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Variations of generalised pairs

Caucher Birkar and Christopher D. Hacon

Abstract: In this paper we investigate various properties of gener-
alised pairs in families, especially boundedness of several kinds. We
show that many statements for usual pairs do not hold for generalised
pairs. In particular, we construct an unexpected counter-example to
boundedness of generalised lc models with fixed appropriate invari-
ants. We also show that the DCC of Iitaka volumes and existence of
nef reduction maps fail in families of generalised pairs.

In a positive direction we show boundedness of bases of log Calabi-
Yau fibrations with their induced generalised pair structure under
natural assumptions. Roughly speaking we prove this boundedness
for fibrations whose general fibres belong to a bounded family and
whose Iitaka volume is fixed.
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1. Introduction

In this paper we work over an algebraically closed field k of char-
acteristic zero.

Generalised pairs. In recent years the theory of generalised pairs
has been instrumental in many advances in higher dimensional al-
gebraic geometry. Roughly speaking a generalised pair consists of
a pair (X,B) and a nef divisor on some birational model of X. One
of the most natural contexts in which generalised pairs arise is that
of varieties that admit a log Calabi-Yau fibration. Calabi-Yau and
Fano varieties, their fibre spaces, and their local counterparts play a
central role in modern mathematics, and they are all special cases of
log Calabi-Yau fibrations.

A log Calabi-Yau fibration consists of a pair (V,∆) with log canon-
ical (lc) singularities together with a contraction f : V → X, i.e. a
projective morphism with connected fibres, such that KV + ∆ ∼Q 0
over X (note that here we allow the extreme cases when f is birational,
identity, or even constant). See [B18] for a systematic treatment. The
canonical bundle formula, also known as adjunction, says that we
can write

KV + ∆ ∼Q f ∗(KX + B +M)

where (X,B +M) naturally has the structure of a generalised pair: B
measures the singularities of the fibres and M measures the variation
of the fibres in their moduli space. The geometry of (V,∆) is often
studied in terms of the geometry of the fibres of (V,∆) → X and of
the base (X,B +M); see for example, [BZ16] and [B19].
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Standard birational geometry conjectures imply that all varieties
of intermediate log Kodaira dimension admit such a log Calabi-Yau
fibration, after some birational transformations. This constitutes a
very large class of varieties, and understanding their geometry is a
top priority for higher dimensional geometry and related areas.

Another natural context in which generalised pairs appear is that of
projective pairs (X,B) such that−(KX+B) is nef. Letting M := −(KX+B)
we obtain a generalised pair (X,B+M). Many of the examples studied
in this paper are constructed out of such pairs.

The purpose of this text is to investigate various properties of gen-
eralised pairs in families, especially boundedness of several kinds,
and then present applications to usual pairs and varieties. Gener-
alised pairs behave similarly to the usual pairs in many ways how-
ever, as we will see in this paper, there are several crucial differences
and unexpected phenomena. Many of the questions we are inter-
ested in can be reduced to questions in the context of a fixed family
as in the following setup.

1.1. Setup. Assume (X,B) is a pair where B is a Q-boundary, M is a
Q-divisor, and X→ T is a contraction onto a smooth variety. Assume that

• (X, SuppB ∪ SuppM) is relatively log smooth over T,
• for a dense set of closed points T′ ⊂ T, Mt is nef for any t ∈ T′ where

Xt is the fibre over t, Bt = B|Xt and Mt =M|Xt .

For each t ∈ T′, (Xt,Bt +Mt) is a generalised pair with nef part Mt.
Note that this does not imply that M is nef over T and so in general
(X,B +M) is not a generalised pair. However, it does follow that Mη

is nef, where η is the generic point of T. To see this note that if A
is an ample/T divisor and Mt is nef, then Mt + ǫAt is ample for any
ǫ > 0. Since ampleness is an open condition, it follows that Mη + ǫAη

is ample for any ǫ > 0. In particular, (Xη,Bη +Mη) is a generalised
pair.

Imposing various kinds of conditions on the generalised pairs
(Xt,Bt + Mt), for t ∈ T′, we would like to see if the same condi-
tions are satisfied for (Xη,Bη +Mη) or possibly for all fibers Xt over
an open subset U ⊂ T. This leads to many interesting questions that
are motivated by important applications and problems about usual
pairs.

Under the assumptions of 1.1, assume that (Xt,Bt+Mt) has a (good)
minimal model for every t ∈ T′.

(1) Does (Xη,Bη +Mη) have a (good) minimal model?
(2) Is R(KXη

+ Bη +Mη) finitely generated over k(T)?
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(3) Can we construct a minimal model for (Xt,Bt +Mt), for each
t ∈ T′, so that the minimal models form a bounded family?

(4) Does (Xt,Bt +Mt) have a minimal model for every t in some
open neighbourhood of T′?

(5) Can we run an MMP on KX + B +M over some open neigh-
bourhood of T′ so that it terminates with a minimal model of
(X,B +M) over that neighbourhood?

(6) Does the Iitaka volume Ivol(KXt + Bt +Mt) satisfy the DCC, in
particular, is there a lower bound for the Iitaka volume?

(7) If KX + B + M is nef over T, does there exist a relative nef
reduction map for KX + B +M over T?

It is easy to see that the answer to (1) is negative as shown by
Example 1.1 below. We will also see in §5 that the answer to (2) is
negative. This is in stark contrast to the case of usual pairs, that is,
when M = 0, because in this case even if (Xt,Bt) has a good minimal
model for only one t, then (Xη,Bη) has a good minimal model and
R(KXη

+ Bη) is finitely generated; in fact, (X,B) has a good minimal
model over T [HMX18].

Example 1.1. Assume that E is an elliptic curve over the complex
numbers and X = E × E → T = E and M is the Poincaré line bundle
and B = 0. Let T′ be the set of closed points t such that Mt is torsion.
Then KXt + Bt +Mt is torsion for each t ∈ T′, so (Xt,Bt +Mt) is already
a good minimal model for such t. However, KXt + Bt + Mt is not
torsion for any t < T′. In particular, KXη

+ Bη +Mη is not torsion, so
(Xη,Bη +Mη) does not have a good minimal model.

We will in fact construct counter-examples to Questions (1) and (2)
when KXt + Bt +Mt is big, which is much more subtle (see Section 5).
In particular, from this we deduce that the generalised lc models of a
bounded family of generalised pairs do not always form a bounded
family, hence we get a counter-example to a previously expected
conjecture.

More precisely, given d, p ∈ N and v ∈ Q>0, it was expected that
the set Fglc(d, p, v) of projective generalised lc pairs (X,B +M) with
nef part M′ (on some birational model of X) such that dim X = d, pM′

is Cartier, and KX + B +M is ample with volume v, forms a bounded
family. This was first studied in [Fil18] for surfaces. Boundedness
has been confirmed in the generalised klt case more recently [B21]
but we will show that it fails in the generalised lc case (see Section 5).
In fact this paper started out of trying to understand boundedness of
Fglc(d, p, v).
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Although boundedness ofFglc(d, p, v) fails in full generality, we still
expect that some weaker variants are true.

Question 1.2. Can we choose a generalised dlt model (Y,BY+MY) for each
(X,B +M) ∈ Fglc(d, p, v) so that the (Y,BY,MY) form a bounded family?

We have a positive answer to this question in dimension ≤ 3 (not
included in this paper) and we expect a positive answer in any di-
mension. Thus we expect a positive answer to Question (3).

We will see that the answer to Question (6) is also negative already
in dimension 2 (see Section 3). In a similar context we will show that
the answer to Question (7) is also negative (see Section 4).

Generalised pairs on bases of fibrations. Our next goal is to
investigate boundedness of bases of log Calabi-Yau fibrations, more
precisely boundedness of the generalised pairs on the bases of log
Calabi-Yau fibrations given by the canonical bundle formula. The
following theorem essentially says that considering lc log Calabi-
Yau fibrations where the general fibres are bounded and the Iitaka
volume is fixed we get boundedness of their bases.

Theorem 1.3. Let d ∈N,Φ ⊂ Q≥0 be a DCC set, and u, v ∈ Q>0. Consider
the set of projective pairs (X,B) and Q-divisors A ≥ 0 on X such that

• (X,B) is lc of dimension d,
• KX + B is semi-ample defining a contraction f : X→ Z,
• over the generic point ηZ: A is ample and contains no non-klt centre

of (X,B),
• the coefficients of B and the horizontal coefficients of A are in Φ,
• vol(A|F) = u for general fibres F of f , and
• Ivol(KX + B) = v.

Then we can write the adjunction formula

KX + B ∼Q f ∗(KZ + BZ +MZ)

such that the corresponding set of generalized pairs (Z,BZ +MZ) forms a
bounded family. In particular there exists a very ample divisor H on Z such
that Hdim Z, BZ ·H

dim Z−1 and MZ ·H
dim Z−1 are bounded by a fixed constant.

The theorem is very natural from the point of view of polarised va-
rieties and their moduli [B20][B21]. Indeed it is a crucial step towards
construction of moduli spaces that will be discussed elsewhere.

The hypothesis of Theorem 1.3 imply that the general fibres are
bounded in a uniform sense, by [B20, Corollary 1.8]. Moreover, the
assumptions also imply that

(Z,BZ +MZ) ∈ Fglc(e, p, v)
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where e ≤ d and p is fixed. Although Fglc(e, p, v) is not a bounded
family in general but the theorem says that the subset given by bases
of log Calabi-Yau fibrations forms a bounded family. When (X,B) is
klt this boundedness follows from [B21] but the lc case needs a lot
more work as we will see in this paper.

Although the bases (Z,BZ +MZ) form a bounded family, the pairs
(X,B) do not need to form a bounded family. Indeed here is a simple
example. Consider a Hirzebruch surface, i.e. X = Proj(OZ ⊕ OZ(n))
over Z = P1, together with its toric boundary ∆. Let A be a section
of X→ Z which does not contain any non-klt centre of (X,∆), and let
G be a general fibre. Put B = ∆ + G. Then (X,B),A→ Z satisfies the
assumptions of the theorem with d = 2,Φ = {1}, u = 1, v = 1. But it is
well-known that such X do not form a bounded family.

2. Preliminaries

In this section we collect definitions and results that are used in later
sections. We work over an algebraically closed field k of characteristic
zero. Varieties are assumed to be quasi-projective over k unless stated
otherwise.

2.1. Contractions. A contraction means a projective morphism f : X→
Y of varieties such that f∗OX = OY ( f is not necessarily birational). In
this paper we will always work in the setting where X is normal in
which case so is Y.

2.2. Divisors. Let X be a normal variety, and let M be an R-divisor
on X. For a prime divisor D we denote its coefficient in M by µDM.

We say that M is b-Cartier if it isR-Cartier and if there is a birational
contractionφ : W → X from a normal variety such thatφ∗M is Cartier.

For a birational map X d X′ (resp. X d X′′, resp. X d X′′′, and
resp. X d Y) whose inverse does not contract divisors, and for an
R-divisor M on X we usually denote the pushforward of M to X′

(resp. X′′, resp. X′′′, and resp. Y) by M′ (resp. M′′, resp. M′′′, and
resp. MY).

2.3. b-divisors. Let X be a normal variety. A b-divisor M over X is
a collection of R-divisors MY on Y for each birational contraction
Y → X from a normal variety that are compatible with respect to
pushforward, that is, if Y′ → X is another birational contraction and
ψ : Y′ d Y is a morphism, then ψ∗MY′ =MY.

A b-divisor M is b-R-Cartier if there is a birational contraction
Y → X such that MY is R-Cartier and such that for any birational
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contraction ψ : Y′ → Y/X we have MY′ = ψ
∗MY. In other words, a b-

R-Cartier b-divisor over X is determined by the choice of a birational
contraction Y → X and an R-Cartier R-divisor M on Y. But this
choice is not unique, that is, another birational contraction Y′ → X
and an R-Cartier R-divisor M′ on Y′ defines the same b-R-Cartier
b-divisor if there is a common resolution W → Y and W → Y′ on
which the pullbacks of M and M′ coincide.

