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Abstract: More than 60% of the world’s ecosystem services have deteriorated over the past few
decades. Studying the spatio-temporal fluctuations in ecosystem service value and its influencing
factors is important for identifying regional ecosystem service value issues, upholding regional
ecological harmony, and encouraging regionally healthy and coordinated sustainable development.
Ecosystem service value has so far been studied primarily in relation to the effect of socioeconomic
and physical–geographical variables. However, the trade-offs and synergies among ecosystem
service values also drive the spatio-temporal variations in ecosystem service value. Few studies
have been conducted to date to investigate the trade-offs and synergies between ecosystem service
values and their impact on ecosystem service value. Therefore, this paper used sensitivity analysis,
correlation analysis, trade-offs and synergies analysis, and a Geodetector to examine changes in
ecosystem service value and their influencing factors within the Nanjing metropolitan region. The
ecosystem service value decreased somewhat overall between 2000 and 2020, with a decline rate
of 2.19 million CNY/year. In comparison to the north of the Nanjing metropolitan region, the
ecosystem service value was relatively higher in the south. The water bodies had the highest total
ecosystem service value, followed by forest land, cultivated land, and grassland, with construction
land and unused land having the lowest ecosystem service values overall. The main socioeconomic
factor influencing the spatial variations in ecosystem service value was population density, while
the main physical–geographical factors were the digital elevation model, the normalized difference
vegetation index, and precipitation. As a result, the Nanjing metropolitan area should tighten its
grip on excessive population growth. In contrast to the expository strength of a single factor on
the ecosystem service value, the influence of all individual elements on the ecosystem service value
under interaction was significantly increased, and the interaction among the normalized difference
vegetation index and gross economic product had the most obvious effect on the ecosystem service
value. The spatial variation in the ecosystem service value was also influenced by trade-offs and
synergies between the value of supply services, regulation services, support services, and cultural
services. Therefore, trade-offs and synergies among ecosystem services also need to be considered in
land-use decisions.

Keywords: ecosystem service value; influencing factors; trade-offs and synergies; spatial and
temporal variations; Geodetector method

1. Introduction

Global climate change and anthropological disturbances are affecting the stability
and biodiversity of ecosystems, which in turn leads to the degradation of ecosystem ser-
vices. The Millennium Ecosystem Assessment (MEA) found that in the last 50 years,
approximately 60% of the world’s ecosystem services have become worse [1]. Among
the 18 categories of ecosystem services assessed by the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES), 14 categories of ecosystem ser-
vices have declined since 1970 [2]. According to the New Nature Economy (NNE) report,
published by the World Economic Forum (WEF) in partnership with the consultancy firm
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Price Waterhouse Coopers (PwC), an analysis of 163 industry sectors and their supply
chains found that more than half of the global GDP is moderately or highly dependent
on natural ecosystems and their services [3]. Therefore, the degradation or loss of ecosys-
tem services is a development issue that directly threatens the health of human society,
sustainable development, and global ecological security. Ecosystem service value (ESV)
is a monetary evaluation of the various products and services ecosystems provide for
human welfare and long-term economic and social development, including the values
of supply services, regulation services, support services, and cultural services provided
by ecosystems. It is critical to investigate the changes in ecosystem service value (ESV)
and its influencing factors in order to correctly clarify regional ecosystem service issues,
uphold regional ecological harmony, and encourage regionally healthy and coordinated
sustainable development [4].

Numerous studies have shown that the ESV is influenced by both physical–geographical
factors and socioeconomic factors, and the influencing factors vary within different regions.
According to some studies, land use change is responsible for the global ESV loss state [5].
The primary cause of the reduction of terrestrial ESV, notably throughout Asia, Africa,
and South America, is the spread of cultivated land in tropical forests. Additionally, the
impact of urban growth contributes to the loss of ESV across Europe [6]. In China, the
reconstruction and industrialization of agricultural land in recent decades have also been
important reasons for the fluctuating downward trend in ESV. The ESV has a distinct spatial
pattern of being high in the west and south regions of China and low in the east and north
regions of China. The ESV in northeastern and northern China decreased significantly,
while in Fujian and western Xinjiang, the ESV increased significantly [7,8]. Numerous
studies have concluded that in ecologically fragile areas, ESV variations are more influ-
enced by physical–geographical factors than by socioeconomic factors [9], while in areas
with better hydrothermal conditions, ESV variations are more influenced by socioeconomic
factors [10–12].

