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VARIATIONS OF HODGE STRUCTURE, 
LEGENDRE SUB MANIFOLDS, AND ACCESSIBILITY 

JAMES A. CARLSON AND DOMINGO TOLEDO 

ABSTRACT. Variations of Hodge structure of weight two are integral manifolds 
for a distribution in the tangent bundle of a period domain. This distribution 
has dimension h2.O h 1.1 and is nonintegrable for h2.O > I. In this case it is 
known that the dimension of an integral manifold does not exceed 1 h2,0 h 1.1 . 
Here we give a new proof, based on an analogy between Griffiths' horizontal 
differential system of algebraic geometry and the contact system of classical 
mechanics. We show also that any two points in such a domain can be joined 
by a horizontal curve which is piecewise holomorphic. 

1. INTRODUCTION 

A problem which goes back to Pfaff, Frobenius, and E. Cartan is that of 
finding and characterizing the integral manifolds of a differential system. Of 
particular interest are homogeneous nonintegrable systems on a homogeneous 
space. The focus of this note is a subclass of these which arise in algebraic 
geometry: Griffith horizontal differential systems [20, Definition 25], integral 
manifolds of which are usually known as variations of Hodge structure (pure 
or mixed). 

Our main goal is to isolate in easily understood cases what we believe to 
be general characteristics of the Griffiths systems. Among these are: (a) that 
the dimension of integral manifolds is usually about one half the dimension of 
the horizontal distribution, provided that this latter is nonintegrable, and (b) 
that integral manifolds of maximal dimension are generally rigid in the sense 
that they are conjugate under an element of the group acting on the underlying 
space. In addition, it appears that (c) integral manifolds of maximal dimension 
are usually degenerate in a specific way, and that (d) nondegenerate manifolds 
tend to satisfy much stricter dimension bounds than in the general case. Accord-
ingly, there may be integral manifolds which are maximal, but not of maximal 
dimension. Here, to say that an integral manifold is maximal is to say that 
it is not contained in an integral manifold of strictly larger dimension. Thus, 
we also (e) seek criteria to recognize when integral manifolds are maximal. Fi-
nally, we remark that all of the systems to be considered below satisfy (f) the 
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392 J. A. CARLSON AND DOMINGO TOLEDO 

accessibility condition. By this we mean that any two points of the homoge-
neous space can be connected by a piecewise holomorphic integral curve. This 
is, of course, impossible for integrable systems, since the two points may lie in 
different leaves. 

The special feature of the Griffiths systems that we exploit is that formally 
they resemble those of a matrix-valued contact form. Therefore the first example 
which we study is the complex form of the classical contact system, given on 
D = C2n+ 1 by the differential form 

n 

(j) = dr - L Pidqi . 
i=1 

Integral manifolds are of dimension at most n, and those of maximal dimen-
sion are called Legendre manifolds [1, Appendix 4]. The contact system is 
homogeneous relative to a natural action of the complex Heisenberg group, and 
as such it may be identified as a classifying space for mixed Hodge structures. 
The Legendre manifolds are therefore variations of Hodge structure of maximal 
dimension. 

To exploit the analogy with contact geometry, we introduce canonical co-
ordinates in the period domains, given by exponentiating a natural nilpotent 
subalgebra of 9c ' the complexified Lie algebra of the isometry group. The local 
nil-homogeneous structure that this imposes mirrors the global nil-homogeneous 
structure of the contact system. For weight two domains the resulting equations 
for the differential system are rather easy to analyze, and from them we obtain 
the dimension bound. 

Note that for weight one domains there is nothing interesting to say, since 
the differential system is trivial. A deeper analysis of the matrix-valued forms 
given by the method employed below may yield the correct bounds in higher 
weight. 

The plan of the paper is as follows. We first discuss some generalities on dif-
ferential systems and then study two model cases: the contact system and what 
we shall call the simple Tate system, both of which are defined on a nil-manifold. 
Next, we recall some basic facts about the geometry of period domains, after 
which we investigate integral manifolds in weight two domains. In particular, 
we give a new proof of the following result [2, Theorem 1.1], sharp for hi, 1 

1 even by [2, Theorem 6.4]. 

(1.1) Theorem. Let D be a weight two period domain with h2 ,0 > 1. Then any 
integral submani/old S satisfies dimS:-:; !h 2 ,Oh l ,I. 

In this case the horizontal distribution has dimension h2 ,0 hi, 1 , so that vari-
ations of weight two structures can have dimension no greater than half that 
of the distribution to which they are tangent. Note that in the case of contact 

I Using different methods the authors have recently obtained results which give an improved 
(and sharp) bound for hI.1 odd: dimS::; ~h2.0(hl.l - I) + I . 
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manifolds, the maximum values of the ratio 'dimension of integral manifold to 
dimension of distribution' is also about one-half. As stated above, we believe 
this to be a general phenomenon [2, p. 60, line 9]. The results of §4 are an 
indication of this, as are the examples of [9, Remark 2]. For nondegenerate 
variations of higher weight one has the bounds of [2, Theorems 4.1, 4.2]. 2 

For all of the cases considered below we establish the accessibility property, 
essentially a corollary of a theorem of Chow [11]. We do, however, give an 
independent argument for the weight two case, one motivated by similar but 
simpler considerations for the contact system. The accessibility problem has 
been studied in the context of control theory [21, 22]. 

2. DIFFERENTIAL SYSTEMS 

Let us now review some basic notions in the theory of differential systems. To 
this end, let T* denote the cotangent sheaf of a manifold M -real, complex, 
or holomorphic, according to the context-and let A * T* be the associated 
deRham algebra. A differential system is a differential ideal in the deRham 
algebra, i.e., an ideal J which is closed under exterior differentiation. An 
integral manifold for J is a mapping i: S ----t M such that t w = ° for 
each germ w of J. Note that t dw = ° as well. Often we take i to be 
an inclusion, so that S is a submanifold; in any case, when we speak of the 
dimension of an integral manifold, we speak of the dimension of i(S). 

