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VARIATIONS ON A THEME OF KAPLANSKY

Robin E. Harte

Abstract. We explore the relationship between Kaplansky’s Lemma about locally alge-

braic operators, a dual to Kaplansky’s lemma, and non singularity for pairs of operators

in the sense of Joseph L. Taylor.

Kaplansky’s Lemma ([7] Lemma 14;[10] Theorem 4.8;[11] (3.5)) says that,
for bounded linear operators on Banach spaces,

0.1 locally algebraic =⇒ algebraic .

Here an algebraic operator satisfies a non trivial polynomial identity, while
a locally algebraic operator satisfies such a thing separately at each point.
Thus for a locally algebraic operator T : X → X there is a family (px)x∈X of
non trivial polynomials for which each px(T ) kills its own x: px(T )x = 0 ∈ X.
When all the px are the same then the operator T is algebraic; if more
generally all the px can be taken with the same degree then we shall call
T : X → X boundedly locally algebraic. Formally

1. Definition The polynomial kernel and the polynomial range of a linear
operator T : X → X are the subspaces

1.1 EX(T ) =
∞⋃

n=1

En
X(T ) and FX(T ) =

∞⋂
n=1

Fn
X(T ) ,

where for each n ∈ N

1.2
En

X(T ) =
⋃
{p(T )−1(0) : 1 ≤ degree(p) ≤ n} and

Fn
X(T ) =

⋂
{p(T )(X) : 1 ≤ degree(p) ≤ n} .
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T is said to be locally algebraic iff

1.3 EX(T ) = X ,

and boundedly locally algebraic iff

1.4 ∃n ∈ N , En
X(T ) = X .

T is said to be algebraic iff there is a non trivial polynomial 0 6= p ∈ Poly
for which

1.5 p(T ) = 0 .

The subspaces EX(T ) and FX(T ) are linear and “hyperinvariant” under
T , but for bounded operators on Banach spaces not necessarily closed. It is
evident that

1.6 algebraic=⇒boundedly locally algebraic =⇒locally algebraic ;

Kaplansky’s Lemma reverses these in two orthogonal bites. For arbitrary
linear operators on linear spaces

1.7 boundedly locally algebraic =⇒ algebraic ;

for bounded linear operators on Banach spaces

1.8 locally algebraic =⇒ boundedly locally algebraic .

The first of these implications comes from the Euclidean algorithm (par-
tial fractions), while the second calls on Baire’s theorem.

In finite dimensions it is familiar that every linear operator is algebraic:
if dim(X) = n then (I, T, T 2, . . . , Tn2

) is linearly dependent. Of course
the Cayley-Hamilton theorem says that T satisfies a polynomial identity
p(T ) = 0 with a polynomial p of degree n - but that is a long story: at any
rate Kaplansky’s Lemma is not of great interest in finite dimensions.
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The implication (1.8) uses Baire’s theorem ([2] Theorem 4.6.1), which
says that in a Banach space countable unions of nowhere dense sets have
empty interior:
2. Theorem If X is a Banach space and if subsets (Kn) in X satisfy

2.1
∞⋃

n=1

int cl Kn = ∅,

then also

2.2 int
∞⋃

n=1

Kn = ∅.

Proof. The argument is a version of Cantor’s diagonal technique: we
claim that if (2.1) holds and not (2.2) the space X cannot be complete.
Recursively we construct a Cauchy sequence whose limit has nowhere to go:
if (2.1) holds and not (2.2) there is x1 ∈ X and ε1 > 0 for which

Disc(x1, ε1) ⊆
( ∞⋃
n=1

Kn

) \ cl K1 and ε1 ≤ 2−1 ,

else int cl K1 ⊇
⋃∞

n=1 Kn 6= ∅, and recursively there are (xn) in X and
εn > 0 for which

Disc(xn+1, εn+1) ⊆ int Disc(xn, εn) \ cl Kn+1 and εn ≤ 2−n .

Evidently (xn) is Cauchy and hence by completeness has a limit x∞: but
now

x∞ ∈
∞⋂

n=1

Disc(xn, εn) ⊆ (
int H

) \H with H =
∞⋃

n=1

Kn •

To use this to deduce (1.4) from (1.3) we must cunningly choose (Kn):
3. Theorem If T ∈ BL(X, X) is bounded and linear on a Banach space,
and locally algebraic, then it is boundedly locally algebraic.

Proof. For each m ∈ N recall the spaces En
X(T ) of (1.2): by the locally

algebraic assumption
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3.1 X =
∞⋃

m=1

Em
X (T ) .