A b-R-Cartier b-divisor represented by some Y → X and M is b-
Cartier if M is b-Cartier, i.e. its pullback to some resolution is Cartier.

2.4. Pairs. A pair (X,B) consists of a normal quasi-projective variety
X and an R-divisor B ≥ 0 such that KX + B is R-Cartier. If the
coefficients of B are at most 1 we say B is a boundary.

Let φ : W → X be a log resolution of a pair (X,B). Let KW + BW be
the pulback of KX + B. The log discrepancy of a prime divisor D on W
with respect to (X,B) is 1 − µDBW and it is denoted by a(D,X,B). We
say (X,B) is lc (resp. klt, resp. ǫ-lc) if a(D,X,B) is ≥ 0 (resp. > 0, resp.
≥ ǫ) for every D. Note that if (X,B) is an lc pair, then the coefficients of
B necessarily belong to [0, 1]. Also if (X,B) is ǫ-lc, then automatically
ǫ ≤ 1 because a(D,X,B) ≤ 1 for any divisor D on X.

Let (X,B) be a pair. A non-klt place of (X,B) is a prime divisor D on
a birational model of X such that a(D,X,B) ≤ 0. A non-klt centre is the
image on X of a non-klt place. The non-klt locus of (X,B) is the union
of all the non-klt centres.

2.5. Minimal model program (MMP). We will use standard re-
sults and concepts of the minimal model program (cf. [KM98] and
[BCHM10]). Assume (X,B) is a pair, X → Z is a projective mor-
phism, H is an ample/Z R-divisor, and KX + B+H is nef/Z. Suppose
(X,B) is klt or that it is Q-factorial dlt. We can run an MMP/Z on
KX + B with scaling of H. If (X,B) is klt and if either KX + B or B is
big/Z, then the MMP terminates [BCHM10]. If (X,B) is Q-factorial
dlt, then in general we do not know whether the MMP terminates
but we know that after finitely many steps of the MMP we reach a
model Y on which KY + BY, the pushforward of KX + B, is a limit
of movable/Z R-divisors: indeed, if the MMP terminates, then the
claim is obvious; otherwise the MMP produces an infinite sequence
Xi d Xi+1 of flips and a decreasing sequence αi of numbers in (0, 1]
such that KXi

+ Bi + αiHi is nef/Z; by [BCHM10] and [B12, Theorem
1.9], limαi = 0; in particular, if Y := X1, then KY + BY is the limit of
the movable/Z R-divisors KY + BY + αiHY.
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2.6. Generalised pairs. For the basic theory of generalised pairs see
[BZ16, Section 4] and for a survey see [B21b]. A generalised pair
consists of

• a normal variety X equipped with a projective morphism X→
Z,
• an R-divisor B ≥ 0 on X, and
• a b-R-Cartier b-divisor over X represented by some birational

contraction X′
φ
→ X and an R-Cartier divisor M′ on X′ such

that M′ is nef/Z and KX+B+M isR-Cartier, where M := φ∗M
′.

We will often refer to such a generalised pair by saying that (X,B+
M) is a generalised pair with data X′ → X and M′. When Z is a point
we omit it and simply say that the pair is projective in which case we
also say that (X,B +M) is a generalised pair with nef part M′.

Since a b-R-Cartier b-divisor is defined birationally, in practice
we will often replace X′ with a resolution and replace M′ with its
pullback.

Now we define generalised singularities. Replacing X′ we can
assume φ is a log resolution of (X,B). We can write

KX′ + B′ +M′ = φ∗(KX + B +M)

for some uniquely determined B′. For a prime divisor D on X′ the
generalised log discrepancy a(D,X,B +M) is defined to be 1 − µDB′.

We say (X,B +M) is generalised lc (resp. generalised klt, resp. gener-
alised ǫ-lc) if for each D the generalised log discrepancy a(D,X,B+M)
is ≥ 0 (resp. > 0, resp. ≥ ǫ). A generalised non-klt place of (X,B +M) is
a prime divisor D on a birational model of X with

a(D,X,B +M) ≤ 0,

and a generalised non-klt centre of (X,B +M) is the image of a gener-
alised non-klt place. The generalised non-klt locus of the generalised
pair is the union of all the generalised non-klt centres.

Given a generalised lc pair (X,B + M), we can run the MMP on
KX + B +M over Z with scaling of an ample divisor if (X,C) is klt for
some boundary C, for example, this is the case when (X,B+M) is Q-
factorial generalised dlt or when it is generalised klt. The termination
of this MMP has not been established in full generality, however it is
known that the MMP terminates if (X,B +M) is generalised klt and
KX + B +M or B +M is big over Z. For a more detailed discussion of
the MMP on generalised pairs, see [BZ16, Lemma 4.4].
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2.7. Families of generalised pairs. Let d ∈N, Φ ⊂ Q≥0, and v ∈ Q>0.
LetGglc(d,Φ) be the set of projective generalised pairs (X,B+M) with
nef part M′ such that

• (X,B +M) is generalised lc of dimension d,
• the coefficients of B are in Φ, and
• M′ =

∑

µiM
′
i

where µi ∈ Φ and M′
i

are nef Cartier.

Let Fglc(d,Φ, v) be the set of those (X,B +M) ∈ Gglc(d,Φ) such that

• KX + B +M is ample with volume vol(KX + B +M) = v.

We defineFgklt(d,Φ, v) similarly by replacing the generalised lc condi-
tion with generalised klt, and further define Fgklt(d,Φ, < v) similarly
by replacing the condition

vol(KX + B +M) = v

with
vol(KX + B +M) < v.

2.8. Bounded families. A couple (X,D) consists of a normal projec-
tive variety X and a divisor D on X whose non-zero coefficients are
all equal to 1, i.e. D is a reduced divisor. The reason we call (X,D) a
couple rather than a pair is that we are concerned with D rather than
KX +D and we do not want to assume KX +D to beQ-Cartier or with
nice singularities. Two couples (X,D) and (X′,D′) are isomorphic if
there is an isomorphism X→ X′ mapping D onto D′.

We say that a setP of couples of dimension ≤ d is bounded if there is
r ∈N such that for each (X,D) ∈ P we can find a very ample divisor
A on X so that Adim X ≤ r and D · Adim X−1 ≤ r. This is equivalent to
saying that there exist finitely many projective morphisms Vi → Ti of
varieties and reduced divisors Ci on Vi such that for each (X,D) ∈ P
there exist an i, a closed point t ∈ Ti, and an isomorphism φ : Vi

t d X
such that (Vi

t,C
i
t) is a couple and φ∗C

i
t ≥ D.

A set Q of projective lc pairs (X,B) is said to be bounded if the
(X, SuppB) form a bounded family of couples.

AssumeΦ ⊂ Q≥0 such that 0 is not an accumulation point ofΦ, e.g.
when Φ is DCC. We say that a set E ⊂ Gglc(d,Φ) forms a bounded
family if there is r ∈ N such that for each (X,B +M) ∈ E there is a
very ample divisor A on X with

Ad ≤ r and (KX + B +M) · Ad−1 ≤ r.

In particular this implies that the (X, SuppB) form a bounded family
of couples. However, since M is not necessarily effective, we cannot
control SuppM. In practice we can only bound SuppM up toQ-linear
equivalence.
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Some of the main results on boundedness of varieties can be found
in [HMX18], [B21a], [B20] where general type, Fano, and Calabi-Yau
pairs are treated, respectively (see also [HMX13],[HMX14]), [B19]).

2.9. Volume of divisors. For a Q-divisor D on a normal projective
variety with Kodaira dimension κ(D) ≥ 0, we define the Iitaka vol-
ume to be

Ivol(D) = lim sup
m∈N

κ(D)! h0(X,mD)

mκ(D)
.

When D is big, this is also called volume of D and denoted vol(D).
When D is semi-ample, it defines a contraction f : X → Z and D ∼Q
f ∗H for some ample Q-divisor H; in this case, Ivol(D) = Hdim Z.

2.10. Semi-ample families. A semi-ample family (X,B) → Z con-
sists of an lc pair (X,B) and a contraction X → Z such that KX + B is
semi-ample/Z.

Lemma 2.1. Let (X,B) be a pair and X→ Z be a contraction. Assume that
there is a dense set of closed points zi ∈ Z so that KFi

+ BFi
:= (KX + B)|Fi

is
semi-ample and (Fi,BFi

) is lc for each i, where Fi is the fibre over zi. Then
KX + B is semi-ample over some non-empty open subset of Z.

Proof. Shrinking Z we can assume that (X,B) is lc because a dense set
of its log fibres are lc. Moreover, replacing (X,B) with a dlt model, we
can assume (X,B) is dlt. By the dlt condition, there is a log resolution
φ : W → X so that a(D,X,B) > 0 for every prime exceptional divisor
D of φ. Let BW be the sum of the reduced exceptional divisor of φ
and the birational transform of B. Shrinking Z, we can assume that
(W,BW) is relatively log smooth over Z.

Let Fi,Gi be the fibres of X → Z and W → Z over zi, respectively.
Let KFi

+ BFi
:= (KX + B)|Fi

and KGi
+ BGi

:= (KW + BW)|Gi
. Shrinking Z,

we can assume that (Fi,BFi
) is a good minimal model of (Gi,BGi

) for
every i. Then by [HMX18, Theorem 1.2], (W,BW) has a good minimal
model (Y,BY) over Z. Thus (Y,BY) is also a good minimal model of
(X,B), and running an MMP on KX+B over Z with scaling of an ample
divisor ends with a good minimal model [B12, Theorem 1.9]. Replace
(Y,BY) with this minimal model. Since the KFi

+ BFi
are nef, we can

assume that the extremal rays contracted in the course of the MMP
do not intersect any of the Fi, i.e. the curves generating such rays do
not intersect Fi. Therefore, these extremal rays do not intersect the
generic fibre of X→ Z. So shrinking Z we can assume that Xd Y is
an isomoprhism, hence we can assume KX + B is already semi-ample
over Z.

�
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Lemma 2.2. Let d, v ∈ N and Φ ⊂ Q≥0 be a finite set. Assume that
fi : (Xi,Bi) → Zi is a sequence of semi-ample families and Hi are divisors
on Xi such that

• d = dim Xi > dim Zi,
• the horizontal/Zi coefficients of Bi are in Φ,
• Hi is very-ample over Zi with

(Hi|Fi
)dim Fi ≤ v and (Hi|Fi

)dim Fi−1 · Bi|Fi
≤ v

for the general fibres Fi of Xi → Zi.

Then, perhaps after replacing the sequence with an infinite subsequence,
there exists a semi-ample family (V,B) → V such that for each i we can
find a rational map Zi d V so that over the generic point ηZi

the family
(Xi,Bi) → Zi is the pullback of (V,B) → V via Zi d V. Moreover, the
images of ηZi

in V form a dense set.

Proof. Note that pullback here means the following where we shrink
Zi if necessary. First Xi = Zi ×VV. LetV0 be the largest open subset
ofV on which (V,B)→ V is relatively log smooth, and letB0 = B|V0 .
Then taking the closure of B0

i
= Zi ×V B

0 inside Xi gives Bi.
Our assumptions imply that the log general fibres (Fi,BFi

) of the
fi all belong to a bounded family of pairs. In particular, replacing
the sequence Ξ := {(Xi,Bi) → Zi} with an infinite subsequence and
perhaps shrinking Zi, discarding vertical components of Bi and re-

arranging the indices, we can assume Bi =
∑l

j=1 b jBi, j where Bi, j are
the irreducible components of Bi and the b j are independent of i.
Moreover, we can assume that r := dim Fi is independent of i. Let
α = (b1, . . . , bl) where we allow the possibility that l = 0 and α = ∅.
Then further shrinking Zi we see that (Xi,Bi)→ Zi is a (r, α)-marked
locally stable family according to [B20, 7.1(3)].

