
To appear in IEEE Transactions on Information Theory, October 1978.

December 1977 ESL-P-787

Variations on a Theme by Huffman

by

Robert G. Gallager*

Massachusetts Institute of Technology

Department of Electrical Engineering

and Computer Science

and

Electronic Systems Laboratory

Abstract

In honor of the twenty-fifth anniversary of Huffman Coding, four

new results about Huffman codes are presented. The first result shows

that a binary prefix condition code is a Huffman code iff the intermediate

and terminal nodes in the code tree can be listed by non-increasing prob-

ability so that each node in the list is adjacent to its sibling. The

second result upper bounds the redundancy (expected length minus entropy)

of a binary Huffman code by P1 + log2 [2(log 2e)/e] = P1 + .086 where P1 is

the probability of the most likely source letter. The third result shows

that one can always leave a code word of length 2 unused and still have a

redundancy of at most one. The fourth result is a simple algorithm for

adapting a Huffman code to slowly varying estimates of the source proba-

bilities. In essence, one maintains a running count of uses of each node

in the code tree and lists the nodes in order of these counts. Whenever

the occurrence of a message increases a node count above the count of the

next node in the list, the nodes, with their attached subtrees, are inter-

changed.

This work was supported in part by NSF under Grant NSF-ENG76-24447 and in part by

Codex Corp., Newton, Mass. 02195.

-2-

1) Introduction

Since the appearance 25 years ago of Huffman's [1] classical paper

on minimum redundancy variable length source coding, Huffman coding has

remained one of the most familiar topics in information theory, but has

not seen widespread application. One of the difficulties for application

arises in the situation of a single source that produces non-binary letters

at a fixed rate and whose output is to be transmitted over a synchronous

binary communication channel. If one uses a variable length code, then the

rate at which binary digits are delivered to the channel will fluctuate,

and the expected rate will depend on the relative frequencies of the source

letters. This means, first, that buffering is required between the source

and channel, and, second, that the system will fail if the source statistics

become such that the expected rate of binary digits exceed the channel

capacity. For these reasons, and also for processing simplicity, there

has been increasing standardization on fixed length source codes, for ex-

ample ASCII (American Standard Code for Information Interchange).

The above arguments against variable length source codes are now much

less compelling than before for several reasons. The first is the growth

of statistical multiplexors, concentrators, and data networks. Since each

of these allocate communication resources to sources on the basis of need,

buffering exists as a central part of such systems. Because of the large

number of sources, mistaken assumptions about some of the source statistics

lead to inefficiency but not failure when using variable length codes.

In addition such systems require large amounts of protocol, or control

information, and the use of fixed length codes for this control, as, for

-3-

example, in packet headers, turns out to be very inefficient. Finally

the fact that processing costs and storage costs are dropping very much

faster than communication costs has fundamentally changed the trade-off

between communication efficiency and processing complexity. For all these

reasons, one can expect to see much greater use of variable length codes

in the future.

The author has recently been studying possible uses of source coding

in data networks, and, rather surprisingly, the four quite elementary

results described in the abstract turned up. In order to simplify the

reader's task as much as possible, we first state and prove each result

for the case of binary code words, and then extend the result in the ap-

pendix to arbitrary code alphabets. We start with the sibling property,

since that forms the basis for the other results. Section 3 on redundancy and

Section 4 on adaptive Huffman coding are independent and can be read in either order.

2) The Sibling Property

Let A be a discrete source with K letters, 2 < K < a, and let Pk

denote the probability of letter ak, 1 < k < K. It is customary to assume

Pk > 0, but we allow at most one Pk to be 0 in order to simplify examples

in which Pk is allowed to approach zero arbitrarily closely. Let xk
=

(xk(l), xk(2),...xk(nk)) be the binary code word for letter ak, 1 < k < K.

Here xk(i) is a binary digit, 1 < i < nk, and nk is called the length of

the code word. A binary code for A is the set of code words plus the

mapping that maps ak + xk for 1 < k < K. A code word xk is called a

prefix of a code word xj if nk < n and xk(i) = xj(i) for each i,

1 < i < nk. A prefix condition code is a code with the property that no

-4-

code word is a prefix of any other code word. A prefix condition code can

be conveniently represented as a rooted binary code tree (see Figure 1) in

which each source letter corresponds to a leaf on the tree, and the as-

sociated code word is the sequence of labels on the path from root to leaf.

