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Abstract—The increasing popularity of computing clouds con-
tinues to drive both industry and research to provide answers
to a large variety of new and challenging questions. We aim
to answer some of these questions by evaluating performance
and scalability when an n-tier application is migrated from
a traditional datacenter environment to an IaaS cloud. We
used a representative n-tier macro-benchmark (RUBBoS) and
compared its performance and scalability in three different
testbeds: Amazon EC2, Open Cirrus (an open scientific research
cloud), and Emulab (academic research testbed). Interestingly,
we found that the best-performing configuration in Emulab
can become the worst-performing configuration in EC2. Sub-
sequently, we identified the bottleneck components, high context
switch overhead and network driver processing overhead, to be
at the system level. These overhead problems were confirmed at
a finer granularity through micro-benchmark experiments that
measure component performance directly. We describe concrete
alternative approaches as practical solutions for resolving these
problems.

Keywords-Benchmarking, Clouds, Datacenter, EC2, Emulab,
IaaS, n-Tier, Open Cirrus, Performance, RUBBoS, Scalability.

I. INTRODUCTION

The flexibility and scalability of commercial cloud infrastruc-
tures make them an attractive application migration target;
however, due to the associated complexity, it is difficult to
make newly migrated applications run efficiently in clouds.
For example, while clouds are good candidates for supplemen-
tary system platforms during occasional overload of Internet
applications (e.g., electronic commerce), reports on Amazon
EC2 consistently mention that network latency may affect
overall system performance considerably [26], [28], [31].
Such issues are compounded by dependencies among system
components as requests are passed among the tiers, which
are characteristic of real n-tier applications. Despite some
published best-practices for the popular cloud environments
(e.g., [9]), the tradeoff between guaranteed performance (e.g.,
bounded response time) and economical efficiency (e.g., high
utilization for sustained loads) remains a serious challenge for
mission-critical applications.

In this paper we analyze the performance and scalability
when migrating n-tier applications from a traditional datacen-
ter to an Infrastructure as a Service (IaaS) cloud. We use
a representative n-tier macro-benchmark application (RUB-
BoS [7]) and perform a large-scale experimental study on
three testbeds. We use Emulab [4] (a more traditional compute
cluster environment) as our reference testbed and compare the

performance and scalability characteristics to Open Cirrus (a
scientific research cloud with high isolation) and to Amazon
EC2 [8] (a popular commercial cloud). Our experiments cover
scale-out scenarios under varying hardware and software con-
figurations with up to 44 concurrent servers. These RUBBoS
experiments are generated and executed automatically using
the Elba toolkit [1], [21], [23]. Concretely, we use automated
experiment management tools, which set-up, execute, monitor,
and analyze large-scale application deployment scenarios. For
the detailed analysis of non-trivial performance issues and
system bottlenecks, we use micro-benchmarks (both standard
and custom) to zoom into individual system components and
confirm our initial hypotheses at finer granularity.

In the course of our analysis, we found that configurations
that work well in one environment may cause significant
performance problems when deployed in a different cloud. In
fact, we found that the best-performing RUBBoS configuration
in Emulab can become the worst-performing configuration in
EC2 due to a combination of factors. These factors such as net-
work driver overhead and thread context-switching overhead
are often subtle and not directly controllable by users. We
provide a set of candidate solutions to overcome the observed
performance problems. More generally, this study shows that
clouds are a relatively immature technology and significantly
more experimental analysis will be necessary in order for
public clouds to become truly suitability for mission-critical
applications.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of the benchmark application, the
experimental setup, and the tools used during the experiments.
In Section III we analyze performance and scalability in the
three platforms. In Section IV we discuss the performance
impact associate with multithreading, and Section V provides
results on network overhead. Related work is summarized in
Section VI, and Section VII concludes the paper.