On the other hand, perhaps after replacing Hi with a bounded mul-
tiple and shrinking Zi we can assume that Hi defines an embedding
gi : Xi → P

n
Zi

, for some fixed n, so that Rk fi∗OXi
(Hi) ≃ Rkπi∗OPn

Zi
(1) for

all k ≥ 0 where πi : Pn
Zi
→ Zi is the projection and fi = πi ◦ gi. Then

(Xi,Bi) → Zi is a strongly embedded (r, α,Pn)-marked locally stable
family according to [B20, 7.1(5)].

The moduli functor of strongly embedded (r, α,Pn)-marked locally
stable families over reduced schemes is represented by a reduced
separated scheme E equipped with a universal family (E,D) → E
[K21] (also see [B20, Theorem 7.2]). In particular, each (Xi,Bi) → Zi

is the pullback of (E,D)→ E with respect to some morphism Zi → E
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(this kind of pullback is explained in [B20, 7.1(2)]). Our assumptions

(Hi|Fi
)dim Fi ≤ v and (Hi|Fi

)dim Fi−1 · Bi|Fi
≤ v

ensure that all the Zi map into a fixed finite type subscheme of E.
Therefore, there exists a strongly embedded (r, α,Pn)-marked locally
stable family (V,B)→ V where V,V are of finite type, so that each
family (Xi,Bi)→ Zi is the pullback of (V,B)→ V via some morphism
λi : Zi → V. Moreover, replacing the sequence Ξ with an infinite
subsequence and replacing V with the closure of the set of λi(ηZi

),
we can assume that V is irreducible and smooth and that {λi(ηZi

)} is
dense in V. In addition, we can assume thatV is irreducible and that
(V,B) is an lc pair. Also we can assumeV → V is a contraction. Now
(Xi,Bi) → Zi is the pullback of (V,B) → V via λi with the meaning
explained in the beginning of this proof. In particular, the pullback
of KV +B to Xi is KXi

+ Bi.
It is enough to show that perhaps after shrinking V, (V,B)→ V is

a semi-ample family, that is, that KV +B is semi-ample over V. Since
theλi(ηZi

) form a dense set in V and since the general log fibres (Fi,BFi
)

of (Xi,Bi) → Zi are among the general log fibres of (V,B) → V, we
see that there is a dense set of closed points vi ∈ V so that KV + B
restricted to the fibres over the vi is semi-ample. Now apply Lemma
2.1.

�

3. Failure of DCC of Iitaka volumes

In this section we will study how Iitaka volumes behave in families.
Consider the setup of 1.1 so that (X, SuppB + SuppM) is log smooth
over T and suppose that for a dense set of closed points T′ ⊂ T,
KXt + Bt +Mt is nef and big for all t ∈ T′. Letting η be the generic
point of T, we have that KXη

+ Bη +Mη is nef. Moreover, for t ∈ T′ the
volume

vol(KXt + Bt +Mt) = vol(KXη
+ Bη +Mη) = (KXη

+ Bη +Mη)
dim Xη

is constant (actually vol(KXt + Bt + Mt) is constant for t ∈ T′ even
without assuming KXt +Bt+Mt is nef, by [Fil18, Theorem 1.12] which
relies on [HMX13, Theorem 1.8]).

In much greater generality, if d ∈N and Φ ⊂ Q≥0 is DCC, then

{vol(KX + B +M) | (X,B +M) ∈ Gglc(d,Φ)}

is a DCC set, by [B21, Theorem 1.3].
If we remove the bigness assumption, then it is natural to consider

behaviour of the Iitaka volumes. In the case of usual pairs, that is,
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when M = 0, assuming that KXt +Bt is semiample for t ∈ T′, it follows
by [HMX18, Theorem 1.2] that (X,B) has a good minimal model over
T. It is then easy to see that the Iitaka volumes Ivol(KXt + Bt), for
t ∈ T′, belong to a DCC set, by stratifying the base T appropriately.

However, the following example shows that when M , 0, then
the DCC property and the existence of a lower bound for the Iitaka
volumes Ivol(KXt + Bt + Mt) can fail (even though we assume that
each KXt + Bt +Mt is semiample and generalised klt for all t ∈ T′).

Example 3.1. Let mi be a strictly increasing sequence of natural num-
bers. We will see that there exists a bounded family of surfaces Xi

so that | − miKXi
| is base point free defining a contraction fi : Xi → Zi

where fi has a multiple fibre with multiplicity mi (i.e. the fibre is miGi

where Gi is reduced and irreducible) and that letting Mi = −2KXi
, we

have

Ivol(KXi
+Mi) = deg(KZi

+ BZi
+MZi

) =
1

mi

where the expression KZi
+ BZi

+ MZi
is given by the generalised

canonical bundle formula applied to (Xi,Mi)→ Zi as in [Fil20].
To define Xi we follow [Fu90, Main Theorem 2.1]. Pick a smooth

elliptic curve E ⊂ P2 and nine points p1, . . . , p9 ∈ E such that
∑

pi has
order mi and in particular mi

∑

pi = O where O is the identity of E
(here

∑

pi means sum with respect to the group structure on E, not the
sum as a divisor). We may also fix a curve C of degree 3mi with simple
singularities of order mi at each pi and no other singularities. If we
blow up P2 we obtain a surface Xi with a morphism fi : Xi → Zi � P

1

defined by a pencil contained in the base point free linear series
| −miKXi

|. This pencil is spanned by miE
′ and C′ the strict transforms

of miE and C, thus there is a unique fiber of multiplicity mi and all
other fibers are reduced. We also have −miKXi

= f ∗
i
OP1(1). Letting

Ai = 2E′ + F′ where F′ is the exceptional divisor of Xi → P
2, then

Ai is very ample (this follows easily by Reider’s Criterion). We have
vol(Ai) = A2

i
= 27. In particular, such Xi form a bounded family.

Let Mi = −2KXi
. Consider the generalised canonical bundle for-

mula

−KXi
= KXi

+Mi ∼Q f ∗i (KZi
+ BZi

+MZi
).

By construction,

deg(KZi
+ BZi

+MZi
) =

1

mi
,

BZi
= (1 − 1

mi
)Qi where Qi is the image of E′, and deg MZi

= 1 + 2
mi

.
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Notice that the Iitaka volume

Ivol(KXi
+Mi) = deg(KZi

+ BZi
+MZi

)

is not bounded from below. It is easy to see that the set of such
(Xi,Mi) belongs to a family as in 1.1 where (Xi,Mi) is the fibre over
some ti ∈ T and the ti are dense in T (see §4 for details).

Note that vol(Ai|Fi
) = Ai ·Fi = 9mi is not bounded from above where

Fi is a general fibre of fi. So, not surprisingly, the Cartier index of MZi

is not bounded. See [B21, Theorem 1.7 and Lemma 7.4], for situations
for usual pairs where from boundedness of volume on general fibres
we can derive boundedness of Cartier index of the moduli divisor
and subsequently DCC property of the Iitaka volume.

On the other hand, one wonders if we can have a better behaviour
of the Iitaka volume numerically:

Question 3.2. Adopting the notation of 1.1, assume that (Xt,Bt +Mt) has
a good minimal model for all t ∈ T′, in particular

κ(KXt + Bt +Mt) = ν(KXt + Bt +Mt).

Is it true that

κ(KXη
+ Bη +M∗

η) = ν(KXη
+ Bη +Mη)

for some M∗
η ≡Mη where η ∈ T is the generic point?

We already pointed out above that the answer to the question is
negative if we take M∗

η = Mη.

4. Failure to the existence of a relative nef fibration

A useful fact about nef divisors on projective varieties is the exis-
tence of the so-called nef fibration (or nef reduction) map [Nef] which
roughly speaking contracts the curves with trivial intersection with
the nef divisor, at least, generically. More precisely, let L be a nef
divisor on a normal projective variety X. Then by [Nef, Theorem
2.1], there is a rational map X d Y which is a morphism over some
non-empty open subset U ⊂ Y, such that

(1) L|F ≡ 0 for the fibres F over U, and
(2) any curve C passing through a very general point of X such

that L · C = 0 is in fact contracted to a point by Xd Y.

Note that if dim X = 2, then the second condition above applies for
curves through a general point of X (if we work over C, it is in fact
a well known consequence of the Hodge Index Theorem that on a
surface, the set of curves C such that C · L = 0 is either finite or
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uncountable). However, when dim X ≥ 3, [LO16, Theorem 1] shows
that it is indeed necessary to consider curves C passing through very
general points of X. Here we discuss an example in the relative
setting also exhibiting a similar behaviour.

Fix E ⊂ P2 a smooth elliptic curve and distinct points p1, . . . , p8 on
E in general position, i.e. no 3 of then on a line and no 6 of them on
a conic. Consider the projection

P2 × T→ T � E \ {p1, . . . , p8}.

Let f : X → T be the family of surfaces given by blowing up the
constant sections p1 × T, . . . , p8 × T and the diagonal section

Γ = {(pt, t) ⊂ P
2 × T | t ∈ T}

in P2 × T where pt ∈ E is the point corresponding to t ∈ T under the
given isomorphism T � E \ {p1, . . . , p8}. Thus for any t ∈ T we have
that Xt is the blow up of P2 along p1, . . . , p8, pt. We let E be the strict
transform of E × T and F the exceptional divisor for ν : X→ P2 × T,
then 2E + F is f -very ample of degree (2Et + Ft)

2 = 27. Let

T′ = {t ∈ T | p1 + . . . + p8 + pt is torsion on E}, T∗ = T \ T′.

Here p1 + . . . + p8 + pt is sum in E according to the group law on E.

Claim 4.1. −KX is f -nef. More precisely

(1) If t ∈ T′, then −KXt is semiample and | −mKXt | defines a morphism
to P1 with one multiple fiber corresponding to mEt where m is the
order of the torsion point p1 + . . . + p8 + pt in E.

(2) If t ∈ T∗, then −KXt is nef. Moreover, if t ∈ T∗ and p1, ..., p8, pt

are in very general position on E then −KXt · C > 0 for all curves
Et , C ⊂ Xt.

Proof. (1) has been verified above, and since Et ∼ −KXt and E2
t = 0, it

follows that −KXt is nef. So suppose that p1 + . . . + p8 + pt are in very
general position on E. If−KXt ·C = 0 for some curve Et , C ⊂ Xt, then

the pushforward D of C on P2 is a curve such that D · E =
∑9

i=1 mipi.
Since g(E) > 0, this is well known to be impossible (see eg. [Nag59,
Lemma 5]).

�

Let M = −2KX, then

L := KX +M = −KX

is f -nef. By what we have seen above, the set of irreducible curves
C ⊂ Xt such that L·C = 0 consists of one curve for each t ∈ T∗ such that
p1, ..., p8, pt are in very general position on E and consists of the fibers
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of the induced fibrations Xt → P
1 for each t ∈ T′. Thus a relative nef

fibration for L does not exist because T′ is dense in T.

5. Generalised lc models

In this section we study boundedness of generalised lc models, that
is, projective generalised lc pairs (X,B +M) with ample KX + B +M.

5.1. Boundedness. Fix d ∈ N, Φ ⊂ Q≥0 a DCC set, and v ∈ Q>0. Let
Fglc(d,Φ, v) be the set of projective generalised pairs (X,B +M) with

data X′
φ
→ X and M′ where

• (X,B +M) is generalised lc of dimension d,
• the coefficients of B are in Φ,
• M′ =

∑

µiM
′
i

where M′
i

are nef Cartier and µi ∈ Φ,
• KX + B +M is ample, and
• vol(KX + B +M) = v.

