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Abstract

Background: Host adhesion molecules play a significant role in the pathogenesis of Plasmodium falciparum malaria

and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study

was to investigate the association of SNPs of three adhesion molecule genes, ICAM1, PECAM1 and CD36, with

severity of falciparum malaria in a malaria-endemic and a non-endemic region of India.

Methods: The frequency distribution of seven selected SNPs of ICAM1, PECAM1 and CD36 was determined in

552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control

study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/

control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD) plots were

generated using PHASE and Haploview, respectively. Odds-ratio (OR) for risk assessment was estimated using

EpiInfo™ version 3.4.

Results: Association of the ICAM1 rs5498 (exon 6) G allele and the CD36 exon 1a A allele with increased risk

of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively).

The CD36 rs1334512 (-53) T allele as well as the TT genotype associated with protection from severe disease

(severe versus control, TT versus GG, OR = 0.37, P = 0.004). Interestingly, a SNP of the PECAM1 gene (rs668,

exon 3, C/G) with low minor allele frequency in populations of the endemic region compared to the non-endemic

region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in

the endemic region, but exhibited significant association with protection from disease in the non-endemic region.

Conclusion: The data highlights the significance of variations in the ICAM1, PECAM1 and CD36 genes in the

manifestation of falciparum malaria in India. The PECAM1 exon 3 SNP exhibits altered association with disease in

the endemic and non-endemic region.
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Background
Severe clinical outcomes from Plasmodium falciparum
infection have been associated with cytokine imbalance
and high levels of pro-inflammatory cytokines such as
TNF, high parasitaemia due to the failure of the host
immune system to control parasite replication, acidosis
and respiratory distress, as well as sequestration of
infected RBCs (iRBCs) in the microvasculature. Several
host molecules have been implicated in mediating cere-
bral and non-cerebral cytoadherence of P. falciparum-
infected RBCs to the host endothelium [1], a process that
helps the parasite evade immune clearance in the spleen.
Host adhesion molecules including CD36, intercellular
adhesion molecule 1 (ICAM-1, CD54), platelet/endothe-
lial cell adhesion molecule 1 (PECAM-1, CD31), vascular
cell adhesion molecule (VCAM-1), thrombospondin, E-
selectin, P-selectin, chondroitin sulphate A and FcRs may
serve as receptors for ligands such as PfEMP1, expressed
on the surface of iRBCs to mediate cytoadherence [2]. The
precise role of some of these molecules in mediating
cytoadherence in vivo remains unresolved due to the
observation of minimal to no adhesion to these receptors
when using patient isolates or under flow conditions [3-
5]. Molecules such as ICAM-1 and VCAM-1 are inducible
(e.g. by TNF) and their expression levels are elevated dur-
ing acute malaria infection [6]. As important components
of the host immune system host cell adhesion molecules
may also play a role in parasite-induced immune regula-
tion. Alterations in levels or structure of these molecules
would thus affect an individual's response to P. falciparum
infection and consequent disease manifestation.

Susceptibility/resistance of human populations to severe
falciparum malaria has been associated with variations in
more than 30 genes. Polymorphisms in host adhesion
molecules have been correlated with the outcome of P. fal-
ciparum infection in studies from Africa and south-east
Asia. Single nucleotide polymorphisms (SNPs) in genes
encoding CD36, ICAM-1 and PECAM-1 have been previ-
ously correlated with disease protection/susceptibility
from different populations but these reports have often
been contradictory. A mutation in codon 29 (K56M,
rs5491) of the ICAM1 gene was identified in the Kilifi
region of Kenya and homozygotes for the mutation were
found to be more frequent in patients suffering from cer-
ebral malaria than in controls [7]. However, this SNP was
correlated with protection from severe malaria in Gabon
[8] and did not exhibit any association with disease sever-
ity in Gambia [9]. Additionally, an ICAM-1 SNP in exon 6
(rs5498, K469E) has been associated with increased risk
of severe malaria in Nigeria [10]. A recent study [11] on
trios from African populations has reported the absence of
any association of these two ICAM-1 SNPs with severe
malaria phenotypes.