Ecosystem services are not totally independent of each other at different spatial and
temporal scales, and there is a complex non-linear variation among them, where the growth
or decline of one ecosystem service impacts the growth or decline of another service, result-
ing in trade-offs and synergies between ecosystem services [13–15]. Earlier studies have
generally concentrated on straightforward trade-offs and synergistic interactions between
ecosystem services but have neglected to explore the drivers and mechanisms of these
relationships. Despite this, some research has indicated that trade-offs and synergies across
ecosystem services also drive spatial and temporal variability in ecosystem services [16].
The analysis of trade-offs and synergies is important for global ecological and environmen-
tal governance, as well as providing a theoretical framework for the wise exploitation of
natural resources, given the increasing rise of the global economy, population, and resource
scarcity. Therefore, clarifying the impact of trade-offs and synergies on ESV can help us to
eliminate the negative effects of trade-offs on ESV and achieve sustainable socio-ecological
system development goals. Currently, one of the most pressing issues confronting ecologists
is the variation in ESV and its response to trade-offs or synergistic relationships.

So far, the unit area value equivalent factor method developed by Costanza et al. [17]
has been widely employed to account for regional ESVs. A new version of the unit area
value equivalent factor approach and an equivalent factor table for the ESV of terrestrial
ecosystems in China were produced by Xie et al. [18] and are extensively utilized in
numerous studies in China [9,12]. However, because ESV is estimated using unit area value
coefficients, this method has a few disadvantages. Firstly, the determination of unit area
value coefficients is to some extent subjective [19,20]. Secondly, whether the unit area value
coefficients correspond to the current condition in the research area has a direct impact
on the ESV estimation accuracy [21]. As a result, the unit area value coefficients must be
updated to reflect the current condition in the research region [22,23].

Studies have shown that spatial variations in ESV are caused by the combination of
physical–geographical and socioeconomic factors, that is, any two elements have a bigger
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impact on the ESV than any one factor alone [9,12]. Currently, researchers focus on the
influencing factors and their interactions with ESV [24]. The relationship between ESV and
the influencing factors is not linear and shows significant spatial phenotypic variation [21].
The majority of earlier research on the spatial variations in ESV and their underlying
factors has relied on qualitative and correlation analysis methods, such as analysis of
spatial autocorrelation, logistic regression, and grey correlation [25]. However, the internal
coupling effect is not taken into consideration in the majority of research, which also
overlooks the spatial connection between the driving elements. The Geodetector method
can be used to identify the driving factors in ESV variation [26,27]. It can identify both the
influence of a single factor and the combined effect of several factors on the ESV [28].

In summary, the research on ESV has progressed from a conceptual definition and
methodological exploration to a dynamic assessment and spatio-temporal variations to in-
fluence factors and their driving mechanisms, which has achieved relatively fruitful results.
However, the spatial and temporal dynamics of ESVs need to be deepened, the interrela-
tionships between different ecological functions and their trade-offs and synergies are yet
to be clarified, and the driving causes of ESV spatial variation need to be discovered. As
the first metropolitan area to be officially approved by the Chinese National Development
and Reform Commission, the struggle between economic expansion and environmental
preservation in the Nanjing metropolitan region is gradually intensifying. Behind the rapid
economic and social advancement is a slew of ecological difficulties, including the degrada-
tion of water quality, the destruction of wetlands, the yearly decline of forest area, and the
growth of industrial land constantly occupying ecological territory [29]. Assessing the ESV
and its influencing factors in the Nanjing metropolitan region is, therefore, one of the urgent
issues faced by the government and ecologists. However, only a few researchers have
analyzed the spatial variations in ESV and its underlying forces in the Nanjing metropoli-
tan area. The spatio-temporal variations in the ESV and its driving factors in the Nanjing
metropolitan area from 2000 to 2020 were explored in this study. The results can be helpful
for the coordinated urban sustainability in the Nanjing metropolitan region as well as for
the cooperative conservation and management of the environmental ecology. The following
are the objectives of this paper: (1) to build a regional ESV estimation model and an index
system of driving factors; (2) to measure the spatio-temporal dynamics in ESVs, as well as
the links between each ecosystem service’s trade-offs and synergies; and (3) to explore the
driving forces of the ESV variation using Geodetectors.