A differential system is Pfaffian if J is generated by germs of I-forms. We 
shall denote the stalk of J at x by J (x) and the fiber-the quotient by 
m(x)J(x) , where m(x) is the maximal ideal in the structure sheaf-by ~ . 
The dimension of the system is that of ~] , that is, of the degree one part of 
the fiber. In all that follows, we shall assume that the pointwise dimension of a 
Pfaffian system is constant, so that we may speak of the dimension of J . Dual 
to such a system is the associated distribution: the field of tangent subspaces 
x f-+ f:gx' where f:gx is the space of tangent vectors annihilated by ~. In 
this language an integral manifold for J is one whose tangent space at x is a 
subspace of f:gx for all x. Clearly, one has dimf:g + dimJ = dimM as well 
as 

(2.1 ) dimS:::; dimf:g 

for all integral manifolds S. 
A Pfaffian system is integrable if its stalks are generated by closed I-forms 

¢] , ... '¢k' On a sufficiently small open set we may assume that the ¢ 's are 
independent, so that functions J; with dJ; = ¢i exist and give a partial local 
coordinate system. All integral manifolds then have local defining equations 
f(x) = c i for some constants c i ' as a result of which equality holds in (2.1). 

To obtain a computationally useful criterion, consider a Pfaffian system J 
with minimal local generating set <I> = {¢] , ... , ¢k}' Then J is integrable if 

2 See [2, Erratum]. 
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394 J. A. CARLSON AND DOMINGO TOLEDO 

and only if there exist one-forms aij such that d¢i = E ajj/\¢j . In other words, 
the differential and algebraic ideals generated by <I> coincide. Equivalently, J 
is integrable if 

(2.2) 

Dual to these is Frobenius' criterion: 9 is integrable if the Lie bracket of 
vector fields belonging to 9 again belongs to 9 . A vector field belongs to 9 
if ~x E 9 x for all x. 

Once a system is recognized as nonintegrable, one is faced with the problem of 
bounding the dimension of its integral manifolds. As we shall see in a moment, 
the following often gives excellent results. 

(2.3) Lemma. Let U be an open set in en and let J be a differential ideal in 
the cotangent algebra of U. Suppose that a local volume form Q = f(z)dz i /\ 

... /\ dZn can be written as 

Q = (¢I /\ ... /\ ¢p) /\ (1fI1 /\ ... /\ IfIq) /\ a(a) , 

where ¢i E J I , IfIj E J2 , and a(a) is an arbitrary form of degree a. If S is 
an integral manifold for J then dim S :::; q + a. 
Proof. Suppose that dim S = d , let r I ' ... ,r d be a basis for the tangent space 
to S at some point, and let VI' ... ,ve be the set of 'normal' vectors which 
complete the set of r's to a basis for the tangent space to U. One the one 
hand we have 

Q(rl"" ,rd,vI , .. · ,ve ) i- 0, 
since Q is a volume form. On the other hand, 

Q(rl"" ,rd,vI , .. · ,ve ) 

= [(¢I /\ ... /\ ¢p) /\ (1fI1 /\ ... /\ IfIq) /\ a](rl ' ... ,rd , vI' ... ,ve )· 

The right-hand side is a sum of terms of the form 

¢I (tl)'" ¢P(tP)1fI1 (u l ,VI)" 'lfIq(Uq , vq)a(w l ' ... ,wa ), 

where the ordered set (t l ' ... ,tp ' u l ,VI' ... ,uq ' vq ' WI' ... ,wa ) is a permu-
tation of (r I ' ... ,r d ' V I ' ... ,ve )· Such a term will vanish unless 

(i) none of the tj are tangent, 
(ii) at most one of each pair (U i ' Vi) is tangent. 

The existence of a nonvanishing term then implies that there are no more than 
q + a tangent vectors, as required. More generally, one can assert the following: 

(2.4) Lemma. Let U be an open set in en and let J be a differential ideal in 
the cotangent algebra of U. Suppose that a local volume form Q = f(z)dz i /\ 

... /\ dZn can be written as 
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where ¢(p, rp) is a product of rp elements of JP and a(a) is an arbitrary 
form of degree a. Then 

k 

dim S :::; a + L r P (p - 1) 
p=2 

for any integral manifold S of J . 
Proof. Similar to the above. 

To obtain the best possible estimates, one should maximize the number of 
low degree forms in the differential ideal which appear in the factorization of 
the volume form. 

Finally, we consider the accessibility problem for nonintegrable systems 
which we touched upon in the introduction. The basic result is one of Chow 
[11], which we restate here for complex manifolds: 

(2.5) Theorem (Chow). Let U be an open set in en, let sg be a distribution 
in the holomorphic tangent bundle of U generated by global vector fields, and 
suppose that sg generates the tangent bundle under the Lie bracket. Then any 
two points of U are accessible by a piecewise holomorphic curve tangent to sg . 

3. THE CONTACT SYSTEM 

The contact system of genus n, with differential ideal generated by a single 
one-form 

(3.1 ) 
n 

W = dr - L Pidqi = dr - p . dq 
i=1 

in coordinates (p, q ,r) = (PI' ... 'Pn ,ql ' ... ,qn ,r), is the prototypical non-
integrable system. Its behavior, which we will study in the light of the preceding 
discussion, models much of what we shall encounter in more complicated situ-
ations. 

First, note that a volume element can be written as a product of forms in the 
contact ideal: 

(3.2) w 1\ (dw)n = ±dVol, 

where d Vol = dr 1\ dPI 1\ ... 1\ dPn 1\ dql 1\ . .. 1\ dqn' Therefore dw 1\ w i- 0, 
and so, by (2.2), the contact system is indeed nonintegrable. 

Since this system is defined by a single one-form, the associated distribution 
is of codimension 1, i.e., of dimension 2n. Its integral manifolds, however, are 
small: 

(3.3) Proposition. The dimension of a contact manifold of genus n is not most 
n. 

