is not true. A more de-
tailed calculation will show that U2 is precisely of order

√
N . This means that we

should investigate whether
√

NU2 itself converges in distribution to a normal law.
Unexpectedly, this turns out to be true if (and only if) H < 2/3.

PROPOSITION 2. With U2 as defined in (3.32) and H < 2/3, we have that√
NU2 converges in distribution to a centered normal with variance equal to

f1,H := 32d(H)4a(H)2
∞∑

k=1

k2H−2F

(
1

k

)
,(3.33)
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where the function F is defined by

F(x) =
∫
[0,1]4

dudv du′ dv′|(u − u′)x + 1|2H ′−2

× [
a(H)2(|u − v||u′ − v′||(v − v′)x + 1|)2H ′−2

(3.34)
− 2a(H)

(|u − v||(v − u′)x + 1|)2H ′−2

+ |(u − u′)x + 1|2H ′−2]
.

Before proving this proposition, let us take note of its consequence.

THEOREM 3.3. Let (Z(t), t ∈ [0,1]) be a Rosenblatt process with self-
similarity parameter H ∈ (1/2,2/3) and let previous notation for constants pre-
vail. Then, the following convergence occurs in distribution:

lim
N→∞

√
N√

e1,H + f1,H

[
VN(2, a) −

√
c3,H

N1−H
Z(1)

]
= N (0,1).

PROOF. By the considerations preceding the statement of Proposition 2, and
(3.32) in particular, we have that

√
N

[
VN(2, a) −

√
c3,H

N1−H
Z(1)

]
= √

NT4 + √
NU2.

Theorem 3.1 proves that
√

NT4 converges in distribution to a centered normal with
variance e1,H . Proposition 2 proves that

√
NU2 converges in distribution to a cen-

tered normal with variance f1,H . Since these two sequences of random variables
live in two distinct chaoses (fourth and second respectively), Theorem 1 in [24]
implies that the sum of these two sequences converges in distribution to a centered
normal with variance e1,H + f1,H . The theorem is proved. �

To prove Proposition 2, we must first perform the calculation which yields the
constant f1,H therein. This result is postponed to the Appendix, as Lemma 6; it
shows that E[(√NU2)

2] converges to f1,H . Another (very) technical result needed
for the proof of Proposition 2, which is used to guarantee that

√
NU2 has a normal

limiting distribution, is also included in the Appendix as Lemma 7. An explanation
of why the conclusions of Proposition 2 and Theorem 3.3 cannot hold when H ≥
2/3 is also given in the Appendix, after the proof of Lemma 7. We now prove the
proposition.

PROOF OF PROPOSITION 2. Since U2 is a member of the second chaos, we
introduce notation for its kernel. We write√

N√
f1,H

U2 = I2(gN),
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where gN is the following symmetric function in L2([0,1]2):

gN(y1, y2) := NH−1/2√
f1,H

(
N1−H

4d(H)
fN(y1, y2) − L1(y1, y2)

)
.

Lemma 6 proves that E[(I2(gN))2] = ‖gN‖2
L2([0,1]2)

converges to 1 as N → ∞.
By the result in [23] for second-chaos sequences (see Theorem 1, point (ii) in [23],
which is included as part (iii) of Theorem 2.1 herein), we have that I2(gN) will
converge to a standard normal if (and only if)

lim
N→∞‖gN ⊗1 gN‖2

L2([0,1]2)
= 0,

which would complete the proof of the proposition. This fact does hold if H <

2/3. We have included this technical and delicate calculation as Lemma 7 in the
Appendix. Following the proof of this lemma is a discussion of why the above
limit cannot be 0 when H ≥ 2/3. �

4. The estimators for the self-similarity parameter. In this section, we con-
struct estimators for the self-similarity exponent of a Hermite process based on the
discrete observations of the driving process at times 0, 1

N
, . . . ,1. It is known that

the asymptotic behavior of the statistics VN(2, a) is related to the asymptotic prop-
erties of a class of estimators for the Hurst parameter H . This is mentioned in, for
instance, [4].