Let

Fgklt(d,Φ, v) ⊂ Fglc(d,Φ, v)

consist of the subset of pairs that are generalised klt.
For usual pairs, that is, when M′ = 0, it is well-known that the

corresponding set of pairs in Fglc(d,Φ, v) forms a bounded family
[HMX18]. It is then natural to ask whether Fglc(d,Φ, v) also forms a
bounded family, that is, whether for each (X,B +M) we can find a
very ample divisor A so that Ad and Ad−1 · (KX + B +M) are bounded
from above depending on d,Φ, v.

Boundedness in the generalised klt case is known, that is,Fgklt(d,Φ, v)
is bounded, see [B21, Theorem 1.4]. Surprisingly, we will show that
Fglc(d,Φ, v) is not bounded in general by giving a counter-example in
dimension 3.

In [Fil18] it is claimed that boundedness holds in dimension 2, that
is, Fglc(2,Φ, v) is bounded but the proof overlooks some subtle issues
so boundedness for generalised lc pairs in dimesion 2 is an open
question.

Question 5.1. Is Fglc(2,Φ, v) bounded?

We will show that the Cartier index of KX + B +M for

(X,B +M) ∈ Fglc(2,Φ, v)

is not always bounded even when (X,B) is fixed but M varies.
Although boundedness of Fglc(d,Φ, v) fails in general but we still

hope that some subsets of interest are bounded.



Variations of generalised pairs 17

Question 5.2. Do the generalised pairs in Fglc(d,Φ, v) given by the canon-
ical bundle formula form a bounded family? More precisely, consider those

(X,B +M) ∈ Fglc(d,Φ, v)

for which there is an lc pair (V,∆) of fixed dimension with a contraction
f : V → X so that the coefficients of B are in a fixed DCC set and that we
have a canonical bundle formula

KV + ∆ ∼Q f ∗(KX + B +M).

Do such (X,B +M) form a bounded family?

A possible answer is given by Theorem 1.3.
In a different direction we ask:

Question 5.3. Can we choose a generalised dlt model (Y,BY+MY) for each

(X,B +M) ∈ Fglc(d,Φ, v)

so that the (Y,BY +MY) form a bounded family?

In dimension two the answer to this question is affirmative by the
birational boundedness ofFglc(2,Φ, v) discussed below. In dimension
3 again the answer is affirmative but for more subtle reasons.

Another manifestation of boundedness is the fact that the set of
log discrepancies

{a(D,X,B+M) ≤ 1 | (X,B+M) ∈ Fglc(d,Φ, v), D prime divisor over X}

is finite, see [B21, Theorem 1.5].
On the other hand, we know that the family Fglc(d,Φ, v) is log

birationally bounded, that is, there exists a bounded family of couples
P so that for each

(X,B +M) ∈ Fglc(d,Φ, v)

there exist a log smooth couple (X,Σ) ∈ P and a birational map

Xd X such that

• Σ contains the exceptional divisors of Xd X and the support
of the birational transform of B, and
• every M′

i
with µi > 0 descends to a nef divisor Mi on X.

See Theorem 1.2 of [B21]. Moreover, letting B be the birational trans-

form of B plus the reduced exceptional divisor of Xd X and setting

M =
∑

µiMi, we can assume that

vol(KX + B +M) = v.

See [B21, Proposition 5.2].
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Using this birational boundedness, we can often reformulate our
questions in terms of a fixed family. For example, a positive answer
to the following question gives a positive answer to Question 5.3.

Question 5.4. Assume (X,B) is a pair where B is a Q-boundary and M is
a Q-divisor such that

• (X, SuppB∪ SuppM) is relatively log smooth and projective over a
variety T,
• for a dense set of closed points t ∈ T, Mt is nef, KXt + Bt +Mt is big

and (Xt,Bt +Mt) has a generalised lc model (i.e. R(KXt + Bt +Mt)
is f.g.) where Xt is the fibre over t, Bt = B|Xt and Mt =M|Xt .

Perhaps after shrinking T, can we run an MMP on KX + B +M over T so
that it terminates?

The failure of boundedness of Fglc(d,Φ, v) shows that in general
(Xη,Bη +Mη) does not have a generalised lc model, that is, the gen-
eralised lc ring R(KXη

+ Bη +Mη) fails to be finitely generated. But
this does not contradict the existence of the MMP as in the question
above.

5.2. Failure of boundedness of Cartier index for Fglc(2,Φ, v). We
present an example to show that for

(X,B +M) ∈ Fglc(2,Φ, v)

in general the Cartier index of KX + B +M is not bounded. Indeed,
let E be an elliptic curve over C, X be the projective cone over E,
Y → X be the blow up of the vertex, and Y → E be the associated
P1-bundle. Then X has lc singularities: it is smooth other than at
the vertex where it has an lc but not klt singularity. Pick a reduced
divisor B so that KX +B is ample and (X,B) is lc, and let KY +BY be its
pullback to Y. Let MY be the pullback of a torsion Cartier divisor on
E via Y→ E, and let M be its pushforward to X. Then

(X,B +M) ∈ Fglc(2,Φ, v)

where Φ = {1} and

v := vol(KX + B +M) = vol(KX + B)

is independent of M. But the Cartier index of KX +B+M depends on
the Cartier index of M which in turn depends on the torsion index
of MY. In this example, (Y,BY +MY) is the bounded generalised dlt
model (as in Question 5.3), and KY + BY +MY is semi-ample but it
is not effectively semi-ample, i.e. no bounded multiple is base point
free.
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This example also shows that in general a family F of generalised
lc models (X,B +M) can be bounded in the sense that there is a very
ample divisor A on X with bounded Adim X and (KX +B+M) ·Adim X−1

but such that no bounded multiple of KX + B +M is very ample.

5.3. Failure of boundedness of Fglc(3,Φ, v). We construct a family
of generalised pairs (Ui,BUi

+NUi
) in Fglc(3,Φ, v) for someΦ, v so that

the Ui do not form a bounded family. In fact, in the example BUi
= 0

and NUi
= −2KUi

, so Ui is a Fano variety.
Recall from Example 3.1 that there exist a strictly increasing se-

quence mi of natural numbers and a bounded family of surfaces Xi

so that | − miKXi
| is base point free defining a contraction fi : Xi → Zi

where fi has a multiple fibre with multiplicity mi. Letting Mi = −2KXi
,

the canonical bundle formula gives

−KXi
= KXi

+Mi ∼Q f ∗i (KZi
+ BZi

+MZi
),

and

deg(KZi
+ BZi

+MZi
) =

1

mi
.

Moreover, on Xi we have a very ample divisor Ai with A2
i
= 27.

Let

Si = Proj(OXi
⊕ OXi

(Ai)),

πi : Si → Xi be the projection, and Hi be the tautological divisor. Then
Hi is big and base point free defining a contraction Si → Vi which
contracts exactly Xi to a point.

Consider Xi as a subset of Si given by the section so that Hi|Xi
∼ 0.

First note that

KSi
+Xi +Hi

is πi-trivial, so

KSi
+ Xi +Hi ∼ π

∗
i KXi

,

hence −(KSi
+Xi +Hi) is semi-ample. Therefore,

−(KSi
+ Xi) = Hi − (KSi

+ Xi +Hi)

is semi-ample and big as Hi is big and base point free.
Now let Ni = −2(KSi

+ Xi). Then

KSi
+Xi +Ni = −(KSi

+Xi)

is semi-ample and big defining a contraction hi : Si → Ui which con-
tracts Xi: actually the curves contracted are exactly the fibres of the
elliptic fibration Xi → Zi because if C is any contracted curve, then
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Hi ·C = 0 which means C ⊂ Xi, and −KXi
·C = 0 (here Xi is considered

as embedded in Si as above). In particular,

KSi
+ Xi = h∗i KUi

and Ni = h∗i NUi

where NUi
is the pushforward of Ni. So Zi ⊂ Ui is a generalised non-

klt centre of (Ui,NUi
) as well as of (Ui, 0). Note that −KUi

is ample, so
Ui is an lc Fano variety.

Since (Si,Xi) is bounded, replacing the sequence we can assume
that the volume of KSi

+Xi +Ni is fixed, say it is v. Then the (Ui,NUi
)

are generalised lc models with fixed volume. More precisely,

(Ui,NUi
) ∈ Fglc(3,Φ, v)

where Φ = {0, 1}. However, by construction,

f ∗i (KUi
|Zi

) ∼Q (h∗i KUi
)|Xi
= (KSi

+ Xi)|Xi
= KXi

,

so

−KUi
· Zi = Ivol(−KXi

) = deg(KZi
+ BZi

+MZi
) =

1

mi

with the above notation, so the Cartier index of KUi
is not bounded.

We argue that the Ui cannot form a bounded family. Suppose
not, then we can assume that we have a projective family U → T
containing all such Ui as fibers Uti

over points ti ∈ T. By the cone
theorem, we can choose a very ample/T divisor A so that KUti

+A|Uti

is ample for every i.
Let ν : U′ → U be a resolution. Shrinking T and passing to a

subsequence, we may assume that T is smooth and (U′,E′) is log
smooth over T where E′ is the exceptional divisor of ν. Changing A
linearly, we can assume that A ≥ 0 and that (U′,E′+A′) is log smooth
over T where A′ = ν∗A. Moreover, we may assume that

νi = ν|U′ti
: U′ti
→ Uti

� Ui

is a resolution and (U′ti
,E′ti
+A′ti

) is log smooth where E′ti
is the excep-

tional locus of νi and A′ti
= A′|U′ti

.

Passing to a subsequence we can assume that vol(KU′ti
+E′ti

+A′ti
) is

independent of i [HMX13, Theorem 1.8]. Let Ati
be the pushforward

of A′ti
. Then (Uti

,Ati
) is lc because

ν∗i (KUti
+ Ati

) ≤ KU′ti
+ E′ti

+ A′ti

where we use the facts that Uti
is lc and A′ti

= ν∗
i
Ati

. Since KUti
+ Ati

is ample, (Uti
,Ati

) is the lc model of (U′ti
,E′ti
+ A′ti

). In particular,
(U′ti

,E′ti
+ A′ti

) has a good minimal model which is a dlt model of
(Uti

,Ati
).
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By [HMX18, Theorem 1.2],

(U′,∆′ := E′ + A′)

has a good minimal model over T. Let U′ d Uc be the corresponding
lc model, and let ∆c be the pushforward of ∆′. Then the log fibre
(Uc

ti
,∆c

ti
) over ti is isomorphic to (Uti

,Ati
). In particular, the Cartier

index of KUti
+ Ati

is bounded which in turn implies that the Cartier
index of KUti

is bounded. Since Uti
≃ Ui, the Cartier index of KUi

is
bounded, a contradiction.

It is worth elaborating more on the above example. By construc-
tion, Si → Vi factors through hi. The induced morphism Ui → Vi

contracts Zi only. Since −KUi
is ample, Ui → Vi is a flipping contrac-

tion. Recall that Ui → Vi is defined by the big and base point free
divisor Hi. We claim that the Vi belong to a bounded family. Using

πi∗OSi
(Hi) ≃ OXi

⊕ OXi
(Ai)

and its symmetric powers we can show that vol(Hi) is bounded.
Moreover, |Hi| defines a birational map: indeed, assume v,w are
general closed points on Si; if πi(v) , πi(w), then using the above
isomorphism of sheaves we can find a section in H0(Si,Hi) vanishing
at v but not at w, and vice versa; ifπ(v) = π(w), then using the fact that
|Hi| is free and that deg Hi|F = 1, where F is the fibre of πi containing
v,w, we can again find a section in H0(Si,Hi) vanishing at v but not
at w, and vice versa. Therefore, the Vi belong to a bounded family.

Let HVi
be the pushforward of Hi. We can find 0 ≤ LVi

∼ 7HVi
, so

that (Si,Xi + Li) is lc and log smooth where Li is the pullback of LVi
.