The proof follows immediately from Lemma (2.3) and the expression (3.2) 
above for the volume element as a product of forms in the contact ideal. 
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396 J. A. CARLSON AND DOMINGO TOLEDO 

Integral manifolds of dimension n exist. For a local solution, choose a 
'generating function' f: W -+ e where W is open in en, and set r = f(q), 
P = V' f. According to [1, Appendix 4], all Legendre manifolds can be written 
in this form locally, up to possible exchange of P 's and q's. 

The contact system is homogeneous. To see this, consider the complex 
Heisenberg group of genus n. This is the group Gn of the unipotent matrices 

ql 1 
0 

U(p ,q ,r) = 

qn 0 0 
r PI Pn 

which we shall often abbreviate as 

o 0) 1 0 . 
P 1 

Then the components of the Maurer-Cartan matrix 

are left-invariant, and OJ = dr - p. dq is the contact form. Identifying Gn with 
,r2n+1 h· h dh . 'L , we ac leve t e asserte omogenelty. 

The contact system is also a special case of Griffiths' horizontal distribution, 
whose definition we now recall. Let F* = [ ... :::) F P :::) F P+ 1 :::) .•. ] be a 
family of filtrations on a complex vector space He which is holomorphically 
parametrized by a complex manifold M. Filtrations satisfying 

(3.4) 

where Zi is part of a local coordinate system, are called horizontal. Objects of 
this kind arise naturally in algebraic geometry as variations of Hodge structure, 
both pure and mixed [12, 15-18, 20, 23]. To write the above condition in 
the language of differential systems, choose a local holomorphic frame {ail i = 
1, ... ,n} for He such that {aili = 1, ... ,n} is a frame for F P , where 
np ~ np+ l • Set Pp = a l A·· ·Aanp ' and let Ip = {ilnp ~ i> np+ l } be the set of 
indices corresponding to the vector-valued functions which frame F P modulo 
F P+1 • Then the equations 

(3.5) da A P 1=0 I p-

for i E Ip define the horizontal system. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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To identify the contact and horizontal systems, let eO' el ' ... ,en' en+1 be 
the standard basis for Cn+2 , and define a filtration F(p, q ,r) by 

F O = span of {ao = eo + "L-;=Iqiei + ren+I } , 
-I 0 '} F =F +spanof{ai=ei+Pien+llz= 1, ... ,n , 

F- 2 = Cn+2 . 

The Heisenberg group acts transitively and effectively on the set D of all such 
filtrations, with 

F(p ,q ,r) = U(p ,q ,r)F(O, 0,0). 
Therefore the complex manifolds D and G may be identified, and, via this 
identification, the contact form may be transferred to D. Now apply the pre-
scription of (3.5) to compute the horizontal system: 

dao /\ P_ 1 = dao /\ a o /\ a l /\ •.. /\ an = ±(dr - p. dq)eo /\ ... /\ en+1 • 

The coefficient one-form which appears on the right-hand side is the contact 
form, as claimed. 

(3.6) Remark. The space of filtrations D is a classifying space for mixed Hodge 
structures H whose graded quotients are Hodge structures of type (p, p) for 
p = 0, - I, - 2. More specifically, Grw H ~ Z(O) EB Z(I)n EB Z(2), where 
the Z(p) are Tate structures. As we show in the appendix, these 'Heisenberg 
variations' occur geometrically: there is a 4-dimensional Legendre manifold S 
defined by the period mapping for a configuration of lines in p2. 

By a Tate structure Z(p) one means the Hodge structure with HQ = Q, 
Hz = (2ni)PZ c He = C, with He of pure type (-p, - p). For the geometric 
example, see § 10. 

Finally, let us consider the accessibility problem. Since D ~ G is homoge-
neous, it suffices to verify Chow's condition at the origin, which we take to be 
the identity element of the Lie group. The tangent space there is given by the 
Lie algebra, i.e., by matrices of the form 

N(p,q,r)= (~ ~ ~), 
r p 0 

with horizontal vectors of the form N(p, q ,0) . The algebra which they gener-
ate is the full Lie algebra, as required. One may also give a direct proof, along 
the lines of the argument in §9. 

4. SIMPLE TATE SYSTEMS 

There is one respect in which the contact system is atypical: it is defined by a 
single differential form, and (as a result) all maximal integral manifolds are of 
the same dimension. We shall therefore consider one additional model. Like the 
contact system it is nil-homogeneous and has a Hodge-theoretic interpretation 
(from which it draws its name). 
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398 J. A. CARLSON AND DOMINGO TOLEDO 

For a purely Lie-theoretic description, consider the group Gn of lower tri-
angular (n + 1) x (n + 1) unipotent matrices a = (a i) with complex entries, 
where the indices range over the interval [0, n]. Let W = a -I da be the Maurer-
Cartan form, and consider the Pfaffian system J generated by the entries at 
least two steps below the main diagonal, i.e., by the forms Wi) for i > j + 1 . 
These are left-invariant forms which evaluate to da i ) at the identity matrix. 

To give a Hodge-theoretic interpretation, use the columns of a to define a 
decreasing filtration F*(a) of Cn+1 , namely, 

-p . 
F = span { a ill = 0 , ... ,p} , 

where a i = e i + a i+ 1 ,iei+1 + a i+2 /i+2 + .... The set D of all such filtrations 
can be identified with G, and the differential system on G just defined agrees 
with the horizontal system at the identity matrix. Since both systems are ho-
mogeneous for G [5, §4], they must agree everywhere. In fact, one may view 
D as a classifying space (period domain) for mixed Hodge structures whose 
graded quotients are Tate structures 7L(p) for p = 0, ... ,n. Let us say that 
a mixed Hodge structure whose graded quotients are of the form 7L(p )np is of 
Tate type; when the multiplicities n p are one, we shall call the structure simple 
Tate. Integral manifolds D, viewed as variations of mixed Hodge structure, 
will therefore be called simple Tate variations of genus n. Their geometry is 
controlled by the following result: 

(4.1) Theorem. Let D be the period domain for simple Tate variations of genus 
n. Then: 

(i) The dimension D is n(n+ 1)/2. 
(ii) The dimension of the horizontal distribution is n. 