II. EXPERIMENTAL SETTING

In this section we discuss our experimental approach. Sec-
tion II-A introduces our experiment procedure and automated
framework. In Section II-B and Section II-C we provide a
brief overview for macro-benchmark application and MySQL
cluster respectively, and in Section II-D we present our exper-
imental infrastructure, tools, and notations.
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A. Experimental Automated Framework

To enable experimental research at the scale of thousands of
experiments, we created a set of software tools in the Elba
project [1] [21] [23] to automate the process of setting-up,
executing, and monitoring an experiment in addition to the
logging of results and statistical analysis.

Our experimental cycle with Elba tools consists of three
stages, and each stage consists of a number of sub-steps. For
each new target platform (e.g., EC2), we start with the current
Elba code generation templates, which have been successfully
used in previous experiments and environments (e.g., Emulab).
In the first stage, we enhance our code generator input template
with the API specifications of the new hardware and software
platform on which experiments are run. The last step of stage
one uses the templates to generate the scripts that will create
and execute the experiments.

In the second stage, the first step runs the initialization
scripts to set up the experimental environment. These scripts
take into account the dependencies among the system com-
ponents, including hardware and hypervisor (usually invariant
through the experiments), operating system configuration, and
server configurations such as the database load on the database
server. In the second step, we run the planned experiments ac-
cording to the availability of hardware resources. For example,
we usually run the experiments by increasing the workload.
For each workload, we run the easily scalable (browse only)
scenario first, followed by read/write scenarios. To minimize
cache inter-dependencies across experiments, after each batch
of experiments, we finish the data collection, ramp-down the
system, stops all servers, and start the next batch with sufficient
ramp-up time. The iterations continue until all the experiments
are finished.

The third stage consists of data analysis. In the first step of
this stage, we copy all the collected data from the experimental
environment to our data warehouse for analysis. In the second
step, we run a number of statistical tools to analyze application
behavior. If performance limitations are found, we run tools
such as intervention and correlation analysis to find resource
bottlenecks, including multi-bottlenecks where dependencies
link multiple resources that limit their utilization. Sometimes
additional data is needed, either due to data quality problems
(e.g., interference during an experiment) or for a more refined
analysis (e.g., previous uncovered configuration settings).

B. Macro-benchmark Application

RUBBoS [7] is an n-tier electronic commerce system modeled
on bulletin board news sites such as Slashdot, and it is
widely used in large scale experiment studies. We modified
the benchmark to suite for our experiment workloads and
to collect various statistics. The workload consists of 24
different interactions such as register user, view story and post
comments. The benchmark can be deployed as a three-tier or
four-tier system and places a high load on the database tier.
A typical RUBBoS deployment with MySQL cluster is shown
in Figure 1. Also, benchmark includes two kinds of workload
modes: browse-only and read/write interaction mixes. We have

Fig. 1. A typical RUBBoS deployment with MySQL Cluster

TABLE I
HARDWARE CONFIGURATIONS IN THREE TESTBEDS.

Platform Type Processor Memory Arch
Amazon EC2 Small 1 EC2 Compute Unit 1.7 GB 32-bit

Large 4 EC2 Compute Units 7.5 GB 64-bit
Ex Large 8 EC2 Compute Units 15 GB 64-bit
Cluster 33.5 EC2 Compute Units 23 GB 64-bit

Emulab PC3000 3GHz 2 GB 64-bit

Open Cirrus X3210 3.00GHz (Quad Core) 4 GB 64-bit

limited our discussion to browse-only workloads in this paper
mainly due to the space constraints.

C. MySQL Cluster

MySQL Cluster [2] is an open source transactional database
designed for scalable high performance access to data through
both data partitioning and data replication. In our experiment
we used an “in-memory” version of MySQL Cluster and the
NDBCLUSTER storage engine. MySQL Cluster is imple-
mented by a combination of three types of nodes (Management
nodes, SQL nodes and Data nodes). A Management node
maintains the configuration of SQL nodes and Data nodes,
plus starting and stopping of those nodes. A Data node stores
cluster data. And an SQL node is the clustering middleware
that handles the internal data routing for partitioning, and
consistency among replicas for replication. Figure 1 illustrates
three types of nodes and how they are connected. The total
number of Data nodes is the product of the replication factor
and the number of partitions. For example, with replication
factor of 2 and database divided into 2 partitions, the resulting
MySQL Cluster will have four Data nodes.