If two nodes are adjacent on a path from the root to a leaf, we say that

the one closer to the root is the parent of the other, which is called the

child of the parent. Two nodes with a common parent are called siblings.

It is well known [2] that an arbitrary concatenation of code words

from a prefix condition code can be uniquely decoded into the correspond-

ing source letters. Furthermore, every code that can be uniquely decoded

has lengths satisfying the Kraft inequality,

K -nk

2 < 1 (1)
k=l

and prefix condition codes can be constructed with any set of lengths

satisfying (1).

Huffman L1] developed an algorithm that generates, for any such

source, a prefix condition code that is optimum in the sense of minimiz-

ing the expected code word length,

K

E(n) = A Pk nk (2)

k=l

0 0

-4o o (C

H H

o~~~~~~~~~~~~~rz

0~~c

The algorithm, illustrated in Figure 2, is most easily viewed as starting

with the leaves of a rooted tree, and iteratively generating the intermediate

nodes. The algorithm is given below:

1) Let L be a list of the probabilities of the source letters

corresponding to the leaves of the tree.

2) Take two smallest probabilities in L, make the corresponding

nodes siblings, generate an intermediate node as their parent;

and label the link from parent to one child with 0 and the

other with 1.

3) Replace the above two probabilities in L with their sum,

associated with the new intermediate node. If the new L

contains one element, stop, and otherwise return to step 2.

The codes generated by this algorithm are called Huffman codes. Our

first objective is to give a structural characterization of Huffman codes,

as opposed to the algorithmic characterization just given.

Each of the leaves of a code tree has a probability assigned to it,

namely the probability of the corresponding source letter. We also assign

a probability to each intermediate node, defined recursively as the sum

of the probabilities of its children. An equivalent non-recursive

definition is that the probability of an intermediate node is the sum of

the probabilities of all leaves for which the path from root to leaf passes

through the given intermediate node.

Definition: A binary code tree has the sibling property

if each node (except the root) has a sibling and if the

nodes can be listed in order of non-increasing probability

with each node being adjacent in the list to its sibling.

-7

CII

C o

0
mc)

00a

IUb.~~.0
LOO~~r C

z0 0 0H

O OO U)

ct b o cr cr9

-8-

Figure 3 illustrates the sibling property. Note that if several nodes

have the same probability, as in Figure 3, the list in order of non-increas-

ing probability is non-unique, and the definition only requires that there

be some such list with each node being adjacent to its sibling. Note also

(by a simple inductive argument) that the list -(excluding the root) must

contain 2K-2 elements, and that for each k, 1 < k < K-l, the 2kth and 2k-1th

elements on the list must be siblings for the sibling property to hold.

Theorem 1: A binary prefix condition code is a Huffman code iff the code

tree has the sibling property.

Proof: First assume that a code tree has the sibling property. Then the

last two elements on the ordered list are siblings, and in addition they

must be leaves, for if one were an intermediate node, at least one of the

children of that intermediate node would have a smaller probability than

the intermediate node , which is impossible because of the ordering property.

Thus these nodes correspond to two smallest probability source letters,

and can be made siblings in the first execution of step 2 in the Huffman

algorithm. Now remove these siblings from the code tree, removing also

the last two elements from the ordered list. The resulting reduced code

1
This is where we use the assumption that at most one source letter have

zero probability. The theorem is true without this restriction, but the

proof is harder and the restriction is of no importance.