Now let U+
i
→ Vi be the flip of Ui → Vi. Then (U+

i
, LU+

i
) is the ample

model of (Si,Xi + Li). Since the latter form a bounded family, the
(U+

i
, LU+

i
) also form a bounded family. Note that since Ui is smooth

outside Zi, U+
i

is klt. We have then an example of an unbounded
family Ui which becomes klt and bounded after a flip.

6. Boundedness of generalised pairs on bases of fibrations

In this section we prove our main result on boundedness of gen-
eralised pairs that are induced by adjunction for fibrations as in
Theorem 1.3. We will first need to make some preparations.

6.1. Preparations. We start with a reduction from the lc case to the
dlt case.
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Lemma 6.1. Let d ∈ N, Φ ⊂ Q≥0 be a DCC set, and u ∈ Q>0. Then there
exists a finite set Π ⊂ Q>0 satisfying the following. Consider the set of
projective pairs (X,B) and divisors A ≥ 0 such that

• (X,B) is lc of dimension d,
• KX + B is semi-ample defining a contraction f : X→ Z,
• over the generic point ηZ of Z: A is ample and contains no non-klt

centre of (X,B),
• the coefficients of B and the horizontal coefficients of A are in Φ,
• vol(A|F) = u for general fibres F of f .

Then there exist a crepant model (X′,B′) of (X,B) and an integral divisor
A′ ≥ 0 on X′ such that

• vol(A′|F′) ∈ Π for the general fibres F′ of X′ → Z,
• the coefficients of B′ belong to Φ ∪ {1}, and
• over ηZ we have: (X′,B′) is dlt, A′ is ample and contains no non-klt

centre of (X′,B′).

Proof. We can fix the relative dimension r = dim X − dim Z. If r = 0,
then the statement holds by simply taking (X′,B′) to be a Q-factorial
dlt model of (X,B) and A′ be any effective integral divisor. So assume
r > 0. Let F be a general fibre of f and BF = B|F and AF = A|F. Let
δ be the minimum positive number in Φ. Then the coefficients of
AF are ≥ δ. By [B20, Theorem 6.4], there exists a positive rational
number s > 0 depending only on d,Φ, u such that (F,BF + sAF) is log
canonical and hence a stable pair with volume vol(KF+BF+sAF) = sru.
By [HMX18, Theorem 1.1], it follows that the pairs (F,BF + sAF) are
bounded and the horizontal coefficients of B and A are in a finite
subset Φ0 ⊂ Φ. It follows that there is a fixed integer m ∈ N so that
H := m(KX+B+sA) is very ample over ηZ and the volume v := vol(H|F)
is fixed.

Clearly there exist a crepant model (X′,B′) of (X,B) and an integral
divisor A′ ≥ 0 on X′ such that A′ is very ample overηZ, the coefficients
of B′ belong toΦ∪{1}, and over ηZ we have: (X′,B′) is dlt, A′ contains
no non-klt centre of (X′,B′). Choose such (X′,B′),A′ with minimal
vol(A′|F′) where F′ is a general fibre of X′ → Z.

It is enough to show that vol(A′|F′) is bounded from above. As-
sume not, and choose a sequence Ξ = {(X,B),A → Z} so that for
the corresponding sequence (X′,B′),A′ the volumes vol(A′|F′) are not
bounded from above. Perhaps after replacing the sequence with a
subsequence and applying Lemma 2.2, we can assume that there
exists a semi-ample family (V,B) → V such that for each family
(X,B),A→ Z in Ξ, over the generic point ηZ the family (X,B)→ Z is



Variations of generalised pairs 23

the pullback of (V,B) → V via some rational map Z d V, and the
images of the ηZ form a dense set in V.

By definition of semi-ample families, (V,B) is lc. Pick a dlt model
(V′′,B′′) of (V,B) together with a general very ample/V Cartier
divisor A′′ ≥ 0 not containing any non-klt centre of (V′′,B′′). Then
we can assume that pulling back the family (V′′,B′′),A′′ → V over
some appropriate open subset S ⊂ Z via Zd V we get a semi-ample
family (U′′,BU′′) → S and a very ample/S divisor AU′′ ≥ 0 such that
(U′′,BU′′) is a dlt model of (X,B) over S and AU′′ does not contain any
non-klt centre of (U′′,BU′′).

Take a compactification X′′′ of U′′ over X and take a log resolution
W → X′′′ so that it is an isomorphism over the generic point of the
non-klt centres of (U′′,BU′′) (this is possible by the dlt condition). Let
U ⊂ X be the image of U′′. Let E1 be the sum of the exceptional/X
prime divisors on W whose generic point maps into U, and let E2

be the sum of the other exceptional/X prime divisors on W. Let B∼

be the birational transform of B and write B∼ = B∼
1
+ B∼2 where the

generic point of each component of B∼
1

maps into U but the generic
point of each component of B∼2 maps outside U. Let

CW = E1 + B∼1 + eE2 + eB∼2

where e < 1 is a rational number sufficiently close to 1. Let A∼U′′ be
the birational transform of AU′′ on W.

Pick a small rational number t > 0. Then, perhaps after removing
some vertical/Z components of A∼U′′ and after some blowups of W, we
can assume that the pair (W,CW+tA∼U′′) is lc and that the generic point
of each of its non-klt centres maps into U. Over U, (U′′,BU′′ + tAU′′) is
an lc model of (W,CW+tA∼U′′), hence (W,CW+tA∼U′′) has a good minimal
model over U [B12]. Thus (W,CW + tA∼U′′) has a good minimal model
(X′′,C′′ + tA′′) over X, by [HX13], which we can assume to be Q-
factorial. Over U, (X′′,C′′ + tA′′) is a dlt model of (U′′,BU′′ + tAU′′),
so the map X′′ d X′′′ is a morphism over U. Since t is small, we can
assume that the exceptional divisors of W d X′′ are independent of t.
In particular, over X, KX′′ +C′′ is a limit of movable/X divisors. Then
by the general negativity lemma [B12, Lemma 3.3], denoting X′′ → X
by φ we have φ∗(KX + B) − (KX′′ + C′′) ≥ 0. Thus every exceptional
prime divisor of φ has log discrepancy zero with respect to (X,B) as
the coefficient of such divisors in C′′ is ≥ e and e is sufficiently close
to 1. Let KX′′ +B′′ = φ∗(KX +B). Then we see that (X′′,B′′) is a crepant
model of (X,B), the coefficients of B′′ are in Φ ∪ {1}, and over ηZ,
A′′ ≥ 0 does not contain any non-klt centre of (X′′,B′′).
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Now replace X′′ with the lc model of (X′′,C′′ + tA′′) over X. Then
over U, (X′′,C′′ + tA′′) is just (U′′,BU′′ + tAU′′). In particular, over ηZ,
(X′′,B′′) is dlt and A′′ ≥ 0 is very ample. By construction, vol(A′′|F′′)
belongs to a fixed finite set Π where F′′ is a general fibre of X′′ →
Z. This contradicts the assumption that vol(A′|F′) is not bounded
from above where F′ is a general fibre of X′ → Z and the fact that
vol(A′′|F′′) ≥ vol(A′|F′) by our choice of (X′,B′),A′.

�

6.2. Adjunction for generic dlt pairs. Next we treat adjunction on
non-klt centres for generic dlt pairs.

Lemma 6.2. Let d ∈ N and let Φ ⊂ Q≥0 be a DCC set. Then there is a
DCC setΨ satisfying the following. Let (X,B) be an lc pair of dimension d
where the coefficients of B are in Φ. Assume V is a non-klt centre of (X,B)
and that (X,B) is dlt near the generic point ηV. Let Vν be the normalisation
of V. Then we have an adjunction formula KVν + BVν = (KX + B)|Vν where
the coefficients of BVν belong toΨ.

Proof. Since (X,B) is dlt near ηV, there is a log resolution φ : W → X
which is an isomorphism over ηV. Let BW be the sum of the reduced
exceptional divisor of φ and the birational transform of B. Running
an MMP on KW + BW over X with scaling of an ample divisor ends
with a model X′ such that (X′,B′) is a dlt model of (X,B), where B′ is
the pushforward of BW, and so that X′ → X is an isomorphism over
ηV. In particular, V has a birational transform V′ on X′. It is then well-
known that we have an adjunction formula KV′ + BV′ = (KX′ + B′)|V′
where the coefficients of BV′ belong to a fixed DCC setΨ. Moreover,
V′ is normal, so V′ → V factors through Vν. Now let BVν be the
pushforward of BV′ .

�

6.3. Uniform Galois covers. We will now discuss Galois covers in
families.

Lemma 6.3. Let d, r ∈N. Consider commutative diagrams

S′

α
��⑧⑧
⑧⑧
⑧⑧
⑧⑧ β

  
❆❆

❆❆
❆❆

❆

S
π

��
❄❄

❄❄
❄❄

❄❄
Z′

φ
~~⑥
⑥
⑥
⑥

Z
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of normal projective varieties of dimension d where α and φ are birational
and π is finite. Assume HS,HZ′ are very ample divisors on S,Z′ with
(α∗HS + β

∗HZ′)
d ≤ r. Then there is a very ample divisor HZ on Z such

that (α∗HS + β
∗HZ′ + α

∗π∗HZ)d is bounded from above, in particular, such
Z belong to a bounded family.

Proof. Consider the induced rational map Sd Z′. We can replace S′

with the normalisation of the graph Γ of S d Z′. Then α∗HS + β
∗HZ′

is ample, base point free and defines a birational morphism ψ : S′ →
Γ ⊂ Pn such that ψ∗R|Γ = α

∗HS + β
∗HZ′ , where R is a hyperplane, and

S′ → Γ is the normalization. Since (R|Γ)
d = (α∗HS+β

∗HZ′)
d is bounded,

it follows that Γ is bounded and hence S′ belongs to a bounded family.
Therefore, there exist projective morphisms S′ →Z′ → T of normal
varieties of finite type where S′ → Z′ is generically finite, so that
each S′ → Z′ as above is isomorphic to S′t → Z

′
t for some closed

point t ∈ T. We may further assume that the set of such points t ∈ T
is dense in each component of T.

There is a finite morphismV′ → S′ from a normal variety so that
the induced morphism V′ → Z′ is Galois over the generic point of
Z′, i.e. the corresponding extension of function fields is Galois, say
with Galois group G. Then over some non-empty open subsetU′ of
Z′ we have: V′ → Z′ is a Galois finite étale cover and G acts onV′

with quotient beingZ′.
Pick S← S′ → Z′ as above where we assume S′ is the normalised

graph of S d Z′ and that S′ → Z′ is isomorphic to S′t → Z
′
t for

some closed point t ∈ T. It is enough to consider the case when
ηZ′t ∈ U

′ and when V′t is a normal variety, by stratifying T and
applying Noetherian induction. Then overZ′t ∩U

′ we have:

V′ :=V′t →Z
′
t = Z′

is a Galois finite étale cover with Galois group G, and G acts on V′t
with quotient beingZ′t ∩U

′.
By construction, V′ → Z′ factors through S′ → Z′. Now let V be

the closure of S in the function field k(V′). Then V → S is a finite
morphism which induces a finite morphism V → Z. Since Z′ d Z
is birational, V → Z is generically Galois with Galois group G. In
fact V is just the closure of Z in k(V′). In particular, G acts on V with
quotient being Z.

Denote V→ S by γ. Put L =
∑

g∈G g∗(γ∗HS). Then L is a G-invariant
divisor, so L = γ∗π∗N for some ample Cartier divisor N on Z. We show
that |N| is a base point free linear system which defines a birational
quasi-finite map Z → Z̄. Thus Z → Z̄ is the normalization of Z̄ and
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N̄ is a very ample line bundle on Z̄ with N = ν∗N̄. Pick a closed point
z ∈ Z. Since HS is very ample, we can choose HS in its linear system
so that it is effective and that it does not contain any element ofπ−1{z}.
Then γ∗HS does not contain any element of γ−1π−1{z}. Since G does
not map any point in V \ γ−1π−1{z} into γ−1π−1{z}, g∗(γ∗HS) does not
intersect γ−1π−1{z} for any g, hence L does not intersect γ−1π−1{z} as
well. Therefore, we can choose N in its linear system so that it does
not contain z. We can similarly show that if z1, z2 are general closed
points in Z, then there is a section of N which vanishes at z1 but does
not vanish at z2, so |N| defines a birational map.