2. Materials and Methods
2.1. Study Area

The Nanjing metropolitan area (29◦57′ N–34◦06′ N, 117◦09′ E–119◦59′ E) is located in
eastern China and is the core area of the urban zone along the middle and lower reaches
of the Yangtze River (see Figure 1). It is the first inter-provincial metropolitan area to
be officially approved in China, and the cities in it are Nanjing, Zhenjiang, Yangzhou,
Huai’an, Ma’anshan, Chuzhou, Wuhu, Xuancheng, Liyang, and Jintan. The area of Nanjing
metropolitan area is about 6.6 million hm2. As of 2020, the resident population is about
35.2 million, and the regional GDP is 4198.2 billion CNY. It generates an economic output
of 4.1% of the total in China, with a land area of 0.7% of China and a resident population
of 2.5%. The climate in the region is mostly subtropical monsoon, with an average annual
temperature of approximately 17 ◦C and an annual precipitation of around 977 mm. The
DEM rises in the south and falls in the north [30].
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Figure 1. Location of the Nanjing metropolitan area.

2.2. Data Sources and Processing

Seven driving factors were selected in this paper, including (1) physical–geographical
factors: temperature (TEM), precipitation (PRE), soil organic matter (SOM), the normal-
ized difference vegetation index (NDVI), a digital elevation model (DEM), and land use
maps and (2) socioeconomic factors: the gross economic product (GDP) and population
density (POP).

The datasets, including temperature, precipitation, NDVI, land use maps, DEM, GDP,
and population density figures, were obtained from the Chinese Academy of Sciences’
Resource and Environmental Science and Data Center (http://www.resdc.cn/Default.aspx,
accessed on 10 August 2022). Based on the continuous time series of SPOT/VEGETATION
NDVI remote sensing data, the monthly NDVI dataset was obtained using the maximum
synthesis method. Six groups were utilized to categorize the different types of land use:
cultivated land, forest land, grassland, water body, construction land, and unused land
(see Figure 2). Unused land indicates saline land, marsh land, bare land, and bare rocky
land. The DEM dataset was derived from the Shuttle Radar Topography Mission (SRTM)
payload onboard the Space Shuttle Endeavour. The dataset for soil organic matter (SOM)
was obtained from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/
en/, accessed on 10 August 2022) [31]. These datasets were resampled to fit a regional
resolution of 1 km. The datasets, including grain production, sown area, and prices,
were gathered from the China Yearbook of Agricultural Price Survey and the Statistical
Yearbooks produced by the Bureau of Statistics.

http://www.resdc.cn/Default.aspx
http://data.tpdc.ac.cn/en/
http://data.tpdc.ac.cn/en/
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Figure 2. Maps of land use in the Nanjing metropolitan area from 2000 to 2020.

2.3. ESV Evaluation

Starting with the world’s and China’s ESV equivalent factor tables established by
Costanza et al. [17] and Xie et al. [18,32], this article updated the ESV factor table from
2000 to 2020 based on grain production and prices inside the Nanjing metropolitan area.
The ESV equivalent factor coefficient, whose value is around one-seventh of the average
market value of grain produced in the research area, is determined using the comparative
donation of ecosystem services that various ecosystems may supply [18]. The mean grain
production in the Nanjing metropolitan area during 2000–2020 was 6427.88 kg/hm2, and
the national mean minimum purchase price of rice and wheat in 2020 was 2.45 CNY/kg,
so the study area’s updated ESV unit factor value was 2249.76 CNY/hm2, and the ESV
coefficients per unit area were calculated and displayed in Table 1. Previous studies have
discovered that the ESV in construction land is extremely low [9]; therefore, the ESV in the
construction land was not considered and assigned a value of zero in this article. The ESV
in the Nanjing metropolitan area can be calculated as:

ESV = ∑(Ak ×VCk)

ESVf = ∑
(

Ak ×VC f k

) (1)

where ESV is the value of all ecosystem services (CNY), Ak is the area of the research area’s
land use type k (hm2), VCk is the ESV coefficient of land use type k (CNY/hm2/year), ESVf
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is the value of the ecosystem service function f (CNY), and VC f k is the ESV coefficient of
the ecosystem service function f in the land use type k (CNY/hm2/year).

Table 1. The ESV coefficients per unit area in the Nanjing metropolitan area.