We recall the setup for how this works. Suppose that the observed process X

is a Hermite process; it may be Gaussian (fractional Brownian motion) or non-
Gaussian (Rosenblatt process, or even a higher order Hermite process). With a =
{−1,+1}, the 2-variation is denoted by

SN(2, a) = 1

N

N∑
i=1

(
X

(
i

N

)
− X

(
i − 1

N

))2

.(4.1)

Recall that E[SN(2, a)] = N−2H . By estimating E[SN(2, a)] by SN(2, a), we can
construct the estimator

ĤN(2, a) = − logSN(2, a)

2 logN
,(4.2)

which coincides with the definition in (1.4) given at the beginning of this paper. To
prove that this is a strongly consistent estimator for H , we begin by writing

1 + VN(2, a) = SN(2, a)N2H ,

where VN is the original quantity defined in (1.3), and thus

log
(
1 + VN(2, a)

) = logSN(2, a) + 2H logN = −2
(
ĤN(2, a) − H

)
logN.
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Moreover, by Remark 1, VN(2, a) converges almost surely to 0 and thus log(1 +
VN(2, a)) = VN(2, a)(1+o(1)), where o(1) converges to 0 almost surely as N →
∞. Hence, we obtain

VN(2, a) = 2
(
H − ĤN(2, a)

)
(logN)

(
1 + o(1)

)
.(4.3)

Relation (4.3) means that the VN ’s behavior immediately gives the behavior of
ĤN − H .

Specifically, we can now state our convergence results. In the Rosenblatt data
case, the renormalized error ĤN − H does not converge to the normal law. But,
from Theorem 3.3, we can obtain an adjusted version of this error that converges
to the normal distribution.

THEOREM 4.1. Suppose that H > 1
2 and that the observed process Z is a

Rosenblatt process with self-similarity parameter H . Then, strong consistency
holds for ĤN , that is, almost surely,

lim
N→∞ ĤN(2, a) = H.(4.4)

In addition, we have the following convergence in L2(�):

lim
N→∞

N1−H

2d(H)
log(N)

(
ĤN(2, a) − H

) = Z(1),(4.5)

where Z(1) is the observed process at time 1.
Moreover, if H < 2/3, then, in distribution as N → ∞, with c3,H , e1,H and

f1,H in (3.12), (3.21) and (3.33),
√

N√
e1,H + f1,H

[
−2 log(N)

(
ĤN(2, a) − H

) −
√

c3,H

N1−H
Z(1)

]
→ N (0,1).

PROOF. This follows from Theorems 3.3 and 3.2 and relation (4.3). �

APPENDIX

LEMMA 3. The series
∑∞

k=1(2k2H − (k − 1)2H − (k + 1)2H )2 is finite if and
only if H ∈ (1/2,3/4).

PROOF. Since 2k2H − (k − 1)2H − (k + 1)2H = k2H f (1
k
), with f (x) := 2 −

(1 − x)2H − (1 + x)2H being asymptotically equivalent to 2H(2H − 1)x2 for
small x, the general term of the series is equivalent to (2H)2(2H − 1)2k4H−4. �

LEMMA 4. When H ∈ (3/4,1), N2 ∑
i,j=1,...,N;|i−j |≥2(2| i−j

N
|2H −

| i−j−1
N

|2H − | i−j+1
N

|2H )2 converges to H 2(2H − 1)/(H − 3/4) as N → ∞.
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PROOF. This is left to the reader. The proof can be found in the extended
version of this paper, available at http://arxiv.org/abs/0709.3896v2. �

LEMMA 5. For all H > 1/2, with Ii = ( i−1
N

, i
N

], i = 1, . . . ,N ,

lim
N→∞N2H

N∑
i,j=1

∫
Ii

∫
Ii

∫
Ij

∫
Ij

|u − v|2H ′−2

× |u′ − v′|2H ′−2|u − u′|2H ′−2

(A.1)
× |v − v′|2H ′−2 du′ dv′ dv du

= 2a(H)−2
(

1

2H − 1
− 1

2H

)
.