Baire’s theorem will now tell us that the interior of the closure of one of the
Em

X (T ) must be non empty: but first we notice that each of the Em
X (T ) is

already closed. Indeed if x∞ = limnxn with xn ∈ Em
X (T ) then for each n

there is a polynomial pn, of degree ≤ m, for which pn(T )xn = 0: by scalar
multiplication we arrange that norm of its sequence of coefficients is 1. Thus
the polynomials pn give rise to sequences from the unit ball of Cm+1 and
by compactness have a convergent subsequence (p′n) = (pφ(n)), whose limit
gives rise to a polynomial p′∞: evidently

3.2 p′∞(T )x∞ = limnp′n(T )(x′n) = 0 .

Baire’s theorem now tells us that there is m ∈ N for which Em
X (T ) has

non empty interior, and hence w ∈ X and ε > 0 for which

3.3 ‖x‖ < ε =⇒ w + x ∈ Em
X (T ) .

Thus there are qw and qw+x for which qw+x(T )(w+x) = 0 = qw(T )w and
hence, for arbitrary λ ∈ C,

px = qwqw+x gives px(T )(λx) = 0 with degree(px) ≤ 2m •
The completeness of X is necessary not just for the proof of Theorem 3

but also for the result: for example on the normed space c00 of terminating
sequences the standard weight operator

3.4 W : (xn) 7→ ( 1
nxn)

is locally algebraic but not boundedly locally algebraic.
The implication (1.7) uses the Euclidean algorithm for polynomials. To

explore the background to this, look at Taylor nonsingularity for pairs of
commuting operators:
4. Definition If R : X → X and S : X → X are linear we shall call the
pair (R,S) left non singular provided
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4.1 R−1(0)∩S−1(0) = {0} ,

right non singular provided

4.2 R(X) + S(X) = X ,

and middle non singular provided

4.3 (−R S )−1 (0) ⊆
(

S
R

)
(X) .

For bounded operators on Banach spaces, we shall call (R, S) left invertible
if there are bounded R′ and S′ for which

4.4 R′R + S′S = I ,

right invertible if there are bounded R′′ and S′′ for which

4.5 RR′′ + SS′′ + I ,

and middle invertible if there are bounded R′, S′, R′′ and S′′ for which

4.6
(−R′′

S′′

)
(−R S ) +

(
S
R

)
(S′ R′ ) =

(
I 0
0 I

)
.

These definitions work better when R and S commute, so that the in-
clusion (4.3) becomes equality. It is obvious that the invertibility condi-
tions each imply their nonsingular counterparts; the converse holds provided
the row and column matrices derived from (R, S) have (bounded) “general-
ized inverses”. Sufficient for all three splitting conditions is that there are
bounded U and V on X for which

4.7 {U, V } ⊆ comm(R, S) and V R− SU = I :
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derivation is left to the reader. We collect the following list of conditions
which ([3] Theorem 4) are equivalent to middle non singularity :
5. Theorem If R : X → X and S : X → X are linear then the following
two conditions are equivalent to middle non singularity for (R,S):

5.1 R−1(0) ⊆ S R−1(0) and S−1(0) ⊆ R S−1(0) ;

5.2 R(X)∩S(X) ⊆ RS
(
(SR−RS)−1(0)

) ⊆ (RS)(X)∩(SR)(X) .

If (5.1) holds then also

5.3 (RS)−1(0) + (SR)−1(0) ⊆ R−1(0) + S−1(0) .

Proof. If middle non singularity (4.3) holds then

Ry = 0 =⇒ (−R S )
(

y
0

)
= 0 =⇒

(
y
0

)
=

(
S
R

)
x

giving Ry = Sx with x ∈ R−1(0): this is the first part of (5.1) and the
second is similar. Also

w = Sx = Ry =⇒
(

y
x

)
=

(
S
R

)
z =⇒ w = RSz = SRz

giving (5.2). Conversely if these conditions hold then, using first (5.2),
(

y
x

)
∈ (−R S )−1 (0) =⇒ Ry = Sx = RSz = SRz

giving y − Sx ∈ R−1(0) ⊆ SR−1(0) and x − Rz ∈ S−1(0) ⊆ RS−1(0), so
that there are u and v for which

y − Sz = Su with Ru = 0 and x−Rz = Rv with Sv = 0 :

but now
(

S
R

)
(z + u + v) =

(
y
x

)
as required by (4.3).