Class One Type Class Two Type
Unit Area Value Coefficient by Land Use Type/(CNY/hm2/year)

Cultivated Land Forest Land Grassland Water Unused Land

Supply services Food production 2249.76 497.90 424.14 737.63 0.00
Raw material production 313.49 1161.76 626.98 258.17 0.00

Regulation services Gas regulation 1844.07 3817.22 2231.32 885.15 36.88
Climate regulation 958.91 11,433.21 5882.57 2618.57 0.00

Environment purification 276.61 3319.32 1936.27 5274.03 184.41
Hydrological regulation 3872.54 7118.09 4315.11 83,960.32 55.32

Support services Soil conservation 479.46 4647.05 2710.78 866.71 36.88
nutrient cycle
maintenance 313.49 350.37 202.85 73.76 0.00

Biodiversity 350.37 4241.35 2471.05 2360.40 36.88
Cultural services Aesthetic landscape 147.53 1862.51 1088.00 1825.62 18.44

2.4. Sensitivity Test

A sensitivity test was performed to assess the reasonableness of the revised ESV
coefficients in the Nanjing metropolitan region. In order to determine the sensitivity
coefficient in this study, 50% of the ESV coefficient for each ecosystem service function was
moved up and down [33], and the formula is as follows:

CS =

∣∣∣∣∣∣ (ESVj − ESVi)/ESVi(
VCjk −VCik

)
/VCik

∣∣∣∣∣∣ (2)

where CS is the traditional sensitivity coefficient, ESVi and ESVj are the overall value of
ecosystem services prior to and following modification, respectively, and VCik and VCjk are
the ESV coefficients prior to and following modification for the land use type k, respectively.
If CS ≤ 1, it means that the revised ESV coefficients are reliable, while if CS ≥ 1, it means
that the revised ESV coefficients are unreliable.

2.5. Ecosystem Service Trade-Offs and Synergies

Relationships between ecosystem services can be positive (synergies), where two
services are provided more frequently or less frequently at the same time, or negative
(trade-offs), where one service is provided more frequently while another is provided less
frequently. Ecosystem service trade-offs and synergies can be determined using the Pearson
correlation coefficient. A positive result implies a synergistic relationship between the two
ecosystem service functions, whereas a negative result shows a trade-off relationship [15].
The trade-offs and synergies among four categories of ecosystem services, namely supply
services, regulation services, support services, and cultural services, were calculated in this
paper as follows:

Rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(3)

where Rxy is the correlation coefficient, xi and yi are the values of two types of ecosystem
services, and x and y are the average values of x and y, respectively.

2.6. ESV Spatial Analysis

The worldwide spatial autocorrelation analysis in this study was evaluated using
Moran’s I index. Moran’s I has a range of values within (−1, 1). If Moran’s I is greater than
zero, it means that the spatial distribution of ESV is positively relevant, and the higher the
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index, the more significant the spatial aggregation. If the value of Moran’s I is negative, it
means that the spatial distribution of ESV is negatively relevant, and the lower the index,
the more significant the spatial dispersion. The spatial distribution of the regional ESV
hotspots and cold spots in the Nanjing metropolitan area between 2000 and 2020 was also
obtained using the Hotspot Detection Tool (Getis-Ord Gi*) in the ArcGIS software (Version
10.5, Redlands, CA, USA) [34].

2.7. Driving Factors Analysis

The Geodetector method is a statistical approach created by Wang and Xu [26] that de-
tects spatial heterogeneity and identifies the underlying variables. The method determines
the impact of multi-factor interactions on the ESV in addition to detecting the influence
of a single component. The Geodetector method includes four detectors: factor detector,
interaction detector, risk detector, and ecological detector [26]. The factor detector and
interaction detector were used in this paper to investigate the underlying factors of ESV.

The factor detector may determine how well a single factor x explains the spatial
variance of attribute y using a q-value, whose model is stated as:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (4)

where q is the strength of an explanation for a driving factor on the spatially divergent
characteristics of ESV, which takes the range (0,1), and a larger number denotes a stronger
ability of the independent variable x to explain the attribute y, and vice versa, that is, the
greater explanatory power of the independent variable x on the attribute y, and vice versa;
h is the partition of the attribute y or variable x; Nh and N are the numbers of cells in
partition h and the number of partitions, respectively; and σ2

h and σ2 are the variances of y
in partition h and the variances of y in the study area, respectively.

The explanatory power of the attribute y is evaluated using the interaction detector to
determine whether the interaction between factors x1 and x2 increases or decreases that
power. The calculation process is as follows:

Firstly, separately compute the q-values of the two factors x1 and x2 on y: q(x1)
and q(x2).

Secondly, compute the q-value of the interaction between the two variables x1 and x2:
q(x1∩ x2).

Finally, compare q(x1), q(x2), and q(x1∩ x2). The relationship between the two
factors can be classified into five categories: two-factor enhancement, linear enhancement,
nonlinear attenuation, one-factor nonlinear attenuation, and independence.