-9-

(3
z

m

~023 ~ ~

(o d. to It oC u ' 1~ co3

0 x, ,YO tO 0 0 0o

0
I,

0~t o

r

1~3 O' ."ati~~~~~~~~~~~~~~~ YImd {: f) "O-H

*r /

. .-

.. _

-10-

tree still has the sibling property and the leaves of the reduced code

tree correspond to the list L in the Huffman algorithm after the first

execution of step 3. Thus the above argument can be repeated; at each

step the Huffman algorithm chooses, as siblings, elements which are siblings

in the original code tree. By matching the link labels in the Huffman code to

those in the original code tree, the two codes are seen to be identical. Next

assume that a binary code tree is generated by the Huffman algorithm, and

assume that each time the algorithm executes step 2, we add the two nodes

defined as siblings to the top of an initially empty list, putting the

less probable below the more probable. The list so generated clearly has

each node adjacent to its sibling, so to establish the sibling property,

we simply have to show that the list is non-increasing in order of probability.

This is trivial, however, since at each iteration, the two elements added

to the list have probabilities less than or equal to that of each element in

the new L of the Huffman algorithm, and the next two elements added to the

list are chosen from this new L. QED

Next define the level of a node as the number of links on the path

from the root to the node. It is clear from the optimality of Huffman

codes that for each k > 1, the probability of each node at level k is less

than or equal to the probability of each node at level Z-1. For the purist,

this property can be directly derived from the sibling property using

induction on Q. Define an ordered Huffman code as a Huffman code in

which when two nodes are defined as siblings, the label 0 is assigned

to the link going to the more probable of the siblings. Also define a

lexicographically ordered code tree as a tree in which, for each Z > 1, the

probability ot each node at level Z is less than or equal to the probability

of each node at level A-l, and the probabilities of nodes at level I are

monotonic non-increasing in the binary number corresponding to their path

names from the root.

Corollary: A binary prefix condition code is an ordered Huffman code iff

the code tree is lexicographically ordered.

Proof: Lexicographic ordering implies the sibling property, which implies

that the code is a Huffman code. Lexicographic ordering also implies that

the link from a parent to the more probable of the siblings is labelled 0,

implying an ordered Huffman code. Now assume an ordered Huffman code and

use induction on the level Z. The nodes at level 1 are lexicographically

ordered by construction. Assume for any Z > 1 that the nodes at level

-li are lexicographically ordered. By the sibling property, if the pro-

bability of one parent is greater than or equal to that of another,

the children are correspondingly ordered. This shows that non-sibling nodes

at level Z have the correct ordering. Siblings, however, are correctly

ordered by the construction. QED

3) The Redundancy of Huffman Codes

The redundancy r of a source code is defined to be the expected length of

the code words minus the binary entropy, H(P1,...,PK), of the source probabilities,

-12-

K

r= I Pk nk - H(Pil,'PK) (3)
k=l

where H(P 1,..-, P K
) = - k Pk log Pk

It is well known [2] that for optimal codes, the redundancy always lies

between 0 and 1. The upper limit, 1, is reached by a source with two

letters, of probabilities 0 and 1, or more strictly, approached as E -+ O

by a source with probabilities 1 - s and £. our purpose here is to show

that when the most probable letter in a source has a probability much less

than 1, then the upper limit on r can be greatly improved upon.

Suppose we have a Huffman code, and using the sibling property, we

number all of the nodes (except the root node) in order of decreasing

probability and increasing level so that for each k, 1 < k < K-1, nodes

2k and 2k-1 are siblings. Let qk be the probability of the k
th

node on

the list, 1 < k < 2K-2. The expected length of the code can be written

as

2K-2

E(n) = qk (4)

k=l

In order to see this, perform the conceptual experiment of writing each

qk in (4) as the sum of the leaf probabilities of leaves whose path from

the root passes through k. Then a code word i of length n. has its pro-

babilitiy Pi written in ni of these sums, showing the equivalence of (4)

and (2). We can also rewrite the entropy as

K- 1 x q

H(Pi'' 'P'PK
)

= (q 2k-1+ q2k)(2k)
kK =l 2 k-1 + q2k

-13-

where f is the binary entropy function

W (x) = -x log 2x -(l-x)log 2(1-x) (6)