(iii) The dimension of an integral manifold is at most l(n + 1)/2J . 
(iv) There are integral manifolds of dimension l(n + 1)/2J. 
(v) Any two points D are mutually accessible through the horizontal distri-

bution. 

Only the last three assertions require proof. In addition, we have a nonde-
gene racy result: 

(4.2) Definition. A simple Tate variation is nondegenerate if each level of the 
Hodge filtration is nonconstant. 

(4.3) Theorem. A nondegenerate integral manifold of D is of dimension exactly 
one. 

To begin the proof, we require a somewhat more tractable generating set 
for the differential ideal than the one given by the Maurer-Cartan matrix. The 
forms obtained using the prescription (3.5) are well suited to our ends. Thus, 
we find that the coefficient of 

eo 1\ ... 1\ e)+ I 1\ ei for i > j + 1 
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in 
do A P , I = do ' A 0 0 A ' .. A 0 I 

j - j- j j+ 

IS 

¢ij = daij - ai .)+1 A daj+l .) for i > j + 1. 

One therefore has the relation 

( 4,5) 

where this is taken as an abbreviation for the assertion that i* ¢ij = 0 for an 
integral manifold i: S -+ M. The new set of generators is not left-invariant. 
For example, we have w30 = da 30 - a31 da lo - a32da20 + a32a21 da lo ' which gives 
w30 = ¢30 - a32¢20 and ¢30 = w30 + a32 w20 . 

In any case, we obtain the following: 

(4.6) Lemma. For an integral manifold of the simple Tate system we have 
(i) F- j is constant ifand only if daj+1 ,j == 0, 

(ii) aij is functionally dependent on aj+l,j for i > j + 1 . 

Proof. If F- j is constant, then the coefficient dOjAooA" ·Aoj in eoA" 'AejA 
e+ 1 ' namely, da '+1 " is zero. The horizontality conditions (4.5) then imply 

j j J 
that daij = 0 for all i > j. This establishes one half of (i). For the converse, 
suppose that da '+1 ' = 0 on an integral manifold S. The conditions (4.5) 

j ,j 

then imply that daij = 0 for all i > j, so that dOj = O. In the presence of 
horizontality, this implies that F- j is constant, so that (i) is proved. 

For the second part, take the wedge product of (4.5) with da j+ I ,j to obtain 
daij A daj+1 ,j = 0, as required. 

According to the lemma, the matrix elements just below the diagonal give 
local parameters, so that an integral manifold of genus n can have dimension 
no greater than n. 

Let us improve this bound. For the nondegenerate case, take the exterior 
derivative of the relation ¢ '+2 ' = 0 to get da '+2 '+1 Ada '+1 ' = 0 on S. 

j J j J j J 
Then the parameters immediately below the diagonal are functionally dependent 
on the first one, alo ' This assertion, combined with part (i) of the lemma, 
implies that the nondegenerate variation is of dimension 1, i.e., is a curve in 
D. Theorem (4.3) is now established. 

Degenerate variations of larger dimension do exist. For an example, let 
B(t) = C ~) and define a block-diagonal matrix 

(4.7) 

One verifies that A(t) defines a variation of dimension m and genus 2m - 1 , 
in accordance with the bounds of the theorem. Note that every other level of 
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the Hodge filtration is constant. For an extremal example of odd genus, set 

( 4.8) 

to get a variation of dimension m and genus 2m. These examples establish 
part (iv) of Theorem (4.1). 

Let us now prove, for odd genus n = 2m - 1 , that dimS::; l(n + 1)/2J . To 
this end, define 

A m-I 
<I> = 1\=0 d¢2i+1 ,2i = ±dan ,n-I /\ dan_ 1 ,n-2/\ ... /\ da 10 

and observe that it is a volume form in the entries on the subdiagonal. Set 
'¥ = i'V?,k+2 ¢'k and note that 

'¥ /\ <I> = A da'k /\ <I> = ±d Vol I V:::k+2 
is a volume form in all of the variables. Thus, the Euclidean volume form on 
D is a product of m = l(2m + 1)/2J forms in J2 with a certain number of 
forms in JI . By Lemma (2.3), this gives the result. 

For even genus n = 2m set 
A m-I 

<I> = 1\=0 d¢2i+1 ,2i = ±dan_ 1 ,n-2 /\ dan_2 ,n-3/\"'/\ da 10 

and observe that 

'¥ /\ <I> /\ da I = A da'k /\ <I> = ±d Vol n ,n- I V:::k+2 

in a volume form, with '¥ defined as above. Lemma (2.3) applies once again 
to give the required result. This completes the proof of part (ii) of the theorem. 

For part (v) we note that the horizontal tangent space at the identity is given 
by matrices which are zero except for the subdiagonal entries a+ 1 '. Since I ,I 

these 'horizontal vectors' generate the full Lie algebra of strictly lower triangu-
lar matrices, the hypothesis of Chow's theorem holds at the identity, and, by 
homogeneity, everywhere, as required. 

We conclude with a result on the rigidity of simple Tate variations of maximal 
dimension: 

(4.9) Theorem. Let S be a simple Tate variation ofgenus n which has maximal 
dimension l(n + 1)/2J and for which pO is nonconstant. Then there is an 
element g of G such that S is a pull-back of gA(t) , where A(t) is given by 
either (4.7) or (4.8), depending on the parity of n . 
Proof. We give the proof of n odd, with the even case left as an exercise. 
Decree that sub diagonal matrix entries a'+1 ' be equivalent if they are func-I ,I 

tionally dependent. Because dai+2,i+1 /\ dai+1 ,i = 0 on S, the equivalence 
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classes are unbroken strings of the form {a i+1 ,i ' ai+2 ,i+1 ' ... ,ai+1 .i+/-I} , with 
da i+1 ,i+I-1 = 0 but dai+).i+ )_1 :/= 0 for j E [1 , t - 1]. Since some subset of the 
a+ 1 . serves as a set oflocal parameters, there must be precisely m = l(n+l)/2J 1 ,I 

equivalence classes. Therefore there are precisely m subdiagonal entries a+ 1 . 1 ,{ 

with differential zero on S, and precisely m with nonzero differential. More-
over, those of zero differential must alternate (in the natural order) with those 
of nonzero differential. Therefore alternate steps of the Hodge filtration are 
constant. Left translation by an appropriate group element concludes the argu-
ment. 