PROOF. We again refer to the extended version of the paper, online at http://
arxiv.org/abs/0709.3896v2, for this proof. �

LEMMA 6. With f1,H given in (3.33) and U2 in (3.32), we have

lim
N→∞ E

[(√
NU2

)2] = f1,H .

PROOF. We have seen that
√

c3,H = 4d(H). We have also defined

√
NU2 = NH−1/2√c3,H

[
N1−H

√
c3,H

T2 − Z(1)

]
.

Let us simply compute the L2-norm of the term in brackets. Since this expression
is a member of the second chaos and, more specifically, since T2 = I2(fN) and
Z(1) = I2(L1), where fN [given in (3.30)] and L1 [given in (3.3)] are symmetric
functions in L2([0,1]2), it holds that

E
[(

N1−H

√
c3,H

T2 − Z(1)

)2]

=
∥∥∥∥ N1−H

4d(H)
fN − L1

∥∥∥∥
2

L2([0,1]2)

= N2−2H

4d(H)2 ‖fN‖L2([0,1]2)

− 2
N1−H

4d(H)
〈fN,L1〉L2([0,1]2) + ‖L1‖2

L2([0,1]2)
.

http://arxiv.org/abs/0709.3896v2
http://arxiv.org/abs/0709.3896v2
http://arxiv.org/abs/0709.3896v2
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The first term has already been computed. It gives

N2−2H

4d(H)2 ‖fN‖L2([0,1]2)

= N−2Ha4(H)d2(H)

×
N∑

i,j=1

∫
[0,1]4

dudv du′ dv′

× (|u − v||u′ − v′||u − u′ + i − j ||v − v′ + i − j |)2H ′−2.

By using the expression for the kernel L1 and Fubini’s theorem, the scalar product
of fN and L1 gives

N1−H

4d(H)
〈fN,L1〉L2([0,1]2)

=
∫ 1

0

∫ 1

0
dy1 dy2

N1−H

4d(H)
fN(y1, y2)L1(y1, y2)

= NHa(H)3d(H)2
N∑

i=1

∫
Ii

∫
Ii

dudv

∫ 1

0
du′(|u − v||u − u′||v − u′|)2H ′−2

= NHa(H)3d(H)2
N∑

i,j=1

∫
Ii

∫
Ii

dudv

∫
Ij

du′(|u − v||u − u′||v − u′|)2H ′−2

= N−2Ha(H)3d(H)2

×
N∑

i,j=1

∫
[0,1]3

(|u − v||u − u′ + i − j ||v − u′ + i − j |)2H ′−2 dudv du′.

Finally, the last term ‖L1‖2
L2([0,1]2)

can be written in the following way:

‖L1‖2
L2([0,1]2)

= d(H)2a(H)2
∫
[0,1]2

|u − u′|2(2H ′−2) dudu′

= d(H)2a(H)2
N∑

i,j=1

∫
Ii

∫
Ij

|u − u′|2(2H ′−2) dudu′

= d(H)2a(H)2N−2H
N∑

i,j=1

∫
[0,1]2

|u − u′ + i − j |2(2H ′−2) dudu′.
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One can check that, when bringing these three contributions together, the “di-
agonal” terms corresponding to i = j vanish. Thus, we get

E
[(√

NU2
)2] = 32d(H)4a(H)2 1

N

N−1∑
k=1

(N − k − 1)k2H−2F

(
1

k

)
,

where F is the function we introduced in (3.34).
This function F is of class C1 on the interval [0,1]. It can be seen that

F(0) =
∫
[0,1]4

dudv du′ dv′

× (
a(H)2(|u − v||u′ − v′|)2H ′−2 − 2a(H)|u − v| + 1

)
= a(H)2

(∫
[0,1]2

|u − v|2H ′−2
)2

− 2a(H)

∫
[0,1]2

|u − v|2H ′−2 dudv + 1

= 0.