Each term in (5) is the probability that a given parent in the code tree

will occur times the entropy of the choice of its child. Formally (5) can

be established by induction on reduced trees. Combining (5) and (4), we

have

K-i2k

lr =(qZk-1 + q2k) [1 -rqd(7 + k
k=l q2k-1 + q2k

Finally let 2 > 1 be some level at which the tree is full (i.e.,

for which the tree has L = 2 nodes of level 9), but for which there are

also nodes at level Z + 1. For K > 2, such an k must exist. Let m be

the smallest integer for which node 2m-1 is at level k + 1, and let

q'''',...,q be the probabilities of the nodes at level Q. Splitting the

sum in (7) into k < m and k > m, and writing the terms for k < m in the

form of (4), we have

K-l1

r = -Hql,...,) + (q2k-1 + q2x) [-
q2k

(+ q2k)]

(8)

For K=2, (8) is valid for Q = I with the final term omitted.

-14-

Theorem 2: Let P1 be the probability of the most likely letter in a

finite discrete source. Then the redundancy of the Huffman code for the

source satisfies

r < P1 + (9)

where C = 1 -log 2 e + log2 (Log 2 e) p .086. For P1 > 1/2,

r < 2 - P1) -P 1 < P1 (10)

Proof: For 0 < x < 1/2, <x) > 2x. Using this inequality, the final

term in (8) is upper bounded by

K-l

L q2k-1 - 2k
k=m

Since the sequence qk is non-increasing, this is further upper bounded by

q2m-l' so that

r < Q - H(q,...,q) + q2m-1 (11)

Let n1 be the length of the shortest code word, which must correspond to

a source letter of probability P . First assume P1 > 1/2. Then nl = 1,

and taking 9 = I in (11), we obtain

r < 1 - (P1) + q2m-1 (12)

-15-

Since q2m-1 < 1 - P1t (12) implies the first inequality in (10). The

second inequality is satisfied with equality at P1 = 1/2 and P1 = 1, and

is satisfied in between because of convexity. This also establishes (9)

for P1 > 1/2, and thus whenever K = 2. If all the code words are of the

same length, n1 > 1, choose £ in (8) to be n1 - 1, and otherwise choose

9 = n1. In both cases, q 2m- < Pi' and in both cases, we can order

qi'...,q' to satisfy q' > q' > ... > q' > q;/2. Let Q be the set of choices
LI1 2 - -

for ql,...,qL that satisfy the above linear inequality constraints along

with I q! = 1. Then

r < Q - min H(q;,...,') + P1 (13)
{q'} sQ 1' (

Since H is convex (, the minimum above must occur at an extreme point

of Q; the extreme points of Q are those for which, for some n, 1 < n < L,

qi q< n, and q =
q
j/2 for n < i < L. For a given n, then,

q = 2/(L+n), and

2 CL-n)
min H(ql,..,) = in [- log + Ln]

I{q!}Q 1<n<L L+n L+n

Further lower bounding by allowing n to take on non-integer values, we

have an elementary calculus problem with the minimum value Q - a where

a = 1 - log2 e + log 2 (log2 e). Substituting this in (13) completes the

proof.

-16-

The bound on redundancy here is quite tight. For all P1 > 1/2, a

source with probabilities (Pi, 1-Pi' 0) satisfies the bound with. equality,

Also, the source with probabilities (1/3, 1/3, 1/3, 0) has a redundancy of

.415, whereas the bound for Pi = 1/3 is .419. It can also be shown by

tedious calculation that for all Pi, there exist sources with r > a,

which shows that the bound is tight in the limit P1 + 0.

Next we take a somewhat different approach to redundancy, Suppose

we want to reserve one or more code words for control or protocol purposes,

One could regard these control messages as having probabilities like every-

thing else, but it is frequently more convenient to regard them separately.

Theorem 3: For every finite discrete source there exists a prefix condition

code with an unused code word of length 2 and with redundancy, r < 1i,

Proof: We shall construct the desired code by first constructing the

Huffman code for the source. We then take the less probable. node at level

1, say node 2, and move it to level 2, making it the sibling of a

newly created reserved word, and making the parent the sibling of the other

level one node; all other parent-children relationships. are unchanged,

In effect we have lengthened by one each code word stemming from node 2.