Now we show that vol(N) is bounded from above. It is enough
to show that vol(L) is bounded. Since (α∗HS + β

∗HZ′)
d is bounded,

there exists a fixed number l ∈ N such that lβ∗HZ′ − α
∗HS is big:

indeed taking HS,HZ′ general in their linear systems we see that
(S′, α∗HS + β

∗HZ′) belongs to a bounded family from which we can
deduce the claim. Thus the pullback of lβ∗HZ′ − α

∗HS to V′ is big. On
the other hand, let V̄′ be the closure of Z′ in k(V′). Then G acts on V̄′

with quotient V̄′/G being Z′. Moreover, V̄′ → Z′ is the finite part of
the Stein factorisation of V′ → Z′, and V → Z is the finite part of the
Stein factorisation of V̄′ → Z. Therefore, if λ, ρ denote V̄′ → S and
V̄′ → Z′ respectively, then lρ∗HZ′ − λ

∗HS is big because V′ → V̄′ is a
birational morphism. So we see that

|G|lρ∗HZ′ −
∑

g∈G

g∗(λ∗HS)

is big. In particular, the volume of
∑

g∈G g∗(λ∗HS) is bounded from
above which in turn implies volume of L is bounded from above.

Finally, the above arguments show that (Z̄, N̄) belong to a bounded
family and hence so do (Z,N). Thus a bounded multiple HZ of
N is very ample. Arguing similarly to the previous paragraph by
working on V̄′ and comparing with ρ∗HZ′ one shows that the volume
of α∗HS + β

∗HZ′ + α
∗π∗HZ is also bounded.

�

6.4. Adjunction for fibrations. We now consider adjunction for fi-
brations in the setting of Theorem 1.3.

Lemma 6.4. Let (X,B),A→ Z be as in Theorem 1.3.
(i) There exist 2 ≤ q ∈ N and a DCC set Ψ depending on d, Φ, and u

such that we can write an adjunction formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)
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where qMZ′′ is Cartier for MZ′′ the moduli part on any sufficiently high
resolution ν : Z′′ → Z. Moreover,

(Z,BZ +MZ) ∈ Fglc(e,Ψ, v)

for some 0 ≤ e ≤ d.
(ii) There exists a bounded set of couplesP such that for each (Z,BZ+MZ)

as above, there exists a log smooth couple (Z′,Σ′) ∈ P and a birational map
η : Z′ d Z such that

(1) BZ′ ≤ Σ
′ where BZ′ := Ex(η) + η−1

∗ BZ is the sum of the reduced
exceptional divisor for Z′ d Z plus the strict transform of BZ,

(2) the moduli b-divisor descends to MZ′ on Z′,
(3) vol(KZ′ + BZ′ +MZ′) = v,
(4) a(P,Z,BZ +MZ) ≥ a(P,Z′,BZ′ +MZ′) for any prime divisor P over

Z, and
(5) Zd Z′ does not contract any divisor.

Proof. By Lemma 6.1, we may replace (X,B),A so that we can assume
that A|F is integral. By [B21, Lemma 7.4], there exist 2 ≤ p, q ∈ N
(depending on d, Φ, and u) such that we can write the adjunction
formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)

where pMZ′′ is Cartier for MZ′′ the moduli part on any sufficiently
high resolution ν : Z′′ → Z. Replacing p, q by pq we can assume qMZ′′

is Cartier.
Moreover, by [HMX14], the coefficients of BZ belong to a DCC set
Ψ depending only on d,Φ. Thus replacingΨwithΨ∪ 1

q
Z, it follows

that

(Z,BZ +MZ) ∈ Fglc(e,Ψ, v)

where 0 ≤ e ≤ d. This proves (i).
By [B21, Proposition 5.2], there exists a bounded set of couples P

such that for each (Z,BZ +MZ) as above, there exists a log smooth
couple (Z′,Σ′) ∈ P and a birational map η : Z′ d Z satisfying (1)-(3).
To see (4), let µ : Z̄→ Z′ and ν : Z̄→ Z be a common resolution and
note that by construction,

F := µ∗(KZ′ + BZ′ +MZ′) − ν
∗(KZ + BZ +MZ)

is anti-nef over Z′ and µ∗F ≥ 0. By the negativity lemma, F ≥ 0 and
thus (4) holds. (5) is then an immediate consequence of [B21, Lemma
2.17 ].

�
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6.5. Reduction to the generic klt case. We reduce Theorem 1.3 to
the generic klt case. This will allow us to eventually reduce Theorem
1.3 to some statement about klt log Calabi-Yau fibrations.

Lemma 6.5. Assume that Theorem 1.3 holds when (X,B) is klt over ηZ.
Then the theorem holds in general.

Proof. Step 1. Suppose that (X,B) is not klt over ηZ. Applying Lemma
6.1, we can assume that (X,B) is dlt over ηZ. Let q,Ψ and the adjunc-
tion formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)

be as in Lemma 6.4. Let V be a non-klt centre of (X,B) dominating
Z, which is minimal among such dominating non-klt centres. Let
Vν → V be the normalisation. Since (X,B) is dlt near the generic
point ηV, by Lemma 6.2, we can define KVν + BVν = (KX + B)|Vν where

the coefficients of BVν are in a fixed DCC set. Let Vν → S
π
→ Z be

the Stein factorisation of Vν → Z. Then (Vν,BVν) is an lc pair which
is klt over ηZ and hence klt over ηS, the generic point of S. Clearly,
KVν+BVν is semi-ample with Iitaka volume deg(π)v and its associated
contraction is just Vν → S.

Step 2. If F is a general fibre of X → Z and KF + BF = (KX + B)|F
and AF = A|F, then (F,BF + sAF) is dlt and it belongs to a bounded
family for some fixed s ∈ Q>0, as observed in the proof of Lemma 6.1,
and the coefficients of BF + sAF take finitely many possible values. In
particular, the non-klt centres of (F,BF) belong to a bounded family,
and the number of such centres is bounded. Now each irreducible
component of F∩V is a non-klt centre of (F,BF), hence the number of
connected components of F ∩ V is bounded. But F ∩ V is the fibre of
V→ Z over f (F), so the number of connected components of F∩V is
just the degree of π : S→ Z, so this degree is bounded. In particular,
this means that

vol(π∗(KZ + BZ +MZ)) = (degπ)v

takes finitely many possible values. Moreover, over ηS, A|Vν is ample
containing no non-klt centre of (Vν,BVν). In addition, if G is a general
fibre of Vν → S, then G is an irreducible component of F∩V, hence it
is a non-klt centre of the bounded pair (F,BF+ sAF), so we can see that
the coefficients of A|G and vol(A|G) each take finitely many possible
values (note that (X,B) is dlt over ηZ, so V = Vν over ηZ). Thus the
horizontal coefficients of A|Vν also take finitely many possible values.

Therefore, we can assume that (Vν,BVν) → S satisfies the hypoth-
esis of Theorem 1.3 for certain fixed data d′,Φ′, u′, v′ in place of
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d,Φ, u, v, and moreover (Vν,BVν) is klt over ηS. Thus, we may as-
sume that S is bounded by assumption. That is, there is a very
ample divisor HS with bounded He

S
and π∗(KZ+BZ+MZ) ·He−1

S
where

e = dim S = dim Z.

Step 3. Recall the bounded birational model KZ′ + BZ′ +MZ′ given
by Lemma 6.4 (ii). Arguing as in Step 4 of the proof of [B21, Theorem
1.3] and perhaps after replacing q with a multiple we can find a family
(Z′,B′ +M′)→ T where T is quasi-projective, (Z′,B′) is log smooth
over T, for each (Z′,BZ′ +MZ′) as above there is a closed point t ∈ T
so that (Z′,BZ′) is isomorphic to (Z′t,B

′
t) and qM′ ∼ qM′

t, and the set
of such points t is dense in each component of T. Note that we are
not assuming (Z′,B′ +M′) to be a generalised pair, i.e. M′ is not
necessarily nef over T.

By [BZ16, Theorem 1.3], there exists an integer m > 0, depending
only on e,Ψ, v such that |m(KZ′ + BZ′ +MZ′)| defines a birational map
for each (Z′,BZ′ +MZ′) as above. Note that h0(m(KZ′ + B

′ +M′)) is
locally constant on some dense open subset T0 ⊂ T. Thus, possibly
shrinking T0, by base change of cohomology, we may assume that

H0(m(KZ′ +B
′ +M′))→ H0(m(KZ′t +B

′
t +M

′
t))

is surjective for every closed point t ∈ T0 which implies that KZ′ +
B′ +M′ is big over each component of T because |m(KZ′t +B

′
t +M

′
t)|

defines a birational map for a dense subset of points t ∈ T.
Fix a divisor H ′ on Z′ which is very ample over T. Shrinking T0

and replacing m by a multiple, we may assume that m(KZ′t+B
′
t+M

′
t)−

H ′t is big for every t ∈ T0. By Notherian induction, decomposing T
in to a finite union of locally closed subsets, we may assume that
m(KZ′t +B

′
t+M

′
t)−H

′
t is big for every t ∈ T. In particular, there exists

a very ample divisor HZ′ such that

m(KZ′ + BZ′ +MZ′) −HZ′

is big. Similarly we can assume that

−(KZ′ + BZ′ +MZ′) + nHZ′

is big for some fixed n ∈N.
Let HZ be the pushforward of HZ′ to Z. Then m(KZ+BZ+MZ)−HZ

is also big. Thus

π∗HZ ·H
e−1
S ≤ mπ∗(KZ + BZ +MZ) ·He−1

S
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is bounded. Note that π∗HZ makes sense even if HZ is not Q-Cartier
because π is finite.

Step 4. Consider the induced rational map S d Z′. Let S′ be the
normalisation of the graph of this map and α : S′ → S and β : S′ → Z′

the induced morphisms. The divisor HZ is Q-Cartier on the comple-
ment J of a codimension two subset of Z, so π∗HZ is Q-Cartier on the
complement J′ of a codimension two subset of Z′. By the negativity
lemma applied over J′, α∗π∗HZ − β

∗HZ′ ≥ 0 holds over J′, and so

α∗He−1
S · β∗HZ′ ≤ α

∗He−1
S · α∗π∗HZ

is bounded. Since α∗HS and β∗HZ′ are nef, we have inequalities (cf.
[Laz04, Corollary 1.6.3])

(α∗He−1
S · β∗HZ′)

k ≥ (α∗He−k
S · β

∗Hk
Z′) · (α

∗He
S)k−1

so that α∗He−k
S
· β∗Hk

Z′
is bounded for 0 ≤ k ≤ e. Thus (α∗HS + β

∗HZ′)
e is

bounded.
Now Z is bounded by Lemma 6.3. More precisely, there is a very

ample divisor LZ on Z such that (α∗HS + β
∗HZ′ + α

∗π∗LZ)e is bounded
from above. In particular, Le

Z and Le−1
Z · KZ are bounded. Since

−(KZ′ + BZ′ +MZ′) + nHZ′

is big and

β∗(KZ′ + BZ′ +MZ′) ≥ α
∗π∗(KZ + BZ +MZ),

it follows that

Le−1
Z · (KZ + BZ +MZ) ≤ α∗π∗Le−1

Z · β
∗(nHZ′)

and thus Le−1
Z · (KZ + BZ +MZ) is bounded from above. Since Le−1

Z · KZ

is bounded, Le−1
Z · BZ and Le−1

Z ·MZ are bounded. Now rename LZ to
H to be as in the statement of the theorem.