3. Results and Analysis
3.1. ESV Variation and Sensitivity Analysis

The ESV coefficients for the Nanjing metropolitan region (see Table 1) and land use
maps for 2000 to 2020 were utilized to calculate the ESV within each land use category
(Table 2). The overall ESV rose significantly between 2000 and 2005, with the increasing
value of 27,784 billion CNY. After 2005, the total ESV decreased significantly, with the
decreasing value of 28,222 billion CNY. High ESV ecosystems, such as forests, grasslands,
wetlands, and water bodies, have an important influence in the increase and reduction of
regional ESV. Although there was considerable growth in construction land in the early
stages of the study, the area of cultivated land reduced significantly as a result of the
strategy of returning cropland to forestland and grassland, which led to an increase rather
than a decrease in ESV. After 2005, with each region’s rapid economic growth, forms of land
usage such as rivers or streams and grasslands with high ESV coefficients were encroached
upon by forms of land usage such as agricultural lands and industrial lands with low
ESV coefficients. This caused forest and grassland to be degraded, and then the ecological
quality of the region declined. The largest total ESV appeared in water bodies; forest land,
cultivated land, and grassland came next, with unused land having the smallest total ESV.
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Among them, the ESV of cultivated land remained in decline during 2000–2015 and then
increased after 2015. The ESV of water bodies, grassland, and forest land trended in the
same direction as the overall ESV, first increasing and then declining. The ESV of unused
land fluctuated from year to year but showed a generally increasing trend.

Table 2. Total ESV of the Nanjing metropolitan area.

Land Type
ESV/×108 CNY

2000 2005 2010 2015 2020

Cultivated land 433.092 285.706 281.124 278.293 398.620
Forest land 412.863 506.255 502.180 500.911 409.979
Grassland 60.786 91.584 91.387 91.146 59.538

Water 621.239 922.268 917.424 913.964 655.444
Unused land 0.004 0.011 0.010 0.014 0.022

Total 1527.984 1805.824 1792.125 1784.328 1523.603

The regulation services had a larger total ESV than the support and supply services,
while the cultural services had the least overall ESV, as seen in Table 3. The slight increase
in ESV of the hydrological regulation function and environmental purification function in
the research area was driven by the expansion of the water body surface area at the time of
the study, as the ESV of these two ecosystem service functions was mainly influenced by
the area of water bodies. In contrast, other ecosystem service functions saw a decline in ESV,
with the largest declines in the food production function and nutrient cycle maintenance
function, which were caused by the decrease in the area of cultivated land and forest land
during the research period because the area of either cultivated land or forest land had a
significant impact on the ESV of various ecosystem service functions.

Table 3. Changes of individual ESV in the Nanjing metropolitan area.

Class One
Type

Class Two
Type

ESV/×108 CNY ESV Change Rate/%

2000 2005 2010 2015 2020 2000–2005 2005–2010 2010–2015 2015–2020 2000–2020

Supply
services

Food
production 101.33 74.69 73.65 73.01 94.34 −26.94 −1.39 −0.87 29.22 −6.90

Raw material
production 28.40 28.62 28.34 28.21 27.37 0.77 −0.98 −0.46 −2.98 −3.63

Regulation
services

Gas
regulation 126.65 116.61 115.36 114.70 120.67 −7.93 −1.07 −0.57 5.20 −4.72

Climate
regulation 195.25 226.80 224.99 224.20 191.97 16.16 −0.80 −0.35 −14.38 −1.68

Environment
purification 85.30 108.33 107.58 107.20 85.84 27.00 −0.69 −0.35 −19.93 0.63

Hydrological
regulation 771.23 997.43 990.88 986.65 787.15 29.22 −0.66 −0.43 −20.22 2.06

Support
services

Soil
conservation 82.09 93.29 92.53 92.19 80.39 13.64 −0.81 −0.38 −12.80 −2.07

nutrient cycle
maintenance 17.35 14.44 14.26 14.16 16.34 −16.77 −1.25 −0.70 15.40 −5.82

Biodiversity 81.28 97.47 96.73 96.39 80.52 19.92 −0.76 −0.35 −16.46 −0.94
Cultural
services

Aesthetic
landscape 40.41 50.01 49.65 49.47 40.37 23.76 −0.72 −0.36 −18.39 −0.10

The accuracy of an ESV assessment greatly depends on the validity of the revised ESV
coefficients. Therefore, a sensitivity analysis on the revised ESV coefficients was carried out
in this paper (see Table 4), and the findings indicate that for every land use category, the
sensitivity coefficients of the revised ESV coefficients were below 1. This indicates that the
ESV for the Nanjing metropolitan region was trustworthy and stable.
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Table 4. Sensitivity test of the revised ESV coefficients in the Nanjing metropolitan area.