Similarly, one can also calculate the derivative F ′ and check that F ′(0) = 0. There-
fore, F(x) = o(x) as x → 0. To investigate the sequence aN := N−1 ∑N−1

k=1 (N −
k − 1)k2H−2F(1

k
), we split it into two pieces:

aN = N−1
N−1∑
k=1

(N − k − 1)k2H−2F

(
1

k

)

=
N−1∑
k=1

k2H−2F

(
1

k

)
+ N−1

N−1∑
k=1

(k + 1)k2H−2F

(
1

k

)

=: bN + cN .

Since bN is the partial sum of a sequence of positive terms, one only needs to
check that the series is finite. The relation F(1/k) � 1/k yields that it is finite
if and only if 2H − 3 < −1, which is true. For the term cN , one notes that we
may replace the factor k + 1 by k since, by the calculation undertaken for bN ,
N−1 ∑N−1

k=1 k2H−2F(1
k
) converges to 0. Hence, asymptotically, we have

cN � N−1
N−1∑
k=1

k2H−3F

(
1

k

)
≤ N−1‖F‖∞

∞∑
k=1

k2H−3,

which thus converges to 0. We have proven that limaN = limbN = ∑∞
k=1 k2H−2 ×

F(1
k
), which completes the proof of the lemma. �

LEMMA 7. Defining

gN(y1, y2) := NH−1/2√
f1,H

(
N1−H

4d(H)
fN(y1, y2) − L1(y1, y2)

)
,
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we have limN→∞ ‖gN ⊗1 gN‖2
L2([0,1]2)

= 0 provided H < 2/3.

PROOF. We omit the leading constant f
−1/2
1,H , which is irrelevant. Using the

expression (3.30) for fN , we have

gN(y1, y2) = N2H−1/2d(H)a(H)

×
N∑

i=1

∫
Ii

∫
Ii

∂1K
H ′

(u, y1) ∂1K
H ′

(v, y2)|u − v|2H ′−2 dv du

− L1(y1, y2).

Here, and below, we will be omitting indicator functions of the type 1[0,(i+1)/N](y1)

because, as stated earlier, these are implicitly contained in the support of ∂1K
H ′

.
By decomposing the expression for L1 from (3.3) over the same blocks Ii × Ii as
for fN , we can now express the contraction gN ⊗1 gN as follows:

(gN ⊗1 gN)(y1, y2) = N2H−1(AN − 2BN + CN),

where we have introduced three new quantities,

AN := N2Hd(H)2a(H)3

×
N∑

i,j=1

∫
Ii

∫
Ii

dv du

∫
Ij

∫
Ij

dv′ du′

× [|u − v| · |u′ − v′| · |v − v′|]2H ′−2

× ∂1K
H ′

(u, y1)∂1K
H ′

(u′, y2),

BN := NHa(H)2d(H)2
N∑

i=1

∫
Ii

∫
Ii

dv du

∫ 1

0
du′[|u − v| · |u′ − v|]2H ′−2

× ∂1K
H ′

(u, y1) ∂1K
H ′

(u′, y2)

= NHa(H)2d(H)2
N∑

i,j=1

∫
Ii

∫
Ii

dv du

∫
Ij

du′[|u − v| · |u′ − v|]2H ′−2

× ∂1K
H ′

(u, y1) ∂1K
H ′

(u′, y2)

and

CN = d(H)2a(H)

∫ 1

0

∫ 1

0
dv du∂1K

H ′
(u, y1) ∂1K

H ′
(v, y2)|u − v|2H ′−2

= d(H)2a(H)

N∑
i,j=1

∫
Ii

∫
Ij

dv du∂1K
H ′

(u, y1) ∂1K
H ′

(v, y2)|u − v|2H ′−2.
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The squared norm of the contraction can then be written as

‖gN ⊗1 gN‖2
L2([0,1]2)

= N4H−2(‖AN‖2
L2([0,1]2)

+ 4‖BN‖2
L2([0,1]2)

+ ‖CN‖2
L2([0,1]2)

− 4〈AN,BN 〉L2([0,1]2)

+ 2〈AN,CN 〉L2([0,1]2) − 4〈BN,CN 〉L2([0,1]2)

)
.