�

6.6. Boundedness of generalised lc models with bounded singu-
larities and volume.

Lemma 6.6. Let d ∈ N, Φ ⊂ Q≥0 be a finite set, and ǫ, v ∈ Q>0. Then the
set of

(X,B +M) ∈ Fgklt(d,Φ, < v)

such that (X,B +M) is generalised ǫ-lc, forms a bounded family.
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Proof. Decreasing ǫ we can assume it is rational. By [B21, Theorem
1.2], there exists a bounded set of log smooth couples P such that for
each (X,B +M) as in the lemma there exists a log smooth birational

model (X,B+M) where B = (1−ǫ)E+B∼, E is the reduced exceptional

divisor of X d X and B∼ is the strict transform of B, the nef part M′

descends to X as M, and B ≤ Σ for some couple (X,Σ) ∈ P. Note

that since Φ is finite, we can assume that pM′ (and hence also pM)
is Cartier for some fixed p ∈ N. Expanding Φ, we can assume 1 − ǫ
belongs to Φ.

Since KX+B+M is ample and (X,B+M) is generalised ǫ-lc, for any

prime divisor D over X, we have

a(D,X,B +M) ≥ a(D,X,B +M) = a(D,X,B).

The above inequality is immediate for any divisor on X and follows

easily, for any prime divisor D over X, by a standard application of
the negativity lemma. In particular, if D is a divisor on X which is

exceptional over X, then

1 ≥ a(D,X,B +M) ≥ a(D,X,B +M) = a(D,X,B).

Since (X,B) is bounded and ǫ-lc, all such divisors D ⊂ X can be ob-
tained by a bounded number of smooth blowups, which are toroidal

with respect to (X,Σ). Therefore, replacing X by an appropriate bi-

rational model, we can assume that X d X does not contract any
divisor.

Moreover, by the arguments of the proof of [B21, Theorem 1.3],
there exist finitely many relatively log smooth families (V,∆) → T
over smooth varieties and Q-Cartier divisors N and a fixed n ∈ N
such that (X,B) is isomorphic to the log fibre (Vt,∆t) over some closed

point t ∈ T, and nM ∼ nN|Vt where we have identified X and Vt under
the given isomorphism. From now on we can restrict ourselves to
one of the families (V,∆),N→ T.

By [Fil18, Theorem 1.12], vol(KVt + ∆t + Nt) is independent of t
whenever Nt = N|Vt is nef. Thus it is enough to consider the case

when vol(KX + B +M) is a fixed positive rational number, say w. But

then since Xd X does not contract any divisor,

vol(KX + B +M) ≤ vol(KX + B +M).
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On the other hand, since a(D,X,B+M) ≥ a(D,X,B+M) for any prime

divisor D over X, then

vol(KX + B +M) ≥ vol(KX + B +M).

Thus vol(KX + B +M) = w, hence

(X,B +M) ∈ Fgklt(d,Φ,w).

By [B21, Theorem 1.4], Fgklt(d,Φ,w) is bounded so we are done.
�

6.7. Klt log Calabi-Yau fibrations. We now consider boundedness
of log Calabi-Yau fibrations in the klt case.

Lemma 6.7. Let d ∈ N, Φ ⊂ Q≥0 be a finite set, u, ǫ ∈ Q>0. Then there
exist q ∈N and δ ∈ Q>0 satisfying the following. Consider projective pairs
(X,B), contractions f : X→ Z, and Q-divisors A on X such that

• (X,B) is ǫ-lc of dimension d,
• KX + B ∼Q 0/Z,
• A is big over Z,
• the coefficients of B and the horizontal coefficients of A are inΦ, and
• vol(A|F) ≤ u for general fibres F of f .

Then we can write an adjunction formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)

with qMZ′ Cartier and qBZ integral where MZ′ is the moduli divisor on any
high resolution Z′ → Z. Moreover, (Z,BZ +MZ) is generalised δ-lc.

Proof. Removing the vertical components of A we can assume all
its components are horizontal, hence all its coefficients are in Φ.
Expanding Φ and replacing A with a multiple we can assume it is
integral. Replacing X with the ample model of A over Z, we can
assume that A is ample over Z. Moreover, if (F,BF) is a general log
fibre of (X,B) → Z and AF = A|F, then (F, Supp(BF + AF)) belongs
to a bounded family by [B20, Corollary 1.6], hence we can assume
that vol(AF) is fixed. By [B21, Lemma 7.4], there exist 2 ≤ p, q ∈ N
(depending on d, Φ, and u) such that we can write the adjunction
formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)

where pMZ′ is Cartier for MZ′ the moduli part on any sufficiently high
resolution ν : Z′ → Z. Replacing p, q by pq we can assume qMZ′ is
Cartier.
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Since (F, Supp(BF+AF)) belongs to a bounded family, vol(Supp(BF)+
AF) is bounded from above as Φ is finite. Then (Z,BZ +MZ) is gen-
eralised δ-lc for some fixed δ > 0 depending only on d, ǫ, u, by [B18,
Theorem 1.9]. This implies that multiplicities of the fibres of f over
codimension one points are bounded, i.e. for any prime divisor D
on Z, the coefficients of f ∗D over the generic point ηD belong to a
fixed finite set because (Z,BZ + MZ) being generalised δ-lc implies
(X,B + δ f ∗D) is lc over ηD by definition of adjunction.

Let D be a component of BZ. SinceΦ is finite, there is a fixed integer
r ∈N such that rq(KX +B) is integral. Moreover, q(KZ+MZ) is Cartier
near ηD because Z is normal so it is smooth on a neighborhood of ηD

and because both qKZ and qMZ are integral. So over ηD, the divisor
rq f ∗(KZ +MZ) is integral. Then since

rq(KX + B) − rq f ∗(KZ +MZ) ∼ rq f ∗BZ

over ηD, we deduce that rq f ∗BZ is integral over ηD. This implies that
the coefficient of D in BZ belongs to a fixed finite set: indeed, let S
be a component of f ∗D mapping onto D; then the coefficient µS f ∗D
belongs to a fixed finite set by the previous paragraph; therefore,

µDBZ = µSrq f ∗BZ/rqµS f ∗D

belongs to a fixed finite set. Thus all the coefficients of BZ belong to
a fixed finite set, so replacing q we can ensure qBZ is integral.

�

We apply a recent result of [J22] to prove a birational boundedness
statement for klt log Calabi-Yau fibrations.

Lemma 6.8. Let d ∈ N, Φ ⊂ Q≥0 be a finite set, u, v, ǫ ∈ Q>0. Consider
projective pairs (X,B) and Q-divisors A on X such that

• (X,B) is ǫ-lc of dimension d,
• KX + B is semi-ample defining a contraction f : X→ Z,
• A ≥ 0 is integral and ample over Z,
• the coefficients of B are in Φ,
• vol(A|F) ≤ u for general fibres F of f , and
• Ivol(KX + B) ≤ v.

Then there exist a bounded projective pair (Y,BY) over Z and a birational
map X d Y/Z not contracting any divisor where KY + BY is the pullback
of KX + B under Yd X.

Proof. As observed in the proof of Lemma 6.7, for a general fibre
F of f , (F, Supp(BF + AF)) belongs to a bounded family. Using the
assumption that A is integral and vol(A|F) ≤ u, there are then finitely
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many possibilities for the horizontal coefficients of A. Moreover, by
Lemma 6.7, there exist fixed q ∈ N and δ ∈ Q>0 so that we can write
an adjunction formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)

with qMZ′ Cartier where MZ′ is the moduli divisor on any high reso-
lution Z′ → Z, and qBZ integral. Moreover, (Z,BZ+MZ) is generalised
δ-lc.

By assumption,

vol(KZ + BZ +MZ) = Ivol(KX + B) ≤ v,

so takingΨ = { i
q
| 0 ≤ i ≤ q}, we see that

(Z,BZ +MZ) ∈ Fgklt(e,Ψ, < 2v),

where 0 ≤ e ≤ d. Therefore, by Lemma 6.6, (Z,BZ +MZ) belongs to a
bounded family. This implies that the Cartier index of KZ + BZ +MZ

is bounded: indeed, by [BZ16, Theorem 1.3], there is a fixed m ∈ N
so that m(KZ + BZ +MZ) ∼ D ≥ 0 where D has integral coefficients.
So (Z, SuppD) is bounded and D has coefficients in a fixed finite set.
Thus some bounded multiple of D is Cartier, by [B19, Lemma 2.24 or
2.25]. Note this also shows that the Cartier index of KX+B is bounded
by the above adjunction formula.

The previous paragraph implies that there are finitely many pos-
sibilities for vol(KZ + BZ +MZ). Then applying [J22, Theorem 1.2] to
(X,B) → Z, there exist a bounded projective pair (V,BV) and a bira-
tional map Xd V such that pullbacks of KX+B and KV +BV agree on
any common resolution of X,V. In particular, KV +BV is semi-ample,
hence V d Z is a morphism. Since the Cartier index of KX + B is
bounded, the coefficients of BV belong to a fixed finite set. Let (Y,BY)
be a terminal crepant model of (V,BV). Then by [B18, Theorem 1.3],
(Y,BY) is bounded. Moreover, X d Y does not contract any divisor
because for any prime divisor S on X we have

a(S,Y,BY) = a(S,X,B) ≤ 1.

Finally KY + BY coincides with the pullback of KX + B under Yd X.
�

6.8. Log discrepancies.

Lemma 6.9. Let (X,B),A→ Z be as in Theorem 1.3. Then

{a(D,X,B) ≤ 1 | D prime divisor over X}

is a subset of a fixed finite set depending only on d,Φ, u, v



Variations of generalised pairs 35

Proof. This follows from the proof of [B21, Lemma 8.2]. In [B21,
Lemma 8.2], in addition to our assumptions, it is assumed that
(X,B),A is a stable pair meaning that KX + B + A is ample and that
(X,B + tA) is lc for some t > 0. But the proof does not use ampleness
of KX+B+A (see the remark after the proof of [B21, Lemma 8.2]) and
it uses existence of t only over ηZ which is satisfied in our situation.
So the same exact proof applies to our situation.

�

6.9. Proof of 1.3. We are now ready to prove our main result on
boundedness of bases of fibrations.

Proof of Theorem 1.3. Step 1. By Lemma 6.5, we can assume that (X,B)
is klt over ηZ. Moreover, applying Lemma 6.1, we can assume that A
is integral. Recall that by Lemma 6.4 we have the adjunction formula

q(KX + B) ∼ q f ∗(KZ + BZ +MZ)

with qMZ′ Cartier where MZ′ is the moduli divisor on any high reso-
lution Z′ → Z, and that

(Z,BZ +MZ) ∈ Fglc(e,Ψ, v)

where e = dim Z and q,Ψ depend only on d,Φ, u.
By Lemma 6.4, we have a bounded birational model (Z′,BZ′ +MZ′)

of (Z,B +M) so that the moduli divisor descends to Z′ as MZ′ . Here
Z d Z′ does not contract any divisor and BZ′ is the sum of the
birational transform of BZ and the reduced exceptional divisor of
Z′ d Z.

Also recall from Step 3 of the proof of Lemma 6.5 that there is a
very ample divisor HZ′ such that

m(KZ′ + BZ′ +MZ′) −HZ′

and
−(KZ′ + BZ′ +MZ′) + nHZ′

are big for some fixed m, n ∈N.

Step 2. Take a log resolution φ : W → X of (X,B) such that W d Z′

is a morphism and write KW + BW = φ
∗(KX + B). Let ΓW = B≥0

W
. Then

KW + ΓW = φ
∗(KX + B) + P

where P ≥ 0 is exceptional over X. Run an MMP on KW + ΓW over Z′

with scaling of some ample divisor. We reach a model Y on which
KY + ΓY is a limit of movable/Z′ Q-divisors. Let U′ ⊂ Z′ be the
largest open set on which Z′ d Z is an isomorphism. Then (X,B) is
a weak lc model of (W, ΓW) over U′, so (W, ΓW) has a minimal model
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over U′ [B12, Corollary 3.7], hence the MMP terminates over U′ and
KY + ΓY ∼Q 0 over U′ [B12, Theorem 1.9]. In particular, PY = 0 over
U′ and PY is vertical over Z′.