Two SNPs in the CD36 gene, T1264G in exon 10 and
G1439C in exon 12, that encode truncated CD36 proteins
and are the molecular basis of CD36 deficiency were
found in high frequency in Kenyan and Gambian patients
suffering from severe malaria [12] while another study on
patients from Kenya reported association of the T1264G
heterozygote with protection from severe malaria in chil-
dren [13]. Variation screening of the CD36 gene in Thai
malaria patients revealed that two SNPs in the promoter
region at positions -53 and -14 were associated with pro-
tection from cerebral malaria together with a repeat poly-
morphism (TG)12 in intron 3 that was strongly associated
with reduced risk of cerebral malaria [14].

Mutant homozygotes for two non-synonymous SNPs
(L125V and S563N) of the PECAM1 gene have been
reported to be one of the risk factors for cerebral malaria
in Thailand [15]. However, no association of the L125V
SNP with disease was reported in a study on malaria
patients from Kenya and Papua New Guinea [16].

As evident from the above description, all available data
for disease-SNP correlation for adhesion molecules is for
populations from Africa and Thailand. P. falciparum
malaria is a serious problem in India and several regions
of the country are endemic for the disease [17,18]. The
distribution of selected SNPs of genes encoding CD36,
ICAM-1 and PECAM-1 was thus examined in Indian pop-
ulations and SNP-disease association analysis of seven
SNPs from the three genes was carried out in a case-con-
trol study with patients and ethnically-matched controls
drawn from a P. falciparum-endemic and a non-endemic
region of India.

Methods
Populations, study subjects and sample collection

Allele frequency distribution of selected SNPs from genes
encoding ICAM1, PECAM1 and CD36 was carried out in
the existing Indian Genome Variation Consortium
(IGVC) panel II. This panel consisted of 552 samples
drawn from 24 ethnically and linguistically diverse popu-
lations belonging to various tribal, caste and religious
groups from different geographical regions of India. Panel
II was derived from the initial IGVC sample set of 1871
individuals from 55 populations (Panel I) [19]. The pop-
ulation descriptors included linguistic affiliation (Indo-
European, IE; Dravidian, DR; Tibeto-Burman, TB; Austro-
Asiatic AA) followed by geographical zone (North, N;
North-East, NE; South, S; East, E; West, W; Central, C) and
ethnicity (caste, LP; tribe, IP; religious group, SP) (descrip-
tion of each population is available at [20]). A population
of known African descent was included as an outgroup
population (OG-W-IP).
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For the case control study, patient samples were collected
from a P. falciparum endemic (Antagarh, Chhattisgarh and
Sundargarh, Orissa) and a non-endemic (Lucknow and
surrounding areas of Uttar Pradesh) region of India. The
uninfected controls were ethnically-matched with the
patient group and belonged to the Bhumij, Munda, Oraon
and Gond tribal populations in the endemic region and
the Aggarwal, Brahmin, Kayastha, Pasi, Thakur, Yadav,
Shia and Sunni caste and religious groups in the non-
endemic region. Informed consent was obtained from
each volunteer/guardian prior to collection. 2–5 ml of
venous blood was drawn from patients of above five years
of age diagnosed with P. falciparum malaria. Diagnosis
was carried out by rapid diagnostic test kits (Optimal/
Paracheck) followed by confirmation by examination of
thick and thin blood smears. In rare cases of discrepancy
between the results of the two tests, P. falciparum infection
was confirmed by a diagnostic polymerase chain reaction
(PCR) [21]. WHO guidelines [22] were followed to cate-
gorize severe and non-severe malaria as described in Sinha
et al [23]. Samples from a total of 182 P. falciparum
malaria patients (101 from endemic and 81 from non-
endemic region) were collected. Control samples were
collected from ethnically-matched and unrelated individ-
uals from the endemic (102 samples) and non-endemic
(90 samples) regions. This study has been approved by
ethical committees of all participating institutes.