Land Type 2000 2005 2010 2015 2020

Cultivated land 0.283 0.158 0.157 0.156 0.262
Forest land 0.270 0.280 0.280 0.281 0.269
Grassland 0.040 0.051 0.051 0.051 0.039

Water 0.407 0.511 0.512 0.512 0.430
Unused land 0.000 0.000 0.000 0.000 0.000

3.2. Spatial Pattern in ESV

The overall ESV of the Nanjing metropolitan region displayed a geographical trend of
being high in the south and low in the north in the last 20 years (see Figure 3). The reason
for this is that cultivated land dominated the area north of the Nanjing metropolitan region,
while forest land was extensively spread in the south of the research area (see Figure 2),
and the ESV of cultivated land was lower than that of forest land (see Table 2). The lowest
ESV (0–0.04 million CNY) appeared in the construction land and unused land, while the
highest value (3.9–10 million CNY) appeared in the rivers, lakes, and other water bodies.
The forest land also had a high ESV (2.2–3.9 million CNY), which was dispersed towards
the Nanjing metropolitan area’s southern region. The ESV of the cultivated land was low,
with the values ranging from 0.04 to 1.1 million CNY. The majority of the grassland was
situated in the western portion of the Nanjing metropolitan region, and its ESV ranged
from 1.1 to 2.2 million CNY.

Moran’s I index was computed in order to assess the global spatial autocorrelation
study (Table 5). The results indicate that the Moran’s I were higher than 0.5, revealing that
the geographic distribution of ESV in the Nanjing metropolitan region was dramatically
spatially positively correlated and had a high degree of spatial clustering, with high values
converging and low values close to each other. In general, lower levels of ecological
space fragmentation are associated with more concentrated geographic distributions of
ESV. The higher positive agglomeration is helpful for the division of ecological space and
the realization of the co-protection and co-administration of the natural ecosystem in the
Nanjing metropolitan area.

Table 5. The analysis of spatial autocorrelation in ESV.

Year Moran’s I Z Value p Value

2000 0.511 256.022 <0.001
2005 0.506 253.504 <0.001
2010 0.505 252.939 <0.001
2015 0.503 252.056 <0.001
2020 0.507 254.019 <0.001

Regional ESV hot spots and cold spots were examined using the Hotspot Detection
Tool to determine their spatial distribution, and the results show that the ESV hot spots
were located around the Yangtze River and its environs, or in the lakes in Huai’an, northern
Yangzhou, and southern Nanjing (see Figure 4 and Table 6). The ESV cold spots were
mainly distributed in the construction land in Huai’an, Nanjing, Yangzhou and Zhenjiang,
and the low ESV clustered significantly, indicating that the ESV in those regions was low.
The number of cold spots displayed a pattern of initial increase and subsequent decrease,
with the maximum number appearing in 2015. The number of hot spots fluctuated from
year to year but showed a generally increasing trend. The interannual fluctuations in the
number of cold and hot spots were generally similar with the regional ESV fluctuations.
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Figure 3. Spatial distribution of ESV per unit area during 2000–2020.

Table 6. Changes in the number of ESV cold spots and hot spots during 2000–2020.

Type 2000 2005 2010 2015 2020

Cold spots 4147 17,239 17,561 17,643 7033
Hot spots 8967 9125 9116 9048 9113

3.3. Spatial Variation in ESV

Figure 5 shows that during the period 2000–2020, the ESV had primarily demonstrated
a downward trend in the Nanjing metropolitan area’s northwest, central, and southern
regions, while in the water bodies and their surrounding areas, the ESV had mainly shown
an increasing trend. The regions with decreasing ESV accounted for 33.69% within the
Nanjing metropolitan area. Among them, there was approximately 17.67% of the research
area where the ESV decline rate was greater than 2, and they were primarily spread in
the research area’s central and northern regions. Within the Nanjing metropolitan area,
regions with increasing ESV accounted for 20.40% of the total. Among them, there was
approximately 13.37% of the study area where the ESV growth rate was greater than 2, and
they were primarily spread in southwestern Nanjing and northern Xuancheng.



Forests 2023, 14, 113 11 of 17

Figure 4. ESV cold spots and hot spots distribution during 2000–2020.