D. Overview of Experiments

The experiments discussed in this paper were run in three
testbeds (i.e., Emulab [4], EC2 and Open Cirrus). Table I
shows the server types we used in three platforms (EC2
Compute Unit provides the equivalent CPU capacity of a 1.0–
1.2 GHz 2007 Xeon processor). We evaluated both horizontal
and vertical scalability on EC2, in contrast we limited our
analysis only to horizontal scalability in Emulab and Open
Cirrus. By horizontal scalability we mean the increase of
the number of nodes in the application (e.g., from 12 large
instances to 16 large instances), and by vertical scalability
we mean the same number of nodes but with better hardware
settings (e.g., from 12 large instances to 12 ex-large instances).
The nodes were connected over 1GB Ethernet in Emulab,
Infiniband in Open Cirrus, and for EC2 the connection types



were not exposed. To focus this study on the differences
among three platforms, we allocated each server to a dedicated
physical node. Specifically, the sharing of physical resources
(e.g., CPU) in a node is among the threads within each server,
not between servers. For each concrete hardware configuration
we observed the most appropriate software configuration (e.g.,
number of threads and thread pool sizes) by using the approach
mentioned in our previous work [34].

Each of our macro-benchmark experiment trials consisted
of three periods: 8-minute ramp-up, a 12-minute run period,
and a 30-second ramp-down. Performance measurements (e.g.,
CPU or network bandwidth utilization) were taken during the
Run period using lightweight system monitoring utilities (e.g.,
dstat and sar) with a granularity of one second.

While the macro-benchmark data gave us the interesting
bottleneck phenomena described in this paper, we often need
more detailed data to confirm concrete hypotheses on the non-
trivial causes of such phenomena. We have used both existing
tools and custom tools to obtain such micro scale data. We
employed a number of hardware monitoring and soft resource
monitoring tools such as LMBench [5] and NetPipe [6].

Notation: We use a notation #A-#T-#M-#D-ppp to represent
each concrete configuration. #A denotes the no. of Web
servers, #T for no. of Tomcat servers, #M for no. of SQL
nodes and #D for no. of Data nodes in the experiment. A
short string (ppp) denotes the platform (ec2 for EC2, em
for Emulab, and oc for Open Cirrus). For example, Figure 1
shows a 1-2-2-4-em configuration with 1 Web server, 2
Tomcat servers, 2 SQL nodes and 4 data nodes in Emulab. In
EC2 we add the instance (node) type at the end (small, large,
exlarge, or cluster).

III. CLOUD COMPARISON

In this section we present our experimental results. In Sec-
tion III-A we present performance and scalability charac-
teristics on reference platforms (i.e., Emulab) and compare
it with Open Cirrus, and Section III-B provides scalability
characteristics and performance issues on EC2.

A. Performance on Reference Platforms

To compare and contrast the performance complications of
commercial clouds against other alternative platforms it is
essential to have a good reference, Emulab and Open Cirrus
were used for this purpose. Methodically, we start with the
smallest possible configuration and then gradually scale up
based on the observed results.