Let ql and q2 be the probabilities of the original level one nodes,

ql > q2. Then if r is the redundancy of the original code and r' that of

the modified code, r' = r + q2, From (11), using 2 = 1, we have

-17-

r <1 -"
1
q2) + q2

r' < 1 -(q2) + 2q2 < 1

where in the final inequality we have used the fact that q2 < 1/2.

Note that for a source with probabilities (1/2, 1/2, 0), this bound

is met with equality. It also can be shown that the above procedure for

choosing an unused word of length 2 is optimal in the sense of minimizing

r'.

4) Adaptive Huffman Codes

In this section we are interested in Huffman encoders which maintain

a running estimate of the source letter probabilities; as these estimates

change, the code will change, remaining optimal for the current estimates.

Our primary concern is with the algorithm to modify the code rather than

the problem of estimating the probabilities. In fact, the method to be

used to estimate the letter probabilities is almost trivial. Simply

maintain a counter for each letter of the source alphabet, and increment

the counter each time that letter occurs. Periodically, say after each N'th

letter in the source sequence, multiply each of the letter counts by

some fixed number a < 1. The current estimate for the probability of a

source letter is the current count for that letter divided by the sum of

all the counts. Since the counts are proportional to the probability

estimates, the algorithm to be described operates directly on the counts,

and never needs to calculate the probability estimates.

The choice of a and N determine how quickly the estimates can change,

and it can be seen that the time constant for the number of letters enter-

ing into the estimate is N/(1-a). As this time constant increases, the

adaptation becomes slower, yielding better estimates for slowly varying

statistics, but more irrelevant estimates for rapidly varying statistics.

For small time constants, of course, the estimates will be noisy, whether

the statistics are slowly or quickly varying. For a given time constant,

it seems appropriate to chose a = 1/2, since this makes the multiplication

by a simple and keeps N relatively large.

The algorithm will keep a count for each node in the current code

tree. By the sibling property, if the nodes can be listed by decreasing

counts so that each node is adjacent to its sibling, then the code is

optimal for the current probability estimates.

We can implement this strategy, in a micro-computer, say, by maintain-

ing a fixed list of sibling pairs in storage. For a K letter alphabet,

there are K-1 such sibling pairs. The storage location for each sibling

pair will contain 5 components, two of which are the current counts for

the sibling nodes, and three of which are pointers to be described later.

The structure will be maintained in such a way that each count for the

top sibling pair will be greater than or equal to each count for the next

pair, and so forth down to the bottom of the list.

The structure of the code tree is maintained in the sibling list by

a set of forward pointers, indicated by FP in Figure 4. The FP pointer for

a given sibling pair points to the parent of the pair, or more strictly to

the sibling pair containing the parent, with an extra bit to indicate

whether the parent is the 0 sibling or the 1 sibling. The source letters

themselves have a separate storage area containing only a pointer to the

letter's current location in the sibling list. For example, in Figure 4,

00

44

o X t1 - :0 0 0 LO H . .

03

LL

c.

mt

-20-

if letter al occured, the last digit of code word x1 would be determined

as 1, since the pointer from al goes to the 1 side of the second sibling

pair. Since the FP pointer from this pair goes to the 0 side of the first

sibling pair, the code word is determined as 01. The first sibling pair

always corresponds to the level 1 nodes and its FP pointer is nil.

We have now seen how code words are generated and next take up the

problem of updating the counts and perhaps changing the code. It is

important to recognize that a code word must be generated before any changes

to the code are allowed, since the decoder must decode the code word to

obtain the information on which changes are based. After generating a code

word, the counts are incremented, one by one, on the nodes on the path

from leaf node to root. For the example of letter al, first the 1-count

in the second sibling pair is incremented from 30 to 31 and then the 0-count

in the first sibling pair is incremented from 60 to 61. Each time a count

is incremented, the count must be compared with the counts of the next

higher sibling pair, and if it exceeds one of these counts, the two nodes

must be interchanged, which means that the forward pointers into those

nodes must be switched. The purpose of the backward pointers, BPO and BP1

in Figure 5, is to find these forward pointers without a search. These

pointers also allow the decoder to decode easily. We see that a code

change is made by changing two FP pointers and two BP pointers. The point

of changing the counts one at a time is that if a code change is made

when one count is changed, it is the new path to the root rather than the old

path. that must have its counts incremented. For example if a5 occurs,

then a3 and a5 would be interchanged in the tree. The O-count in the

fourth sibling pair would become 16, the 0-count in the second sibling

pair would become 31, and the 0-count of the first 61.