Figure 5. ESV trends from 2000 to 2020.
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3.4. Factors Affecting ESV

The ESV in the Nanjing metropolitan area was affected by both physical–geographical
factors and socioeconomic factors. Using the factor detector, it was possible to assess
the explanatory power of the variables influencing the geographic variations in ESV (see
Figure 6), and the results show that the explanatory strength of factors in descending
order was population density (17.5%) > DEM (14.7%) > NDVI (13.0%) > precipitation
(11.7%) > GDP (8.3%) > soil organic matter (7.2%) > temperature (4.3%). The population
density was the main socioeconomic factor influencing ESV spatial variation, while the
major physical–geographical factors were the DEM, NDVI, and precipitation. The impact
of temperature on ESV was the lowest.

Figure 6. The impact of single-factor and two-factor interaction on the ESV variation. DEM is the
digital elevation model, GDP is the gross economic product, NDVI is the normalized difference
vegetation index, POP is population density, PRE is precipitation, SOM is soil organic matter, and
TEM is temperature.

The effect of two-factor interaction on the ESV variation was also investigated using
the interaction detector (see Figure 6). The results show that, in contrast to the explanatory
strength of a single element on the ESV, the impact of any individual element on the ESV
under interaction is significantly increased. After interacting with physical–geographical
factors, the impact of the GDP and population density on ESV was brought to light.
It implies that socioeconomic factors had a significant interaction in combination with
physical–geographical factors. The interplay between the NDVI and GDP showed the most
obvious effect on the ESV, reaching 31.71% of the explanatory strength for ESV variation.

3.5. Trade-Offs and Synergies Affecting ESV

Figure 7 depicts the trade-offs and synergies between supply service value, regulation
service value, support service value, and cultural service value. The results show that
during the period 2000–2020, the trade-offs and synergies between the ESVs were mainly
synergies. However, there were still trade-offs among the ESVs. In the Nanjing metropolitan
region, the trade-offs between supply and cultural service values made up 17.85% of the
total area, while those between supply and regulation service values made up 17.15%.
These areas were distributed spatially in a largely uniform manner and were most spread in
the central part of Xuancheng, Wuhu, Ma’anshan, Liyang, Chuzhou, and southern Huai’an.
The areas with trade-offs between supply service value and support service value made
up 9.28% of the Nanjing metropolitan area, primarily in the eastern Ma’anshan, southern
Huai’an, and northern Wuhu. In the Nanjing metropolitan region, the trade-offs between
regulation service value and support service value made up 7.85% of the total area, while
those between support service value and cultural service value made up 7.27%. These
areas were distributed spatially in a largely uniform manner and were mainly distributed
in northern Wuhu, southeastern Ma’anshan, northern Yangzhou, western Chuzhou, and
southern Huai’an. The areas with trade-offs between regulation service value and cultural
service value only made up 0.42% of the Nanjing metropolitan area.
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Figure 7. The trade-offs and synergies between (a) supply service value and cultural service value,
(b) supply service value and regulation service value, (c) supply service value and support service
value, (d) regulation service value and support service value, (e) support service value and cultural
service value, and (f) regulation service value and cultural service value.

According to Figures 5 and 7, the results show that the trade-offs among the ESVs
affected the spatial variation in ESV. The areas with trade-offs between supply-cultural ser-
vice value, supply-regulation service value, supply-support service value, and regulation-
support service value accounted for 26.81%, 21.66%, 16.33% and 14.97% of the area where
the ESV was declining, respectively.

3.6. Factors Affecting Trade-Offs and Synergies

The physical–geographical factors and socioeconomic factors affected the trade-offs
and synergies (TOSs) among supply service value, regulation service value, support service
value, and cultural service value. Figure 8 shows that, in contrast to the limited strength of
a single factor on the TOSs, the influence of all single factors on the TOSs under interaction
is greatly increased. The interaction between SOM and GDP had the most obvious effect on
the TOSs between supply service value and support service value, while the effect of the
interaction between SOM and precipitation was more substantial for the other five TOSs.
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Figure 8. The impact of single-factor and two-factor interaction on the trade-offs and synergies.

The TOSs for supply service value, regulation service value, support service value,
and cultural service value were also impacted by land use change. The change in land
usage from high-ESV type to low-ESV type resulted in trade-off relationships among the
ESVs. According to Figure 7a–f, the regions where land usage patterns had transformed
from high–ESV type to low–ESV type made up 50.27%, 46.52%, 49.91%, 43.95%, 43.23%,
and 40.24% of the trade-off regions, respectively.