Selection of SNPs and genotyping

SNPs were selected according to their reported functional
relevance in disease, including falciparum malaria, in
other world populations as well as their frequency in the
IGVC 'discovery panel'. The 'discovery panel' of 43 sam-
ples was used for an initial screen for discovery of novel
SNPs and validation of reported polymorphisms in
Indian populations [19]. The following SNPs from
ICAM1, PECAM1, CD36 and VCAM1 were genotyped in
the IGVC validation panel samples: rs5491, K/M
(ICAM1); rs668, L/V (PECAM1); rs12953, S/N (PECAM1);
rs1131012, R/G (PECAM1); int10 novel SNP, G/A
(PECAM1); int15, rs2070783 C/T (PECAM1); exon10
rs3211938, Y/STOP (CD36); exon12, A/P (CD36);
rs2151916, -14 T/C (CD36); rs1334512, -53 G/T (CD36);
rs3783611, exon5 C/T (VCAM1); rs3783613, exon6 G/C
(VCAM1); rs2392221, int3 C/T (VCAM1); rs3176860,
int2 A/G (VCAM1). For the case-control study, non-syn-
onymous SNPs rs5491 and rs5498 of ICAM1 and rs668,
rs12953 and rs3211938 of PECAM1 were genotyped. The
novel PECAM1 intron 10 SNP (nt33289, ref seq
NT_010783) was discovered in the initial panel of 'discov-
ery' samples [24]. Three SNPs of CD36, -14 T/C (upstream
promoter region), -53 G/T (downstream promoter
region) and exon 1a T/A [14], were used for the associa-
tion study.

Genomic DNA was extracted from peripheral blood leu-
kocytes using salting-out procedure [25]. Genotyping of
the IGVC panel samples was performed by Sequenom
mass spectroscopy. Genotyping of patient/control sam-
ples was done by SNaPShot method (Applied Biosystems)
on an ABI 3130xl automated DNA sequencer.

Statistical analysis

The chi-square test was performed to evaluate whether the
allele frequencies of populations are in Hardy-Weinberg
equilibrium. Haplotypes and linkage disequilibrium (LD)
plots were generated using PHASE and Haploview, respec-
tively. Odds-ratio (OR) for risk assessment was estimated
using EpiInfo™ version 3.4 software programme which
calculates P-value by Fisher exact or Mantel-Haenszel test.

Results and discussion
Distribution of selected SNPs of ICAM1 (CD54), PECAM1 

(CD31) and CD36 genes in Indian populations

In order to understand population-specific allele fre-
quency distribution of SNPs from genes encoding adhe-
sion molecules CD36, ICAM-1 and PECAM-1, genotype
data from Panel I and Panel II of IGVC populations was
analysed. The ICAM1 rs5491 SNP frequency was esti-
mated for 55 IGVC populations of Panel I [19]. SNPs were
selected according to their reported functional relevance
in disease, including falciparum malaria, in other world
populations as well as their frequency in the IGVC 'discov-
ery panel' that was used for an initial screen for discovery
of novel SNPs and validation of reported polymorphisms
[19].