Note the opposition mentioned in the introduction: on the one hand there are 
rigid and degenerate integral manifolds of rather large dimension; on the other, 
there are many maximal and nondegenerate integral manifolds of comparatively 
small dimension. One does not encounter this phenomenon for the contact 
system. 

5. STRUCTURE OF PERIOD DOMAINS 

We now work towards a proof of Theorem (1.1), beginning with a review of 
the basic features of classifying spaces for Hodge structures, i.e., the Griffiths 
period domains [12, 15, 17-20]. Fix a real vector space H~ , an integer w (the 
weight), and a nondegenerate bilinear form S on HR satisfying S(x, y) 
(-I)wS(y ,x). A Hodge structure of weight w on HR is a decomposition 

He = EB HP,q, where HP,q = Hq,P, 

p+q=w 

This structure is weakly polarized if H P ,q is S-orthogonal to all H r ,5 with 
(r ,s) i= (q ,p). Let h be the semi linear form defined by 

h(x, y) = (_I)W(W- ll/2S(X, y), 

and let C be the Weil operator, defined to act by multiplication by iP - q on 
H P ,q. Then H is (strongly) polarized if hc(x, y) = h(Cx, y) is positive 
hermitian. 

Let iJ denote the set of weakly polarized Hodge structures with fixed Hodge 
numbers, and let D denote the corresponding subset of strongly polarized struc-
tures. Since a point in iJ determines a filtration F P = EB r2:P H r ,5 satisfying 
(FP).l = F W- P, D may be viewed as an algebraic subset of a product of 
Grassmannians. But iJ is homogeneous with respect to the natural action of 
the special orthogonal group Ge = SO(S , q, so that it is in fact a complex 
manifold. The subset D of strongly polarized structures is open and homoge-
neous for the corresponding real group G. Denote by ge the Lie algebra of 
Ge , and let H E D be a reference structure. Then H determines a natural 
Hodge structure of weight zero on ge [18], where 

9P ,q = {rP E ge l rP (Hr ,5) C Hr+p,s+q for all (r,s)). 
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Define subspaces 
g-=ffigP,-P, + ffiP-P 000 '17 9 =W g ' , 9 =g , 

p<O p>O 

and note that there is a direct sum decomposition gc = 9 - EB gO EB 9 + . Because 
the subspace b = gO EB 9 + is the Lie algebra of the isotropy subgroup of the 
reference structure, 

B = {g E Gclg(FP) c F P}, 
the complement 9 - may be identified with the holomorphic tangent space of D 
at H, and the Hodge component 9 -I ,I may be ident~fied with the horizontal 
subspace: 

g-I ,I = {4>I4>(F P ) c F P- 1}. 

The Lie bracket is compatible with the Hodge structure on gc' [gP ,q ,g' ,s] C 

gPH ,q+s . As we shall see in the next section, [g -I ,I ,g -I, I] = 9 -2,2 , so that the 
horizontal distribution is not integrable, provided that g-2,2 ::f. O. In the weight 
two case 9 -2,2 ::f. 0 if and only if h2 ,0 > 1 . 

6. HODGE FRAMES 

A Hodge frame [10] for H is a set of ordered bases B P ,q for H P ,q such 
that 

(i) B P ,q is an he-unitary basis for H P ,q • 

(ii) BP,q = Bq,P. 

The matrix of S has a natural block decomposition relative to a Hodge frame, 
with all blocks zero except for those on the anti-diagonal, which are, up to sign, 
identity matrices. Thus, in the weight two case, 

(
0 0 fa) 

S = 0 -fb 0 
fa 0 0 

Here we have (as we shall henceforth) written a for h2 ,0 and b for hl,l. 
Elements of gc also have a block decomposition, where 

(i) elements in 9 - are strictly block lower triangular, 
(ii) elements in 9 -I ,I have nonzero blocks only in positions immediately 

below the main diagonal. 
Thus, in the weight two case we have, for NEg - , 

N = (~ ~ ~). 
Y Z 0 

The condition that the matrix N be in the orthogonal Lie algebra, T NS +SN = 
0, imposes additional restrictions, namely Z = T X and T Y = - Y so that 

N = N(X , Y) = (~ ~ ~). 
Y TX 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HODGE STRUCTURE, LEGENDRE SUBMANIFOLDS, AND ACCESSIBILITY 403 

It follows that D has dimension ab + ~a(a - 1), since the tangent vector 
N(X, Y) depends on that many parameters. Because horizontal tangent vectors 
have the form N(X, 0) , the horizontal tangent distribution has dimension ab. 
The Lie bracket is given by 

T T [N(XI ,Y1), N(X2' Y2)] = N(O, X 1X 2 - X 2X 1) , 

so that if Eij denotes a matrix with a single nonzero entry, namely, a in 
position (i, j) , then 

[N(Eij , 0), N(Ekl' 0)] = N(O, <Jik(Ejl - Elj)) , 

where r)ik is Kronecker's delta. Therefore [9- 1 ,1 ,9- 1 ,I] = 9-2 ,2 , so that the 
horizontal distribution is nonintegrable, provided that 9- 2 ,2 -1= O. Since Y is 
antisymmetric, this last condition is equivalent to h2 ,0 > 1 . 