Using the definitions of AN , BN and CN , we may express all six terms above
explicitly. All of the computations are based on the key relation (3.7).

We obtain

‖AN‖2
L2([0,1]2)

= N4Ha(H)6d(H)4a(H)2

×
N∑

i,j,k,l=1

∫
Ii

∫
Ii

dv du

∫
Ij

∫
Ij

dv′ du′

×
∫
Ik

∫
Ik

dū dv̄

∫
Il

∫
Il

dū′ dv̄′

× [|u − v| · |u′ − v′| · |v − v′| · |ū − v̄| · |ū′ − v̄′|
× |v̄ − v̄′| · |u − ū| · |u′ − ū′|]2H ′−2

= N4Ha(H)8d(H)4 1

N8

1

N8(2H ′−2)

×
N∑

i,j,k,l=1

∫
[0,1]8

dudv du′ dv′ dū dv̄ dū′ dv̄′

× ∣∣|u − v| · |u′ − v′||ū − v̄||ū′ − v̄′|∣∣2H ′−2

× [|v − v′ + i − j | · |v̄ − v̄′ + k − l|
× |u − ū + i − k| · |u′ − ū′ + j − l|]2H ′−2,

‖BN‖2
L2([0,1]2)

= N2Ha(H)6d(H)4

×
N∑

i,j,k,l=1

∫
Ii

∫
Ii

dv du

∫
Ij

du′
∫
Ik

∫
Ik

dū dv̄

∫
Il

dū′

× [|u − v| · |u′ − v||ū − v̄| · |ū′ − v̄| · |u − ū| · |u′ − ū′|]2H ′−2
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= N2Ha(H)6d(H)4

×
N∑

i,j,k,l=1

∫
[0,1]6

dudv du′ dū dv̄ dū′

× [|u − v| · |u′ − v + i − j ||ū − v̄| · |ū′ − v̄ + k − l|
× |u − ū + i − k| · |u′ − ū′ + j − l|]2H ′−2

and

‖CN‖2
L2([0,1]2)

= N2Ha(H)4d(H)4
N∑

i,j,k,l=1

∫
Ii

∫
Ij

dv du

∫
Ik

∫
Il

dv′ du′

× [|u − v| · |u′ − v′| · |u − u′| · |v − v′|]2H ′−2

= N2Ha(H)4d(H)4 1

N4

1

N4(2H ′−2)

×
N∑

i,j,k,l=1

∫
[0,1]4

dudv du′ dv′

× [|u − v + i − j | · |u′ − v′ + k − l|
× |u − u′ + i − k| · |v − v′ + j − l|]2H ′−2.

The inner product terms can be also treated in the same manner. First,

〈AN,BN 〉L2([0,1]2)

= N3Ha(H)7d(H)4

×
N∑

i,j,k,l=1

∫
Ii

∫
Ii

dudv

∫
Ij

∫
Ij

du′ dv′
∫
Ik

∫
Ik

dū dv̄

∫
Il

dū′

× [|u − v| · |u′ − v′| · |v − v′| · |ū − v̄| · |ū′ − v̄| · |u − ū| · |u′ − ū′|]2H ′−2

= N3Ha(H)7d(H)4 1

N7

1

N7(2H ′−2)

×
N∑

i,j,k,l=1

∫
[0,1]7

dudv du′ dv′ dū dv̄ dū′

× [|u − v| · |u′ − v′| · |v − v′ + i − j | · |ū − v̄|
× |ū′ − v̄ + k − l| · |u − ū + i − k| · |u′ − ū′ + j − l|]2H ′−2
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and

〈AN,CN 〉L2([0,1]2)