-22-

It is possible for several code changes to occur for one source digit,

but there is at most one change for each count incremented, and thus at

most one change for each encoded bit. The entire computation, correspond-

ing to an encoded bit then, is one memory access to find the bit and the

location of the next bit, one memory access to find the count to be

incremented, two accesses and comparisons to see if the code must be changed,

and 4 pointer changes if the code is changed (it is not necessary to inter-

change the counts, since a comparison for equality can be done before the

incrementing, and then the new count can be incremented). Thus, in sum-

mary, the computational load is independent of the alphabet size and pro-

portional to the code bit generation rate.

In the above description, we have left out one annoying detail. Many

counts in the list could be the same. If one of those counts were to be

incremented, the interchange would have to be with the first sibling pair

containing that number. The search to find this first sibling pair can

be avoided, at the expense of storage, by having a storage location for

each such list. Each element on the list has a pointer to that location,

and that location contains a pointer to the top of the list (which could

contain just one element). Since elements join such a list from the

bottom (in terms of the ordered sibling pairs), and leave from the top

(after the code switch), no variable length searches are required.

-21-

CM ri) q- LO (CD

co
C')

CN L

Q.

U) w

Cp

H
H

0

0~a.3

-23-

Appendix

We now generalize the previous results to the case where the code

alphabet is of arbitrary size D rather than binary. lWe allow D-1 of

the source messages to have 0 probability; because of this, we can

assume without loss of generality that the size of the message set, K, is

c(D-l) + 1 for some integer c. The Huffman coding algorithm is then changed

by replacing the word two, in the algorithm as given, by the letter D. A

code tree has the sibling property if the nodes, excluding the root, can

be listed in order of non-increasing probability such that for each i,

1 < i < c, nodes iD, iD-l,...,iD - D + 1 are all siblings of each other.

The proof of Theorem 1, that a prefix condition code is a Huffman code iff

the code tree has the sibling property, is the same as the original proof,

with "two" replaced by "D". The lexicographic property also follows in

an obvious fashion.

We define the redundancy r of a source code, with a code alphabet

size of D, as the expected code word length minus the entropy, in base D,

of the source probabilities. If we let Q be some level at which the code

tree is full, let L = Dk nodes, number the nodes in order of non-

increasing probability, and let m be the smallest integer for which

node Dm - (D-l) is at level Z + 1, then, as in (8), we have

c

r = -H(q,...) + tk [1 - H(qk (Al)
k=m

when qi, 1 < i < L, is the probability of the i node in level Q,

tk = qDk
+

qDk-1 ... + qDk-(Dl) and qk is a probability vector, with

components (qDk/tk, qDk-l/tk... qDk -D+l/tk). The final term is O if all

-24-

terminal nodes have level L

The final term in (Al) is more difficult to handle than the correspond-

ing term in the binary case. We need the following lemma:

D

Lemma: Let x1 > x2 > ... > xD be probabilities, I xi = 1, and let

i=l

H(x 1 ,... ,xD) be the entropy base D. Then

1 - H(x l,... xD) < (Xl-XD)D/ln D (A2)

Proof: By definition,

D

1 -H(xl,..., D) = x logD(xi D)
i=l

Choose X., 1 < i < D such that xi = ix1 + (l-Xi)x . Then

D D D

X.)i og(xi D)1 XlgD(xlD)+ C (U-x)X log (x D
i=1 i~ z i=l

(A3)

Using the fact that I xi = 1, we see that I Xi = (l-xD D)/(xl - XD), and

the right hand side of (A3) is equal to

(1 - xD D)x 1 (X1 D -1)x D

1lgD(x D)+ 1 D gD(x D
X X - X

i D~~~ ~x - x D

-25-

Since xD D < 1 and x D > 1, we can upper bound this with the inequality

logDx < (x-l)/ln D.