The ICAM1 rs5491 K/M (ICAM1Kilifi) SNP, previously
associated with disease response in Africa [7,8], has an
average frequency of 0.042 in the Indian population
which is much lower than its frequency in Yoruba (YRI,
MAF = 0.25) and similar to the Han Chinese and Japanese
(HCB and JPT, MAF = 0.08) populations of HAPMAP. Ten
Indian populations lacked the polymorphism while max-
imal SNP frequency was observed in the outgroup popu-
lation of known African descent (OG, MAF = 0.18) and a
tribal population of southern India (DR-S-IP1, MAF =
0.23) (Figure 1a). Low frequency of this SNP has also
been reported for some other tribal populations of India
[26]. Very low frequencies of the SNP were observed in
populations of both the P. falciparum malaria endemic
(MAF = 0.04) and non-endemic region (MAF = 0.02) and
the SNP was thus excluded from the disease association
analysis. The ICAM1 exon 6 A/G (rs5498, K/E) SNP, pre-
viously correlated with susceptibility to severe malaria in
Nigeria [10], exhibited high frequency in the control
group (MAF = 0.39) and was included in the case-control
study.
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Five SNPs of the PECAM1 gene including the exon 3 rs668
L/V, exon 8 rs12953 S/N, and exon 12 rs1131012 R/G pre-
viously associated with malaria as well as clinical compli-
cations [27,28] and two intronic SNPs (intron10 novel
SNP G/A, intron15 rs2070783 C/T) were analysed. All
SNPs had high frequency in India with average MAFs
ranging from 0.33 to 0.45. The exon 8, intron 10, and
exon 12 SNPs were in strong LD and formed a haplotype
block of ~8 kb in the PECAM1 gene (Figure 2b). PECAM1
showed high haplotype diversity (mean haplotype diver-
sity = 0.778) which was >70% in most populations. A
total of 29 haplotypes were generated by PHASE among
which 18 haplotypes had a frequency > 0.01 (Figure 2a).
The wild haplotype CGGAC (Ex3 C/G, Ex8 G/A, Int10 G/
A, Ex12 A/G, Int15 C/G) had the highest frequency
(29.5%). However, this was not the predominant haplo-
type in some populations. Other major haplotypes were
GAAGC (13.5%), CGGAT (11.6%) and GAAGT (11.5%).
These either carry the wild type sequence at Ex8, Int10 and
Ex12 or have the mutated bases at all the three positions
again revealing strong linkage between these SNPs.

The exon 10 rs3211938, Y/STOP and exon12 A/P SNPs of
the CD36 genes have been previously correlated with pro-

tection from severity and susceptibility to severe P. falci-
parum malaria, respectively in African populations (Kenya
and Gambia) [12,13]. However, both these SNPs were
found to be monomorphic in the 24 Indian populations
of Panel II. The -14 T/C and -53 G/T SNPs from the
upstream and downstream promoter of the gene had aver-
age MAFs of 0.41 and 0.43, respectively in Indian popula-
tions. The two promoter SNPs, together with the 5'UTR
(exon 1a) T/A SNP [14] were analysed for disease associa-
tion.

Of the four VCAM-1 SNPs genotyped in Panel II, the two
non-synonymous SNPs in exon 5 and exon 6 (rs3783611
and rs3783613) were found to be monomorphic in
Indian populations. Very low frequency of these SNPs has
been reported from other Asian populations as well. The
two intronic SNPs, rs2392221 and rs3176860, had a MAF
of 0.13 and 0.46, respectively. None of the VCAM-1 SNPs
were analysed for disease-association.

A non-synonymous polymorphism in domain 5 of ICAM-1 

is a risk factor for severe malaria

The ICAM1 rs5498 (A/G) SNP lies in the exon 6 region
encoding Ig-like domain 5 of the extracellular portion of