Towards the last part we assume only (5.1) and claim that (RS)−1(0) is
a subset of the sum of the null spaces: for if RSx = 0 then Sx ∈ SR−1(0)
giving Sx = Sz with Rz = 0 so that x = (x− z) + z •
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It is a trivial consequence of (5.1) that both sequences (R, S) and (S, R)
are themselves “exact”:

5.4 R−1(0) ⊆ S(X) and S−1(0) ⊆ R(X) ;

similarly the middle invertibility (4.6) makes them “split exact”:

5.5 R′′R + SS′ = I = S′′S + RR′ .

Theorem 5 interacts ([3] Lemma 11) with the “Euclidean algorithm” for
polynomials:
6. Theorem If T : X → X is complex linear then there is equality

6.1 EX(T ) =
∑

λ∈C

(T − λI)−∞(0) and FX(T ) =
⋂

λ∈C

(T − λI)∞(X) ,

where we write

6.2 T−∞(X) =
∞⋃

n=1

T−n(0) and T∞(X) =
∞⋂

n=1

Tn(X)

for the “hyperkernel” and “hyperrange” of T . If λ 6= µ then

6.3

(T − λI)−∞(0) ∩ (T − µI)−∞(0) = {0},
(T − λI)∞(X) + (T − µI)∞(X) = X, and

(T − λI)−∞(0) ⊆ (T − µI)∞(X).

Proof. The right hand side of the first part of (6.1) is obviously included in
the left; conversely if p = qr ∈ Poly with hcf(q, r) = 1 then by the Euclidean
algorithm there are polynomials q′ and r′ for which q′q − r′r = 1 and hence
also

6.4 q′(T )q(T )− r(T )r′(T ) = I .

Thus the pair (q(T ), r(T )) satisfies the condition (4.7) and hence in particular
is middle exact (4.3). Thus the conditions (5.1), (5.2) and (5.3) all hold.
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Inductively if p = q1q2 . . . qk with hcf(qi, qj) = 1 whenever i 6= j then the
inductive extension of (5.3) says that

6.5 p(T )−1(0) =
k∑

j=1

qj(T )−1(0) .

By the fundamental theorem of algebra this happens with

6.6 qj = (z − λj)νj :

thus the left hand side of the first part of (6.1) is included in the right.
Similarly it is obvious that the left hand side of the second part of (6.1) is

included in the right, and for equality go to the inductive extension of (5.2).
For (6.3) note that if λ 6= µ then the polynomials (z− λ)n and (z− µ)m are
relatively prime •

We can now see the implication (1.7):
7. Theorem If T : X → X is linear and boundedly locally algebraic then
it is algebraic.

Proof. We make two observations: necessary and sufficient for T to be
algebraic is that it be boundedly locally algebraic with finite point spectrum

7.1
πleft(T ) = {λ ∈ C : (T − λI)−1(0) 6= {0}}

= {λ ∈ C : (T − λI)−∞(0) 6= {0}} ;

also a boundedly locally algebraic linear operator necessarily has finite point
spectrum. For the first observation simply notice that if the point spectrum
(6.4) is finite then so is the sum in the first part of (6.1); for the second claim
that if we can find m distinct eigenvalues for T then we can find a vector
which can only be killed by a polynomial of degree ≥ m. Indeed suppose that
(λ1, λ2, . . . , λm) are pairwise distinct eigenvalues of T , with corresponding
eigenvectors (x1, x2, . . . , xm): then for a non trivial polynomial 0 6= p ∈ Poly
we claim implication

7.2
p(T )

m∑

j=1

xm = 0 =⇒ {x1, x2, . . . , xm} ⊆ p(T )−1(0)

=⇒ {λ1, λ2, . . . , λm} ⊆ p−1(0) ,
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thus forcing degree(p) ≥ m. To see why the first implication in (7.2) holds
argue

7.3 hcf(q, r) = 1 , q(T )y = r(T )z = 0 , y + z = 0 =⇒ y = z = 0 :

this is because condition (4.1) gives y = −z ∈ q(T )−1(0)∩r(T )−1(0) = {0}.
To apply (7.3) to the first part of (7.2) take, correcting a misprint in the
proof of Theorem 12 of [3],

y = p(T )xj , z = p(T )
∑

i 6=j

xi , q = z − λj , r =
∏

i 6=j

z − λi .