7. CANONICAL COORDINATES 

Consider now the map from the nilpotent subalgebra 9- to fJ defined by 
applying exp N to a reference structure H ED. Since D is open in fJ, the 
image point will be in D if the norm of N is sufficiently small. Moreover, the 
differential of this map is (by construction) the identity, so that N f-+ (exp N)· H 
gives local coordinates at H. Thus D is locally homogeneous for a unipotent 
group in a natural way. Let us consider these coordinates in detail for the weight 
two case. Write the exponential map as 

(X, Y) f-+ (exp N(X , Y)) . H , 

so that the components of the matrices X and Y give the local coordiantes. 
At the origin of this system the horizontal distribution is defined by dY = O. 
Since the horizontal distribution is homogeneous, it is defined at nearby points 
by the vanishing of the left-invariant extension of dY. An explicit formula is 
given by the next result: 

(7.1) Lemma. The left-invariant extension of dY at the origin is the matrix-
valued form 

OJ = dY + ~( dX . X - T X . dX), 

Proof. The left-invariant extension of dY is given by the block in the lower 
left corner of the Maurer-Cartan matrix n = e- N deN. For the exponential we 
have 

eN = (~ ~~) , 
f(X,Y) TX 1 

where f(X, Y) = Y + ~ T X . X . The Maurer-Cartan form is then 

n = (d~ ~ ~), 
OJ T dX 0 
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where 
W = df(X, Y) - T XdX = dY + ~(dX. X - T X· dX). 

Thus w has the required form. 
(7.2) Remark. The analogy with the contact system becomes perfect in a slightly 
different frame of reference. In §3 we used the coefficients of 

u=(~ ~~) 
r p 1 

as coordinates. Instead, let us write U = eN , with 

N=(~ ~ ~) 
R P 0 

and use the matrix entries of N as coordinates. The Maurer-Cartan form then 
becomes 

n = (d~ ~ ~), 
w dP 0 

where w = dR + ~(dP. Q - p. dQ) and the dot denotes matrix product. Thus, 
if we require that P = T Q and that R be skew-symmetric, then we obtain the 
matrix-valued form of Lemma (7.1). 

8. PROOF OF THE MAIN THEOREM 

We now exploit the properties of the matrix-valued contact form w to es-
tablish the bound of Theorem (1.1): 

dimS:S ~h2,ohl ,I for h2,0 > 1. 

Again we write a for h 2 ,0 and b for hi ,I. We first give a proof for a = 2p 
even. To this end, note that the components of w can be written explicitly as 

1 b 
Wi) = dYi) + 2 l )dXli • XI) - Xli . dXtj]. 

1=1 

Define a 'volume form in the y. variables' by dYJ 1\ ... 1\ dYJ , where 
IJ I c 

(J I , ••• ,JJ is an ordering of the set {(i, j)ll :S i < j :S a}. Since the Xi) 

vanish at the origin of the coordinate system, the form 

<I>=w 1\ .. ·l\w J I J e 

satisfies 
<I> = dYJI 1\ ... 1\ dYJe 

there. Consequently the partial volume form <l> is a volume form in the Yij 
for Y small. Next, observe that 

b 
dw i ) = - L dXIi 1\ dXI) , 

1=1 
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so that the expression 

'¥ = dW l2 + dW34 + ... + dW 2p_1 ,2p 

defines a nondegenerate two-form in the variables Xii' Therefore ,¥pb is a 
volume form' in the Xii' from which it follows that the product Q = <I> 1\ ,¥pb 
defines a volume form at the origin (and hence locally) in all the variables. Since 
<I> and ,¥pb are products of one-forms and of two-forms in the differential ideal 
of the horizontal distribution, respectively, Lemma (2.3) applies to give 

d · S< b-.!. b-.!.h2,Oh l ,1 1m _ p - 2a - 2 ' 

as required. 

We now study the odd case, with h 2 ,0 = 2p + 1 in force for the rest of this 
section. A crude inequality is easily obtained: 

(8.1) Lemma. If h2,O = 2p + 1 is odd then dim S ::; pb + b. 
Proof. Apply Lemma (2.3) to the volume form 

Q = <I> 1\ ,¥pb 1\ (dXI ,2p+1 1\ ... 1\ dXb ,2p+I)' 

Since the required bound is 

dimS::; !h 2,oh l ,1 = !ab = pb +!b, 

we must improve the inequality above by !b units. The presence of additional 
one-forms in the differential ideal of an integral submanifold S allows one to 
do this. To make a precise statement, let I(S) be the differential ideal of germs 
of forms whose pullback to S vanishes, and note that I (w) IS is contained in 
I(S) . 

(8.2) Lemma. Suppose that there are one-forms 11 1, ... ,l1e in the ideal I(S) 
such that 

Q = <I> 1\ ,¥pb 1\ (11 1 1\ ... 1\ l1e) 1\ (dXe+1 ,2p+1 1\ . .. 1\ dXb ,2P+I) 

is a volume form. Then dim S ::; pb + (b - e) . 
Proof. Apply Lemma (2.3). 

To produce these additional one-forms, we establish the following two results: 

(8.3) Lemma. Let V be an r-dimensional space of b x a matrices. Let ek 
denote the kth standard unit vector, and let Ck be the dimension of the vector 
space V(ek) = {AekiA E V}. Then max Ck 2: ria. 

I , ~ Proof. Let (A , ... , A ) be an ordered basis for V. Let A denote the row 
vector obtained by setting the rows of Ai end-to-end in the natural order, and 
let sf' be the matrix whose rows are the Ai . Apply Gauss-Jordan reduction to 
sf' to obtain an echelon matrix ~ with rows fji , and let (BI , ... ,B') be the 
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corresponding ordered basis of V. Let L(k) be the leading nonzero entry in 
jjk , and let L(k) = Uk' jk) be the corresponding index in Bk , where 

B2(k) = I, B~(k) = 0 for s =I- k. 

Let Ck be the number of B j for which a leading entry occurs in column k. If 
max Ck < ria then C I + ... + Ca < r. But dim V = C I + ... + Ca , so this is a 
contradiction. 
(8.4) Remark. Here is an invariant formulation: Let U and W be vector spaces 
of dimension a and b, respectively. Let V be an r-dimensional subspace of 
Hom( U , W) , let u be an element of U, and consider the vector space V (u) . 
Then dim V(u) ~ ria for some u E U. 