= N2Ha(H)6d(H)4

×
N∑

i,j,k,l=1

∫
Ii

∫
Ii

dudv

∫
Ij

∫
Ij

du′ dv′
∫
Ik

dū

∫
Il

dv̄

× [|u − v| · |u′ − v′| · |v − v′| · |ū − v̄| · |u − ū| · |u′ − v̄]2H ′−2

= N2Ha(H)6d(H)4 1

N6

1

N6(2H ′−2)

×
N∑

i,j,k,l=1

∫
[0,1]6

dudv du′ dv′ dū dv̄

× [|u − v| · |u′ − v′| · |v − v′ + i − j |
× |u − ū + i − k| · |ū − v̄ + k − l| · u′ − v̄]2H ′−2.

Finally,

〈BN,CN 〉L2([0,1]2)

= NHa(H)3d(H)4

×
N∑

i,j,k,l=1

∫
Ii

∫
Ii

dudv

∫
Ij

du′
∫
Ik

dū

∫
Il

dv̄

× [|u − v| · |u′ − v| · |ū − v̄| · |u − ū| · |u′ − v̄|]2H ′−2

= NHa(H)3d(H)4 1

N5

1

N5(2H ′−2)

×
N∑

i,j,k,l=1

∫
[0,1]5

dudv du′ dū dv̄

× [|u − v| · |u′ − v + i − j | · |ū − v̄ + k − l|
× |u − ū + i − k| · |u′ − v̄ + j − l|]2H ′−2.

We now summarize our computations. Note that the factors d(H)4 and
1

N4
1

N4(2H ′−2)
are common to all terms. We also note that any terms correspond-

ing to difference of indices smaller than 3 can be shown to tend collectively to 0,
similarly for other “diagonal” terms in this study. The proof is omitted. We thus
assume that the sums over the set D of indices i, j, k, l in {1, . . . ,N} such that
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|i − j |, |k − l|, |i − k| and |j − l| are all at least 2. Hence, we get

‖gN ⊗1 gN‖2
L2([0,1]2)

= d(H)4N4H−2 1

N4
(A.2)

× ∑
(i,j,k,l)∈D

( |i − j | · |k − l| · |i − k| · |j − l|
N4

)2H ′−2

× G

(
1

i − j
,

1

k − l
,

1

i − k
,

1

j − l

)
,

where the function G is defined for (x, y, z,w) ∈ [1/2,1/2]4 by

G(x,y, z,w)

= a(H)8
∫
[0,1]8

dudv du′ dv′ dū dv̄ dū′ dv̄′

× [|u − v| · |u′ − v′| · |ū − v̄| · |ū′ − v̄′|]2H ′−2

× [|(v − v′)x + 1| · |(v̄ − v̄′)y + 1|
× |(u − ū)z + 1| · |(u′ − ū′)w + 1|]2H ′−2

+ 4a(H)6
∫
[0,1]6

dudv du′ dū dv̄ dū′

× [|u − v| · |ū − v̄| · |(u′ − v)x + 1| · |(ū′ − v̄)y + 1|
× |(u − u′)z + 1| · |(u′ − ū′)w + 1|]2H ′−2

+ a(H)4
∫
[0,1]4

dudv du′dv dv′

× [|(u − v)x + 1| · |(u′ − v′)y + 1|
× |(u − u′)z + 1| · |(v − v′)w + 1|]2H ′−2

− 4a(H)7
∫
[0,1]7

dudv du′ dv′ dū dv̄ dū′

× [|u − v| · |u′ − v′| · |ū − v̄| · |(v − v′)x + 1|
× |(ū′ − v̄)y + 1| · |(u − u′)z + 1| · |(u′ − ū′)w + 1|]2H ′−2

+ 2a(H)6
∫
[0,1]6

dudv du′ dv′ dū dv̄

× [|u − v| · |u′ − v′| · |(v − v′)x + 1| · |(ū − v̄)y + 1|
× |(u − u′)z + 1| · |(u′ − v̄)w + 1|]2H ′−2
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− 4a(H)5
∫
[0,1]5

dudv du′ dū dv̄

× [|u − v| · |(v − u′)x + 1| · |(ū − v̄)y + 1|
× |(u − ū)z + 1| · |(u′ − v̄)w + 1|]2H ′−2.