(A) Gradient map showing frequency distribution of the minor allele of ICAM-1 rs5491 (A/T) in 55 Indian populationsFigure 1
(A) Gradient map showing frequency distribution of the minor allele of ICAM-1 rs5491 (A/T) in 55 Indian populations. Dots on 
the map depict the location (site of collection) of the 55 populations. (B) Schematic representation of the ICAM-1 molecule 
showing location of the amino acid changes due to rs5491 and rs5498.
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(A) Distribution of PECAM1 haplotypes for the SNPs rs668, rs12953, Int10 (novel SNP, i000237), rs1131012 and rs2070783 across 24 Indian populationsFigure 2
(A) Distribution of PECAM1 haplotypes for the SNPs rs668, rs12953, Int10 (novel SNP, i000237), rs1131012 and rs2070783 
across 24 Indian populations. The wild-type haplotype is circled. (B) R2 LD plot of the five PECAM1 SNPs. The value in each cell 
is the % D' between SNP pairs; grayscale depicts r2 values. (C) Schematic representation of the PECAM-1 molecule showing 
location of the amino acid changes due to SNPs in exon 3 (rs668), exon 8, and exon 12.
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the ICAM-1 molecule (Figure 1b). The mutant allele G
was associated with risk of severe malaria in combined
analysis of patients and controls from the endemic and
non-endemic region [severe versus control, odds ratio
(OR) = 1.91, P = 0.02 95% CI = 1.05–3.49; severe versus
non-severe OR = 1.99, P = 0.016, 95% CI = 1.09–3.65;
non-severe versus control, OR = 0.96, P = 0.88, 95% CI =
0.52–1.76] (Table 1). Although the GG genotype was
associated with severity when severe patients were com-
pared with controls (GG & AA: OR = 3.45, P = 0.0004) no
significant difference in distribution of the GG genotype
was observed between severe and non-severe malaria
patients (GG & AA: OR = 0.93, P = 0.87). These results
indicate association of the ICAM1 rs5498 G allele with
risk of severe malaria in India. Since ICAM-1 is the major
host molecule implicated in cytoadherence of iRBCs in
cerebral malaria [29], severe malaria cases were stratified
into cerebral and non-cerebral malaria. No significant dif-
ference in GG genotype distribution was observed in the

two severe patient groups indicating that the SNP was not
specifically associated with manifestation of cerebral
malaria.

The ICAM1 exon 6 (K/E, rs5498) SNP has been correlated
with many inflammatory and neurodegenerative diseases
[30-32] and has been identified as a risk factor for severe
malaria in Nigerian children [10]. Results from this study
also indicate association of the minor G allele with
increased risk of severe malaria. Domain 5 of the ICAM-1
molecule, that harbours the K/E mutation, has been
reported to affect the dimerization of ICAM-1 [33] as well
as interaction between B cells and dendritic cells [34]. It
has been suggested that dimerization of ICAM-1 enhances
its binding to its natural ligand LFA-1 [35]. The residue
important for binding of ICAM-1 to the parasite-encoded
ligand PfEMP1 lies in the dimer interface of domain 1 but
whether binding involves monomeric or dimeric ICAM-1
is still unknown [33]. The exon 6 mutation changes the

Table 1: Genotype frequency distribution of SNPs in patient and control groups

Gene name SNP Control (n = 192) Non-severe (n = 89) Severe (n = 93)

ICAM1 Ex6 (rs5498)

AA 70 (36.5%) 17 (19.1%) 21 (22.5%)

AG 93 (48.4%) 46 (51.7%) 42 (45.2%)

GG 29 (15.1%) 26 (29.2%) 30 (32.3%)

PECAM1 Ex3 (rs668)

CC 108 (56.3%) 39 (43.8%) 43 (46.2%)

CG 53 (27.6%) 36 (40.4%) 40 (43%)

GG 31 (16.1) 14 (15.7%) 10 (10.8%)

Ex8 (rs12953)

GG 80 (41.7%) 30 (33.7%) 40 (43%)

AG 76 (39.5) 40 (44.9%) 32 (34.4%)

AA 36 (18.8%) 19 (21.3%) 21 (22.6%)

Ex12 (rs1131012)

AA 69 (35.9%) 28 (31.4%) 41 (44.1%)

AG 101 (52.6%) 43 (48.3%) 34 (36.6%)

GG 22 (11.5%) 18 (20.2%) 18 (19.3%)

CD36 -14 (rs2151916)

TT 83 (43.2%) 31 (34.8%) 38 (40.9%)

TC 76 (39.6%) 42 (47.2%) 38 (40.9%)

CC 33 (17.2%) 16 (18%) 17 (18.2%)

-53 (rs1334512)

GG 61 (31.8%) 34 (38.2%) 47 (50.5%)

GT 87 (45.3%) 36 (40.4%) 32 (34.4%)

TT 44 (22.9%) 19 (21.3%) 14 (15.1%)