(8.5) Lemma. Suppose that dim S :s pb + e. Then there exist at least 

m = ,(pb + b - e)/(2p + l)l 

one-forms 'II ' ... ,'1m vanishing on S which are independent modulo the dYjk 
and which satisfy the following condition: if 

'lj = L A~kdXjk + terms in the dYrs ' 
j ,k 

then there is a column index c E [1 ,a], a subset of row indices, K c [1, r], and 
a function r: [1 , m] -t K such that 

A~(C) ,c = 1, A~c = 0 for j E K but j =I- rU)· 

Here [x] denotes the least integer n such that n ~ x. 
Proof. Since dimD = ab+a(a-1)/2 = (2p+1)b+a(a-1)/2, the tangent space 
to S at the origin is defined by at least pb + (b - e) + a(a - 1)/2 independent 
one-forms, all in the differential ideal of the horizontal distribution. Of these, 
a(a - 1)/2 may be taken to be the forms dYrs ' Consequently there are at 
least k = pb + (b - e) forms 0: 1 ' ••• ,O:k which are independent modulo the 
dYrs ' Lemma (8.3) guarantees the existence of independent forms 'II ' ... ,'lm 
in the span of the 0: 's with m as above, satisfying the stated conditions on the 
coefficient matrices. 
(8.6) Remark, After a permutation of the rows and columns of X we may 
assume that c = 2p + 1, K = [1 ,m], and r = id, so that we are in the 
situation of Lemma (8.2). 

(8.7) Lemma. If dimS :s pb + e then dimS :s pb + l(pb + e)/(2p + 1)J, where 
l x J is the greatest integer less than or equal to x. 
Proof. Combine Lemmas (8.2) and (8.5). 

With these results in hand it is already possible to improve the inequality of 
Lemma (8.1): 
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(8.8) Corollary. If h2 ,0 = 2p + 1 is odd, then 

dimS:::; pb + lb(p + 1)/(2p + l)J ~ pb + b/2. 
Proof. Combine Lemmas (8.1) and (8.7). 

The bound given by the corollary is much closer to what is required, since 
pb + b/2 = h2 ,oh l ,1/2 . To complete the proof of the main theorem we show 
that the process described above can be applied repeatedly to get the required 
inequality. To this end, set d i = pb +ei and suppose that the bound dim S :::; d i 
is established. Then Lemma (8.7) implies that dimS:::; d i+1 with 

ei+1 = l(pb+ei )/(2p + l)J. 
It is enough to show that the integers ej form a strictly decreasing sequence so 
long as ej > b/2: e j+1 < ej if ej > b/2. To do this, observe that 

e j+1 -ej = l(pb+e)/(2p + l)J -ej 
= l(pb + e j)/(2p + 1) - ejJ ' 
= l(pb - 2pe)/(2p + l)J ' 

which is negative if ei > b/2 , as required. 
Remarks (8.9). (i) As in the case of simple Tate variations, there is a rigidity 
theorem [2, Theorem 6.3 and Remark 6.6]. In brief, whenever a = h2 ,0 > 2 
and b = hi ,I is even, then every integral manifold of dimension !ab in D 
prolongs to one which is homogeneous for an action of a copy of SU(p, q) 
imbedded in the isometry group of D, where p = a and q = b/2. Moreover, 
any two such integral manifolds are conjugate under the isometry group. When 
h2 ,0 = 2, however, rigidity fails [2, Remark 5.5.c]. 

(ii) Again as in the case of Tate variations, there are maximal integral man-
ifolds which are not of maximal dimension. The main result of [8] shows 
that almost all hypersurfaces of dimension greater than n > 1 define maxi-
mal integral manifolds via X f--+ H; (X) , where the subscript denotes primitive 
cohomology. All surfaces of degree d satisfy the hypotheses of [8], although 
this is of interest only for d > 4. For these, the dimension of S is O(d3) , 

while !h 2 ,0 h 1,1 is O(d6 ). On the other hand, hypersurface variations satisfy 
nondegeneracy conditions of various kinds, e.g., pk has no fixed subspaces, 
in contrast to what happens for the SU(p, q)-homogeneous variations men-
tioned above. As yet there is no good understanding of the interplay between 
nondegeneracy conditions, geometry, and dimension restrictions. 

9. ACCESSIBILITY 

We now turn to the accessibility properties of period domains: 

(9.1) Theorem. Let Ho be a point of D. Then there is a neighborhood '1£ of 
Ho consisting entirely of structures accessible from Ho' 

This result follows from the theorem of Chow [11] mentioned in §2, pro-
vided that we verify its hypothesis: that horizontal vector fields generate the 
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full tangent space under Lie bracket. The holomorphic tangent space of a pe-
riod domain is given by 9 - , where in the weight two case 9 - = 9 -I .1 EB 9 -2,2 , 

and, according to the last formula of §6, [g - I ,I ,g -I ,I] = 9 - 2 ,2 , so that Chow's 
theorem applies. 

We also give a proof using an explicit computation in canonical coordinates 
(X, Y). Note first that a curve y(t) of the form Y = Yo' X = Pt, where Yo 
and P are constant matrices, is horizontal. Therefore all points of the form 
(X, 0) , for X sufficiently small, are accessible from the origin. To reach other 
points we shall construct lifts of suitable piecewise linear paths in the set of 
points with Y = O. To this end we define a bracket operator by [P, Q] = 
T PQ _ T QP and note the following: 

(9.2) Lemma. Let ~ be a canonical coordinate neighborhood, let ~o be the 
set defined by projection of ~ along (X, Y) 1-+ X, and let P ,Q E ~o' Then 
(Q,c+[P,Q]/2) is accessible from (O,c). 
Proof. Define paths a, p, and y in the canonical coordinate neighborhood 
by a(t) = (Pt, c), P(t) = (P + t(Q - P), Y(t)) and y(t) = ((1 - t)Q, Y(I)), 
where t E [0,1]. Choose the function Y(t) so that P is horizontal with initial 
condition Y(O) = c, and note that a and yare horizontal by construction. 
Then 

Y(I)-Y(O)= {dY= { dY= { (X.dX- T dX.X)/2. 
Jp Ja+p+y Ja+P+y 

Consider the two-chain defined by R(s, t) = Ps + Qt, where (s, t) is in the 
standard two-simplex ,1, defined by s 2: 0, t 2: 0 , and s + t ~ 1 . Then 

{ (X. dX - T dX. X)/2 = { (X. dX - T dX· X)/2, Ja +p+y JaR 
so that by Stokes' theorem one has 

Y(I) - Y(O) = L T dX 1\ dX = L[P, Q]ds 1\ dt = [P, Q]/2. 