More concretely, we started on Emulab with 1-2-2-2-em
configuration; the configuration consists of two SQL nodes
and two Data nodes, and we performed experiments from
1000 to 10,000 workloads (i.e., concurrent clients) with 1000
workload increments. Each client runs as a separate thread
and generates HTTP request using an exponential distribution
with average think time of 7s. As shown in Figure 2(a),
for 1-2-2-2-em configuration throughput saturated at 3000
workloads. Detailed analysis of monitoring data shows that
SQL node CPU utilization had become the bottleneck (see

Figure 3(a)). To resolve it, we scale-up our experiment and
introduce two additional Data nodes (1-2-2-4-em configu-
ration) by partitioning the database into two groups. Running
experiments with 4 Data nodes and 2 SQL nodes, we observed
that knee point shifted from 3000 to 5000. Next, we increased
the number of SQL nodes to 4 to get 1-2-4-4-em configu-
ration, likewise we continued this scaling-up process until we
resolved the hardware bottleneck. Through our analysis we
found 1-4-16-16-em as the smallest configuration which
can sustain our workload without system hardware resources
being bottlenecked (software resource started to saturate [34]).
Notably, as shown in Figure 2(a) our benchmark application
scales well on Emulab.

To better explain the observed performance charac-
teristics on Emulab we have provided CPU utilizations
for 1-2-2-2-em and 1-2-2-4-em configurations, Fig-
ure 3(a), 3(b) and 3(c) illustrate the CPU utilization in the
Tomcat Server, the SQL nodes and the Data nodes respectively.
As shown in the Figure 3(b), for both configurations SQL node
CPU has become the bottleneck, and as a result we have a flat
curve for throughput values (see Figure 2(a)).

We used the same methodology and performed a similar set
of experiments on Open Cirrus cloud. We achieved compara-
tively higher throughput values, and more importantly, Open
Cirrus shows much better scalability. Due to space limitations
we have only provided the observed throughput values (see
Figure 2(b)). Notably, in Open Cirrus we observed very low
resource utilization (e.g., less than 30% CPU utilization), thus,
we have omitted utilization graphs.

Our analysis on two reference platforms illustrated better
application scalability. More specifically, we did not observe
any performance degradation when migrating n-tier applica-
tion from a traditional datacenter to an IaaS cloud.

B. Amazon EC2 Performance

1) Horizontal Scale-Out (same nodes): We used the same
methodology as in Section III-A, and performed a similar
set of experiments in EC2. We kept as many experimental
parameters untouched as possible (except platform specific
parameters). Our initial expectation was to achieve better or
similar results to those from Emulab since we used better
hardware in EC2. Surprisingly, our assumptions were shown to
be wrong when we observed quite different behavior in EC2.
As shown in Figure 2(a) and (b) benchmark application scales
well on both Emulab and Open Cirrus, increasing the number
of Data nodes gives better performance; however, in EC2
increasing the number of Data nodes reduces the performance.
As shown in Figure 2(c) scaling from 1-2-2-2-large
to 1-2-2-4-large significantly reduced the throughput
and moving from 1-2-2-4-large to 1-2-2-8-large
further reduces the throughput. More specifically, the scalable
application on Emulab and Open Cirrus shows poor scalability
on EC2.

Our analysis of system monitoring data in EC2 shows
interesting results. Figure 3(a), 3(b) and 3(c) illustrate CPU
utilization for both Emulab and EC2. As we have already



(a) Emulab scale out (b) Open Cirrus scale out (c) EC2 scale out

Fig. 2. Horizontal scalability (same node type) analysis with heterogeneous throughput performance characteristics for three testbeds.

(a) Tomcat CPU (b) SQL CPU (c) Data node CPU

Fig. 3. Average CPU utilization for 1-2-2-2 and 1-2-2-4 configurations for Emulab and EC2.

discussed, in Emulab the key limiting factor was CPU con-
sumption (mostly saturated). Scaling up and down causes a
CPU bottleneck shift from one tier to another or a concurrent
bottleneck phenomenon in several tiers, however in EC2 we
observed a completely different utilization pattern and found
that all the server types have very low CPU utilization.