It is elementary to check that G and all its partial derivatives are bounded on
[−1/2,1/2]4. More specifically, by using the identity

a(H)−1 =
∫ 1

0

∫ 1

0
|u − v|2H ′−2 dudv,

we obtain

G(0,0,0,0) = a(H)4 + 4a(H)4 + a(H)4 − 4a(H)4 + 2a(H)4 − 4a(H)4

= 0.

The boundedness of G’s partial derivatives implies, by the mean value theorem,
that there exists a constant K such that, for all (i, j, k, l) ∈ D,∣∣∣∣G

(
1

i − j
,

1

k − l
,

1

i − k
,

1

j − l

)∣∣∣∣
≤ K

|i − j | + K

|k − l| + K

|i − k| + K

|j − l| .

Hence, from (A.2), because of the symmetry of the sum with respect to the indices,
it is sufficient to show that the following converges to 0:

S := N4H−2 1

N4

∑
(i,j,k,l)∈D

( |i − j | · |k − l| · |i − k| · |j − l|
N4

)H−1 1

|i − j | .(A.3)

We will express this quantity by singling out the term i ′ := i − j and summing
over it last:

S = 2N4H−1
N−1∑
i′=3

1

N3

∑
(i′+j,j,k,l)∈D

1≤j≤N−i′

( |k − l| · |i′ + j − k| · |j − l|
N3

)H−1(
i ′

N

)H−1 1

i ′

= 2N3H−2
N−1∑
i′=3

(i ′)H−2 1

N3

∑
(i′+j,j,k,l)∈D

1≤j≤N−i′

( |k − l| · |i′ + j − k| · |j − l|
N3

)H−1

.

For fixed i ′, we can compare the sum over j, k, l to a Riemann integral since the
power H − 1 > −1. This cannot be done, however, for (i′)H−2; rather, one must
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use the fact that this is the term of a summable series. We get that, asymptotically
for large N ,

S � 2N3H−2
N−1∑
i′=3

(i ′)H−2g(i ′/N),

where the function g is defined on [0,1] by

g(x) :=
∫ 1−x

0

∫ 1

0

∫ 1

0
dy dzdw |(z − w)(x + y − z)(y − w)|H−1.(A.4)

It is easy to check that g is a bounded function on [0,1]; thus, we have proven that
for some constant K > 0,

S ≤ KN3H−2
∞∑

i′=3

(i ′)H−2,

which converges to 0 provided H < 2/3. This completes the proof of the lemma.
�

We conclude this appendix with a discussion of why the threshold H < 2/3
cannot be improved upon, and the consequences of this. We can perform a finer
analysis of the function G in the proof above. The first and second derivatives of
G at 0̄ = (0,0,0,0) can be calculated by hand. The calculation is identical for
∂G/∂x(0̄) and all other first derivatives, yielding [via the expression used above
for a(H)],

1

H − 1

∂G

∂x
(0̄)

= a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)[|u − v| · |u′ − v′|]H−1

+ 4a(H)5
∫
[0,1]3

dudv du′(v − u′)|u − v|H−1

+ a(H)4
∫
[0,1]2

dudv(u − v)

− 4a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)[|u − v| · |u′ − v′|]H−1

+ 2a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)[|u − v| · |u′ − v′|]H−1

− 4a(H)5
∫
[0,1]3

dudv du′(v − u′)|u − v|H−1.

We note that the two lines with 4a(H)5 cancel each other out. For each of the
other four lines, we see that the factor (v − v′) is an odd term and the other factor
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is symmetric with respect to v and v′. Therefore, each of the other four factors
is zero individually. This proves that the gradient of G at 0 is null. Let us find
expressions for the second derivatives. Similarly to the above calculation, we can
write

1

(1 − H)(2 − H)

∂2G

∂x2 (0̄)

= a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)2[|u − v| · |u′ − v′|]H−1

+ 4a(H)5
∫
[0,1]3

dudv du′(v − u′)2|u − v|H−1

+ a(H)4
∫
[0,1]2

dudv(u − v)2

− 4a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)2[|u − v| · |u′ − v′|]H−1

+ 2a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)2[|u − v| · |u′ − v′|]H−1

− 4a(H)5
∫
[0,1]3

dudv du′(v − u′)2|u − v|H−1.