To see why the second implication in (7.2) holds argue

p(λj) 6= 0 =⇒ hcf(p, z − λj) = 1 =⇒ p(T )−1(0)∩(T − λjI)−1(0) = {0} •

For real spaces we replace (6.1) with equality

7.4 EX(T ) =
∑

λ∈R

(T − λI)−∞(0) +
∑

µ,ν∈R

(T 2 − 2µT + νI)−∞(0)

and

7.5 FX(T ) =
⋂

λ∈R

(T − λI)∞(X) ∩
⋂

µ,ν∈R

(T 2 − 2µT + νI)∞(X) ,

The Euclidean algorithm also gives equality

7.6 EX(T ) = {x ∈ X : dim Poly(T )x < ∞} .

The condition

7.7 FX(T ) = {0}

is not sufficient for T to be algebraic: if ([4] Example 13) T = U : X → X is
the forward shift (x1, x2, x3, . . . ) 7→ (0, x1, x2, . . . ) on X = `p or X = c0 then
FX(T ) ⊆ T∞(X) = {0} while T is not algebraic. The “bounded” analogue
of (7.7) works however:
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8. Theorem If there is m ∈ N for which

8.1 Fm
X (T ) = {0}

then T : X → X is algebraic.

Proof. The condition (8.1) together with the finiteness of the “defect
spectrum”

8.2 τ right(T ) = {λ ∈ C : (T − λI)X 6= X} = {λ ∈ C : (T − λI)∞X 6= X}

are equivalent to T being algebraic; also we claim that if (8.2) is not finite
then (8.1) fails. Indeed if there are distinct (λ1, λ2, . . . , λm) in τ right(T )
then there are linear functionals fj : X → C - no boundedness involved here
- for which

8.3
m∑

j=1

fj ◦ p(T ) = 0 : X → C,

so that, as in (7.2), fj ◦ (T − λjI) = 0 and then p(λj) = 0 for each j. Thus
if the degree of p is less than m then (8.3) cannot happen. There must
therefore be x ∈ X for which

∑
j fj(p(T )x) 6= 0 •

We recall that T : X → X is of finite ascent if there is k ∈ N for which

8.4 T k(X) = T k+1(X) , equivalently T k(X)∩T−1(0) = {0} ,

and of finite descent if there is k ∈ N for which

8.5 T−k(0) = T−k−1(0) , equivalently T−k(0) + T (X) = X .

9. Theorem If T ∈ BL(X, X) is bounded and linear on a Banach space,
then necessary and sufficient for T to have finite descent is that

9.1 EX(T ) + T (X) = X .

Proof. We claim ([6] Lemma 2.4) that

9.2 EX(T ) + T (X) = T−∞(0) + T (X)

and that ([6] Lemma 2.5), provided the first space is complete, there is k ∈ N
for which

9.3 T−∞(0) + T (X) = T−k(0) + T (X) .
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For (9.2) note (6.3) that if λ 6= 0 then each pair ((T − λI)n, T ) is exact in
the sense (5.4). For (9.3) we follow part of the proof of the open mapping
theorem: we claim that if Rk : Yk → X are bounded and linear on Banach
spaces Yk and satisfy

9.4
∞⋃

k=1

Rk(Yk) = X

then for at least one k ∈ N the mapping Rk is “almost open” and hence
onto. Indeed from (9.4) it follows

X =
⋃

k,h

Kkh with Kkh = {Rky : ‖y‖ ≤ h}

and hence (cf [2] Theorem 4.6.2)

0 ∈ int cl RkDisc(0, 1) =
1
h

int cl Kkh ,

making Rk almost open. To apply this to (9.3) take

9.5 Rk : (y, x) 7→ y + Tx
(
T−k(0)×X → X

) •

Dually, using again (6.3),

9.6 FX(T )∩T−1(0) = T∞(X)∩T−1(0) ;

we cannot however expect implication

9.7 T∞(X)∩T−1(0) = {0} =⇒ ∃k ∈ N , T k(X)∩T−1(0) = {0} :

10. Example If U : Y → Y and V : Y → Y are the forward and the
backward shift and

10.1 T = V ⊗ U : Y ⊗ Y = X → X

then for arbitrary k ∈ N

10.2 T∞(X)∩T−1(0) = {0} 6= T k(X)∩T−1(0) .
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Proof. We can represent T as an infinite operator matrix

10.3 T ∼




0 U 0 · · ·
0 0 U · · ·
0 0 0 · · ·

. . . · · · · · · · · ·


 :




Y
Y
Y
· · ·


 →




Y
Y
Y
· · ·


 ,

and notice

10.4 T k(X)∩T−1(0) ∼




UkY
UkY
UkY
· · ·


∩




Y
{0}
{0}
· · ·


 6=



{0}
{0}
{0}
· · ·


 ∼ T∞(X)∩T−1(0) •
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