2) Vertical Scalability (different nodes): Here we present
our analysis results for vertical scalability on EC2. We started
our analysis with 1-2-2-2-ec2 on small instances (similar
hardware configurations as the PC3000s on Emulab) and
observed very poor performance (as compared to EC2’s hori-
zontal scalability), our results are shown in Figure 4(a). Node
level data analysis revealed that for small instances, the Data
node has considerably different CPU and I/O characteristics
compared to that of large instances. There are two main
reasons causing this issue: first, as Guohui et al. [28] described,
small instances always get 40% to 50% of the physical CPU
sharing, and second, differences in memory configurations
(Table I(b)). According to MySQL cluster documentation,
small instances does not have sufficent memory to keep the
complete database in memory, thus, it needs to use virtual
memory. As a pratical solution to this problem, we moved
to large instances and followed the same procedure; likewise,
we continued our process for the other EC2 instance types.
As shown in Figure 4(a), EC2 shows good vertical scalability
as compared to its horizontal scalability. As illustrated in
the figure we achieved the highest throughput with cluster
instances (cluster instances are the most powerful instances
available at the time we perform our experiments). In addition,
for 1-2-2-2-cluster we used software colocation, and

used only two cluster instances. In our colocation we deployed
two sets of 1-Tomcat, 1-SQL node, and 1-Data node in a single
cluster instance (i.e., total of two nodes).

The representative benchmark shows better horizontal scal-
ability on Emulab and Open Cirrus, better vertical scalability
on EC2, and in contrast poor horizontal scalability on EC2.
As illustrated in Figure 3(a), (b) and (c), the EC2 performance
degradation was not caused by CPU utilization. For our exper-
iments, we collected over 24 types of monitoring data (e.g.,
CPU, Memory, Disk read/write, network read/write, context
switches, interrupts), and thus, we extended our analysis on
other monitoring data and micro-benchmarks. We observed
two key issues: overhead associated with concurrent threads
(e.g., context switching and scheduling overhead) and network
driver overhead (e.g., latency and queuing delays).

IV. MULTITHREADING COSTS IN EC2

Here we present multithreading overhead analysis for EC2. We
discuss observed application instability due to an increased
number of threads, in Section IV-A we quantify context
switching overhead, and Section IV-B shows how to redesign
the application to guard against the multithreading issues.

Multi-tier systems are inherently difficult to analyze due to
complex dependencies of the system. As previously discussed
(see Section III-B), the benchmark application saturated in
EC2 due to effects of initially hidden resources utilization.
Consequently, we extended our systematic analysis with de-
tailed micro level analysis. Subsequently, we observed an in-
teresting phenomenon when using multithreading applications
on EC2. To illustrate, we selected a RUBBoS client workload



(a) EC2 - Throughput (b) RTT Comparison (c) Throughput Comparison

Fig. 4. Detailed EC2 Throughput and RTT analysis: (a) Vertical Scalability (Scales well); (b) RTT comparison of Apache, Client, and Client with reduced
threads; (c) Throughput—before and after reducing thread overhead.

generator and measured the round trip time (RTT) for each
request when increasing the number of concurrent threads.
We observed a sudden increase in RTT when the number of
threads increases. Typically, these types of observations lead
to assume server saturation; despite this, we observed the issue
to be caused by instability at the client.

To further illustrate the observed phenomena we used
RUBBoS application and logged the response time for each
individual request at the client nodes and the Apache web
server. Next, we used these two logs and calculated average
RTT separately. The results are shown in Figure 4(b). For
higher workloads, the calculated RTT using client logs differs
significantly from the Apache logs. In contrast, for lower
workloads, the RTT difference is negligible (e.g., RTT for
workloads less than 3000). Figure 4(b) illustrates how work-
load increases (i.e., number of concurrent threads) causes the
recording of larger and inaccurate RTTs at the client. Using
micro-benchmark studies we observed that the recorded RTT
difference is largely due to I/O intensive thread dispatching
overheads, which leads to the unstable behavior in the client.