Therefore a + P joins (0, c) to (Q, c + [P ,Q]/2), as required. 
To complete the proof, fix a point (R ,S) in ~ and let Xi' Yi E g-I ,I be 

elements such that 
n 

2S = ~)Xi' Yi]· 
i=1 

-1,1 -1,1 -2,2 L P P This is possible because [g ,g ] = 9 . et I" •• , 2n+1 be elements 
f -I I o 9 , such that P2n+1 = Rand 

2n n 

2)Pi ,Pi+tl = 2)Xi , YJ. 
i=1 i=1 

One can always write the 2n + 1 elements Pi in terms of the 2n + 1 elements 
R, Xi' and Y i in order to achieve this. Let y: [0 , 1] ~ ~ be a path in the 
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domain Y = 0 which joins the sequence of points (0, PI ' .. , ,P2n+ l ) in the 
given order, and let y be the horizontal lift with left endpoint at (0,0). By 
repeated applications of Lemma (9,2) one calculates the right endpoint to be 
(R ,S). Therefore all points in Ware accessible from the origin, as required. 

An immediate corollary of Theorem (9.1) is the following: 

(9.3) Theorem. Let Ho be a point of D, Then all points of D are accessible 
from Ho' 
Proof. Let HI be another point of D. Join Ho to HI by a curve y. By 
compactness there is a cover of y by neighborhoods consisting of mutually 
accessible points, from which the result follows. 

10. ApPENDIX: GEOMETRIC LEGENDRE MANIFOLDS 

In this appendix we give an example of a geometric 4-dimensional Legendre 
manifold. To this end, let each of A and B consist of three lines in general 
position in 1P2, with A U B in general position as well. Consider the mixed 
Hodge structure 

H(A, B) = H2('P2 - B ,A - B), 

with an appropriate shift of weights (tensor with Z(-2)). We claim (1) that 
H(A ,B) is a Heisenberg structure of genus 4, and (2) that (A, B) 1---7 H(A, B) 
is a variation of dimension 4. The argument depends on an analysis of the 
extension of mixed Hodge structures [3-5] defined by 

w o -+ Wo -+ W2 -+ Gr 2 -+ 0 . 

We show below that the extension is given geometrically by the cross-ratios of 
the points which B cuts out on A with respect to the double points of A. These 
cross-ratios give four independent moduli, so that H(A, B) depends on at least 
that many. By the bound of Theorem (3.3), H(A, B) depends on precisely four 
parameters. To verify the above assertions, consider the cohomology sequence 
of the pair (1P2 - B ,A - B) : 

(10.1) HI(1P2 - B) ~ H\A - B) ~ H2(1P2 - B, A - B) L H2(1P2 - B), 

The right-hand group is isomorphic to H2(C*2) ~ Z( -2) , with canonical gen-
erator dz/z 1\ dw/w of weight 4, and the left-hand group is isomorphic to 
HI(C*2) ~ Z(-I) EB Z(-I), with canonical generators dz/z and dw/w of 
weight 2. The weight 2 part of the relative cohomology can be identified with 
the image of J, i.e., with the cokernel of i* . To calculate the term HI (A - B), 
set 
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let A; = Ai - B ~ C - {O, I}, and let D be the set of double points of A. The 
Mayer-Vietoris spectral sequence gives an exact sequence 

2 2 

(10.2) ffiOI 0 I ffill WH (A)-+H (D)-+H (A-B)-+WH (Ai)-+O, 
i=O i=O 

from which one finds the weight 2 part of HI (A - B) is 6-dimensional and that 
the weight 0 part is I-dimensional. The weight 2 part of H(A, B) is HI(A-B) 
modulo the image of i* ; one concludes that it is of dimension 1 in weight 0 
and of dimension 4 in weight 2. Now let {Ai· AjlO :::; i < j :::; 2} be the set 
of double points, let {Ai· BjlO :::; i, j :::; 2} be the set of punctures, and let 
wi(Bj - Bk) be the unique meromorphic differential on A - B supported on 
Ai with residue cycle 2niAi · (Bj - Bk). There are nine of these, subject to the 
relations below: 

kj 

L wk(Bi - B) == 0 modulo the image of t . 
k 

Their cohomology classes generate the integral lattice of Gr~ H(A ,B) ~ 
HI(A - B)jimage(i*). 

Let 0 be a generator for the weight zero part of the first homology of A - B . 
From the homology sequence dual to (10.2), one sees that 0 is given by a sum 
of oriented paths 0i' each supported in A; and connecting the two nodes of A 
which lie in that component. According to the results of [3-5], the extension 
of mixed Hodge structures associated to W2H(A, B) is given by the integrals 
fo wJBj - Bk)· But this integral determines a natural cross-ratio: 

where cross-ratio (0 , 1 ,00 ,a) = a and 80i = Ai . A;' - Ai . A;. The geometric 
data for these integrals is therefore a 5-tuple of points on each component 
pi of A, with two points of each 5-tuple distinguished by the fact that they 
are nodes rather than punctures. A 5-tuple in pi depends on two moduli, 
for a total of six parameters for the integrals. However, the parameters are 
not independent, since the punctures occur in collinear triples. This imposes 
two relations, given (for example) by the fact that the periods of i* dzj z and 
i* dwjw vanish on o. For a formal proof of this last fact, observe that both 
differentials map to zero in the relative cohomology group in (10.1). This leaves 
four independent parameters for the integrals, and hence for the mixed Hodge 
structure HI (A - B)jimage(i*) ~ W2H2(p2 - B ,A - B) , as required. 
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