D

i=l

< (l-xDD)xlD/ln D < (xlD-xDD)/ln D

It is likely that the bound in (A2) could be improved somewhat, but

it is necessary that the bound increase with increasing D as D/ln D. Sub-

stituting (A2) into (Al),

r < 9 - H(q) + q mD-(D- D/ln D (A4)

Assuming that level 9 + 1 is non empty, qL > q/D for an optimum code,

and we can lower bound the entropy term in (A4), as in Theorem 2, by

H(qL,...-,q) _> - % (A5)

OD = logD(D-l) + logD(logD e) - log D e + D- (A6)

Thus the generalization of Theorem 2 is given by (A7) below

r < OD
+

P1 D/ln D (A7)

Unfortunately, as D gets large, aD + 1, but the approach is not rapid.

-26-

For example, a3 = .135, a5 = .194, o10 =' 269, O20 = 335. As in the case

of Theorem 2, for any given D, there are sources with P arbitrarily small,

for which r is arbitrarily close to aD'

Next we extend Theorem 3 by showing that with a code alphabet size

D, it is always possible to have D-1 unused code words of length 2 while

still maintaining a redundancy r' < 1. The strategy is the same as before;

construct a Huffman code for the source and then lengthen by one each code

word emanating from the least likely level one node, leaving D-1 unused

level 2 nodes. Let q = (ql' q2'...qD) be the probabilities of the level

one nodes, q > q > ''' > qD and let r be the redundancy of the original

code; then r' < r + qD. By considering a line from the probability vector

(1/D, 1/D,... 1/D) through q to the point q' where q' = 0 and using con-

vexity, we find that

H(q) > D qD

Substituting this into (A4) at Q=1, we have

r < 1 - D qD + D qD/ln D (A9)

r' < 1 - D qD(l - l/(ln D) - l/D) (Al0)

The term in parentheses is positive for D > 4, leaving us only the case

D=3 to consider. First assume that the Huffman code tree has only level

1 nodes. Then the final term in (A9) vanishes and r' < 1. Next we use

-27-

(Al) for R=O, using the lemma to bound all nodes on the third level or

more.

r < [1 - H(q)] + X qk[l - H(qk)] + 3q'/ln 3 (All)

k=l

where q' is the probability of the most probable third level node and is 0 if no

third level nodes exist, and qk is the set of conditional probabilities for

the second level nodes emanating from the kth first level node; if no

second level nodes emanate from node k, we take [1 - H(qk)] 0.

First assume that third level nodes exist. Then q' < 1/9, and for

each first and second order node, the least likely sibling has at least

l/D the probability of the most likely so that (A5) applies. Thus

r < 2 O3 + (3/9)/ln 3

Since q3 < 1/3, this implies r' < 1. Finally assume q' = 0, and let k'

be the highest number first level node for which second level nodes exist.

For k < k', (A5) applies if second level nodes exist for node k, and

k'-l

r' < o + Y q 03
+

qk'
+
q3 (A12)

k=l

Since second level nodes exist by assumption, ql < q3/3, so that

ql + q3 < .8. Using this, it is easy to verify that r' < 1 for k' = 1,

2, 3, completing the proof.

Adaptive Huffman coding for an alphabet size of D > 2 is essentially

-28-

the same as for D=2. For a source alphabet of K = c(D-l) + 1 letters, we

need c storage locations, each containing 2D+l components; there are D

counts, one for each sibling, D backpointers, and one forward pointer.

For D > 2, and perhaps also for D=2, it is desirable to keep the counts

ordered within the storage locations, thus requiring only one comparison

instead of D to see if the code must be changed for each encoded letter.

The trade off here is between number of comparisons and number of code

changes, which is really an implementation detail.

-29-

References

1) D. A. Huffman, "A Method for the Construction of Minimum Redundancy

Codes", Proc. IRE, 40, pp. 1098-1101, 1952.

2) R. G. Gallager, Information Theory and Reliable Communication, Wiley

& Sons, New York, New York, 1968.