A. Context Switching Overhead

To further analyze the previously observed phenomenon
we used LMbench [5]. We started with the default settings
of LMbench and performed all supported tests on Emulab
and EC2. We found surprising results for context switching
overhead. It recorded the context switching overhead in EC2
to be twice as high as in Emulab. Figure 5(a) shows time
for a single switch when varying the number of threads. As
generally accepted, measuring context switching time with
high accuracy is a difficult task. Nevertheless, analysis shows
that for a few number of threads (< 40) EC2 takes less time
for a switch compared to Emulab; in contrast, with a greater
number of threads, EC2 takes considerably longer time.

In our benchmark, the client is configured to have more than
250 concurrent threads; therefore, context switching becomes
a key issue. To illustrate the importance of this issue, we cal-
culated the average number of context switches when running
the benchmark application. Figure 5(b) shows the calculated
averages for both EC2 and Emulab. As shown in the figure
Emulab has a significantly higher number of context switches
compared to that of EC2. Moreover, combining Figure 2(a), (c)

and Figure 5(b) we can observe a close relationship between
EC2 throughput and the number of context switches.

To analyze context switching overhead from the resource
perspective, we calculated the overhead as CPU percentages.
In our experiments we measured the number of switches per
second (see Figure 5(b)), using LMBench we approximated
the time for a single context switch (against no. of threads),
and finally combining the two values we estimated the con-
text switching overhead for an experiment cycle. Figure 5(c)
illustrates the calculated overhead. As shown in the figure, for
the workloads which are higher than 3000, context switching
uses 10% of the CPU resources for both Emulab and EC2.
Note that the overhead is much more significant in EC2,
because the number of context switches and the throughput
are significantly lower while having similar overhead.

B. Proposed Alternative Approach

We experimentally showed how multithreading can affect ap-
plication performance in cloud environments. Here we propose
how to redesign the application to resolve the observed issues.

First, the most trivial solution in commercial clouds is to
rent more nodes so that each gets a lower number of users
(threads). This approach helps to reduce the overhead caused
by concurrent threads (see Section IV-A), and eventually
brings the application into a stable state. While this solution
is acceptable for occasional users that run an application only
a few times, for long term users who run their applications
often or continuously, this is not a viable option mainly due
to the associated renting cost.

Second, overhead can be reduced by reducing the number
of threads and increasing the amount of work done by a single
thread. For example, we redesigned RUBBoS workload gen-
erator to generate 7 times more messages (with same number
of threads) by reducing the average client think time (e.g.,
reducing think time from 7s to 1s). This code-level change is
analogous to loop-unrolling. Our solutions show significant
improvements, both in RTT (Figure 4(b)) and throughputs
(Figure 4(c)). We confirmed our hypothesis by calculating
the average response time using Apache logs and the clients’
logs. With the thread reduction, the recorded response time
at a client is much closer to that of the Apache logs. The
remaining difference can be explained with the queuing effects



(a) Time per a switch (measured by LMBench) (b) Context switches per second (c) Fraction of CPU spent on switching

Fig. 5. Comparative context switching analysis for Emulab and EC2.

that naturally take place between the two tiers. While this
solution is practical in many cases, it depends on the nature
of the application whether the desired concurrency level can
still be reached in this manner.

V. NETWORK DRIVER OVERHEAD

We increased the number of client nodes to 10 and resolved
the client issue, and subsequently shifted the bottleneck to
the back-end. In Section V-A we show the network traffic
increase through database partitioning and subsequent network
transmission overhead on EC2. In Section V-B we provide our
solutions to achieve higher performance in production clouds.

A. Network Driver Overhead

We extended our analysis to the network layer, and our
results revealed two important findings. First, increasing the
number of Data nodes (partitioning the database) caused a
significant increase in the network traffic generated at the Data
nodes. Second, we observed significantly higher transmission
queue sizes for EC2 compared to that of Emulab. We observed
that moving from 2 Data nodes to 4 Data nodes doubles
the network traffic. Nevertheless, for 1-2-2-2 configuration
both Emulab and EC2 shows similar network traffic patterns,
and also somewhat similar throughput values. However, for
1-2-2-4 shows different behaviors both in network traffic
and throughput (Figure 2(a) and (c)).