Again, the terms with a(H)5 cancel each other out. The three terms with a(H)6

add to a nonzero value and we thus get

1

(1 − H)(2 − H)

∂2G

∂x2 (0̄)

= −a(H)6
∫
[0,1]4

dudv du′ dv′(v − v′)2[|u − v| · |u′ − v′|]H−1

+ a(H)4
∫
[0,1]4

dudv(u − v)2.

While the evaluation of this integral is nontrivial, we can show that for all H >

1/2, it is a strictly positive constant γ (H). Similar computations can be attempted
for the mixed derivatives, which are all equal to some common value η(H) at 0̄
because of G’s symmetry, and we will see that the sign of η(H) is irrelevant. We
can now write, using Taylor’s formula,

G(x,y, z,w) = γ (H)(x2 + y2 + z2 + w2)

+ η(H)(xy + xz + xw + yz + yw + zw)

+ o(x2 + y2 + z2 + w2).

By taking x2 + y2 + z2 + w2 sufficiently small [this corresponds to restricting
|i − j | and other differences to being larger than some value m = m(H), whose



2132 C. A. TUDOR AND F. G. VIENS

corresponding “diagonal” terms not satisfying this restriction are dealt with as
usual], we get, for some constant θ(H) > 0,

G(x,y, z,w) ≥ θ(H)(x2 +y2 +z2 +w2)+η(H)(xy +xz+xw+yz+yw+zw).

Let us first look at the terms in (A.2) corresponding to x2 + y2 + z2 + w2.
These are collectively bounded below by the same sum restricted to i = j + m,
which equals

d(H)4N4H−2 1

N4

∑
(j+m,j,k,l)∈D

( |i − j | · |k − l| · |i − k| · |j − l|
N4

)2H ′−2 θ(H)

(i − j)2 .

The fact that the final factor contains (i − j)−2 instead of (i − j)−1, which we had,
for instance, in (A.3) in the proof of the lemma, does not help us. In particular,
calculations identical to those following (A.3) show that the above is larger than

2N3H−2g(m/N),

which does not go to 0 if H ≥ 2/3 since g(0) calculated from (A.4) is positive.
For the terms in (A.2) corresponding to xy + xz + xw + yz + yw + zw, con-

sidering, for instance, the term xy, similar computations to those above lead to the
corresponding term in S being equal to

2N2H−2
N−1∑
i′=m

N−1∑
k′=m

(i ′k′)H−2 1

N2

∑
(i′+j,j,k′+l,l)∈D

1≤j≤N−i′;1≤l≤N−k′

( |i′ + j − k′ − l| · |j − l|
N3

)H−1

� 2N2H−2
N−1∑
i′=m

N−1∑
k′=m

(i ′k′)H−2
∫ 1−i′/N

0

∫ 1−k′/N

0
dy dw

×
∣∣∣∣(z − w)

(
i ′

N
+ y − k′

N
− w

)
(y − w)

∣∣∣∣
H−1

,

which evidently tends to 0 provided H < 1.
We conclude that if H ≥ 2/3, then ‖gN ⊗1 gN‖2

L2([0,1]2)
does not tend to 0 and,

by the Nualart–Ortiz-Latorre criterion [Theorem 2.1 part (iii)], U2, as defined in
(3.32), does not converge in distribution to a normal. Hence, we can guarantee that,
provided H ≥ 2/3, the adjusted variation in Theorem 3.3 does not converge to a
normal. Thus, the normality of our adjusted estimator in Theorem 4.1 holds if and
only if H ∈ (1/2,2/3).
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