4. Discussion
4.1. Comparison with Previous Work

In this paper, the ESV in the Nanjing metropolitan area during 2000–2020 was cal-
culated based on the world’s and China’s ESV equivalent factor tables established by
Costanza et al. [5] and Xie et al. [32]. The computed ESVs agreed with the findings of
Cao et al. [35]. In the Nanjing metropolitan area, the key factors impacting the spatial
variations in ESV were the POP, DEM, and NDVI, with socioeconomic factors having a
stronger influence on the spatial variations in ESV. This is in line with the results found in
the Yangtze River Economic Belt reported by Liu et al. [12] and Long et al. [11]. However,
our result is different from those found in northeastern China reported by Yi et al. [9]. It
is possible that this difference is due to the region’s unique climatic circumstances. The
Nanjing metropolitan region is situated in eastern China, with suitable hydrothermal condi-
tions for vegetation growth. Therefore, the ESV variations are more likely to be influenced
by socioeconomic factors. This is in line with the results of He et al. [36] in Sichuan Province
and Wang et al. [37] in Xinjiang.

4.2. Policy Implications

At the root of the urban ecological catastrophe is the degradation and eradication of
urban ecological services [38]. While ecological land, along with forest land, grassland, and
garden land, has been severely encroached upon, urbanization in the Nanjing metropolitan
region has propelled the construction of construction land. Policies that are pertinent
to ecological protection have an excellent effect on the growth of ESV. We need to take
targeted measures to mitigate the conflict between ESV and urbanization needs based on
research findings [38]. For example, the high-ESV regions and the regions with severe ESV
degradation should be protected. In addition, with the significant impact of population
density on ESV, the massive pressure that population increase puts on the ecosystem must
be relieved in order to better control excessive and rapid population growth.

In land-use decisions, TOSs among ESVs also need to be taken into account [39]. For
example, land development that guarantees food security necessarily leads to diminished
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preservation of soil and water and hydrological regulation. As a result, it is crucial to
develop scientific, rational, and practice-oriented decisions to avoid negative trade-offs
and promote positive synergies. It is possible to break through administrative boundaries
in the future management of ESVs, implement integrated management of ESVs in the
Nanjing metropolitan area, restrict agricultural development around the Yangtze River and
lakes, and protect their regulation services and support services. At the same time, in the
surrounding regions of cities and towns where cultivated land is the primary land use type,
consideration should be given to protecting food production functions and strictly limiting
the takeover of farming areas by the extension of industrial land.

4.3. Shortcomings and Prospects

Geographers and ecologists have devoted a lot of attention to the study of ESV since
Costanza first introduced the concept of ESV [40]. Research on ESV has gradually shifted
from the early days of assessing their value to examining the distribution of ESVs in
various ecosystem types and their driving variables. However, the exploration of spatio-
temporal patterns of change and their driving mechanisms is a step-by-step task due to
the complexity of ecosystems. The Geodetector method can better reveal the geographical
scale driving mechanisms of the regional ESV spatial divergence phenomenon, but the
motivating factors still need to be further explored at the temporal scale. In the future, the
existing index system can be expanded to examine the mechanisms underlying regional
ESV evolution at multiple scales across time and space.

5. Conclusions

Using the method of updated unit area value equivalent factor, this paper estimated
the ecosystem service value in the Nanjing metropolitan area and analyzed the ecosystem
service value fluctuations in space and time and the factors that affect it. The findings
indicate that:

(1) The overall value of ecosystem services decreased between 2000 and 2020. Moreover,
the ecosystem service value in the southern section of the Nanjing metropolitan region
was higher than in the northern portion. The spatial distribution of the value of
ecosystem services was significantly spatially positively correlated and showed a high
level of spatial clustering.

(2) The highest overall ecosystem service value appeared in the water bodies, followed
by forest land, cultivated land, and grassland, with construction land and unused
land having the smallest total ecosystem service value.

(3) The population density was the primary socioeconomic factor influencing the spatial
variation of ecosystem service value, while the digital elevation model, normalized differ-
ence vegetation index, and precipitation were the primary physical–geographical factors.

(4) The impact of the gross economic product and population density on the ecosystem
service value was highlighted after interacting with physical–geographical factors.
The interaction between the normalized difference vegetation index and gross eco-
nomic product had the most obvious effect on the ecosystem service value.

(5) The synergies and trade-offs that exist between the value of supply service, regulation
service, support service, and cultural service affect the spatial variations in ecosystem
service value.
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