We selected the 1-2-2-4-em for Emulab and the
1-2-2-4-large for EC2 and used our network analysis
tools to observe network behavior. Through our data, we
observed a surprising behavior in the Data node server. As
shown in Figure 6(a), we observed that the sending queue
size (at the network layer) of the Data node in EC2 is much
higher than in Emulab. In contrast, the receiving sides of both
EC2 and Emulab show similar characteristic, and both have
negligible queue sizes.

In our benchmark, the Data node is the first server which
starts to generate a large amount of data in the request prop-
agation chain. Initially, users send a HTTP request to Apache
HTTPd, and then it forwards request to Tomcat. Tomcat
processes the request and generates SQL statements that are
sent to the SQL servers. The SQL servers send the query to the
Data nodes, which then processes those queries and generates

results. In this process, especially in the read-only scenario,
the message sizes of generated output are significantly higher
than the incoming message. Therefore, when the message rate
is high, the Data node generates more data. However, when
there is a problem at the transmitting side, the Data node
cannot send the data as required, which then results in a long
queue at the network buffers. Next, in the other tiers (e.g.,
Tomcat and Apache HTTPd), the connections start to wait as
well. Therefore, the overall message transmission rate reduces.
Eventually this behavior affects the entire system performance.

To further analyze observed hypothesis we used Net-
PIPE [6] and measured the achievable bandwidth. NetPIPE is a
protocol-independent performance tool that visually represents
the network performance under a variety of conditions. Our
results show that the two systems have similar bandwidth,
thus, confirming that the sending buffer issue is not caused
by network bandwidth.

We then used the Unix Ping program and measured the
RTT between the two Data nodes in two environments. First,
we evaluated ping RTT without generating any application
load, thus, making ping program the only process. Second,
we evaluated RTT while generating representative application
load. We observed the following very interesting behavior.
When there is no load EC2 shows significantly less RTT
compared (approximately 20 times less) to Emulab (see Fig-
ure 6(b)). In contrast, when populating the database, EC2
shows very large RTT that varies between 0.4 ms to 30ms (see
Figure 6(c)), but Emulab shows more similar results for both
cases (average of 0.2 ms). This provides additional evidence
to confirm network driver overhead on EC2 and potential
performance degradation.

B. Proposed Alternative Approach

As we discussed in Section V, due to this network overhead,
the scalable software system becomes not scalable in EC2.
We experimentally evaluated ways to overcome this issue. In
general, MySQL Cluster is a sophisticated but heavily used
database middleware in industry. It has a number of advantages
including availability, reliability, and scalability compared to
simpler replication solutions. Unfortunately, due to higher
network traffic generation of MySQL cluster, the complete
application shows poor scalability.

To illustrate the significance and to provide an alternate



(a) Data node sending queue length analysis (b) Ping RTT without load (EC2 is lower) (c) Ping RTT with load (Emulab is lower)

Fig. 6. Analysis of network driver overhead and characteristics for Emulab and EC2.

(a) Throughput improvement (b) Database tier—total traffic

Fig. 7. Performance comparison C-JDBC vs. MySQL Cluster.

solution we used the C-JDBC [30] middleware and performed
the same set of experiments as in Section III-A on EC2.
The observed throughput values are shown in Figure 7(a). As
shown in the figure C-JDBC shows very good scalability and
achieves very high throughput. Next, we measured the amount
of data generated at the database tier by the two approaches,
and our results are shown in Figure 7(b). As demonstrated in
the figure, C-JDBC generates a significantly smaller amount of
data compared to MySQL Cluster. Consequently, the middle-
ware results in lower pressure on the network, which causes
better performance. In contrast, MySQL Cluster produced a
large network traffic and higher pressure on the network driver.