Actually the MMP terminates over the complement of a codimen-
sion ≥ 2 subset S′ ⊂ Z′: indeed, let D be a prime divisor on Z′; then
over ηD, we have PY ∼Q QY ≥ 0 where QY is very exceptional over
ηD meaning QY does not contain some component of the pullback of
D that maps onto D; but then the MMP terminates over ηD by [B12,
Theorem 1.8] and KY +ΓY ∼Q 0 over ηD. Therefore, KY +ΓY ∼Q 0 over
Z′ \ S′ for some codimension ≥ 2 subset S′ ⊂ Z′.

Step 3. Over Z′ \ S′ we have the adjunction formula

KY + ΓY ∼Q g∗(KZ′ + ΓZ′ +MZ′)

where g denotes Y → Z′, ΓZ′ is the discriminant divisor and MZ′ is
the moduli divisor. Since the pullbacks of KX + B and KY + ΓY to
a common resolution of X,Y agree over U′, MZ′ is the same as the
moduli part in Step 1 induced by (X,B) → Z [B19, 3.4(2)], and the
pushforward of ΓZ′ to Z is just BZ.

Now consider

IY := g∗(KZ′ + ΓZ′ +MZ′) − (KY + ΓY).

By the above discussions, IY ∼Q 0 on g−1(Z′ \ S′), so IY ∼Q JY where
SuppJY maps into S′. In particular, JY is very exceptional over Z′.
Moreover,

−JY ∼Q −IY ∼Q KY + ΓY/Z
′,

so−JY is a limit of movable/Z′ Q-divisors which shows −JY ·C ≥ 0 for
the very general curves of E→ Z′ for any component E of JY, hence
JY is effective by the general negativity lemma (cf. [B12, Lemma 3.3]).

We then deduce that

KY + ΓY + JY ∼Q g∗(KZ′ + ΓZ′ +MZ′)

where JY is effective.

Step 4. Let Z′′ be a common resolution of Z,Z′. Let α : T → X and
β : T → Y be a common resolution so that the induced maps T d W
and Td Z′′ are morphisms. Let

G := β∗(KY + ΓY + JY) − α∗(KX + B).

Then
β∗G = KY + ΓY + JY − β∗α

∗(KX + B)

= KY + ΓY + JY − ψ∗(KW + BW)
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= ΓY + JY − ψ∗BW ≥ ψ∗ΓW − ψ∗BW ≥ 0

where ψ denotes W d Y. Thus, by the negativity lemma, G ≥ 0 as G
is anti-nef over Y.

Now since both T→ Z′ and T→ Z factor through Z′′ and since

β∗(KY + ΓY + JY) ∼Q 0/Z′

and
α∗(KX + B) ∼Q 0/Z,

we have G ∼Q 0/Z′′. Thus G is the pullback of a divisor E on Z′′. By
Step 2, over U′, we have

β∗(KY + ΓY) = α∗(KX + B),

so over U′, G = β∗ JY. By Step 3, SuppJY maps into Z′ \ S′. This
implies that E is exceptional over Z′ which in turn implies that it is
exceptional over Z as Zd Z′ does not contract divisors.

Therefore, h∗OT(lG) ≃ OZ for every l ∈ N where h denotes T → Z.
This in turn implies that we have an equality of algebras

R(q(KY + ΓY + JY)) = R(q(KX + B))

because
lG ≤ Fix|lβ∗(KY + ΓY + JY)|

for any l ∈N divisible by q.

Step 5. By Lemma 6.9, the log discrepancies a(D,X,B) ≤ 1 belong to
a fixed finite set depending only on d,Φ, u, v. Thus the non-negative
coefficients of BW belong to a fixed finite set, hence replacing q, we
can assume that qΓW = qB≥0

W
is integral. In particular, no coefficient

of ΓW belongs to (1 − 1
q
, 1).

Let

∆Y := ΓY −
1

q
⌊ΓY⌋ + LY

where qLY is the pullback of a general element of |3qdHZ′ |. We claim
that (Y,∆Y) is 1

q
− lc. Let D be a prime divisor over Y. If D is not

exceptional over Y, then a(D,Y,∆Y) ≥ 1
q

by definition of ∆Y. Assume

D is exceptional over Y. Then we can assume the centre of D is not
contained in SuppLY, so

a(D,Y,∆Y) ≥ a(D,Y, ΓY) ≥ a(D,W, ΓW).

If a(D,W, ΓW) > 0, then a(D,W, ΓW) ≥ 1
q

as q(KW + ΓW) is Cartier, so

a(D,X,∆Y) ≥ 1
q
. So assume a(D,W, ΓW) = 0. Since KW + BW is semi-

ample and since P (of Step 2) does not contain any non-klt centre of
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(W, ΓW), W d Y is an isomorphism near the generic point of each
non-klt centre of (W, ΓW). Then W d Y is an isomorphism near the
centre of D, hence again a(D,X,∆Y) ≥ 1

q
because then (Y,∆Y) is klt log

smooth near the centre of D and q(KY + ∆Y) is Cartier.

Step 6. We claim that Ivol(KY+∆Y) is bounded from above. Indeed

Ivol(KY + ∆Y) ≤ Ivol(KY + ΓY + LY)

≤ Ivol(KY + ΓY + JY + LY)

= vol(KZ′ + ΓZ′ +MZ′ + 3dHZ′)

≤ vol((1 + 3md)(KZ′ + ΓZ′ +MZ′))

≤ vol((1 + 3md)(KZ + BZ +MZ))

= (1 + 3md)dim Zv

where m is as in Step 1. The last inequality is actually equality by the
isomorphism at the end of Step 4.

Step 7. Since (X,B) is assumed klt over ηZ, (Y, ΓY) is klt over ηZ′ , so
⌊ΓY⌋ is vertical over Z′. Thus over ηZ′ ,

KY + ∆Y = KY + ΓY −
1

q
⌊ΓY⌋ + LY = KY + ΓY ∼Q 0.

So (Y,∆Y) has a good minimal model (Y′,∆Y′) over Z′ by [B12, Theo-
rem 1.5] and [HX13]. By our choice of LY and by boundedness of the
length of extremal rays, (Y′,∆Y′) is globally a good minimal model of
(Y,∆Y). Note that by construction, (Y′,∆Y′) is 1

q
-lc, and Y d Y′ is an

isomorphism over ηZ′ , so (Y′,∆Y′) is birationally a crepant model of
(X,B) over ηZ because (Y, ΓY) is so.

Let Y′ → Z̄/Z′ be the contraction defined by KY′ + ∆Y′ . Let AW be
the pullback of A to W and let AY′ be the pushforward to Y′ of the
horizontal/Z̄ part of AW (note that A may not be Q-Cartier globally
but it isQ-Cartier over ηZ and we only need the pullback of A over ηZ

in order to define AY′). Then over ηZ̄, AY′ is the pullback of A under
Y′ d X. By construction, over ηZ, X d Y′ does not contract any
divisor which means that, over ηZ, X is the ample model of AY′ . Thus
replacing Y′ with the ample model of AY′ over Z̄, X d Y′ becomes
an isomorphism over ηZ̄. In particular, now AY′ is an integral divisor
because A is an integral divisor by Step 1.

Step 8. By construction, (Y′,∆Y′) is 1
q
-lc, q∆Y′ is integral, AY′ is

integral and ample over Z̄, the volume of AY′ on the general fibres of
Y′ → Z̄ is bounded, and the Iitaka volume of KY′ + ∆Y′ is bounded.
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Therefore, by Lemma 6.8, (Y′,∆Y′) is crepant birationally bounded
in the sense that there is a bounded projective pair (Y′′,∆Y′′) over Z̄
where Y′′ d Y′/Z̄ is a birational map whose inverse does not contract
any divisor, and KY′′ + ∆Y′′ is the pullback of KY + ∆Y. In particular,
there exists a very ample divisor RY′′ so that vol(KY′′ + ∆Y′′ + RY′′) is
bounded which implies that vol(RY′′ +HY′′) is bounded where HY′′ is
the pullback of HZ′ , because of our choice of LY ≤ ∆Y.

Let KY′ + ΓY′ + JY′ be the pushforward of KY + ΓY + JY. Since

KY + ΓY + JY ∼Q g∗(KZ′ + ΓZ′ +MZ′),

KY′+ΓY′+JY′ isQ-Cartier. Let KY′′+ΩY′′ be the pullback of KY′+ΓY′+JY′ .
Then from ΓY′ + LY′ ≥ ∆Y′ we get ΩY′′ + LY′′ ≥ ∆Y′′ , where LY′′ is the
pullback of LY′ .

By Step 1,

−(KZ′ + BZ′ +MZ′) + nHZ′

is big for some fixed n. Note since the pushforwards of ΓZ′ and BZ′

to Z are both equal to BZ and BZ′ contains all the exceptional divisors
of Z′ d Z with coefficient one, it follows that ΓZ′ ≤ BZ′ . This in turn
implies that

−(KZ′ + ΓZ′ +MZ′) + nHZ′

is big. Therefore,

(KY′′ + ΩY′′) · R
d−1
Y′′ ≤ nHY′′ · R

d−1
Y′′ ≤ n vol(HY′′ + RY′′)

is bounded, henceΩY′′ · R
d−1
Y′′

is bounded.

Step 9. Recall T from Step 4. We can assume it is a common
resolution of W,Y′,Y′′. Let KT + BT be the pullback of KX + B and let
BY′′ be the pushforward of BT. Then applying the negativity lemma
over Y′ or just using Step 4,

θ∗(KY′ + ΓY′ + JY′) − (KT + BT) ≥ 0

where θ denotes T → Y′. So using the fact that KY′′ + ΩY′′ is the
crepant pullback of KY′ + ΓY′ + JY′ , we have

KY′′ + ΩY′′ ≥ KY′′ + BY′′ .

Thus if ΓY′′ := B≥0
Y′′

, then ΩY′′ ≥ ΓY′′ , hence ΓY′′ · R
d−1
Y′′

is bounded by
Step 8.

Note that the coefficients of ΓY′′ belong to a fixed finite set as in
Step 5, so (Y′′, ΓY′′) belongs to a bounded family. So there is a log
resolution V → Y′′ so that if Θ is the support of the birational trans-
form of ΓY′′ union the reduced exceptional divisor, then (Y,Θ) is log
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smooth and bounded.

Step 10. Replacing T with a higher resolution, we can assume
T d V is a morphism. Let ΓV = B≥0

V
where BV is the pushforward of

BT. Then SuppΓV ⊆ SuppΘ, so (V, ΓV) belongs to a bounded family.
Moreover, the coefficients of ΓV belong to a fixed finite set.

Now

R(q(KX + B)) = R(q(KT + BT)) = R(q(KT + B≥0
T )) ⊆ R(q(KV + ΓV)).

Moreover, ΓY′ is just the pushforward of ΓV to Y′. Then

R(q(KV + ΓV)) ⊆ R(q(KY′ + ΓY′))

⊆ R(q(KY′ + ΓY′ + JY′)) = R(q(KY + ΓY + JY))

= R(q(KX + B))

where the last equality is by Step 5 while the preceding equality
follows from the fact that

KY + ΓY + JY ∼Q 0/Z′.

Therefore,

R(q(KV + ΓV)) = R(q(KX + B))

meaning that Z is the lc model of (V, ΓV). But then since (V, ΓV) is log
smooth and it belongs to a bounded family, its lc model also belongs
to a bounded family, by [HMX18, Theorem 1.2]. More precisely, there
is a very ample divisor HZ so that Hdim Z

Z
and (KZ + BZ +MZ) ·Hdim Z−1

Z
are bounded.

�
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