Ex1a

TT 115 (59.9%) 42 (47.2%) 38 (40.9%)

TA 59 (30.7%) 32 (36%) 30 (32.2%)

AA 18 (9.4%) 15 (16.8%) 25 (26.9%)
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basic amino acid residue lysine to glutamic acid. This
mutation may play a role in the destabilization of domain
5 and affect ICAM-1 dimerization thus influencing the
binding of ICAM-1 to its ligands. Further, the exon 6 SNP
is located 3 bp upstream to the splice donor site that pro-
duces the alternately spliced soluble isoform of ICAM-1
(sICAM-1) [36]. Iwao et al. [37] have shown that sICAM-
1 expression is lowered in cells carrying the GG genotype.
Since sICAM-1 does not contain the trans-membrane
domain and is secretory in nature it would reduce cell-cell
interactions. Further studies would be required to investi-
gate the possible involvement of the exon 6 SNP in ICAM-
1 dimerization and its effect on cell-cell interactions that
could in turn influence host immune response against
malaria.

The PECAM-1 exon 3 SNP exhibits differential association 

with disease in the endemic and non-endemic region

Of the PECAM1 SNPs analysed for disease association, no
significant association was observed with the exon 8 G/A
and exon 12 A/G SNPs (Table 1). The exon 3 C/G SNP lies
in the region encoding the Ig-like domain 1 of the
PECAM-1 molecule (Figure 2c). Although the exon 3 SNP
did not exhibit significant association with disease in the
combined analysis for the endemic and non endemic
region samples, significant association was observed
when the data was stratified on the basis of disease ende-
micity. In the endemic region, the mutant allele G was
associated with susceptibility to disease with high fre-
quency of the allele in both severe and non-severe patients
as compared to controls (severe versus control, OR = 4.21,
P < 0.0001, 95% CI = 2.11–8.44; non-severe versus con-
trol, OR = 2.79, P = 0.0016, 95% CI = 1.39–5.69; severe
versus non-severe, OR = 1.51, P = 0.15, 95% CI = 0.83–
2.75). On the other hand, the G allele was protective in
the non-endemic region (severe versus control: OR = 0.4,
P = 0.002, 95% CI = 0.21–0.75; non-severe versus control,
OR = 0.51, P = 0.02, 95% CI = 0.27–0.96; severe versus
non-severe, OR = 0.78, P = 0.43, 95% CI = 0.4–1.51).

PECAM-1 mediated adhesion is complex as the molecule
is capable of binding both to itself (homophilic binding)
and to other ligands (heterophilic binding) [38]. The
PECAM1 exon 3 mutation lies in the first Ig-like domain
of the PECAM-1 molecule (Fig. 2c) which has been shown
to mediate hemophilic adhesion and regulate leukocyte
transmigration [39,40]. Treutiger et al [41] have identified
PECAM-1 as an endothelial receptor for P. falciparum
infected erythrocytes and this heterophilic adhesion is
mediated by domains 1–4 of the PECAM-1 molecule. An
antibody directed against domains 1–2 has been shown to
inhibit PECAM-1-dependent adhesion of iRBCs in vitro
[41] possibly due to disruption of interaction with
PfEMP1 in iRBCs. The precise functional consequence of
the exon 3 L/V mutation is still unknown but if it affects

homophilic binding of PECAM-1 then it may have an
impact on leukocyte transmigration at the inflammatory
site during disease condition. The reported role of
PECAM-1 domain 1 in adhesion of iRBCs also suggests a
possible role of the exon 3 SNP in affecting iRBC seques-
tration. It is interesting that the G allele which is a risk fac-
tor in the endemic region also had very low frequency in
endemic region controls (MAF = 0.18) compared to con-
trols of the non-endemic region (MAF = 0.47) where it is
protective. Additionally, the SNP had an average MAF of
0.4 in the 24 Indian populations of IGVC.