VI. RELATED WORK

Traditionally, performance analysis in IT systems builds mod-
els based on expert knowledge and uses a small set of
experimental data to parameterize them [15], [16], [33]. The
most popular representative of such models is queuing theory.
Queuing networks have been widely applied in many perfor-
mance prediction methodologies [17], [18]. These approaches
are often constrained because of their rigid assumptions when
handling n-tier systems due to the complex dependencies. As
an illustration of significant characteristics that are hard to
capture with traditional analysis, consider the significance of
context switching—as shown in this paper—towards system
performance when a large number of threads is involved.

While the increasing popularity of cloud computing has
spawned very interesting research on private and public clouds,
to the best of our knowledge, no previous work has evaluated
IaaS clouds using complex n-tier systems to find performance
and scalability issues at all tiers. Jim et al. presented a method

for achieving optimization in clouds by using performance
models in the development, deployment, and operation of
applications that run in the cloud [10]. They illustrated the
architecture of the cloud, the services offered by the cloud to
support optimization, and the methodology used by developers
to enable runtime optimization of the clouds. Thomas et al.
analyzed the cloud for fundamental risks that may arise from
sharing physical infrastructure between mutually distrustful
users, even when their actions are isolated through machine
virtualization [14]. Ward et al. discussed the issues and risk
associated with migrating workloads to clouds, and the authors
also proposed an automated framework for “smooth” migra-
tion to cloud [25]. In contrast, we have studied the potential
scalability and performance issues after migration.

Mayur et al. evaluated Amazon S3 as a black box and
formulated recommendations for integrating S3 with science
applications and for designing future storage utilities targeting
this class of applications [13]. They discussed how costs
can be reduced by exploiting data usage and application
characteristics to improve performance and, more importantly,
by introducing user managed collaborative caching in the
system. Despite the apparent differences, this work has some
important similarities to our work: first, both approaches
evaluate commercial clouds; second, both papers use real
applications and not simulations; third, both approaches derive
recommendations to address the uncovered issues.

Guohui et al. have deeply analyzed the network overhead
on EC2 and presented a quantitative study on end-to-end
network performance among different EC2 instances [28].
Furthermore, Walker has presented a performance analysis and
shown that a performance gap exists between performing HPC
computations on a traditional scientific cluster and on an EC2
provisioned scientific clusters [26]. Similar to our findings,
his experiments also revealed the network as one of the key
overhead sources.

As part of our analysis, we have shown the significance of
virtualization and associated network overhead. Padma et al.
have looked at both the transmit and receive aspects of this
workload. Concretely, they analyzed virtualization overheads
and found that in both cases (i.e., transmit and receive) the
limitations of VM scaling are due to dom0 bottlenecks for
servicing interrupts [3]. Koh et al. also analyzed the I/O
overhead caused by virtualization and proposed an outsourcing



approach to improve the performance [27].

VII. CONCLUSION

In this paper we presented an experimental analysis of perfor-
mance and scalability when n-tier applications are migrated
to IaaS clouds. We employed the RUBBoS benchmark to
measure the performance on Emulab, Open Cirus, and EC2.
Especially the comparison of EC2 and Emulab yielded some
surprising results. In fact, the best-performing configuration
in Emulab became the worst-performing configuration in
EC2 due to a combination of several factors. Moreover, in
EC2 the network sending buffers limited the overall system
performance. For computation of intransitive workloads, a
higher number of concurrent threads performed better in EC2
while for network based workloads, high threading numbers in
EC2 showed a significantly lower performance. Our data also
exemplified the significance of context switching overheads.
We provided a set of suitable candidate solutions to overcome
the observed performance problems.

More generally, this work enhances the understanding of the
risks and rewards when migrating n-tier application workloads
into clouds and shows that clouds will require a variety
of further experimental analysis to be fully understood and
accepted as a mature technological alternative. In addition,
experiment results show the neediness of refactoring n-tier
applications before they are deployed on commercial clouds
especially when one has to satisfy production SLAs.
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