Two CD36 SNPs associate with protection from severe 

malaria

Since the two CD36 SNPs (exon 10 and exon 12) previ-
ously associated with P. falciparum malaria in Africa were
found to be monomorphic in India, the CD36 -14 T/C, -
53 G/T and exon 1a T/A SNPs were analysed for disease
correlation. Although the -14 SNP has been correlated
with protection from severe malaria in Thailand [14], no
significant correlation was observed between the -14 SNP
and disease in this study. As in the Thailand study, the -53
mutant T allele was associated with protection from severe
malaria in India with significant difference in its distribu-
tion in the severe patient and control groups (severe ver-
sus control, T & G, OR = 0.53, P = 0.03, 95% CI = 0.29–
0.98). A trend towards higher frequency of the T allele in
the non-severe patient group compared to severe patients
was observed (severe versus non-severe, T & G, OR = 0.65,
P = 0.14, 95% CI = 0.3–1.02) while no significant differ-
ence was seen between the non-severe cases and controls
(OR = 0.82, P = 0.47). The -53 TT genotype was also sig-
nificantly associated with protection from severity (severe
versus control, TT & GG, OR = 0.37, P = 0.004, 95% CI =
0.16–0.77; severe vs. non-severe, OR = 0.53, P = 0.13,
95% CI = 0.22–1.3; non-severe versus control, OR = 0.83,
P = 0.56). The mutant allele A of the CD36 exon 1a SNP
was a risk factor, particularly for severe malaria (severe
versus control, OR = 2.66, P = 0.0012, 95% CI = 1.4–5.07;
non-severe versus control, OR = 1.84, P = 0.048, 95% CI
= 0.96–3.53; severe versus non-severe, OR = 1.45, P =
0.119, 95% CI = 0.79–2.64). The AA genotype was also
associated with increased susceptibility to disease with
stronger correlation observed with severe malaria (severe
versus control: OR = 4.02, P = 0.00056, 95% CI = 1.89–
8.6; severe versus non-severe, OR = 1.84, P = 0.122, 95%
CI = 0.79–4.3; non-severe versus control, OR = 2.18, P =
0.04, 95% CI = 0.95–5).

During falciparum malaria, CD36 is not only involved in
sequestration of iRBCs but also plays a role in host pathol-
ogy by inhibiting of dendritic cell maturation [42] as well
as host immunity by mediating phagocytic clearance of
parasites by macrophages [43]. CD36 is also involved in
platelet-mediated clumping of iRBCs that is strongly asso-
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ciated with cerebral malaria [44]. The expression of CD36
is tightly regulated to ensure its unique functions in vari-
ous cell types. CD36 expression is regulated by two pro-
moters (upstream and downstream) which bind to
different transcriptional activators [45]. The -53 G/T
mutation that correlates with protection from severe
malaria is positioned at the downstream promoter of the
CD36 gene. This SNP is located in the promoter region
that is necessary for basal transcription of the gene [46].
Also, the -53 position lies within the consensus binding
site for the transcriptional activator AP2 [47]. However,
the actual effect of the -53 SNP on CD36 expression is not
known. The exon 1a T/A SNP was reported by Omi et al
[14] in Thailand but its correlation with disease severity
has been shown for first time in this study. The functional
significance of the SNP is unclear.

Conclusion
As part of a study to investigate the role of human genetic
factors in susceptibility/resistance to P. falciparum malaria
in India, the frequency of SNPs in selected adhesion mol-
ecules was analysed followed by a case-control study to
determine possible association with disease. The results
indicate the significance of specific genetic variants of
ICAM1, PECAM1 and CD36 in influencing the outcome
of falciparum malaria in Indian populations. Addition-
ally, altered association of the PECAM1 exon 3 SNP was
observed with disease in the endemic and non-endemic
region and the allele was differentially distributed in pop-
ulations of the two regions.

Abbreviations
ICAM1: intercellular cell adhesion molecule 1; PECAM1:
platelet endothelial cell adhesion molecule 1; VCAM1:
vascular cell adhesion molecule 1; MAF: minor allele fre-
quency; LD: linkage disequilibrium
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